Citation Information

Journal: Pharmaceutical Biology

Article: Terpenoidal constituents of Eucalyptus loxophleba ssp. lissophloia

Author: Sidana, J. J.

ISSN: 13880209

Volume: 50
Issue: 7
Quarter:
Season:
Number:
Month:
Day:
Year: 2012
Pages: 823 - 827

Citation Source: null

Patron: Need article for HERDC collection. Unable to locate @ ANU or online.

Staff Note:

Paged Locations: 9geor, >>9uliv<<, 9glas

Patron's Library Information

Address: Australian National University, Menzies Library (Bldg 2), CANBERRA ACT 0200, AUSTRALIA

Email: docdel@anu.edu.au
Fax: 011-61-2-6125-4063

Patron Information

Patron Number: p1108965@anu0
Patron Type: ARLIR staff
Patron Email: publications.collection@anu.edu.au
Preference: Not Specified

Holdings Information

Location: Electronic Resource
Call Number: ELECTRONIC JOURNAL

HOLDINGS: View this journal online (1961-. Requires EZproxy login off-campus)

Courtesy of Library Services

For further assistance, please contact your library. NOTICE: This material may be protected by copyright law (Title 17 U.S. Code).
RESEARCH ARTICLE

Terpenoidal constituents of *Eucalyptus loxophleba* ssp. *lissophloia*

Jasmeen Sidana¹, Sukhinder Singh², Sunil Kumar Arora², William J. Foley⁵, and Inder Pal Singh¹

¹Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India. ²Molecular Immunology Laboratory, Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India. ³Research School of Biology, The Australian National University, Canberra, Australia

Abstract

Context: Eucalyptus has been a source of a number of biologically active compounds. The anti-leishmanial activity of terpenoids from *Eucalyptus loxophleba* (Benth.) ssp. *lissophloia* (Myrtaceae) has not yet been investigated.

Objective: Isolation of the terpenoidal constituents for evaluation of *in vitro* anti-leishmanial activity against the *Leishmania donovani* (Dd8 strain) promastigotes.

Materials and methods: The chloroform–methanol (8:2) extract of dried leaves of *Eucalyptus loxophleba* was used to isolate terpenoidal constituents employing solvent partitioning, column chromatography and preparative high performance liquid chromatography and characterized from spectral data. The anti-leishmanial activity of the isolated compounds was tested *in vitro* using an Alamar blue assay against a culture of *L. donovani* (Dd8 strain) promastigotes.

Results: Two new naturally occurring triterpenes, named loxanic acid and 3-acetyl loxanic acid together with four known ursane triterpenoids and one bis-monoterpene glycoside, cumiloside B isolated from the leaves showed anti-leishmanial activity (IC₅₀ 133 to 235 μM) against the promastigotes of the tested strain.

Conclusion: The terpenes isolated from the leaves of *E. loxophleba* showed moderate anti-leishmanial activity.

Keywords: Triterpenoid, terpenoid glycoside, ursane, anti-leishmanial

Introduction

Eucalyptus (Myrtaceae), contains many species exhibiting a wide range of biological activities. In Australia, some species (particularly a group known as oil mallees including *Eucalyptus loxophleba* (Benth.) ssp. *lissophloia*) are being promoted as a means to control dryland salinity and if valuable natural products could be produced from these species, then it would help promote their use for addressing land degradation (Bell et al., 2001). Apart from mono- and sesquiterpene constituents of essential oils which are particularly rich in the leaves of oil mallees, an array of secondary metabolites with diverse biological and pharmacological activities have been reported from *Eucalyptus* (Ghisalberti, 1996).

