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ABSTRACT

Distance estimation is vital for localization and many other applications in wireless sensor networks. In this paper,
we develop a method that employs a maximum-likelihood estimator to estimate distances between a pair of neighbor-
ing nodes in a static wireless sensor network using their local connectivity information, namely the numbers of their
common and non-common one-hop neighbors. We present the distance estimation method under a generic channel
model, including the unit disk (communication) model and the more realistic log-normal (shadowing) model as special
cases. Under the log-normal model, we investigate the impact of the log-normal model uncertainty; we numerically
evaluate the bias and standard deviation associated with our method, which show that for long distances our method
outperforms the method based on received signal strength; and we provide a Cramér–Rao lower bound analysis for the
problem of estimating distances via connectivity and derive helpful guidelines for implementing our method. Finally, on
implementing the proposed method on the basis of measurement data from a realistic environment and applying it in
connectivity-based sensor localization, the advantages of the proposed method are confirmed. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless sensor networks, composed of hundreds or thou-
sands of small and inexpensive nodes with constrained
computing power, limited memory, and short battery life-
time, can be used to monitor and collect data in a
region of interest. Accurate and low-cost node localiza-
tion is important for various applications in wireless sen-
sor networks, and thus, great efforts have been devoted
to developing localization algorithms, including distance-
based algorithms and connectivity-based algorithms [1].
Distance-based localization algorithms rely on distance
estimates and can achieve relatively good localization
accuracy; if distance estimates are unavailable or suffer
from huge errors, connectivity-based localization algo-
rithms are applied but generally achieve coarse-grained
localization accuracy. Besides, distance estimation is vital
for sensor network management, such as topology control
[2,3] and boundary detection [4].

In reality, distance estimation can be realized by using
information such as received signal strength (RSS), time
of arrival (TOA) and time difference of arrival (TDOA)
[1]. The RSS method (using RSS measurements) depends
on low-cost hardware and only provides coarse-grained
distance estimates; by contrast, the TOA and TDOA meth-
ods can provide distance estimates with higher accu-
racy at the cost of extra hardware, but because of cost
constraints, it is impractical to equip all sensors in a
large-scale sensor network with extra hardware to obtain
accurate distance estimates and thus accurate location esti-
mates. Further, although a number of connectivity-based
localization algorithms have been proposed, for exam-
ple, see [5–8], achieving high localization accuracy usu-
ally demands a comparatively large number of anchor
nodes, hereafter termed simply anchors, whose positions
are known a priori (accordingly, we term other nodes
whose positions are not known and need to be deter-
mined as sensors). In this paper, we shall propose an
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attractive distance estimation method that does not rely
on extra hardware but provides comparatively accurate
distance estimates.

In a static wireless sensor network, two nodes are
termed one-hop or immediate neighbors as long as they
can directly communicate with each other. An intuitive
observation shows that with a higher probability, two geo-
graphically close nodes share more common immediate
neighbors than two distant nodes. We quantify and exploit
this observation to develop a maximum-likelihood estima-
tor (MLE) for estimating the distance between any pair of
neighboring nodes on the basis of their local connectivity
information. Herein, local connectivity information refers
to the numbers of common and non-common immediate
neighbors associated with a pair of neighboring nodes.
Because only elementary computations and local connec-
tivity information are involved on each node, the proposed
method is energy efficient and totally distributed.

In this paper, we present the distance estimation method
under a generic channel model, including the ideal unit
disk (communication) model and the more realistic log-
normal (shadowing) model as special cases (see Section 2
for further details). Then, we take the log-normal model for
example to demonstrate the proposed method: the impact
of uncertainties in the log-normal model is examined;
the bias and standard deviation of derived distance esti-
mates are numerically evaluated; the proposed method,
although not comparable with such fine-grained distance
estimation techniques as TOA and TDOA, outperforms
the well-known RSS method for long distances; the influ-
ences of various factors on the problem of estimating
distances via connectivity are analyzed on the basis of
the Cramér–Rao lower bound (CRLB), and useful guide-
lines for implementing the proposed method in reality are
also derived; and finally, on implementing the proposed
method on the basis of measurement data in a realistic envi-
ronment and also applying it in connectivity-based sen-
sor localization, the advantages of the proposed method
are confirmed.

Prior to our work, [9,10] came up with the methods
of estimating distances on the basis of the same idea as
ours. The neighborhood intersection distance estimation
scheme (NIDES) presented in [9] heuristically relates the
distance, for example, from node A to node B, to an eas-
ily observed ratio, that is, the number of their common
immediate neighbors to the number of immediate neigh-
bors of A, and then performs the distance estimation at
node A using this ratio and other a priori known infor-
mation. The NIDES assumes the unit disk model and uni-
formly and randomly deployed wireless sensor networks.
Its enhanced version presented in [10] adapted the ratio by
taking into account the number of immediate neighbors of
node B and heuristically stated that the NIDES could be
applied in arbitrary radio models. Although it turns out
that the enhanced NIDES leads to the same solution as
ours, their entire treatment rests on empirical observations
and heuristic formulations rather than theoretical founda-
tions. In comparison with their work, the contributions of

this paper are as follows: (i) a statistical model is formally
established for the distance estimation problem, and an
MLE solution with mathematical proofs of the correctness
is provided; (ii) the problem is considered under a generic
channel model widely used in the literature, including the
more realistic log-normal model; (iii) the performance of
the proposed method is comprehensively analyzed under
the log-normal model in terms of model uncertainties, bias,
standard deviation and root mean square error (RMSE);
(iv) a CRLB analysis is carried out for the problem of
estimating distances via connectivity; and (v) it is shown
that the proposed method contributes to the quality of
connectivity-based sensor localization.

