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Minimal-Case Camera Motion Estimation
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Abstract—In this paper we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation,
most notably the so-called five-point relative orientation problem, and the six-point focal-length problem. Our approach is based on
the hidden variable technique used in solving multivariate polynomial systems. The resulting algorithm is conceptually simple, which
involves a relaxation which replaces monomials in all but one of the variables to reduce the problem to the solution of sets of linear
equations, as well as solving a polynomial eigenvalue problem (polyeig). To efficiently find the polynomial eigenvalues, we make novel
use of several numeric techniques, which include quotient-free Gaussian elimination, Levinson-Durbin iteration, and also a dedicated
root-polishing procedure. We have tested the approach on different minimal cases and extensions, with satisfactory results obtained.
Both the executables and source codes of the proposed algorithms are made freely downloadable.

Index Terms—Camera calibration, camera motion estimation, epipolar geometry, minimal solver, polynomial root finding.
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1 INTRODUCTION

This paper studies the classical problem of estimating
relative camera motion from two views. We are inter-
ested in minimal case problems. In particular, we focus
on the so-called “minimal case orientation” from two
views, for example, estimating the relative camera pose
given five corresponding points in two fully-calibrated
views, or given six points if the cameras are semi-
calibrated where only the focal length is unknown. Since
the relative pose of two views is faithfully described by
an essential matrix E, the task is equivalent to estimating
the essential matrix (EM) from five or six points. The
application of minimal solvers such as the 5-point algo-
rithm is particularly relevant in the context of RANSAC,
in which speed is essential, since computations are re-
peated many times.

The most well-known method for solution of the
minimal case 5-point problem is that of Nistér [1], which
relies on reducing a set of polynomial equations using
Gauss-Jordan elimination. This algorithm represents the
state of the art. It is very fast, due to very careful
implementation in C. One downside of this is however,
as of today, no authoritative source-code implementation
(such as Nistér’s own code) is readily available (due
to perhaps intellectual property restriction issue, as the
authors are aware of).

The present paper is related to our previous work
[2], [3], in which we mainly aimed at providing a very
conceptually-simple, and easy-to-implement algorithms
for such minimal case problems. Our previous two al-
gorithm implementations–the five-point algorithm in [2]

• Richard Hartley and Hongdong Li are with the RSISE, Research School
of Engineering, College of Engineering and Computer Science, the Aus-
tralian National University and NICTA (National ICT Australia). Email:
firstname.lastname@anu.edu.au

and the six-point algorithm in [3] are very concise, using
only about 20 lines of Matlab code, yet critically relying
on the Symbolic-Math toolbox (and an internal Maple
engine) of Matlab, rendering the algorithms practically
inefficient in terms of execution time.

In this paper, we substantially revise and extend the
previous algorithms. While keep the elegance and sim-
plicity in the algorithms’ concept, we provide computa-
tionally efficient numerical implementations for both the
(new) five-point and six-point algorithms in Matlab and
C with excellent speed performance, without using any
off-the-shelf symbolic mathematics devices (as we did
previously). Our new algorithms, freely available on the
web (from the authors’ web-site), are substantially faster
than most other publicly available implementations, and
is competitive with Nistér’s own optimized binaries [4].

Polynomial eigenvalue problem. At the heart of our
new approach is the need to solve a polynomial eigen-
value problem. Given a square matrix C(w) with poly-
nomial entries in the single variable w, the polynomial
eigenvalue problem finds those values of w for which
C(w) is singular. The Matlab function polyeig implements
a solution of this problem. However, for the geometric
problems we are interested in, only real eigenvalues are
of interest, and in some cases only positive ones. We
describe an algorithm, written in C++, which finds the
required solution, with a substantial speed advantage.
First, we directly find det(C(w)), which is a polynomial
in w, followed by use of Sturm sequences to find the real
(or positive real) roots of this polynomial. Computing
the polynomial determinant is carried out by quotient-
free Gauss-Jordan elimination [5]. Efficient numeric tech-
niques are used to maintain accuracy, most notably the
propose of using a least-squares technique (i.e. Levinson-
Durbin iteration) for carrying out polynomial division,
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using Toeplitz matrices. This is proven crucial for accept-
able accuracy.

Prior Arts. An excellent background for the 5-point and
6-point geometric problems considered here is given in
previous works, and it would be redundant to repeat
it here. The most-cited, and most directly comparable
method is that of Nistér [4]. Other important methods
have been proposed by Stewenius [6], which is one of
the fastest implementations currently available (to the
authors). In addition, methods based on Gröbner basis
and modular arithmetic have been proposed [7], [8]for
solving minimal case vision problems. Kukelova et al [9]
suggested the use of the polynomial eigenvalue problem,
and the Matlab polyeig function as a means to solving the
5-point problem.1

However, earlier formulation of the problem in [2],
[3] actually involves solving a polynomial eigenvalue
problem, though it was not explicitly identified as such
there. We use polyeig in a Matlab implementation of our
algorithm, but our fastest implementation is in C++,
running considerably fast.

2 BASIC TWO-VIEW GEOMETRY

We assume the reader is very familiar with epipolar
geometry ( [10], [11]). However, for ease presentation, we
nevertheless list some basic results without elaboration.

Two corresponding image points x and x′ from a
pair of images are related by a fundamental matrix F

according to the relationship

x′� Fx = 0. (1)

A valid F must satisfy the following singularity condi-
tion:

det F = 0. (2)

The fundamental matrix depends only on the relative
displacement and orientation of the two cameras, and
their calibration matrices. It has seven degrees of free-
dom, since it has 9 elements, but it is defined only up to
scale, and satisfies the singularity condition.

Fully-calibrated case. If the cameras are fully-calibrated,
with calibration matrices K and K′, then the fundamental
matrix is related to an essential matrix, denoted by E, as
follows.

K′−� E K−1 = F. (3)

Since K and K′ are nonsingular, the matrix E must also
satisfy the condition det E = 0.

The essential matrix E is a faithful representation of
the relative placement (translation and rotation, up to
a scale) of the two cameras, and hence it has only five
degrees of freedom. Consequently, to be a valid essential

1. Given a matrix C(w) with entries that are polynomials in w,
the polynomial eigenvalue problem finds the “eigenvalues” w and
corresponding “eigenvectors” X such that C(w)X = 0.

matrix, E must further satisfy two more constraints,
which may be expressed in the condition

2 E E� E− tr(E E�)E = 0. (4)

This actually gives nine equations in the elements of E,
but only two of them are algebraically independent.

Using (3) to replace E by F in (4) leads to a condition

2 K′� F K . K� F� K′ . K′� F K−tr(K′� F K . K� F� K′) K′� F K = 0

which may be rewritten as

2 F Ω F� Ω′ F− tr(F Ω F� Ω′) F = 0 (5)

where Ω and Ω′ represent KK� and K′K′� respectively.