Recently, we have reported large scale isolation process for sideroxylonalon and isolation of several other formylated chlorogluclol compounds from this species (Sidana et al., 2010, 2011). In continuation of our study on the chemical constituents of *E. loxophleba*, we now report the isolation and structure elucidation of two new triterpenoids, loxanic acid (1) and 3-acetyl loxanic acid (2) from chloroform–methanol (8:2) extract of *E. loxophleba* leaves together with four other triterpenoids namely ursolic acid (3) (Moghaddam et al., 2007), robustanic acid (4) (Khare et al., 2002), ursolic acid lactone acetate (5) (Katay et al., 1983), ursolic acid lactone (6) (Hongcheng & Fujimoto, 1993; Savian et al., 1988) and a bis-monoterpene glycoside, cumiloside B (7) (Hakki et al., 2010) (Figure 1).

Materials and methods

General

All the solvents used for extraction were of analytical grade. High performance liquid chromatography
(HPLC) grade methanol (JT Baker), ultra pure water (Elga®) and acetic acid were used for sample preparation and in HPLC mobile phases. The HPLC analysis was carried out on Phenomenex C_{18} column (250 × 4.6 mm) connected to a Shimadzu HPLC system consisting of a model LC-10AT VP fitted with a SIL-20AC autosampler and SPD-M10A VP photodiode array detector. Princeton SPHER-C18 column (250 × 10 mm, 5 µ) was used for preparative isolation of compounds.

All chromatographic purifications were performed on silica gel #60–120 and silica gel G and GF_{254} from CDH India whereas all thin layer chromatography (TLC) (silica gel) development was performed on silica gel coated plates (Merck Kieselgel 60 F_{254}, 0.2 mm thickness). IR spectra of neat samples were taken on an FT-IR spectrometer (Nicolet, USA). Mass spectra were recorded on GCMS-QS (Shimadzu, Japan) or an LCMS (Waters, USA) in APCI mode. {1}H and {13}C NMR spectra were recorded on 400 and 100 MHz spectrometers (Bruker), respectively. Samples were dissolved in CDCl_{3} or C_{6}D_{6} and tetramethylsilane (TMS) was used as an internal standard.

Plant material
The plant material was collected in March 2004 from a provenance trial of *E. loxophleba* ssp. *lissophloia* growing at Toolbin Western Australia managed by the Western Australian Department of Environment and Conservation and authenticated by Dr Peter Grayling. A voucher specimen has been deposited in the Ganga Herbarium at the Australian National University (WIF 09/03).

Extraction and isolation
The shade-dried leaves (10 kg) of *E. loxophleba* were coarsely ground and extracted with chloroform–methanol (8:2) in a Soxhlet extractor for 48 h. The crude extract (2.7 kg) obtained after evaporation of solvent in vacuo was used to isolate 180 g of a mixture of the three sideroxylonals (A, B and C) (Sidana et al., 2010). The mother liquor was used for further phytochemical investigations. A portion (500 g) of this mother liquor was subjected to solvent–solvent partitioning to yield chloroform (200 g) and ethyl acetate (76 g) soluble fractions. The chloroform fraction (50 g) was loaded on a vacuum liquid chromatography assembly, set by packing 600 g of silica gel G in a G-4 sintered glass funnel of 1 L capacity to obtain a column bed height of 8 cm and i.d. of 13 cm. The column was eluted with hexane–ethyl acetate and then with chloroform–methanol gradients to obtain fractions A to N pooled on basis of TLC. Fractions I and J (5.0 g) eluted with 30 to 50% ethyl acetate in hexane were found to be rich in terpenoidal constituents (blue–violet spots on normal phase silica gel TLC on charring with anisaldehyde–sulphuric acid reagent). The pooled fractions I and J were subjected to charcoal treatment to remove the coloring pigments and the enriched fraction so obtained was further subdivided into individual components by prep-TLC over silica gel G and GF_{254} using chloroform–methanol (29:1) as solvent. The individual compounds were finally purified by semi-preparative HPLC using methanol–water–acetic acid (90:9:1) to afford 1 (18 mg), 3 (21 mg) and 4 (55 mg).