The remainder of the paper is organized as follows.
Section 2 introduces the network model and the (radio)
channel model. Section 3 proposes the method under
a generic channel model. Under the log-normal model,
Section 4 analyzes the performance of the proposed
method; Section 5 provides a CRLB analysis for the
general distance estimation problem using connectivity;
Section 6 implements the proposed method using the mea-
surement data from a real environment; Section 7 reports
the contributions of the proposed method to connectivity-
based sensor localization by simulations. Finally, we con-
clude the paper in Section 8.

2. SYSTEM MODEL DESCRIPTION

This section briefly introduces the system model we shall
use, including the network model and the channel model.
Throughout this paper, we shall use the following mathe-
matical notations: Prf!g denotes the probability of an event,
and E.!/ denotes the statistical expectation.

2.1. Network model

In static wireless sensor networks, nodes are often assumed
to be randomly and uniformly distributed on account
of the random nature of the network deployment. A
homogeneous Poisson process provides an accurate model
for a uniform distribution of nodes as the network
size approaches infinity. Therefore, we consider a static
wireless sensor network that is deployed over an infinite
plane according to a homogeneous Poisson process of
intensity !.

2.2. Channel model

Let PT be the transmitted signal power by a transmitter and
PR.d/ be the received signal power by a receiver located
at distance d from the transmitter. According to [11],
the log-normal model predicts PR.d/ to be log-normally
distributed and is typically modeled as follows:

PR.d/.dBm/ D PR.d0/.dBm/ " 10˛ log10
d

d0
C Z (1)
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PR.d/ D "2GTGRPT

.4#/2d˛
(2)

where PR.d0/ (dBm) is the mean received signal power
in dB m at a reference distance d0, ˛ is the path loss
exponent, GT and GR are the transmitter and receiver
antenna gains, " is the wavelength of the propagating sig-
nal in meters, and Z is a random variable representing the
shadowing effect, normally distributed with mean zero and
variance $2

dB. Typically, ˛ can vary between 2 in free space
and 6 in heavily built urban areas, and $dB is as low as 4
and as high as 12 according to [11].

If PR.d/ is above some specified value Pc, the receiver
is able to communicate with the transmitter. Particularly,
if $dB D 0, the log-normal model is equivalent to the unit
disk model with the transmission range

r D
 
"2GTGRPT

.4#/2Pc

! 1
˛

(3)

Hence, under the unit disk model, the communication cov-
erage of each node is a perfect disk of radius r . In further
discussions, r is not limited to be the transmission range
of the unit disk model but a generalized parameter defined
by (3).

In effect, the randomness on the received signal power
PR.d/ can be described by a function g.d/ denoting the
probability that a directional communication link exists
from transmitter to receiver with distance d . On the basis
of g.d/, a generic channel model can be defined once g.d/
satisfies the following restrictions:

8̂
ˆ̂<
ˆ̂̂:

g.d1/ D g.d2/; if d1 D d2 (4)

g.d1/ # g.d2/; if d1 $ d2 (5)

0 <

Z 1

!1

Z 1

!1
g.

q
x2 C y2/dxdy < 1 (6)

The generic channel model has been treated intensively
in percolation theory [12,13]. The first restriction indicates
that the propagation path is symmetric; the second one
indicates that g.d/ must be a non-increasing function of
d ; and the third one avoids the trivial cases that any two
nodes are directly connected with probability 1 and that
any two nodes are isolated with probability 1. It can be eas-
ily shown that both the unit disk model and the log-normal
model satisfy these restrictions [14].

As transmit power of each node is actually tunable in
many wireless sensor networks [15], we require that dur-
ing the period of running the proposed distance estima-
tion method, all nodes transmit at a common power level,
that is, PT. Furthermore, throughout the paper, we make
the following assumptions (as is commonly the case in
the literature).

Assumption 1. The attenuations caused by shadowing
effects (i.e., Z) between any pairs of nodes are independent
and identically distributed.

Assumption 2. Communication links are symmetric,
namely that node A can directly receive packets from node
B as long as node B can directly receive packets from
node A.

Even though field measurements in real applications
seem to indicate that the attenuations between two links
with a common node are correlated [16], Assumption 1 is
generally considered appropriate for far field transmission
and is widely used in the literature [14,16–20]. Although
the above assumptions may not fully reflect a real network
environment, they still enable us to obtain some results as
estimates for more realistic situations.

3. THE DISTANCE
ESTIMATION METHOD

In this section, we present the method of estimating
distances via connectivity and detail its implementation
under the log-normal model.

3.1. Estimating distances under the unit
disk model

In a static wireless sensor network, given two nodes A and
B with coordinates .xA; yA/ and .xB; yB/, their distance is
defined to be d (d # r), and two disks with the same radius
r represent their individual communication coverage under
the unit disk model, as shown in Figure 1. Because of
d # r , the two disks intersect and create three disjoint
regions. Regarding r as a constant, we define S D #r2 and
f .d/ to be the area of the middle region in Figure 1, where

f .d/ D 2S

#
arccos.

d

2r
/ " d

s
r2 " d2

4
(7)

It is obvious that the nodes residing in the middle region
are common immediate neighbors of A and B, the nodes
residing in the left (right) one are non-common imme-
diate neighbors of A (B). Define three random variables
M; P , and Q to be the numbers of the three categories
of neighbors. Obviously, they are mutually independent

Figure 1. The communication coverage of two nodes under the
unit disk model.
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and Poisson with means !f .d/;!.S " f .d//, and !.S "
f .d//, as pointed out in [13]. The actual values of M; P ,
and Q can be easily obtained after A and B exchange their
neighborhood information. On the basis of the observations
of M; P , and Q, an MLE for estimating d is summarized
as follows:

Theorem 1. M; P , and Q are mutually independent
Poisson random variables with means !f .d/;!.S "
f .d//, and !.S "f .d//, respectively. If f .d/ is invertible
and S is a non-zero constant, then the MLE for d , termed
Od , is

Od D
(

f !1.S/; if M D P D Q D 0I (8)

f !1. O%S/; otherwise (9)

where O%D 2M=.2M C P C Q/.

