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[1] Numerous previous studies have constructed models to estimate base flow
characteristics from climatic and physiographic characteristics of catchments and applied
these to ungauged regions. However, these studies generally used streamflow observations
from a relatively small number of catchments (<200) located in small, homogeneous study
areas, which may have led to less reliable models with limited applicability elsewhere.
Here, we use streamflow observations from a highly heterogeneous set of 3394 catchments
(<10,000 km2) worldwide to construct reliable, widely applicable models based on 18
climatic and physiographic characteristics to estimate two important base flow
characteristics: (1) the base flow index (BFI), defined as the ratio of long-term mean base
flow to total streamflow; and (2) the base flow recession constant (k), defined as the rate of
base flow decay. Regression analysis results revealed that BFI and k were related to several
climatic and physiographic characteristics, notably mean annual potential evaporation,
mean snow water equivalent depth, and abundance of surface water bodies. Ensembles of
artificial neural networks (ANNs; obtained by subsampling the original set of catchments)
were trained to estimate the base flow characteristics from climatic and physiographic data.
The catchment-scale estimation of the base flow characteristics demonstrated encouraging
performance with R2 values of 0.82 for BFI and 0.72 for k. The connection weights of the
trained ANNs indicated that climatic characteristics were more important for estimating k
than BFI. Global maps of estimated BFI and k were obtained using global climatic and
physiographic data as input to the derived models. The resulting global maps are available
for free download at http://www.hydrology-amsterdam.nl.
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1. Introduction

[2] Base flow is defined in this study as the slowly vary-
ing portion of streamflow (Q), originating from ground-
water storage and/or other delayed sources such as channel
bank storage, lakes, wetlands, and melting snow and ice
[Hall, 1968; Griffiths and Clausen, 1997; Smakhtin, 2001].
Knowledge of the base flow regime is important for a num-
ber of purposes, such as water resources management,

aquatic ecosystem preservation, hydropower generation,
contaminant transport, and low-flow forecasting [e.g.,
Campolo et al., 1999; Brauman et al., 2007; Cyr et al.,
2011, and references therein]. Such knowledge is not
directly available for ungauged catchments and hence for
most of the terrestrial land surface [Fekete and Vörösmarty,
2007]. Regionalization procedures are required to transfer
model parameters or Q characteristics from gauged to
ungauged catchments [e.g., Parajka et al., 2005; Yadav
et al., 2007; Oudin et al., 2008; Zhang et al., 2008;
Blöschl et al., 2013]. Two important base flow characteris-
tics are: (1) the base flow index (BFI (–)), defined as the
ratio of long-term mean base flow to total Q [Smakhtin,
2001]; and (2) the recession constant k d21ð Þð Þ, defined as
the rate of base flow decay [Vogel and Kroll, 1996].

[3] Several regression-based regionalization studies have
established models to estimate BFI or k from climatic and
physiographic characteristics of catchments [e.g., Mazvi-
mavi et al., 2005; Brandes et al., 2005; Longobardi and
Villani, 2008; Van Dijk, 2010; Pe~na-Arancibia et al.,
2010; Krakauer and Temimi, 2011; Ahiablame et al.,
2013]. Geology and soils were generally among the most
important catchment characteristics identified in these
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studies, although topography, climate, and/or land cover
have also proven useful in some cases. Although previously
developed models may, in theory, be used to estimate base
flow characteristics for ungauged catchments, they suffer
from one or more of the following shortcomings that limit
their use in macro and global-scale applications. First, they
were mainly based on Q observations from a relatively
small number of catchments (<200), which can lead to less
reliable and/or overfitted models. Second, they focused on
a regional scale and used regional data sets to characterize
geology or soils, thereby potentially restricting their larger-
scale applicability. Third, most studies did not evaluate the
generalization ability of the model using an independent set
of catchments, and thus it is difficult to judge the true per-
formance of the models. Finally, they reached conflicting
conclusions regarding the importance of certain physio-
graphic characteristics, notably mean surface slope and the
fraction of forest cover.