Fraction E (300 mg) was subjected to further fractionation by vacuum liquid chromatography over octadecyl silica. The column was eluted with a methanol–water gradient (50 to 100% methanol) to yield ten sub-fractions. The fractions revealing blue–violet spots after silica gel TLC (chloroform–methanol, 29:1) with anisaldehyde–sulphuric acid reagent were pooled and subjected to prep-HPLC (Column: C_{18}, Luna, 250 × 30 mm, Mobile phase: MeOH: Water (2% AcOH) (90:10), Flow rate: 40 mL/min, Detection: 225 nm) to yield four sub-fractions. The first sub-fraction yielded compound 5 (51 mg) as colorless needles. The second sub-fraction was further
purified by preparative TLC over silica gel G + GF₅₄ using chloroform: methanol-acetic acid (19:0.5:0.5) as solvent to yield compounds 2 (18 mg) and 6 (21 mg).

Fractions L (7.9 g) and M (12.0 g) were separately re-chromatographed over silica gel (#60–120) using a hexane-
ethyl acetate gradient. The polar sub-fractions of fractions L and M (showing grayish-black spots on silica gel TLC after
charring with 10% sulphuric acid-methanol) were pooled and subjected to chromatography on Sephadex LH-20 using
methanol as an eluent. Compound 7 (460 mg) was separated from sugar components and re-crystallized from methanol.

Loxanic acid (1)
Light brown powder, [α]₂⁰° + 307.7° (c 0.05, CHCl₃) IR νmax 3434, 2929, 2862, 2623, 1690, 1457, 1374, 1252, 1033 cm⁻¹;
APCI-MS: m/z 437, 391, 203; ¹H and ¹³C NMR data are presented in Table 1.

3-Acetyl-loxanic acid (2)
Light brown powder, [α]₂⁰° + 171.8° (c 0.05, CHCl₃) IR νmax 3267, 2927, 2865, 1723, 1632, 1456, 1372, 1275, 1221, 1165, 1141 cm⁻¹; APCI-MS: m/z 437, 391; ¹H and ¹³C NMR data are presented in Table 1.

Table 1. ¹H and ¹³C NMR data of compounds 1 (in C₅D₅N) and 2 (in CDCl₃) .