Proof . See Appendix A. !

Note that the actual value of ! is not needed in obtain-
ing Od . Although nodes are assumed to follow a random
and uniform distribution of density ! (as a result of the
Poisson point process), the derivation of the MLE indi-
cates that as long as nodes in a local region that covers
the communication coverage of two neighboring nodes
admits a uniform density, the proposed method is reason-
ably applicable. Moreover, in some applications, nodes
may be placed on the basis of certain regular structures
but with noises. For example, in a two-dimensional sensor
network, the x-coordinate and y-coordinate of each node
are Gaussian with same variance and mean values at one
grid point. Compared with a random and uniform distri-
bution, such distribution is even closer to be uniform, and
the proposed method can thus attain better performance. In
addition, if the least squares method instead of the MLE
is applied here, the resulting expression of the distance
estimator is actually the same as that in Theorem 1.

3.2. Extension under the generic
channel model

Under the generic channel model defined by g.d/, M; P ,
and Q continue to denote the numbers of common and
non-common immediate neighbors associated with two
nodes. First, we can compute their expectations as follows:

E.M C P / D E.M C Q/ D !

Z 1

!1

Z 1

!1

% g.

q
.x " xB/2 C .y " yB/2/dxdy (10)

E.M/ D !

Z 1

!1

Z 1

!1
g.

q
.x " xA/2 C .y " yA/2/

% g.

q
.x " xB/2 C .y " yB/2/dxdy (11)

Then, from the third restriction on g.d/, that is, (6), it fol-
lows that E.M/ < E.M C P / < 1. Unlike the unit disk
model where the independence among M; P , and Q is
straightforward because of having three disjoint regions,
the generic channel model does not necessarily lead to
such three disjoint regions, while the following theorem
guarantees the mutual independence.

Theorem 2. Suppose a static wireless sensor network is
deployed in an infinite plane according to a homogeneous
Poisson process of density ! and conforms to the generic
channel model defined by g.d/; given two nodes in this
wireless sensor network, let M be the number of their com-
mon immediate neighbors and P and Q be the numbers of
their non-common immediate neighbors. Then, M; P , and
Q are mutually independent Poisson random variables.

Proof . See Appendix B. !

Under the generic channel model, S and f .d/ are gener-
alized to specify the expectations of M; P and Q, instead
of the areas defined under the unit disk model, and have the
forms of

S D
Z 1

!1

Z 1

!1
g.

q
.x " xB/2 C .y " yB/2/dxdy (12)

f .d/ D
Z 1

!1

Z 1

!1
g.

q
.x " xA/2 C .y " yA/2/

% g.

q
.x " xB/2 C .y " yB/2/dxdy (13)

Therefore, if S and f .d/ satisfy the conditions in
Theorem 1, the MLE is directly applicable.

In reality, however, sensor networks are deployed in
regions of finite areas, and thus, the expectations of M; P ,
and Q associated with two nodes, especially those near
network boundaries, cannot be derived by simply integrat-
ing over an infinite plane to compute S and f .d/. This
is termed boundary effects. In this study, we concentrate
on the theoretical foundations of the proposed method and
will tackle boundary effects in our future work.

Prior to implementing the proposed method in a static
wireless sensor network, it is a premise to know the wire-
less channel, that is, g.d/, such that the quantity S , the
function f .d/, and its inverse can be determined and then
programmed into each node. After that, because of the
simple mechanism of the proposed method, a distributed
protocol can be easily designed for collecting and exchang-
ing local connectivity information by each node through
broadcasting operations. Once a node obtains neighboring
information of all its immediate neighbors, this node is
able to estimate the distances from its immediate neighbors
using the inverse of f .d/, S , and the MLE in Theorem 1.

If Assumption 2 holds in a sensor network, each pair
of neighboring nodes will have identical information for
estimating their distance and thus will obtain the same dis-
tance estimate; otherwise, provided that A can hear B but

Wirel. Commun. Mob. Comput. (2012) © 2012 John Wiley & Sons, Ltd.
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B cannot hear A, A will estimate their distance, whereas
B will not. Such asymmetry in distance estimation can
be alleviated by allowing each node to exchange two-hop
neighborhood information with its immediate neighbors.

Clearly, if the size of each sensor’s neighborhood has the
magnitude of O.1/, the complexities for communications
and computations of running the proposed method in this
network are both O.n/, where n is the number of nodes
in a wireless sensor network, implying that the proposed
method is efficient and scalable.

3.3. Implementation under the
log-normal model

Provided that the wireless channel is known to be log-
normal with known parameters r , $dB, and ˛, we shall
demonstrate how to determine g.d/, S , and f .d/ involved
in the proposed method.

3.3.1. Formulating g.d/
Under the log-normal model, for a transmitter and

receiver pair with distance d , if the received signal power
described by (1) is no less than Pc, a bi-directional com-
munication link exists between them (as a result of the
symmetry in Assumption 2). The probability that the two
nodes are able to communicate with each other, that is,
g.d/, is

g.d/ D
Z 1

k log d
r

e
! z2

2!2
dB

p
2#$dB

dz (14)

where k D 10˛=log 10 and log denotes natural logarithm.
Evidently, g.d/ is determined by r , ˛, and $dB, where
r can be easily computed given the parameters in (3),
and ˛ and $dB can be derived by measurements obtained
prior to the deployment of sensor networks or empirically
assigned on the basis of the characteristics of the deploy-
ment environment [11]. Alternatively, using the technique

presented in [21], ˛ and $dB can be estimated through pro-
cessing of RSS measurements (and no distance measure-
ments), and depending on the level of noise and amount of
measurement data, they may result in imprecise ˛ and $dB.