[4] Groundwater, surface water, snow, and ice-related
parameters of hydrological models generally control the gen-
eration of base flow. Current macro and global-scale base-
flow-related parameterizations, such as those used in land sur-
face schemes (a component of global circulation models) and
global hydrological models, vary widely [cf. Duan et al.,
2001]. Some use globally fixed parameters, such as the Com-
munity Land Model (CLM) [Oleson et al., 2010], Noah-MP
[Niu et al., 2011], and Mac-PDM [Gosling and Arnell, 2011].
Others use nearest-neighbor interpolation of calibrated
parameters, such as the Variable Infiltration Capacity (VIC)
model [Liang et al., 1994; Nijssen et al., 2001] and
WASMOD-M [Wid�en-Nilsson et al., 2007]. Yet others rely
on expert opinion and hydrologic interpretation of global geo-
logical data sets, such as WaterGAP [Döll and Fiedler, 2008]
and PCR-GLOBWB [Van Beek et al., 2011], or extrapolate a
relationship between catchment climate and base-flow-
related parameters found for Australia [Pe~na-Arancibia

et al., 2010] to the global domain (W3RA) [Van Dijk et al.,
2013]. Recently, the wider availability of Q, climatic, and
physiographic data, thanks to (on-going) efforts by organiza-
tions such as the U.S. Geological Survey (USGS) and the
Global Runoff Data Centre (GRDC; Koblenz, Germany;
http://grdc.bafg.de) and advances in computing and remote-
sensing technology, has created the possibility to explore the
estimation of BFI and k at larger scales. Examples include
Schneider et al. [2007] and Santhi et al. [2008], who investi-
gated the regionalization of BFI for Europe and the contermi-
nous USA, respectively, and Pe~na-Arancibia et al. [2010],
who investigated the regionalization of k across the tropics.

[5] The current study uses a large set of 3394 catchments
(<10,000 km2) that covers all continents and a wide range
of hydrologic, climatic, and physiographic conditions. This
allows the construction of reliable, globally applicable
models to estimate BFI and k. To our knowledge, this study
is the first attempt to estimate these base flow characteris-
tics from climatic and physiographic data globally using
such a large Q data set. Specific objectives are to: (1) ana-
lyze the relationships between catchment characteristics
and the selected base flow characteristics ; (2) train empiri-
cal (as opposed to conceptual) models to estimate the base
flow characteristics from climatic and physiographic char-
acteristics of catchments and assess to what extent these
models can be generalized; and (3) investigate the feasibil-
ity and accuracy of global-scale estimation of the base flow
characteristics.

2. Data

2.1. Observed Streamflow (Q)

[6] Daily observed Q data were derived from three sour-
ces. First, Q data for 1862 USA stations that were part of
the Model Parameter Estimation Experiment (MOPEX)
[Duan et al., 2006] were downloaded from the USGS

Figure 1. Locations of the catchments that passed the three quality control criteria and were used in
the analysis here. Each data point represents a catchment centroid (n 5 3394). The global maps in this
paper are presented in the Robinson projection (80�S–80�N and 180�W–180�E) with grid lines at every
15� latitude and 30� longitude.
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National Water Information System (http://waterdata.
usgs.gov) and the associated catchment boundaries from
the MOPEX webserver (ftp://hydrology.nws.noaa.gov/pub/
gcip/mopex/). Second, Q data for 4047 stations from the
GRDC were considered. Corresponding catchment bound-
ary data were provided by the GRDC. Third and finally, Q
data and associated catchment boundaries for 321 Austra-
lian stations part of a database compiled by Peel et al.
[2000] were used. Together, this resulted in an initial data
set comprising 6230 Q gauging stations.

[7] For catchments to be included here, three require-
ments needed to be satisfied. First, due to the importance of
channel routing in large catchments [e.g., McGlynn et al.,
2004] the catchment area was limited to <10,000 km2 [cf.
Pe~na-Arancibia et al., 2010; Van Dijk et al., 2013]. Second,
to reduce anthropogenic influences, catchments were only
included if they had <2% urban [using the ‘‘artificial areas’’
class of the GlobCover v2 map; Bontemps et al., 2011] and/
or subject to irrigation (using the Global Irrigated Area
Map; http://www.iwmigiam.org). Third and finally, to
ensure reliable estimates of the base flow characteristics the
Q record length had to be >10 yr (but not necessarily con-
secutive). This resulted in a set of 3394 Q gauging stations,
the locations of which are shown in Figure 1. Figure 2 shows
frequency histograms of Q record length, area, mean humid-
ity index (HI (–)), and major Köppen-Geiger climate type
[Peel et al., 2007] for the catchments. HI was calculated as
HI 5P=PET , where P (mm yr21) is the mean annual precip-
itation derived from WorldClim [Hijmans et al., 2005] and
PET (mm yr21) the mean annual potential evaporation
derived from CGIAR-CSI [Trabucco et al., 2008]. Figure 3
shows the distribution of the major Köppen-Geiger climate
types over the globe. All Q data were converted to mm d21

using the catchment areas.