Unknown focal-length case. For most modern CCD or
CMOS cameras, it is often reasonable to assume the cam-
eras have square-shaped pixels, and the principal point
coincide with the image center. In this case, if a pair of
images are taken with a single moving camera with fixed
intrinsic, the only unknown camera parameter is the con-
stant but unknown focal length, and we may solve for
the relative pose from six or more point correspondences.
Assuming the only unknown calibration parameter of
the camera is the focal length, the calibration matrix of
the cameras is equal to K = diag(f, f, 1), where f is the
focal length. In this case Ω = Ω′ = KK� = diag(f2, f2, 1).

3 PROBLEM FORMULATION

In this section, we will present the main mathematical
formulations of the five-point problem, and the six-point
(focal length) problem in sequel. In particular, we will
show how these minimal case problems are formulated
as the polynomial eigenvalue problems, and how they
can be addressed by the “hidden variable technique”.

3.1 The five-point problem
To illustrate this (hidden variable) technique, we first
consider the five-point problem, i.e., estimating the es-
sential matrix E from five fully-calibrated point corre-
spondences.

To do this, we use the three equations (1), (2) and
(4). Note that (1) is satisfied by the essential matrix, as
long as the points x are expressed in calibrated image
coordinates. Given 5 points correspondences x′

i ↔ xi, we
use (1) to form a set of 5 equations in the 9 entries of the
essential matrix. The four-dimensional (right) null-space
of this matrix provides a basis of 4 linearly independent
matrices Ew, Ex, Ey, Ez . Since the essential matrix must
lie in this null space, it may be written in the form

E = wEw + xEx + yEy + zEz , (6)

where w, x, y and z are unknown variables. The next step
is to use equations (2) and (4) to solve for these variables,
and hence find the value of the essential matrix E.

By expanding the determinant in (2) we obtain a cubic
equation in the variables w, x, y and z. In a similar
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way, expanding the products in (4) leads to 9 equation,
one for each entry of the matrix, also cubic in these
variables. Although these equations are algebraically
redundant, we use them all, resulting in a set of 10 cubic
equations in the 4 variables. Since the equations obtained
in this way are homogeneous, we may set one of the
variables z to 1 (assuming that the true value of z is
not zero in any sought solution). Note that even when
the true z happens to be zero,i.e. a case which would
fail out algorithm when applied alone, it will cause little
effect when the algorithm is used in combination with
RANSAC.

Next, we treat one of the variables w as a parameter
(i.e. a hidden variable), and express each equation as a
combination of monomials in the remaining variables x
and y. Since the equations are cubic, we need to consider
the set of monomials in x, y of degrees at most 3. These
may be formed into a vector

X = (1, x, y, x2, xy, y2, x3, x2y, xy2, y3)� . (7)

Note that there are 10 such monomials. The equations
(2) and (4) may be expressed as linear combinations of
these monomials, where the coefficients are polynomials
in the hidden variable w. We obtain a set of 10 equations
in the 10 monomials.

Example. To give the reader a concrete example, let us
consider the following problem in which

E = w
[

0 1 0
0 1 1−1 0 0

]
+ x

[
0 0 0−2 1 2
0 1 0

]
+ y

[
0 0 3
0 0 1
2 −2 0

]
+ z

[
0 0 1
0 0 0
0 0 1

]
(8)

The determinant of this matrix is

det E = −w3 − 2w2x+ 4w2y + 7wxy − 6x2y − 4wy2

+ 6xy2 + w2z + 3wxz − 2x2z − 2wyz + 2xyz

which with z = 1 is equal to

(w2 − w3, 3w − 2w2,−2w + 4w2,−2, 2 + 7w,−4w, 0,
− 6, 6, 0) · (1, x, y, x2, xy, y2, x3, x2y, xy2, y3)� .

This gives one linear equation in the monomials. The
other equations resulting from (4) may be expressed in
a similar way, resulting in a set of equations as given
in table 1. Since this set of equations must have a non-
zero solution for some value of w, the determinant of the
matrix must be zero. The determinant is a polynomial
p(w), which may be solved to find possible values of w.
For each root of p(w), one may then compute the null-
space of the matrix to find the value of the monomial
vector (1, x, y, . . . , y3). (Note that one must find the
solution in which the first entry is 1.) Since x and y are
entries in this vector, we immediately obtain their values.
Finally, the essential matrix is obtained by substituting
the solution (w, x, y, 1) in (6).

It is of some importance to note that the polyno-
mial p(w) obtained as the determinant of the coefficient
matrix has degree 10. To see this, observe that in the
example equation set in table 1 the polynomials in w

occuring in the columns of the matrix have degrees
3, 2, 2, 1, 1, 1, 0, 0, 0, 0 respectively. Thus, the degree of
the determinant is at most 10. To see that this is al-
ways true, observe that each entry in the matrix cor-
responds to one or more terms in a cubic polynomial,
and hence must have degree at most 3. However, the
columns of the matrix are multiplied by the monomials
(1, x, y, x2, xy, y2, x3, x2y, xy2, y3), these monomials hav-
ing degrees 0, 1, 1, 2, 2, 2, 3, 3, 3, 3 respectively. Since the
degree of each product can not exceed 3. the terms in
each column have the stated degrees in w, and hence,
the degrees of the columns sum to 10 as required. this
confirms a well-known result that the five-point minimal
case problem have 10 (complex) solutions in general.

3.2 Relationship to the hidden variable technique
The above algorithm can be loosely viewed as an in-
stance of the hidden variable technique, a well-known
technique for solving systems of polynomial equations
[12] in several variables.

In the original form of the hidden variable technique,
all but one of the variables of the polynomial system
are temporarily treated as constants, resulting in a set of
equations in the remaining univariate. By forming the
algebraic resultant, one may eliminate this one variable,
thereby reducing the number of equations and variables.

In our above described five-point algorithm, however,
we treat just one of the variables as a parameter, and
use linear methods to eliminate all the other variables
at once. This leads to a single polynomial equation in
the parameter, which is easily solved. Subsequently the
values of the other variables may be computed. Note
however, we do not claim this method as a fully general-
purpose technique for solving polynomial equations,
but it works very well for computation of the essential
matrix under varying conditions, as we will show later,
which is the main topic of this paper.

To give a general description to our (modified) hidden
variable technique, consider a system of M homoge-
neous polynomial equations of degree d in N variables,
say, pi(x1, x2, ..., xN ) = 0, for i = 1, 2, ...,M . In the typical
two view cases one encounters, the set of equations is
redundant, so M > N . We select one of the unknowns
(for example, x1) as a so-called hidden variable. Now,
we may think of each equation as being expressed as a
linear combination of all the monomials in x2, . . . , xn of
degree at most d, where the coefficients are polynomials
in x1. In this way, the complete set of equations may be
expressed in matrix form as

C(x1)X = 0 , (9)

where the entries of the coefficient matrix C are poly-
nomials in the hidden variable x1, and X is a vector
consisting of the monomials of degree at most d in all
other N−1 variables (say, x2, x3, · · · , xN ). If by good luck
the number of equations equals the number of monomial
terms in the vector X (i.e. the matrix C is square), then
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w2 − w3 3w − 2w2 −2w + 4w2 −2 2 + 7w −4w 0 −6 6 0
−2w −4w − 6w2 4− 6w + 4w2 −8− 4w −4− 8w 12− 8w 0 −24 −12 0
2w2 2 + 6w − 2w2 −4 + 8w + 8w2 4− 6w 8 + 10w −12 + 14w 0 12 6 0