We plot g.d/ with respect to d and $dB given ˛ D 4
and r D 1 in Figure 2(a). It can be seen that the smaller is
d , the higher is the probability that a communication link
exists; a larger $dB tends to inhibit communications for a
smaller d but promotes communications for a larger d in
comparison with a smaller $dB.

In view of the restrictions on g.d/, it is straightforward
to obtain limd!1g.d/ D 0; as such, for an extremely
small and positive ", there exists dth such that g.d/ < "
if d > dth. That is to say, nodes with distances to a
node longer than dth hardly communicate with this node
directly; as such, dth is a surrogate of the transmission
range. This phenomenon can be observed in Figure 2(a).

3.3.2. Formulating S and f .d/
In [17,19], the expectations E.M C P / (or E.M C Q/)

has been well studied. Thus, we can have

S D #r2e
2!2

dB
k2 (15)

By (11), (13), and (14), we can derive the formula for
f .d/ under the log-normal model. By letting ˛ D 4 and
r D 1, we plot f .d/ with respect to different values of d
and $dB in Figure 2(b).

As can be seen in Figure 2(b), f .d/ is monotonically
decreasing and invertible; hence, Theorem 1 is applicable
under the log-normal model. But the closed-form formula
for f .d/ and its inverse are unavailable. Alternatively, we
can establish a piecewise linear function to approximate
its inverse; for each affine segment, a linear regression
model is applied to predict d . Considering the fact that two
nodes with distance longer than dth hardly communicate
with each other directly, we restrict the distance estimates
to be between 0 and dth. But in a real estimation process,
O%S and S may exceed Œf .dth/; f .0/& and consequently Od
may exceed Œ0; dth&. Therefore, we can obtain the distance
estimator as follows:
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Figure 2. The functions g.d/ and f.d/ under the log-normal model with ˛ D 4 and r D 1.
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Od D

8̂
<
:̂

0; if M D P D Q D 0 or O%S > f .0/I
f !1. O%S/; if f .dth/ # O%S # f .0/I
dth; if O%S < f .dth/

(16)

4. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the
proposed method under the log-normal model from differ-
ent respects.

4.1. Impact of imprecise ˛ and !dB

In the proposed method, the parameters of the log-normal
model, that is, ˛ and $dB, are supposed to be known pre-
cisely. But what if their values are imprecise? To answer
this question, we define

%˛;!dB .d/ D f .d/

S
(17)

where f .d/ and S are computed using (13), (15), and
(14) given ˛ and $dB. Thus, the distance estimator in (16)
is equivalently

Od D

8̂
<̂
ˆ̂:

0; if M D P D Q D 0 or O% > %˛;!dB .0/I
%!1

˛;!dB
. O%/; if %˛;!dB .dth/ # O% # %˛;!dB .0/I

dth; if O% < %˛;!dB .dth/
(18)

Evidently, using imprecise ˛ and/or $dB results in an
incorrect function %!1

˛;!dB
. O%/, with the result that the accu-

racy of the distance estimate Od is degraded. We plot the
function %!1

˛;!dB
. O%/ with respect to different values of ˛ and

$dB in Figure 3.
Supposing $dB is known to be exactly 4, we investigate

the impact of the uncertainty in ˛. As shown in Figure 3(a),
%!1

˛;!dB
. O%/ is much more sensitive to a small ˛ than to a

large ˛; in other words, for a small ˛, using an imprecise
version of ˛ tends to degrade the accuracy of the distance
estimate Od more seriously than for a large ˛. Moreover, if
˛ is overestimated, then an underestimated Od will be pro-
duced for a small d but an overestimated Od for a large
d , and vice versa. However, %!1

˛;!dB
. O%/ does not demon-

strate the same sensitivity to $dB as is observed for ˛, as
illustrated in Figure 3(b). We can conclude that if $dB is
overestimated, then an overestimated Od will be produced
for a small d but an underestimated Od for a large d , and
vice versa.

4.2. Bias and standard deviation

According to Theorem 1, all possible values of O% are ratio-
nal numbers within Œ0; 1& so that Od is a discrete random
variable and its j th moment is as follows:

E. Od j / D
X

a

h
Od j Pr. Od D a/

i
(19)

We divide the range of Od , that is, Œ0; dth&, into w equal
intervals: I1 D Œz0; z1/; : : : ;Iw D Œzw!1; zw & with
zi D .i % dth/=w. Given a sufficient large w, Od is approx-
imately constant over each interval, denoted Qdi . Then we
can approximately reformulate (19) as

E. Od j / &
wX

iD1

h
. Qdi /

j Pr. Od 2 Ii /
i

(20)

Toward the probability associated with the i th interval
Ii , we have

Pr. Od 2 Ii / D

8̂
<
:̂

Pr.f .z1/ < O%S # S//; if i D 1I
Pr.f .zi / < O%S # f .zi!1//; if 1< i <wI
Pr.0 # O%S # f .zw!1//; if i D w
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Figure 3. The inverse function of "˛;!dB .d/ under the log-normal model.
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Table I. The values of # with respect to different !dB and $

when ˛ D 4.

$

!dB 5 10 20 30 40

0 1:59 3:18 6:37 9:55 12:73
4 1:43 2:86 5:73 8:59 11:45
8 1:04 2:08 4:17 6:25 8:33
12 0:61 1:23 2:45 3:68 4:90

By letting Y D P C Q, we have

Pr.b < O%S < c/ D
1X

yD0

ŒPr.b < O%S < cjY D y/

% Pr.Y D y/&

(21)

which makes it possible for us to numerically evaluate the
moments of Od and thus the bias and standard deviation.