2.2. Climatic and Physiographic Characteristics

[8] Table 1 lists the climatic and physiographic charac-
teristics used as predictors to model BFI and k. Predictor
selection was guided by previous regionalization studies,
expert knowledge, and data availability. Among the
selected catchment characteristics, eight were related to cli-
mate, two to topography, three to land cover, one to geol-
ogy, and four to soils—bringing the total number of
predictors to 18. For the catchment-scale estimation of the
base flow characteristics the full-resolution data were used.
However, for the computation of global maps the data were
resampled to 0.25� using averaging.

[9] A number of other predictors were considered, but
not included in the analysis. The topographic wetness index
(TWI) [Beven and Kirkby, 1979] was not used because a
global high-resolution TWI data set is not (yet) available.
Drainage density (total length of streams per unit catch-
ment area) was not used either, due to the lack of globally
consistent river-network data [cf. Benstead and Leigh,
2012]. Permafrost extent [Brown et al., 1997] was tested
but not used as its inclusion did not result in better model
performance and since its spatial patterns closely matched
those of SNOW (cf. Table 1). Five global data sets provid-
ing information on soils or geology were considered [D€urr
et al., 2005; Batjes, 2006; Gleeson et al., 2011; Hartmann
and Moosdorf, 2012; FAO/IIASA, 2012]. For soils, we
selected the Harmonized World Soil Database (HWSD)

[FAO/IIASA, 2012] and for geology the global permeability
map of Gleeson et al. [2011] as these data sets have a high
resolution of 1 km and are based on comprehensive collec-
tions of soil and geologic data, respectively. In addition,
BFI has been found to be strongly related to the sand con-
tent of the soil (SAND) [Boorman et al., 1995; Santhi
et al., 2008] as well as indices related to the permeability
of the underlying geology [Longobardi and Villani, 2008;
Bloomfield et al., 2009]. To improve the HWSD data set,
the SAND data for the USA were replaced with SAND

Figure 2. Frequency histograms of (a) Q record length, (b)
catchment area, (c) mean catchment humidity index (HI), and
(d) major Köppen-Geiger climate type for each catchment
(n 5 3394). To determine the major Köppen-Geiger climate
type for each catchment the most dominant class was used.
See Figure 3 for the Köppen-Geiger climate type map.
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data as derived from the STATSGO data set [Wolock et al.,
2004] and the CLAY data for Australia with CLAY data as
derived from the ASRIS data set [Johnston et al., 2003],
with the sand, silt, and clay contents changed proportion-
ally to ensure that the sum equals 100% (i.e., if the
STATSGO SAND value was 10% higher than the HWSD
SAND value then the HWSD SILT and CLAY values
would each be reduced by 5%).

3. Methodology

3.1. Computation of BFI and k

[10] Single values of BFI and k were computed from the
Q record of each catchment following Van Dijk [2010]. A
linear reservoir model was assumed as this is generally
considered to be a good approximation [e.g., Chapman,
1999; Fenicia et al., 2006; Van Dijk, 2010]. The linear res-
ervoir model is given by:

Q tð Þ5kS tð Þ; (1)

where Q (mm d21) is the streamflow, k (d21) is the base
flow recession constant, S (mm) is the reservoir storage,
and t (d) is time. The continuity equation reads:

dS tð Þ
dt

52Q tð Þ: (2)

[11] After differentiation, equation (1) can be substituted
in equation (2). By solving the resulting differential equa-
tion and introducing t 5 1, we can derive the following
recurrence relation:

Q tð Þ5Q t21ð Þexp 2kð Þ: (3)

[12] Equation (3) describes the falling limbs of hydro-
graphs. The final k for a catchment was computed by refor-
mulating equation (3) as follows:

k52ln
Q

Q�

� �
; (4)

where Q (mm d21) and Q� (mm d21) are calculated from
Q tð Þ and Q t21ð Þ data pairs of the Q record according to
[Van Dijk, 2010]:

Q5exp ln Q t51; 2; 3; . . .ð Þð Þ
� �

and (5)

Q�5exp ln Q t50; 1; 2; . . .ð Þð Þ
� �

: (6)

Figure 3. The Köppen-Geiger climate type map [Peel et al., 2007]. The original classification con-
sisted of 30 climate types, which were condensed here to 13 major climate types by omitting the third
letter of the climate symbols. The five markers denote the locations of the Q gauging stations used to
illustrate the base flow separation procedure (see Figure 4).
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[13] Data pairs with t during the first 5 days after a peak-
flow were excluded in the calculation of Q and Q� to
reduce the influence of quick flows on the computed k [cf.
Pe~na-Arancibia et al., 2010]. In addition, data pairs with
zero flow were excluded. Typical values of k range from

�0.02 d21 for slowly receding streams to �0.3 d21 for rap-
idly receding streams.