2 + 2w3 4w + 6w2 12 + 2w + 2w2 −2 + 4w 8 + 8w 20 + 18w 0 −6 24 6
−2w2 4− 4w − 6w2 2w + 4w2 −14w 20 + 12w 4− 8w −16 −12 8 0

−2w + 2w2 + 2w3 −2 + 6w + 8w2 −8w + 12w2 4 + 20w −12 + 10w −4− 2w 10 −8 8 0
2w + 2w2 4 + 8w + 6w2 2 + 2w + 12w2 2 + 20w 32w 6 + 8w 16 24 12 2

2w3 −4w + 6w2 6w + 2w2 −8− 4w −4 + 4w −12− 10w −4 8 −16 −4
2w + 2w2 6w + 6w2 8w − 4w2 4 + 2w −4− 10w 12 + 12w −6 −4 14 4

2 4w + 6w2 6− 6w − 4w2 14w −8w 18− 16w 4 −22 −12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE 1: Example of a matrix C(w) resulting from the 5-point algorithm. This matrix satisfies the equation
C(w)(1, x, y, x2, xy, y2, x3, x2y, xy2, y3)� = 0.

the equation system will have non-trivial solutions only
if det C(x1) = 0. This leads to a polynomial equation in
x1, which may be solved to find x1. For each solution
x1, the vector X may be found as the generator of the
null-space of C(x1), and the values of the other variables
x2, . . . , xN may be extracted from X.

Note that in this procedures one eliminates N − 1
variables all at once, quickly leading to a solution for
the hidden variable x1.

Relaxation. It is easy to see that the above general
algorithm we have just described may be considered
as a relaxation procedure, in that we have effectively
replaced the monomials x2, xy, y2, x3, x2y, xy2 and y3

by independent variables, and have relaxed (ignored) the
evident relationship they bear to each other and to the
variables x and y.

It is clear from the derivation that any valid essential
matrix corresponding to the point correspondences will
be found in this way. It is not, however, self-evident that
every solution found in this way will give rise to a valid
essential matrix. There appears to be no guarantee that
the solution for the null-space generator of the matrix
C(w) in (9) gives a monomial vector (1, x, y, . . . , y3) sat-
isfying these implicit constraints.

Using results of [13], however, it can be proved that
all the solutions found in this way are valid essential
matrices, at least for generic inputs. It was shown there
that in order to find the essential matrices compatible
with 5 point matches, it is necessary to solve a 10-th
order polynomial defined over the field extension of
the rationals containing the input data. In addition, this
polynomial is generically irreducible and unique. Since
the polynomial given by our method has degree 10, it
must be the minimal polynomial required to find the
solutions w.

3.3 The six-point problem

Now we consider the six-point relative orientation prob-
lem, assuming the only unknown calibration parameter
of the camera is the focal length. We show how this prob-
lem, despite more difficult, can be similarly addressed by
the hidden variable technique.

Given six point correspondences, the set of equations
arising from (1) has a 3-dimensional null-space, and we
may write

F = xFx + yFy + zFz . (10)

The condition det F = 0 provides, as before, a cubic
equation in the unknowns x, y and z. We write w = f2,
the fourth unknown variable. Now, from (5), we obtain
9 further equations in all four variables. The equations
so obtained are different from those obtained in the five-
point problem, in that they are cubic and homogeneous
in x, y and z, but additionally quadratic and non-
homogeneous in w.

We treat w as a hidden variable, and express
the equations in terms of the monomials
(z3, xz2, yz2, x2z, xyz, y2z, x3, x2y, xy2, y3). Once again
we have 10 equations in 10 monomial unknowns. The
first equation (corresponding to (2)) does not involve w;
the subsequent rows are quadratic in w. Consequently
one expects the determinant p(w) = det C(w) to
have degree 18, which is indeed the case. However,
calculations showed that p(w) always has the form
p(w) = w3p̄(w), where p̄(w) is a degree 15 polynomial.
Since a focal length of 0 is meaningless, we can ignore
the zero-roots corresponding to the factor w3 and find
the 15 roots of p̄.

We give a proof that p(w) = det C(w) is of the form
w3p̄(w). We denote the last 9 rows of the matrix C(w)
by Ĉ(w). The entries of Ĉ(w) are derived from (5), where
Ω = Ω′ = diag(f2, f2, 1) = diag(w,w, 1).

We wish to find the rank of the matrix Ĉ(0); when
w = 0, and Ω = diag(0, 0, 1), we find that Ω F� Ω = f33 Ω,
where f33 is the bottom right element of F. In this case,
the matrix in (5) simplifies to

2 F Ω F� Ω F− tr(F Ω F� Ω) F = 2 f33 F Ω F− f2
33 F

= f33 (2 F Ω F− f33 F) = f33 G, (11)

where G is so defined. Now, each element of F is a linear
expression in the unknowns x, y and z, so the matrix
G = 2F Ω F − f33F has entries that are quadratic in these
unknowns. Thus, if vec(G) is a vector made up of the
9 elements of G, then we may write vec(G) as a matrix
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product

vec(G) = B9×6(z
2, xz, yz, x2, xy, y2)�

= bzz z
2 + bxz xz + . . .+ byy y

2

where bzz,bxz . . . ,byy are the columns of B that are mul-
tiplied with the monomials z2, xz, . . . , y2 in this product.
Now, f33 is also linear in x, y and z; if f33 = azz+axx+
ayy, we may write

Ĉ(0)(z3, xz2, . . . , y3)� = vec(f33 G) = f33 vec(G)

= (azz + axx+ ayy)(bzzz
2 + bxzxz + . . .+ byyy

2)

= (azbzz)z
3 + (axbzz + azbxz)xz

2 + . . .+ (aybyy)y
3.

The point being made here is that the 10 columns of Ĉ(0)
may be written as linear combinations of the 6 columns
bzz,bxz, . . . ,byy , and hence Ĉ(0) has rank at most 6.
Consequently, C(0) has rank at most 7, so all 8×8 minors
have vanishing determinant. It follows that the smallest
degree term in det C(w) is the w3 term, so det C(w) has
three zero-roots, as claimed.

We may use this observation to reduce the matrix C(w)
prior to taking the determinant, so that a polynomial of
degree 15 is directly obtained. This provides benefits in
terms of accuracy and stability. Since it has rank 6, row
operations on the matrix Ĉ(0) can be used to reduce it to
a form in which the first three rows are identically zero.
Applying these operations to the polynomial matrix Ĉ(w)
yields a matrix in which these first 3 rows are polyno-
mials divisible by w. They may therefore be divided by
w, thereby reducing C(w) to a matrix with determinant
of degree 15. The first row of C(w) contains real (degree-
zero) entries; the next three rows have degree 1 and the
final six rows have degree 2. The determinant will be
expected to have degree 15, which confirms the number
of solutions to this problem determined in [7].