Let ' be the expected number of immediate neighbors
of a node, namely 'D E.M C P / D E.M C Q/, and the
values of ! with respect to different $dB and ' are listed
in Table I. For better presentation, the connectivity index
' will be used in the following discussions instead of the
node density !.

Given ˛ D 4, r D 1, w D 1000, and ' varying from
5 to 40, Figure 4 depicts the numerical bias and standard
deviation associated with the proposed method and the cor-
responding simulation results. The two groups of results
are highly consistent, and the comparatively non-smooth
aspect of some of the curves, for example, Figure 4(a),
is probably attributable to the fact that all observa-
tions of M; P , and Q in related results are necessarily
integer, and such observations are used in determining
the curves.

As shown in Figure 4, the proposed method is obviously
biased, but the absolute bias is much less than the standard
deviation in most cases; except for $dB D 0, the abso-
lute bias and standard deviation are comparable with true
distances, especially for short distances and sparse sensor
networks, and particularly, when ' D 5, their values are
extraordinarily large and nearly twice the corresponding
values when ' D 10. Moreover, with ' increasing, the
standard deviation always reduces, while the absolute bias
reduces in most cases. An intuitive explanation is that with
' increasing, the variances of the ratios 2M=E.2M/ and
.2MCPCQ/=E.2MCPCQ/ both decrease, the variance
of O% is reduced and so is the variance of Od . As mentioned
in the previous section, a large $dB promotes communica-
tions between distant nodes but inhibits communications
between close nodes; as a result, connectivity is related to
a wide range of distances so that the geometric informa-
tion implied by connectivity becomes less accurate. Hence,
the larger is the $dB, the worse are both the bias and the
standard deviation.

4.3. Root mean square error

As a performance measure, the RMSE is defined to be the
square root of the sum of the square bias and variance of
estimation errors. We plot the RMSE of Od produced by the
proposed method in Figure 5. As can be seen, the RMSE
decreases with ' increasing and $dB decreasing, which is
consistent with how the bias and standard deviation of Od
depend on ' and $dB. When d is near 0, the RMSE is
extraordinarily large compared with the true value of d ,
implying that the proposed method fails to provide rea-
sonable estimates for short distances. This underperfor-
mance with short distances limits the use of the proposed
method in practice and is due to a mixed impact of the
following facts:

" It is evident that the variance of 2M C P C Q is con-
stant no matter what d is, but the variance of 2M
increases with d decreasing; as a result, O%, that is,
2M=.2M C P C Q/, is more likely to suffer bigger
variances when d is small than when d is large.

" As depicted in Figure 3, %!1
˛;!dB

. O%/ is quite sensitive to
O% when d is small, namely that a small perturbation in
O% leads to a big change in Od and thus a big distance
estimation error.

" In light of (18), Od is roughly set 0 when O% is greater
than %˛;!dB .0/, but a small d often causes O% to
be within Œ%˛;!dB .0/; 1&, and hence the underperfor-
mance is attained.

To conclude, for short distances, the non-smooth aspect
and the sensitivity to O% of the function defined in (18) are
responsible for the underperformance.

Under the log-normal model with $dB > 0, distance esti-
mation can be realized by using the RSS measurements,
that is, received signal powers. The bias and variance of
the resulting distance estimate (denoted OdRSS) are provided
in [22] so that we can compute the RMSE of OdRSS and
compare it with that of Od in Figure 5. It can be seen that
(i) the RMSE of OdRSS increases in direct proportion to d ,
but that of Od appears to have comparatively small vari-
ations with d increasing, and (ii) the proposed method
outperforms the RSS method for long distances by a
large margin.

5. ANALYSIS BASED ON THE
CRAMÉR–RAO LOWER BOUND

In this section, we formulate the CRLB regarding the
distance estimation problem via connectivity, that is, esti-
mating d from M; P , and Q, under the log-normal model.
For this estimation problem, the unknown parameters are
d and !. The Fisher Information Matrix (FIM) for this
estimation problem, denoted FIM.d ;!/, is
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Figure 5. The RMSE of OdRSS (dashed lines) and Od (solid lines; $ D 10; 20; 30; and 40 with ˛ D 4 and r D 1; a larger $ corresponds to
a curve to the bottom) under the log-normal model.

FIM.d ;!/ D

0
@!

!
f 0.d/

"2
#

1
f .d/

C 2
S!f .d/

$
"f 0.d/

"f 0.d/ 2S!f .d/
#

1
A

(22)

where f .d/ is differentiable to the first order in (13) (see
Appendix C). Then, the CRLB for d by using any unbiased
estimator, denoted CRLB.d/, is

CRLB.d/ D .S " f .d//.2S " f .d//f .d/

2!S2.f 0.d//2
(23)

Although the CRLB is only valid for unbiased distance
estimates and the proposed method is known to be biased,
it is still helpful to understand the essential features of
the distance estimation problem. In what follows, we shall
investigate the influences of various parameters.

5.1. Influence of "

It is clear that the CRLB is inversely proportional to !.
In other words, better estimation accuracy can be attained
in dense wireless sensor networks, which is intuitive and
is also illustrated in Figure 5. Hence, it is attractive to
apply the proposed method in dense wireless sensor net-
works. Dense wireless sensor networks, however, are really
required in some circumstances. For example, because of
the limited energy resource at each node, nodes are usually

deployed in high density and may take turns to be active
in order to prolong the network lifetime [23]; accordingly,
many scheduling strategies have been developed to deter-
mine when and which sensors should be powered up and
which sensors should be put into energy saving mode while
satisfying certain coverage and connectivity requirements
[24–29].