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Compound 1</th>
<th></th>
<th></th>
<th>Compound 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δH (multiplicity)</td>
<td>δH multiplicity / Hz</td>
<td></td>
<td>δH (multiplicity)</td>
<td>δH multiplicity / Hz</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39.9 (CH₃)</td>
<td>2.13 m</td>
<td></td>
<td>36.8 (CH₃)</td>
<td>2.04 m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30.1 (CH₃)</td>
<td>2.02 m</td>
<td></td>
<td>24.2 (CH₃)</td>
<td>1.75 m</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79.1 (CH)</td>
<td>2.15 m</td>
<td></td>
<td>80.6 (CH)</td>
<td>4.50 dd (11.2, 5.0)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>49.4 (C)</td>
<td>3.99 t (8.3)</td>
<td></td>
<td>38.3 (C)</td>
<td>0.95 m³</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53.1 (CH)</td>
<td>1.10 m</td>
<td></td>
<td>51.2 (CH)</td>
<td>1.10 m</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19.8 (CH)</td>
<td>1.63 m</td>
<td></td>
<td>18.1 (CH)</td>
<td>1.10 m</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>33.9 (CH₃)</td>
<td>1.46 m</td>
<td></td>
<td>31.9 (CH₃)</td>
<td>1.35 m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>42.4 (C)</td>
<td>1.46 m</td>
<td></td>
<td>40.6 (C)</td>
<td>1.46 m</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>158.9 (C)</td>
<td>1.46 m</td>
<td></td>
<td>154.6 (C)</td>
<td>1.46 m</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40.8 (C)</td>
<td>1.46 m</td>
<td></td>
<td>37.8 (C)</td>
<td>1.46 m</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>116.8 (CH)</td>
<td>5.75 d (5.8)</td>
<td></td>
<td>115.4 (CH)</td>
<td>5.50 d (5.8)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>124.5 (CH)</td>
<td>5.79 d (5.8)</td>
<td></td>
<td>123.4 (CH)</td>
<td>5.58 d (5.8)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>141.9 (C)</td>
<td>1.46 m</td>
<td></td>
<td>139.1 (C)</td>
<td>1.46 m</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>44.4 (C)</td>
<td>1.46 m</td>
<td></td>
<td>42.6 (C)</td>
<td>1.46 m</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>29.0 (CH₃)</td>
<td>2.49 m</td>
<td></td>
<td>27.0 (CH₃)</td>
<td>2.04 m</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>26.5 (CH)</td>
<td>2.14 m</td>
<td></td>
<td>24.4 (CH)</td>
<td>1.75 m</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>46.6 (C)</td>
<td>1.96 m</td>
<td></td>
<td>47.3 (C)</td>
<td>1.70 m</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>53.2 (CH)</td>
<td>2.76 d (6.0)</td>
<td></td>
<td>51.4 (CH)</td>
<td>2.33 d (11.6)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>32.2 (CH)</td>
<td>1.95 m</td>
<td></td>
<td>29.7 (CH)</td>
<td>1.51 m</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>40.5 (CH)</td>
<td>2.02 m</td>
<td></td>
<td>38.6 (CH)</td>
<td>1.73 m</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>38.4 (CH)</td>
<td>1.46 m</td>
<td></td>
<td>36.4 (CH)</td>
<td>1.73 m</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>39.1 (CH)</td>
<td>1.80 m</td>
<td></td>
<td>38.6 (CH)</td>
<td>0.95 m³</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>30.2 (CH)</td>
<td>1.28 s</td>
<td></td>
<td>28.1 (CH)</td>
<td>1.20 s</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>17.9 (CH)</td>
<td>1.07 s</td>
<td></td>
<td>16.9 (CH)</td>
<td>0.88 s</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26.7 (CH)</td>
<td>1.22 s</td>
<td></td>
<td>25.2 (CH)</td>
<td>0.98 s</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>22.6 (CH)</td>
<td>1.33 s</td>
<td></td>
<td>21.3 (CH)</td>
<td>1.25 s</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>19.9 (CH)</td>
<td>1.14 s</td>
<td></td>
<td>18.1 (CH)</td>
<td>0.92 s</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>161.2 (COOH)</td>
<td>104.2 (COOH)</td>
<td></td>
<td>167.2 (CH)</td>
<td>0.95³</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>18.6 (CH)</td>
<td>1.01 d (6.4)</td>
<td></td>
<td>16.7 (CH)</td>
<td>0.95³</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>22.7 (CH)</td>
<td>0.95 d (6.3)</td>
<td></td>
<td>20.9 (CH)</td>
<td>0.87 d (6.5)</td>
<td></td>
</tr>
</tbody>
</table>

GLCOO
CH₂COO

¹H and ¹³C NMR data for compounds 1 (in C₅D₅N) and 2 (in CDCl₃).³Assignments are based on ¹H, ¹³C, DEPT, HMBC and HMQC experiments and comparison with similar compounds.

³Overlapped signals.
Synthesis of 1 from 6

Ursolic acid lactone (6) (5 mg) was adsorbed on silica gel (25 mg, 100-200 mesh). The mixture was heated in an oven at 160°C for 3.5 h (Dayal, 1990). The product was identical to 1 by TLC. Similarly, the reaction of ursolic acid lactone acetate (5) under the same conditions gave 2 by TLC.