An alternative parametrization is to set w = 1/f2, and
set Ω = diag(1, 1, w). Proceeding in the same way as
before, one obtains a polynomial of degree 15 directly,
and hence 15 possible solutions for the focal length and
the essential matrix.

4 EFFICIENT NUMERICAL SOLUTION

In this section, we will explain in detail how to nu-
merically solve the obtained polynomial system very
efficiently and accurately. Apart from our problem for-
mulation, this represents a novel contribution of this
paper, and had not been reported before.

From the above section, it is clear that: central to our
method is the problem of computing the null-space of
the matrix C(w). This is essentially the polynomial eigen-
value problem, which has been considered in several
papers ( [9], [14]). In fact, there is a Matlab function–
polyeig–which directly finds a solution to this problem.
However, as we will shown in the experiment section,
the computational efficiency of Matlab’s polyeig is rather
low. In the absence of a freely available C (or C++)
implementation of the polynomial eigenvalue problem,

we decided to implement our own efficient algorithm to
solve this problem, consisting of the two steps of com-
puting det C(w), finding the real roots of this polynomial,
substituting the roots, and finding the null-space. The
last step is easy, but we will discuss the first two steps
in more detail.

It is worth noting that, the algorithms that we are
considering in this paper are for minimal configurations,
which means that the solutions will be exact. Conditions
such as matrices having non-trivial null space, or poly-
nomials having double roots or non-constant greatest
common factor (GCD) will hold precisely, except for
floating-point round-off error. They will not be affected
by possible “noise” in the input data. Nevertheless, it
will be seen that accumulation of round-off error in the
computation of matrix determinants can lead to extreme
inaccuracies if care is not taken.

4.1 Polynomial determinant.

Finding the determinant of a polynomial matrix is a
classic problem. If one applies the usual Gaussian elim-
ination algorithm to matrices of polynomials, the calcu-
lation leads to intermediate matrices whose entries are
quotients of polynomials. The degrees of numerator and
denominator in these quotients can become quite large.
This leads to a complex and inefficient algorithm. We
realized that this problem can be avoided by using the
quotient-free Gaussian elimination algorithm, e.g. [5], in
which polynomial quotient terms are avoided.

Specifically, let A be a matrix with polynomial entries
(or more generally, entries in a commutative ring). The
following algorithm finds its determinant.

m = 1; // m is a polynomial
for k=1 to n-1 do begin

for i=k+1 to n do begin
for j=k+1 to n do begin

A(i,j)=(A(k,k)A(i,j)-A(i,k)A(k,j))/m;
end

end
m = A(k,k);

end
return A(n,n);

Pivoting is then used to avoid the eventuality that
Akk = 0. This algorithm requires polynomial multipli-
cation, but the division by m keeps the degree as low
as possible. Crucial is the observation that the division
by m will be exact (without remainder) so that rational
polynomial expressions do not occur. This trick is stated
by Bareiss ( [5]) to have been known to Jordan.2

Note that this method may also be used to find de-
terminants of integer matrices, without using rational or
real arithmetic. This remark may be used to understand
the main issue addressed by the quotient-free algorithm.

2. There are two Jordans whose names are associated with matrix
computations, Wilhelm Jordan (as in Gauss-Jordan elimination) and
Camille Jordan (Jordan normal form). Presumably Bareiss means Wil-
helm Jordan.
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4.2 Toeplitz matrices.

The quotient (AkkAij − AikAkj)/m may be computed by
polynomial long-division. Unfortunately, this is numeri-
cally unstable, and even for matrices of the dimensions
we need to handle, accumulated error due only to round-
off can make the results wildly wrong. We address
this problem by using a least-squares technique that
mitigates the effect of round-off error.

In dividing a polynomial p by m we find a quotient q
and remainder r such that p = qm+r, while minimizing
‖r‖, where ‖r‖ is the sum of squares of coefficients of
r, and r has degree at most equal to that of p. (By
contrast, in long-division the degree of the remainder
r is at most equal to deg(m) − 1). Now, observe that
a polynomial product mq may be written as a matrix-
vector product Mq, where M is a Toeplitz matrix and q
is the vector of coefficients of q. A Toeplitz matrix is
a matrix in which each descending diagonal from left
to right is constant. It is an easy observation that the
above-mentioned least-squares problem naturally leads
to a Toeplitz system, where the dimensionality of the
system (i.e. columns of the Toeplitz matrix) equals to
the number of the coefficients of polynomial q.

Using this, we may express the problem as one of
finding q that minimizes ‖Mq− p‖2, where q and p are
the vectors of coefficients of the polynomials p and q,
and M is the Toeplitz matrix formed from the entries of
m. The least-squares solution q may be computed by
solving the linear equation system M�Mq = M�p, where
M�M is a symmetric Toeplitz matrix.

4.3 Levinson-Durbin algorithm.

Solving sets of equations involving Toeplitz matrices is
especially efficient, for example, by the Levinson-Durbin
algorithm [15]. It can solve a set of Toeplitz-structured
linear equations in time O(n2), where n is the dimension
of the system of equations.3

Given a set of equations Ax = b where A is a Toeplitz
matrix, the Levinson-Durbin algorithm consists of two
stages. In the first stage, a set of back-vectors are com-
puted, that depend only on the matrix A; in the second
stage, the solution x is computed as a linear combina-
tion of back vectors. In the quotient-free determinant
algorithm, the division by any given m takes place
several times. This can be used further to speed up the
algorithm. Specifically, the back vectors for the matrix
M�M may be computed one for each m, and then used
several times to compute the solution to the different
linear systems corresponding to the different polynomial
divisions.

Using this least-squares technique for polynomial divi-
sion gives a large improvement in accuracy, and allows

3. A convenient description of the Levinson-
Durbin algorithm is given on the web page
http://en.wikipedia.org/wiki/Levinson recursion.

us to find the determinant of the matrices we need to
consider.

More details. We give a more detailed explanation
of the advantage of the least-squares Toeplitz method
over straight long-division. In computing the quotient
p/m at line 5 of the quotient-free Gaussian elimination
algorithm we expect the division to be exact, so that
p/m = q, or p = mq. However, because of numerical
round-off error, the polynomial p = AkkAij − AikAkj may
be inexact; let p′ = p + δp be the actual noisy value
of p. The quotient p′/m is no longer exact. Instead,
we compute a noisy quotient q′ and remainder r such
that p′ − r = mq′. We then accept the quotient q′, and
ignore the remainder r. Knowing that p′ is noisy, but not
knowing the correct p, it makes sense therefore to seek
the smallest “increment” r such that p′ − r is an exact
multiple of m. This leads to the least-squares problem
just discussed, solved using Toeplitz matrices to find q.
In this method, the only restriction on r is that its degree
is no larger than that of p.