5.2. Influence of d

According to (23), it is difficult to directly observe the
influence of d on the CRLB, for we do not have the closed-
form formulas for f .d/ and f 0.d/ except for the case of
$dB D 0. But because it is easily justified that the numera-
tor of (23) is bounded in a narrow range, if the denominator
can be very small, the CRLB will be seriously affected
by the denominator. On the basis of Figure 2(b), we can
obtain some preliminary knowledge about the key com-
ponent in the denominator, that is, f 0.d/. As can be seen
from Figure 2(b), with d increasing from 0, jf 0.d/j firstly
experiences a rise and then decreases after d is greater
than some value that differs from $dB; when d increases
further, jf 0.d/j continuously decreases and approaches 0.
Hence, it is postulated that the CRLB will experience a rise
with d increasing.

As shown in Figure 4, in the cases of $dB D 8 and 12,
the standard deviation displays an evident rise when d is
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larger than some value and then drops when d approaches
dth. The reason causing such a drop is that we restrict the
maximal distance estimate to be dth so that estimates for d
near dth are improved. In the case of $dB D 4, jf 0.d/j is
not so close to 0 when d is near dth but is comparatively
small when d is near 0; as a result, the expecting rise does
not happen.

5.3. Influences of PT and Pc

Provided that GT; GR, and ˛ are known in (3), r is propor-

tional to .PT=Pc/
1
˛ , where PT is the transmission power

and Pc is the threshold of power for communications. If
both PT and Pc are tunable in wireless sensor networks
(which does not break requirement on the common trans-
mission power PT), it will be meaningful to analyze their
influences on the CRLB. For simplicity, we shall use r
instead of PT and Pc to carry out the analysis. To do so,
we derive the following theorem.

Theorem 3. Consider the CRLB that is defined on the
basis of (13), (15), and (23), and suppose only d and
r are variables. Then, the CRLB for a given distance d
with r D r0 is equal to the CRLB for a distance d=r0

with r D 1.

Proof . See Appendix D. !

This theorem reveals that (i) the CRLB is virtually deter-
mined by the ratio d=r and (ii) the value field of the CRLB
is invariant no matter how large r is. That is, if the ratio
PT=Pc is raised, distant nodes will tend to become con-
nected so that estimates for long distances will be available,
but the CRLB will not exceed the value field of the CRLB
associated with the original small value of PT=Pc. Conse-
quently, estimates for long distances will generally suffer
less relative errors (i.e., the ratio of the estimation error to
d ) than those for short distances.

Notice that because the CRLB is not monotonic with
d , tuning PT=Pc does not definitely increase or decrease
the corresponding CRLB associated with one given value
of d . Because raising PT=Pc results in more imme-
diate neighbors for each node and consequently more
distance estimates, although any distance estimate is
not necessarily improved, more available distance esti-
mates will benefit other applications, for example, sensor
network localization.

Furthermore, this feature can be exploited in the imple-
mentation of the proposed method. Considering the fact
that in static wireless sensor networks, the procedure of
estimating distances is usually executed only once, and
probably in the beginning of the network lifetime, the
ratio PT=Pc can be initially set a high value to achieve
a high ‘sensor density’ by increasing PT and/or decreas-
ing Pc and then is tuned to be a normal value after the
phase of estimating distances. As a result, more estimates
of long distances with comparatively good accuracies will
be available.

6. IMPLEMENTING THE METHOD
IN PRACTICE

In this section, we improve the proposed method when
dealing with short distances and then test it in a practical
environment.

6.1. Dealing with short distances

Given ˛ and $dB, define (˛;!dB to be the RMSE when
d D 0. As illustrated in Figure 5, the RMSE of dis-
tance estimates produced by the proposed method expe-
riences small variations as d increases from 0 up
to dth, so that if d $ (˛;!dB the RMSE tends to be
under d , implying that relatively good performance is
attained. Moreover, on the grounds of the analysis in
Section 4.3, we focus on the function defined by (18) with
O% 2 Œ%˛;!dB .(˛;!dB /; 1& and reformulate it by a linear func-
tion Œ.1 " O%/(˛;!dB &=Œ1 " %˛;!dB .(˛;!dB /& that smoothly
transforms any O% between %˛;!dBdB.(˛;!dB / and 1 to a dis-
tance estimate between 0 and (˛;!dB . Consequently, (18) is
updated to be

Od D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

0; if M D P D Q D 0I
.1! O"/%˛;!dB

1!"˛;!dB .%˛;!dB /
; if O% > %˛;!dB .(˛;!dB /I

%!1
˛;!dB

. O%/; if %˛;!dB .dth/ # O%
# %˛;!dB .(˛;!dB /I

dth; if O% < %˛;!dB .dth/

(24)

6.2. Test the method in a real environment

In [30], a sensor network consisting of 44 nodes was
deployed in a real environment, and RSS measurements
between any two nodes were reported. On the basis of their
measurement data, we can simulate a realistic environment
to implement our method. According to [30], ˛ D 2:3,
$dB D 3:92, and PR.R0/ D "37:47 dBm. But to proceed
with the experiment, we also need to specify the threshold
power Pc, which essentially defines whether two nodes are
‘connected’, and (˛;!dB in (24). After that, we can com-
pute the function g.d/ associated with this channel and
then obtain the distance estimators on the basis of (18) and
(24), respectively. To avoid boundary effects as much as
possible, we consider the four nodes near the center of the
deployment region, that is, nodes 15; 23; 24; and 25, and
only estimate the inter-node distances associated with the
four nodes by using the originally proposed method and
the method with the adjustment.

In this experiment, by letting (˛;!dB be 0:5r and raising
Pc from "61 to "52 dBm, the average distance estimation
errors incurred by the original and adjusted methods are
listed in Table II. By the distance estimates produced by the
RSS method (which were also provided by [30]), we com-
pute the corresponding average distance estimation error,
that is, 1:07 m. As depicted in the table, (i) the adjusted
method always outperforms the original method; (ii) the
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Table II. The experimental results with respect to different Pc.