In vitro anti-leishmanial activity and cytotoxicity

Anti-leishmanial activity of the isolated compounds was tested in *in vitro* using Alamar blue assay against a culture of *L. donovani* (Dd8 strain) promastigotes grown in phenol red free RPMI-1640 (Sigma, USA), supplemented with 10% fetal calf serum (Sigma, St. Louis, MO, USA) at 26°C. *L. donovani* (1 x 10^6 cells/mL) promastigotes from logarithmic phase culture were grown in 96-well plate for 48 h before treatment with compounds. Dilutions were prepared in dimethyl sulfoxide and concentration (75-300 μM) of each compound was used in triplicate. The standard Miltefosine (hexadecyl phosphocholine) was used as reported IC_{50} value (Sidana et al., 2011; Vermeersch et al., 2009). After treatment with compounds, the plate was kept at 26°C for 48 h. After this incubation, 20 μl of Alamar-Blue reagent (Invitrogen) was added and kept for 5 h at 37°C. Thereafter, absorbance was measured at 570 and 600 nm. The concentration of compounds that produced 50% reduction in growth (IC_{50}) of promastigotes as compared to control (untreated) was determined (Mikus & Steverding, 2000; Ordonez-Gutierrez et al., 2007).

In vitro cytotoxicity of the active compounds

was determined against PBMC (peripheral blood mononuclear cells) separated from heparinized blood of a normal healthy individual by Ficoll–Hypaque (Sigma, USA) density gradient centrifugation. Alamar blue was used for *in vitro* cytotoxicity assay. Briefly, the assay was performed in 96-well tissue culture plates. Cells were seeded to the wells of 96-well plate (1 x 10^6 cells/well) and were exposed to compounds (IC_{50} concentration and twice the concentration of IC_{50}) were used in triplicate. After treatment with compounds, the plate was kept at 37°C for 48 h. After this incubation, 20 μl of Alamar-Blue reagent (Invitrogen) was added and kept for 5 h at 37°C. Thereafter, absorbance was measured at 570 and 600 nm. The mean percentage of cytotoxicity was calculated relative to control (unexposed to compounds) (Mikus & Steverding, 2000; Ordonez-Gutierrez et al., 2007).

Results and discussion

The chloroform–methanol extract of *E. luxopilchela* leaves was fractionated by vacuum liquid chromatography followed by open column chromatography over silica gel to afford a terpenoid-rich fraction that was further subfractionated by preparative TLC over silica gel G and GF_254 followed by semi-preparative HPLC to afford compound 1 along with two other known compounds. Compound 1 exhibited a [M-OH]^- fragmentation ion at m/z 437. Its molecular formula C_{30}H_{46}O_5 was confirmed by combined application of 1H and 13C NMR (DEPT). Its UV spectrum showed an absorption band at 281 nm indicating the presence of conjugation in the molecule (hexamethylen diene system). The 1H and 13C NMR data of 1 indicated that it is a urson type of triterpenoid. The 1H NMR spectrum showed five tertiary methyl signals at δ 1.33, 1.28, 1.22, 1.14 and 1.07 and two secondary methyl signals at δ 1.01 (d, δ = 6.4 Hz) and 0.95 (d, δ = 6.3 Hz). A downfield triplet accounting for one proton centered at δ 3.49 in 1H NMR spectrum indicated the presence of a hydroxyl group at C-3. The stereochemistry of the hydroxyl group was assigned to be β on the basis of the observed chemical shift and coupling constant (J = 8.3 Hz, suggesting axial α-H). The 1H NMR further showed two olefinic one-proton doublets at δ 5.79 (d, δ = 5.8 Hz) and 5.75 (d, δ = 5.8 Hz) correlated with δ_c 124.5 (C-12) and 116.8 (C-11), respectively. The correlations of H-11 with C-8 (42.4), C-10 (40.8) and C-13 (141.9) and H-12 with C-9 (156.9), C-14 (44.4) and C-18 (53.2) in hetero-nuclear multiple bond correlation (HMBC) (Figure 2) spectrum confirmed the presence of a cisoid diene at C-9 (11:12) in 1. Another one proton doublet at δ_h 2.76 (J = 6.0) δ_c 53.2 showed HMBC correlation with C-12 (δ 124.5). The quaternary carbon δ 181.2 supported the presence of a carbonyl moiety and was located at C-17 on the basis of comparison of the chemical shift value with those of structurally similar triterpenes (Ikuta et al., 2003; Begum et al., 1997). The 1H and 13C NMR values and HMBC correlations coincided with those of eucalyptolic acid except for the two secondary methyl groups in the spectrum (Begum et al., 2002). Thus, compound 1 was established as 3β-hydroxyrhusa-9(11)-, 12-dien-28-oic acid. This is the first report of the isolation of 1 from a natural source though it has been earlier synthesized from ursolic acid lactone (Dayal, 1990). The structure was also confirmed by its synthesis from ursolic acid lactone (6).