Example. To illustrate this, consider a specific numerical
example. Let m be the polynomial x+2, and p be a poly-
nomial of degree 10 divisible exactly by m so that the
correct quotient is q = p/m. Let p be perturbed by noise
to a polynomial p′ = p+ δp, where δp is the polynomial
ε(1 − x + x2 − . . . + x10), and ε is a small value. By the
well-known Polynomial Remainder Theorem (a.k.a. little
Bezout theorem), long division of p′ by m results in the
remainder r = δp(−2) = 2047ε, and the quotient is q′ =
q+δq with error δq = ε(x9−3x8+7x7− . . .−1023), where
‖δq‖ ≈ 1180.7ε. On the other hand, the least squares
division of p′ by m results in a quotient q′ = q+ δq with
error of magnitude ‖δq‖ = ‖q − q′‖ ≈ 2.58ε < ‖δp‖ and
a remainder ‖r‖ ≈ 1.732ε. Thus the Toeplitz algorithm
gives result better than long division by some orders of
magnitude.

Numerical tests. To illustrate the improvement in nu-
merical accuracy for computation of polynomial deter-
minants using the Toeplitz method, we computed the
determinants of matrices C(w) of varying dimensions
(from 6 to 20) with quadratic polynomial entries, chosen
at random. To assess the accuracy of the polynomial
determinant, we compute d = det C(1) and d′ = det C(w)
evaluated at w = 1. In other words, d is computed by
evaluating the polynomial entries of the matrix at the
value w = 1, followed by computing the determinant
of the matrix with real entries. On the other hand, d′ is
found by first computing the polynomial determinant,
and then evaluating the resulting polynomial at the
value w = 1. With exact computation, the two results
should be equal. We expect the value of d to be relatively
accurate, since both evaluating polynomials and taking
the determinant of a real matrix can be accomplished
accurately. Therefore, we assess the accuracy of the result
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Fig. 1: Plots of the number of significant figures of accuracy for
quotient-free Gauss-Jordan elimination, using the Toeplitz method
(top) and long division (bottom). The horizontal axis represents the
dimension of the matrix, the vertical axis represents the relative
accuracy − log10 εrel (see text for a definition of εrel). The graph
shows the median relative accuracy, with error bars at 25-th and
75-th percentile. Note that a relative error of 2.2 × 10−16 (plotted
as 15.65 on a negative logarithmic scale) approximately represents
the smallest possible (non-zero) double precision roundoff error. A
negative log error of 7.22 represents single-precision accuracy and
any value less than 2 (1% relative error) is quite inaccurate. Note
that the Toeplitz algorithm gives highly accurate results for all degrees
up past 20, whereas the long-division algorithm fails completely for
degrees past 14.

by evaluating εrel = |(d′−d)/d|, which measures the rela-
tive error. For each dimension, the determinants of 1000
different matrices are computed. In Fig 1, the negative
log relative error − log(εrel) is plotted. This is the number
of significant figures of accuracy of the result. Double
precision arithmetic was used for all computations.

4.4 Finding roots of polynomial.
Since we are only interested in finding real roots of the
polynomial det C(w), we choose the method of Sturm
sequences to do this. The Sturm sequence method was
also used in Nistér’s work [1], and the reader is also
referred to a brief example in [12]. This method is quick
and efficient, and is easily adapted to find only positive
real roots, with a consequent substantial time saving.
For example, in the 6 point problems, the polynomial
involved is in fact a polynomial in w = f2, where f
is the focal length. In this case, we need only to find
positive roots of the polynomial.

4.5 Root polishing
Although for most applications, the above algorithm
gives results of sufficient accuracy, it would be nice to
do better. This is easily effected by a simple polishing
method that corrects the result to achieve machine accu-
racy. Previously this was done by an iterative optimiza-
tion approach, similar to bundle-adjustment. Although
[16] considers optimization of the essential matrix, little
attention has been given in published work to achieving
ultimate speed for 5-point bundle-adjustment.

In this paper, we propose a new and efficient polishing
algorithm, which is specifically designed for solve the
minimal case camera motion problems. Details are given
below.

Any essential matrix has Singular Value Decompo-
sition E = U Î V�, where Î = diag(1, 1, 0) and U and
V� are rotation matrices. Expressing the rotations in
terms of Euler angle decomposition, we obtain E =
(Ru Rv Rw) Î (R

�
z R

�
y R

�
x), where Ru, Rv and Rw are ro-

tations about the x, y and z axes, respectively, as are
also Rx, Ry , Rz . Since Rz commutes with Î, we then
move it across to the left and absorb it, resulting in a
decomposition

E = Ru Rv Rw Î R�y R
�
x. (12)

where to be specific,

Ru =
[
cu −su 0
su cu 0
0 0 1

]
; Rv =

[
cv 0 sv
0 1 0−sv 0 cv

]
; Rw =

[
1 0 0
0 cw −sw
0 sw cw

]

where su, cu, etc, are the sine and cosine of the rotation
angles; Rotations Rx and Ry have the same form as Ru
and Rv . The angles of each of these 5 rotations consititute
a minimal parametrization of E, with parameter vector
θ = (θu, θv, θw, θx, θy).

The singularities associated with representing rota-
tions in terms of Euler angles do not concern us, since
we will be using only small angle representations, as
will be explained soon. Our strategy is to use iterative
refinement of E based on this localized parametrization
about the essential matrix Î.

In the iterative step, we need to compute a Jacobian
with respect to the parameters. Consider a point corre-
spondence xi = (xi, yi, zi)↔ x′

i = (x′
i, y

′
i, z

′
i) and define

εi = x′
i
� Exi

= x′
i (Ru Rv Rw) Î (R

�
y R

�
x)xi

Taking the derivative with respect to the parameter
vector θ = (θu, θv, θw, θx, θy) at the value θ = 0, we obtain

Ji|0 =
∂εi
∂θ

∣∣∣∣
θ=0

= (yiz
′
i, −xiz

′
i, xiy

′
i − yix

′
i, ziy

′
i, −zix′

i) (13)

The matrix J is obtained by stacking the five rows
corresponding to Ji|0 for each i.

The complete iterative algorithm for computing E is
then as follows. Given an initial estimate E0 for the
essential matrix, and point correspondences x0

i ↔ x0
i
′,

1) Compute the decomposition E0 = UÎV�,
2) Repeat the following steps until convergence

a) For i = 1, . . . , 5, transform the input points
according to

x′
i ← U�x0

i
′

xi ← V�x0
i .

b) Compute the error vector ε, where

εi = x′
i
� Îxi = x′

ixi + y′iyi.

c) Using (13), evaluate J in terms of the x′
i and

xi, and solve the equation Jδθ = −εi to obtain
δθ = (δθu , . . . , δθy )
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d) Set

U← U Ru(δu) Rv(δv) Rw(δw)

V← V Rx(δx) Ry(δy)

3) Output E = U Î V�.
Observe how by transforming the input points x0

i and
x0
i
′ by the current estimates of U and V, we obtain a set of

points that nominally satisfy the equation x′
i
� Îxi = 0.

Localization about Î makes the form of the Jacobian J

and the error vector ε particularly simple.

Notes.
1) The words “until convergence” are to be inter-

preted freely. In practice, we use a fixed number
of iterations (two or three). In addition, in some
cases, because of round-off error near convergence,
or non-convergence, the error ‖ε‖ may actually
increase after some iteration. In this case, we roll
back to the previous values of U and V, and exit the
loop.