Pc (dB m) r (m) ND DEE (m) DEE adjusted (m)

!52 4:28 8:50 1:00 0:44
!53 4:73 11:25 1:49 0:56
!54 5:23 14:00 1:95 0:95
!55 5:78 17:25 1:78 0:74
!56 6:38 20:75 1:81 0:70
!57 7:05 27:25 2:00 1:08
!58 7:80 31:75 2:08 1:41
!59 8:62 34:50 2:11 1:57
!60 9:52 37:00 2:15 1:72
!61 10:53 38:75 2:14 1:67

ND, average node degree; DEE, average distance estimation error.

original method outperforms the RSS method only in the
case of Pc D "52 dBm, whereas the adjusted method
outperforms the RSS method if Pc (dBm) is between
"56 and "52 dBm; and (iii) although the average node
degree increases with Pc decreasing, the average error
obtained with the adjusted method increases in general, a
phenomenon which is attributable to boundary effects.

7. APPLYING THE METHOD
IN LOCALIZATION

In this section, we report the improvement in connectivity-
based sensor localization by using the proposed method.

7.1. Connectivity-based
localization algorithms

Connectivity-based localization algorithms, for example,
[6,8], generally involve as a crucial component a mech-
anism of converting connectivity information into rough
distance estimates, which are then used for localization as
in distance-based localization algorithms.

The DV-hop scheme proposed in [6] employs distance
vector exchange. Both sensor and anchor exchange dis-
tance tables that contain the locations of and the hop counts
to anchors with their corresponding neighboring nodes.
Once an anchor obtains the distance tables from other
anchors, it estimates an individual average distance per hop
and broadcasts this average distance into the network. A
sensor approximates its geographic distance to an anchor
by multiplying the hop count to this anchor and the associ-
ated average distance per hop and then estimates its loca-
tion by performing trilateration if a sufficient number of
distance estimates are obtained. Its variant, that is, the DV-
distance scheme, is almost the same as the DV-hop scheme
except that it employs the geographic distances measured
with the use of radio signals other than hop counts.

Multi-dimensional scaling map (MDS-MAP) proposed
in [8] approximates the distance between two nodes by
the length of their shortest path and then uses multidimen-
sional scaling to generate a relative map that represents

the relative positions of nodes. Once a sufficient number
of anchors are known, MDS-MAP estimates the absolute
coordinates of all the sensors in the network. Like DV-
distance, MDS-MAP can also employ geographic distance
measurements; we term it MDS-MAP distance.

In both DV-hop and MDS-MAP, the distance between
two nodes is roughly estimated according to the length
of the shortest path between them, namely that the one-
hop distances along any shortest path are assumed to be
equal. As opposed to this assumption, our method provides
comparatively accurate estimates of one-hop distances and
thus helps to improve the quality of connectivity-based
sensor localization, which will be demonstrated in the
following subsection.

Many methods have been developed in the literature to
improve DV-hop. For instance, in [31], estimating the dis-
tance from a sensor to an anchor not only uses the length
of the shortest path between them as in DV-hop but also
exploits the lengths of the shortest paths from this sensor’s
immediate neighbors to the anchor. Moreover, DV-hop
suffers large errors in anisotropic networks, because
the estimates of distances from sensors to anchors can
be extraordinarily inaccurate. Accordingly, [32–34] were
developed to alleviate the impacts of the anisotropic
network topology on the estimates of distances. Because
comparatively accurate estimates of one-hop distances pro-
vided by our method are the basis for estimating distances
from sensors to anchors, it is attractive to combine our
method with these DV-hop related methods to improve the
estimates of distances from sensors to anchors and thus to
improve localization accuracy.

7.2. Simulations

We simulate connectivity-based sensor localization under
the log-normal model using DV-hop and MDS-MAP and
their distance-based counterparts DV-distance and MDS-
MAP distance (with distance measurements from the
adjusted method).

To avoid boundary effects, we actually generate wire-
less sensor networks over a large square with side of 18
but only localize the nodes inside of a small one with side
of 6 and concentric to the large one. However, the nodes
outside of the small one are sometimes used in estimat-
ing distances between nodes inside. Four nodes inside the
small square and closest to its four corners are chosen as
anchors. Regarding the constants parameterizing the log-
normal model, ˛ is known to be 4, $dB takes values from
0; 4; 8; 12, and PT and Pc are properly assigned such that
r D 1. Furthermore, ! takes proper values such that '
varies from 10 to 40 with step size 5 (see Table I).

For each choice of $dB and ', 100 independent runs
are carried out. In each run, first, a static wireless sensor
network is generated according to a homogeneous Poisson
process of density !; second, distance between any pair of
neighboring nodes is estimated on the basis of Theorem 1,
and accordingly, the average absolute distance estimation
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Figure 6. Average absolute distance estimation errors with ˛ D
4 and r D 1.

error is computed; third, sensors are localized by using four
localization algorithms: DV-hop, MDS-MAP, and their
distance-based counterparts DV-distance and MDS-MAP
distance (with distances coming from the second step); and
finally, the average absolute distance estimation error and
the average position estimation error are computed for each
localization algorithm. Then, the average absolute distance
estimation errors and the average position estimation errors
are averaged over the 100 independent runs and plotted in
Figures 6 and 7.

DV-hop and DV-distance are almost the same except
that DV-hop assumes identical one-hop distances along any
shortest path, whereas DV-distance uses distance estimates
with comparatively good accuracies; this is also true for
MDS-MAP and MDS-MAP distance. Because only con-
nectivity information with the assistance of four anchors is
exploited to realize sensor localization in the simulations,
the fact that DV-distance and MDS-MAP distance use dis-
tance estimates produced by our method and their superior
performance imply the advantages of our method.