The spectroscopic data of compound 2 was very similar to that of compound 1. The molecular mass, i.e., 496 [for molecular formula C_{30}H_{46}O_5, as deduced by 1H and 13C NMR (DEPT)] of compound 2 was 32 units more than that of compound 1. This indicated that 2 is an acetyl derivative of 1. The IR spectrum of 2 displayed carboxyl (3287-2865 cm^-1), and olefinic (1632 cm^-1) absorption bands. The 1H NMR showed a three proton singlet at δ 2.07 correlating to carbon resonance at δ 21.3 (CH_2O) in HMBC and δ 171.1 (CH_2O) in HMBC. In 1H NMR spectrum, the triplet for 3α-H was shifted downfield to...
Table 2. In vitro anti-leishmanial activity and cytotoxicity assay of compounds 1-7.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ (µM) on L. donovani (DdB strain)</th>
<th>Cytotoxicity at IC₅₀ (µM) on PBMCs (%)</th>
<th>Cytotoxicity at double the IC₅₀ (µM) on PBMCs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.353.3</td>
<td>0.3</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>204</td>
<td>2.3</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>133.23</td>
<td>0.7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>191.52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>NA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mitelosine (Std.)</td>
<td>9.31</td>
<td>17</td>
<td>26</td>
</tr>
</tbody>
</table>

NA: Not active.
PBMC: Peripheral blood mononuclear cells.

δ 4.50 as compared with δ 3.49 in the case of compound 1. Based on the above observations the acetyl group was placed at position 3 of ursa-9(11), 12-dien-28-oic acid skeleton and compound 2 was characterized as 3β-acetoxyursa-9(11), 12-dien-28-oic acid. The structure and stereochemistry of 2 were confirmed by its synthesis from ursolic acid lactone acetate (5) following the procedure of Dayal (1990).

In vitro anti-leishmanial activity and cytotoxicity

Compounds 1-7 were tested for anti-leishmanial activity in vitro against L. donovani (DdB strain) promastigotes (Table 2). Loxanic acid, 3-acetyl loxanic acid, ursolic acid lactone and ursolic acid lactone acetate showed moderate anti-leishmanial activity. The active compounds were subjected to in vitro cytotoxicity assay and were found to be non-cytotoxic towards PBMCs.

Conclusion

Two new naturally occurring triterpenes, named loxanic acid and 3-acetyl loxanic acid, were isolated from the chloroform–methanol (8:2) extract of the leaves of Eucalyptus loxophleba ssp. Islophloia, together with four known compounds namely ursolic acid, robustanic acid, ursolic acid lactone, ursolic acid lactone acetate and cunillose B. Compounds 1, 2, 5, and 6 showed moderate activity against promastigotes of Leishmania donovani.

Acknowledgement

The authors are thankful to the director, NIPER for support. We also thank Mr. John Bardle, Dr. Richard Mazene and Dr. Peter Grayling for assistance in collecting the Eucalyptus loxophleba leaf. Funding was provided by the Australian Government, Rural Industries Research and Development Corporation to WJF.

Declaration of interest

Authors declare no conflict of interest.

References