2) For efficiency, the updates to U and V in step (d)
of the algorithm should be computed by applying
separate Givens rotations to U. In addition, if δθi <
10−8, then cos(θi) = 1.0 and sin(θi) = θi within
machine precision, and the update is particularly
efficiently computed.

3) Computational overhead. The polishing algorithm
is extremely rapid, expending no more than about
2μs per iteration. In addition, if it is used only
when the error exceed some very small threshold,
then the time requirement is even smaller. With
polishing invoked only when the RMS error (per
point) exceeds 10−12, we observed a time penalty
of only 0.3μs per essential matrix computed.

5 IMPLEMENTATIONS AND EXPERIMENTS

We concentrated our implementation effort on the 5-
point and 6-point (pose plus focal length) algorithms.
Both implementations (source code) can be found on the
authors’ web site 4.

5.1 Implement the five-point algorithm
The five-point algorithm was implemented both in Mat-
lab and C++. Steps in the algorithm are given as follows:

1) From five point correspondences x′
i ↔ xi compute

a basis (Ew, Ex, Ey, Ez) for the space of possible
essential matrices.

2) Setting z = 1 and treating w as a hidden variable,
form the equation set C(w)X = 0, where X is the
vector of 10 monomials in x and y.

3) Find the values of w for which this set of equations
has a solution, and for each such w, solve for X,
and hence obtain values of x and y.

4. http://users.cecs.anu.edu.au/∼hartley,//users.cecs.anu.edu.au/
∼hongdong

4) Reconstitute the required essential matrix E as a
linear combination of the basis.

In this algorithm, steps 1 and 4 are straight-forward
linear algebra, and step 2 is a simple matter of efficient
bookkeeping. Step 3 in the algorithm may be done in
various ways, and this is where our Matlab and C++
implementations differed.

The Matlab implementation is very simple and rel-
atively efficient, without any significant attempt being
made to achieve maximum speed. However, unlike ear-
lier implementations described in [2], [3], it does not
make use of any symbolic programming, and hence runs
orders of magnitude faster. It uses the Matlab polyeig
function to carry out step 3 of the algorithm.

The algorithm was also coded in C++ and interfaced
to Matlab as a mex file, to allow direct comparison of
timing. The algorithm used in the C++ implementation
was described in section 4. In order to limit the number
of polynomial divisions computed during the Gauss-
Jordan elimination, columns of the matrix are eliminated
in order of increasing polynomial-degree of the elements
they contain. Note that the last 4 columns of the matrix
in table 1 contain only constant terms, and columns 4−6
only linear terms. To take advantage of this, we eliminate
columns from the right.

Similarly to the Matlab version, we use Gauss-Jordan
elimination on the last 4 columns of C(w) to reduce it to
size 6× 6 before finding its determinant. Note that these
columns consist of constant (degree 0) entries, so Gauss-
Jordan elimination is simple. Note that it is possible at
the cost of a little more complexity to reduce the matrix
to size 3 × 3, similar to the procedure outlined in [4],
however this operation is specific to the 5-point problem,
and hence not used in our generic procedure.

Finally, we considered Nistér’s algorithm [4], which is
essentially equivalent to carrying out column elimination
on this matrix, with specific advantage being taken
of the particular form of the matrix. We carefully re-
implemented the algorithm following [4], with expended
considerable effort to make our implementation as fast
as possible and close to his original implementation. This
is the algorithm referred to as 5pt-mex-opt below.

5.2 Test of speed
We give speed comparison for our and other people’s
implementations of the 5-point algorithm. The methods
compared are as follows.

1) A pure Matlab implementation of our algorithm,
as described in this paper (algorithm 5pt-Matlab)

2) A hybrid Matlab/C++ implementation of our al-
gorithm, in which the C++ routine is passed the
input matches, and returns a the polynomial matrix
C(w) and the equation C(w)X = 0 is solved using
the Matlab polyeig function (algorithm 5pt-polyeig-
hybrid).

3) A hybrid method in which the C++ routine returns
the determinant det(C(w)), which is a degree-10
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polynomial. In Matlab, the roots of this polynomial
are found using the companion-matrix technique,
and for each real root the null space of C(w) (also
computed in C++) is computed to provide solu-
tions for x and y (algorithm 5pt-companion). This
allows a timing comparision between the use of the
companion-matrix and Sturm sequence methods
for root-finding.

4) A pure C++-mex implementation of our algorithm
in which Matlab passes the input data to the mex
routine, and a list of essential matrices is returned
(algorithm 5pt-mex).

5) A C++-mex implementation similar to 5pt-mex,
in which special optimizations suggested by the
specific structure of C(w) are incorporated. The
resulting algorithm is very much the same as the
one described in [4] and gives a good indication of
how Nistér’s algorithm will perform in an imple-
mentation with reasonable care taken to optimize
for speed (algorithm 5pt-mex-opt).

6) The Gröbner -basis algorithm (programmed by
Chris Engel, dated 2004/07/22) by Stewenius et
al,̇ reported in [6], and available online. This has
a Matlab front end with a C-mex helper (with non-
transparent machine-generated C-code) which does
most of the work. (algorithm 5pt-Stewenius-GB).

7) The five-point algorithm using Matlab’s polyeig
function, proposed by Kukelova et al [9] (algorithm
5pt-Kukelova).

The timing results are given in the following table.
Times given are for a single computation of all Essential
matrices from one set of five point matches. On the
average, each set of point correspondences led to 4.6
essential matrices. The computer used is a 2009 laptop
running at 2.5GHz. The results are obtained by averag-
ing over 10,000 different random data sets, with a total
of 100 runs for each data set (except for the pure Matlab
implementations, which were run for fewer iterations).
Timing is in microseconds (μs).

algorithm time (μs)
5pt-Matlab 2971
5pt-Kukelova 1567
5pt-polyeig-hybrid 606
5pt-companion 305
5pt-mex 71
5pt-mex-opt 34
5pt-Stewenius-GB 250

Observations. Comparing 5pt-mex with 5pt-polyeig
shows that our C++ method (see section 4) for solving
the polynomial eigenvalue problem is many times faster
than using the Matlab polyeig function. Of course, using
polyeig has the advantage of convenience since it avoids
the need to take the determinant of a polynomial matrix.

Similarly, comparing 5pt-mex with 5pt-companion
shows the speed advantage of using Sturm sequences to
find the roots of the polynomial, compared with using

Fig. 2: On the left the ratio s1/s2 of the first two singular values of
the essential matrix found by trials with our 5-point algorithm. For
a valid matrix, this ratio should be 1. In a small number of cases the
algorithm gives an invalid matrix, due to numerical errors. On the
right, for the same data, a plot of − log10(1 − s2), assuming that
s1 = 1. This graph shows that for the majority of the estimates, the
two singular values differ by about 10−10.

the companion matrix method.
Next, using the problem-specific optimizations of [4]

gives our fastest implementation. For comparison, a tim-
ing of 100−120μs is given for Nistér’s algorithm in [4] for
a 550 MHz computer from around 2004. Extrapolation
would suggest a running time on our computer of less
than 20μs for this algorithm but this is uncertain, since
clock speed is not the only determiner of speed. Our
implementation 5pt-mex-opt does not run as fast as this
but comes close.