8. CONCLUSIONS

In this paper, we proposed the method of estimating dis-
tances via connectivity in static wireless sensor networks
by dealing with a generic channel model, including the
realistic log-normal model. The proposed method is not
relying on extra hardware, totally distributed and energy
efficient due to its simple mechanism and computations.
Under the log-normal model, the bias and standard devi-
ation of distance estimates from the proposed method
were numerically evaluated and verified by simulations;
the proposed method outperforms the RSS method for long
distances; a CRLB analysis was carried out for the prob-
lem of estimating distances using connectivity, and useful
guidelines for implementing the proposed method were
derived; the influences of uncertainties in the log-normal
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Figure 7. Average position estimation errors with ˛ D 4 and r D 1.
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model were examined; and finally, extensive simulations
confirmed the advantages of the proposed method. In
future work, we may tackle estimating distances involving
nodes near the network boundaries, implement the method
in a realistic environment and combine the method with the
DV-hop related methods to make further improvement.

APPENDIX A: PROOF OF
THEOREM 1

Establish a statistical model: observations of M; P and Q
provide measured data ) D Œ m p q & where m; p; q
are non-negative integers; the unknown parameters are
* D Œ d ! &. By formulating the likelihood function, we
can derive that the MLE for d is the solution for d in the
following equation set:

8̂
<̂
ˆ̂:

m

f .d/
" p C q

S " f .d/
C !D 0; (25)

m C p C q

!
" .2S " f .d// D 0 (26)

By eliminating !, we can obtain

2mS D .2m C p C q/f .d/ (27)

If 2m C p C q > 0, Od D f !1fŒ2m=.2m C p C q/&Sg;
otherwise, the solution for d is not well defined, but
because f .d/ D S maximizes the likelihood, we have
Od D f !1.S/. Thus, we prove the theorem.

APPENDIX B: PROOF OF
THEOREM 2

Let the two nodes be A and B and consider a finite region
of area D covering A and B. As pointed out in [13],
apart from A and B, the rest of the Poisson process is
not affected, namely that the number of remaining nodes
in this region, denoted N , is still Poisson with mean !D.
Choosing an arbitrary node C from the N nodes, one of the
following cases hold: (i) C can directly communicate with
A and B; (ii) C can directly communicate with A but not
B; (iii) C can directly communicate with B but not A; and
(iv) C cannot directly communicate with A or B.

Conduct a trial for each of the N nodes to decide how
it communicates with A and B, and each trial results in
the above four cases with probabilities p1; p2; p3; and
p4, respectively. Because of the independence of connec-
tivity assumed in Assumption 1, the N trials are then

independent from each other. Evidently, M; P ; and Q rep-
resent the numbers of nodes belonging to the first three
cases. In addition, let the random variable L denote the
number of nodes belonging to the last case. Because of
p1 C p2 C p3 C p4 D 1, M; P ; Q; and L follow a multi-
nomial distribution with parameters N and p1; p2; p3;
and p4. Considering N is Poisson with mean !D, from
the theorem on page 8 in [13], it follows that M; P ; Q;
and L are mutually independent Poisson random variables
with means !Dp1;!Dp2;!Dp3; and !Dp4, respectively.
Now, we let the region approach the infinite plane and
can conclude that M; P ; and Q are mutually independent
Poisson with finite means.

APPENDIX C: THE EXISTENCE
OF f 0.d/

At first, consider the following expression:

lim
"!0

%
"1

"

h
g.
p

x2 C d2 " 2xd cos */

"g.

q
x2 C .d C "/2 " 2x.d C "/ cos */

&'

D k.x cos * " d/e
!.k.log

p
x2Cd2!2xd cos "!log r//2

2!2
dB

p
2#$dB.x2 C d2 " 2xd cos */

which is bounded for x 2 Œ0; C1/. Moreover, the deriva-
tive of f .d/ can be formulated as

f 0.d/ D
Z 1

0

Z 2&

0

% g.x/x lim
"!0

%
"1

"

h
g.
p

x2 C d2 " 2xd cos */

"g.

q
x2 C .d C "/2 " 2x.d C "/ cos */

&'
d*dx

(28)

Because
R1

0

R 2&
0 g.x/xd*dx equals E.M C P / and is

convergent, f 0.d/ is also convergent.

APPENDIX D: PROOF OF
THEOREM 3

Regarding r as a variable, we substitute the notations
as follows: S ! S.r/, f .d/ ! f .r; d/, f 0.d/ !
@f .r; d/=@d , CRLB.d/ ! CRLB.r; d/, g.d/ ! g.r; d/.
According to (14), we have

g.r; dr/ D
Z 1

k log d

e
! z2

2!2
dB

p
2#$dB

dz D g.1; d/
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By (13), we have

f .r; dr/ D
Z 1

0

Z 2&

0
g.r; x/

% g.r;

q
x2 C .dr/2 " 2xdr cos */xd*dx

D
Z 1

0

Z 2&

0
g.r; xr/

% g.r; r
p

x2 C d2 " 2xd cos */r2xd*dx

D r2
Z 1

0

Z 2&

0
g.1; x/

% g.1;
p

x2 C d2 " 2xd cos */xd*dx

D r2f .1; d/

Moreover, we can obtain

@f .x; y/

@y

ˇ̌
ˇ̌
xD1;yDd

D 1

r
% @f .x; y/

@y

ˇ̌
ˇ̌
xDr;yDdr

(29)

By S.r/ D r2S.1/ (based on (15)), (23) and the above
formulas, we can obtain

CRLB.r; dr/ D CRLB.1; d/ equivalently,

CRLB.r; d/ D CRLB
%

1;
d

r

' (30)
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