Finally, comparison was also made with the 5-point
algorithm of Kukelova et al [9] . Their times are 8ms
for a Matlab implementation using polyeig (our test of
Kukelova’s this five-point code gave 1567μs on our com-
puter). This should be compared with our 5pt-Matlab
timing of 2.96ms.

Also according to them, the Gröbner implementation
(presumably the same as the Stewenius-GB algorithm
which we tested) took 1ms. For us, it ran in 251μs, which
suggests they were using a 4–5 times slower computer.

In Fig 2 we provide a plot of results derived from
randomly generated 5-point data to illustrate the accu-
racy of the essential matrices computed over 7500 trials,
resulting in 31000 found essential matrices. The results
show the ratio of the two non-zero singular values of E.
Note that there are occasional invalid essential matrices
computed. This is not a serious problem in the context
of a RANSAC algorithm, as has been remarked in [1],
[4].

5.3 Implement and test of the 6-point algorithm

We also implemented our six-point algorithm in both
C++ and Matlab using the same approach, and most
of the code shared with our 5-point algorithm. Running
time is slower for the 6-point algorithm, partly because
the polynomial det C(w) has degree 15 instead of 10.

We implemented and tested three versions of our algo-
rithm: 6pt-Matlab-polyeig, which is based on pure Matlab
using Matlab’s native polyeig function; 6pt-polyeig-hybrid,
which partially uses C++-mex code to reduce the matrix
size; 6pt-mex, which is a C++-mex implementation and
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Fig. 3: Estimate of the focal length from a pair of images; Left: with
10% outliers ; Right: with an error in the aspect ratio estimation:
the true aspect-ratio is 0.95 but 1.00 was assumed.

is called by Matlab. We made little effort to optimize our
Matlab codes.

Speed is given in the following table. For compari-
son, we also tested Kukelova et al’s Matlab code (6pt-
Kukelova) based on polyeig [9], which is about five
times faster than our pure Matlab implementation. The
difference is accounted for by the way that Kukelova
et al pre-compute the polynomial matrix C(w), which is
optimized (and presumably Macaulay-generated accord-
ing to their paper [9]). For the C++ code provided by
Stewenius et al for [7], our tests gave a timing of about
700 microseconds for their Gröbner basis based 6-point
algorithm (6pt-Stewenius-GB).

algorithm time (μs)
6pt-Matlab-polyeig 6747
6pt-polyeig-hybrid 1049
6pt-mex 166
6pt-Kukelova 1177
6pt-Stewenius-GB 700

Kernel voting. Our 6 point algorithm gives a direct
solution for the focal length f , where w = f2. There
may be up to 15 solutions from a minimal set of 6 cor-
respondences. One may find a unique best estimate for
the focal length by a procedure similar to Kernel Density
Estimation (otherwise known as Parzen windows) using
many sampled minimal 6-point sets, either drawn from
the correspondences in one set of images, or several pairs
in a sequence of images with a non-zooming camera. The
idea is simply to sum kernel functions centred at each of
the individual focal length estimates. The result of such
an experiment is shown in Fig 3, where the robustness
of the technique to outliers and incorrect pixel aspect
ratio is shown. Such a kernel-voting may be used as an
alternative to RANSAC to remove outliers if the outlier
ratio is low (e.g. less than 20% outliers).

6 ACCURACY

Besides execution time, accuracy is another important
performance index for camera motion estimation. In
evaluating an algorithm for computing the essential
matrix, there are two possible criteria. First, one requires

0.01% 0.1% 1.0% 50% Method
11.15 12.29 13.40 15.53 5pt-Kukelova

9.92 11.61 13.03 15.37 5pt-Stewenius-GB
11.01 12.09 13.24 15.47 5pt-Matlab

4.26 6.60 9.05 14.07 5pt-mex
5.21 7.75 10.21 14.50 5pt-mex-opt

TABLE 2: Accuracy of different 5-point algorithm methods for
random data. For each method, one million essential matrices were
computed, by each of the different algorithms. The computed essential
matrix was evaluated on how well it fitted the input data, using
the error measure C(E), given in (14). We show − log(C(E))
for different percentiles. This indicates the approximate number of
significant figures of accuracy in the result. See the discussion in the
text.

that the matrix should be a valid essential matrix, sat-
isfying the conditions (2) and (4). Second, it should fit
the input data exactly, so that x′

i
�Exi = 0 for each

input correspondence x′
i ↔ xi. The different algorithms

perform differently against these two criteria. Since the
latter often gives more consistent result empirically, and
the result can be directly verified on the input images,
we therefore choose the point-matching criterion.

C(E) =

√√√√ 5∑
i=1

(x′
iÊxi)2 (14)

where Ê is obtained from E (the output of the algorithm)
by correcting to an exact essential matrix using the
Singular Value Decomposition (SVD). That is, Ê = U Î V�

where Î = diag(0, 0, 1), and E = U Î V� is the SVD. In
addition, the points x′

i and xi were normalized as 3-
vectors such that ‖x′

i‖ = ‖xi‖ = 1. In this way, we
may compute a consistent accuracy measure for all the
methods. Accuracy results are given in table 2.

6.1 Observations.
For all methods, the median error (50-th percentile,
shown in the last column) is around 10−15, which is close
to machine precision. The first column of numbers shows
that occasionally, for one case in 10, 000 (0.01 percentile),
accumulated error reduces the precision of the result to
about 4 or 5 decimal places for our 5pt-mex and 5pt-mex-
opt implementations. Note that this is still better than the
expected accuracy of the input data in most cases. (Four
figure accuracy corresponds roughly to 0.1 pixel error for
an image with a focal length of 1000 pixels). Thus, the
accuracy of the computed result is adequate in 99.99%
of the cases. For applications such as RANSAC, this is
more than accurate enough.

Consistently, algorithms 5pt-mex and 5pt-mex-opt were
substantially less accurate than the others. As pointed
out by one reviewer, this is possibly due to the stop-
ping criterion used in the implementation of Sturm-
sequences. We set an error of 10−12 as the required
relative accuracy of root-finding in all our experiments.
Sharpening this to 10−16 gives a significant improvement
in accuracy, but with significant increase in computation
time.
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0.01% 0.2% 1.0% 50% Method
9.46 11.03 11.95 14.85 5pt-Kukelova
4.22 6.57 8.03 13.09 5pt-Stewenius-GB
6.94 8.69 9.70 13.44 5pt-Matlab
1.59 3.77 6.50 13.66 5pt-mex
1.59 2.96 5.00 12.75 5pt-mex-opt

TABLE 3: Accuracy, before polishing, for small-disparity (1-degree)
point correspondences. Displayed results show the number of decimal
places of accuracy. All the algorithms lose some accuracy on small-
disparity correspondences. However, results are accurate to over
6 decimal places at least 99% of the time (except for 5pt-mex-
opt). Shown are the results of over one million essential matrix
calculations.

0.01% 0.1% 1.0% 50% Method
15.80 15.88 15.98 16.36 5pt-Kukelova
15.80 15.88 15.98 16.36 5pt-Stewenius-GB
15.79 15.88 15.98 16.36 5pt-Matlab
15.79 15.88 15.98 16.36 5pt-mex
15.80 15.88 15.98 16.36 5pt-mex-opt

TABLE 4: Accuracy, after polishing, for random data. This should
be compared with the results given in table 2. After polishing, all
algorithms give close to optimal results in at least 99.99% of cases.
Our new algorithm 5pt-mex gives fewer than 15 decimal places of
accuracy in only about 20 cases out of one million computed.

We also note that the algorithm 5pt-Kukelova was con-
sistently better than the other algorithms by a fraction
of a significant digit accuracy (before the root polishing
step is applied).

6.2 With more difficult data

The previous tests were done with 5 randomly selected
point correspondences. Such point correspondences are
not quite realistic, in that they may have arbitrarily large
disparity. In most real situations, the essential disparity of
point correspondences is usually small.

We define the term essential disparity to denote the
disparity between corresponding points, once the effect
of gross image misalignment is removed. One may make
a formal definition as follows. If E = UÎV� is the essential
matrix, and x ↔ x′ is a point correspondence, then the
essential disparity is the angle between the vectors U�x′

and V�x.
We carry out experiments on sets of 5 points corre-

spondences, for which the average essential disparity
(over 5 points) is one degree. Comparisons of the ac-
curacy before and after root polishing under different
conditions are provided in Table-3, -4 and -5.

7 OTHER EXTENSIONS

The general technique described in this paper can be
extended to solve several other two-view minimal case
problems. Some examples will be discussed briefly in
this section, only formulations are given and without
going into full implementation detail.

0.01% 0.2% 1.0% 50% Method
15.69 15.80 15.88 16.28 5pt-Kukelova
15.64 15.80 15.88 16.28 5pt-Stewenius-GB
15.70 15.80 15.88 16.28 5pt-Matlab

2.06 15.71 15.87 16.28 5pt-mex
1.93 7.89 15.84 16.28 5pt-mex-opt

TABLE 5: Accuracy, after polishing, for small-disparity correspon-
dences. These results show that almost all algorithms (except 5pt-
mex-opt) are obtaining close to ultimate accuracy 99.8% of the
time, even on point sets with small essential disparity. If polishing is
invoked only when the error exceeds 10−12, then it adds only about
2μs to the average computation time for each 5-point correspondence
set.

7.1 Non-square pixels

By similar techniques, one can solve for the case where
K1 = K2 = diag(f1, f2, 1), that is the two cameras are the
same, but pixels are not square. From 7 or more points,
one may compute a fundamental matrix, satisfying the
condition det(F) = 0. In the case of 7 points, there may
be 3 possible solutions [10].

Knowing F, equations (5) give rise to 9 equations in
the variables w1 = f2

1 and w2 = f2
2 . These equations are

quadratic in w1 and w2. We treat w1 as a hidden variable
in the equations (5) to obtain 9 equations of the form
C(w1)(1, w2, w

2
2)

� = 0. From the condition that C(w1) has
rank at most 2, we obtain a polynomial equation, which
may be solved to find w1. We observe that this equation
is of degree 3, so there is at least one real solution, and
in some cases three. Subsequently, solving for the null-
space of C(w1) one computes X = (1, w2, w

2
2), and hence

w2.
Note that the method just describes involves relax-

ation, since we ignore the condition that the vector X

has the form (1, w2, w
2
2). Despite this, the solution found

appears always to be valid.
The method used here differs from that described

previously in section 3 in that the matrix C(w1) is not
square, so we can not simply compute det C(w1) to get
a polynomial in w1. A way of handling this situation is
described later.

Finally, note that this problem has been considered
previously in [17], where a solution was given in terms
of the Kruppa equations.

7.2 Varying focal lengths

We may also address the orientation problem for two
cameras with different focal lengths f1 and f2. In this
case, the calibration matrices are K1 = diag(f1, f1, 1) and
K2 = diag(f2, f2, 1).

Starting from a known fundamental matrix F,
the equations (5) are quadratic involving monomials
(1, w1, w2, w1w2) only. Choosing w1 as the hidden vari-
able, we may write a set of 9 equations of the form
C(w1)X = 0, where X = (1, w2). Since this 9 × 2 system
has rank 1, we obtain a polynomial in w1 which may be
solved to find w1. As before, computing the null-space
of C(w1) provides the estimate of w2. Note that in this
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case no relaxation is involved, since in computing the
solution X = (1, w2) one may enforce the condition that
the first entry is 1 by scaling the solution.

This problem of focal-length estimation has been stud-
ied frequently before, by a variety of methods ( [10],
[17]). Since this is a problem with an exact solution, most
methods work comparably, however the one described
here is perhaps conceptually the simplest.

7.3 Non-square systems
In the two problems just considered the matrix C(w1) was
not square. Nevertheless, we claim that this leads to a
polynomial equation in w1. Indeed, it is easily seen that if
p(w1) is the greatest common divisor of all (n−1)×(n−1)
determinants of C, (where n is the number of columns)
then p(w1) = 0 is a necessary and sufficient condition for
C(w1) to be rank-deficient.

It is not necessary to compute all such sub-
determinants. One approach is to compute one or two
of them and find the common roots directly. Spurious
common roots (if any) can be detected, since they will
fail to make C(w1) rank-deficient.

A second approach is to compute det(C(w1)
�C(w1))

and find its roots. However, this introduces extra irrel-
evant complex roots. It may be shown however that
any real root of det(C(w1)

�C(w1)) will make C(w1) rank-
deficient. Furthermore, any real root will be a double
root.

Finally, the matrix C(w1) may be reduced directly to
row-echelon form using quotient-free Gaussian elimina-
tion ( [5]) as described above. This method leads directly
to the correct polynomial p(w1) and then the null-space
of the matrix is quickly computed from the row-echelon
form.

8 CONCLUSIONS

The variant of the hidden variable technique that we
have described above gives a conceptually very simple
and computationally efficient way of solving geometric
problems with speed competitive with highly optimized
problem-specific methods. To our knowledge, it is still by
far one of the fastest implementations publicly available
for the 6-point problems. Compared with our original
codes provided in [2] and [3] (which dated back four
years ago using Matlab’s Symbolic-Math toolbox), the
new algorithms and their implementations described in
this paper are far more efficient—the new versions are
both more than 100,000 times faster than the old ones.
Since these algorithms are typically used in a RANSAC
environment, they need to be as fast as possible, even if
some accuracy is sacrificed [4]. Pure Matlab or Symbolic-
Math (Maple) implementations are in general of limited
practical use for this purpose.

In addition, the simple root polishing algorithm we
have described allows us to obtain precision in the
computed essential matrix close to machine accuracy, at
a very minimal cost of less than 0.5μs per computed

matrix. This provides more accurate results than any
other we have tested, and extremely rapidly.
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