[14] The distribution of the derived k values for the dif-
ferent catchments had a strong positive skew that might
confound the modeling exercise. Hence, to make the data

Table 1. The Climatic and Physiographic Characteristics Used as Predictor of the Base Flow Index (BFI) and Recession Constant (k)

Type Predictor(s) Description Calculation and Data Source Resolution

Climate HI (–) Humidity index Calculated as: HI 5P=PET , where P is the mean
annual precipitation derived from WorldClim
[Hijmans et al., 2005] and PET is the mean
annual potential evaporation derived from
CGIAR-CSI [Trabucco et al., 2008]

�1 km

P (mm yr21) Mean annual
precipitation

WorldClim [Hijmans et al., 2005] �1 km

Psi (–) Precipitation
seasonality

Calculated following Walsh and Lawler [1981] as:
Psi 5P21

yr

P
jPm2Pyr =12j, where Pyr and Pm are,

respectively, the mean annual and monthly pre-
cipitation derived from WorldClim [Hijmans
et al., 2005] and the summation is over all
months

�1 km

PET (mm yr21) Mean annual potential
evaporation

CGIAR-CSI [Trabucco et al., 2008] �1 km

PETsi (–) Potential evaporation
seasonality

Calculated following Walsh and Lawler [1981] as:
PET si 5PET 21

yr

P
jPET m2PET yr =12j, where

PET yr and PET m are, respectively, the mean
annual and monthly potential evaporation derived
from CGIAR-CSI [Trabucco et al., 2008] and the
summation is over all months

�1 km

CORR (–) Seasonal correlation
between water sup-
ply and demand

Correlation coefficient calculated between monthly
climatic values of P and PET [Petersen et al.,
2012] derived from WorldClim [Hijmans et al.,
2005] and CGIAR-CSI [Trabucco et al., 2008],
respectively

�1 km

TA (K) Mean annual air
temperature

WorldClim [Hijmans et al., 2005] �1 km

SNOW (mm) Mean snow water
equivalent depth

GlobSnow L3A prototype with mountains included
v1 [mean of 2008–2010; Luojus et al., 2010] for
latitudes >35�N and AMSR-E/Aqua L3 v10
[mean of 2003–2011; Chang and Rango, 2000]
for latitudes �35�N

�25 km

Topography ELEV (m asl) Mean elevation CGIAR-CSI SRTM v4.1 data were used for the
catchment-scale analysis, while IIASA-LUS data
[Fischer et al., 2008] were used for the global-
scale analysis

�90 m, 0.088

SLO (�) Mean surface slope Idem �90 m, 0.08�

Land cover fW (–) Fraction of open
water

GlobCover v2 [Bontemps et al., 2011] �300 m

fTC (–) Fraction of forest MODIS MOD44B collection 4 v3 [Hansen et al.,
2003]

�250 m

NDVI (–) Mean Normalized
Difference Vegeta-
tion Index (NDVI)
[Tucker, 1979]

MODIS MOD13C2 collection 5 [Huete et al.,
2002], mean of 2001–2012

0.05�

Geology PERM (log10 m2) Mean permeability of
consolidated and
unconsolidated
geologic units
below the soil

Global permeability map [Gleeson et al., 2011] �1 km

Soils GRAV (%) Mean gravel content HWSD v1.21 [FAO/IIASA, 2012], mean of topsoil
and subsoil values

�1 km

SAND (%) Mean sand content HWSD v1.21 [FAO/IIASA, 2012], mean of topsoil
and subsoil values, with the USA data replaced
by STATSGO data [Wolock et al., 2004]

�1 km

SILT (%) Mean silt content HWSD v1.21 [FAO/IIASA, 2012], mean of topsoil
and subsoil values

�1 km

CLAY (%) Mean clay content HWSD v1.21 [FAO/IIASA, 2012], mean of topsoil
and subsoil values, with the Australian data
replaced by ASRIS data [Johnston et al., 2003]

�1 km
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better conform to a normal distribution the following trans-
formation was applied:

ktrans5ln kð Þ; (7)

where ktrans (–) is the transformed k. The inverse of this
transformation is given by:

k5exp ktransð Þ: (8)

[15] The obtained k was subsequently used to separate
the Q record into base flow and quick flow using a combi-

nation of forward- and backward-recursive digital filters
following Van Dijk [2010]. Figure 4 gives examples of
base flow computed in this way. The BFI was calculated as
the ratio of long-term mean base flow to total Q, ranging
from 0 to 1. Since the distribution of the derived BFI values
for the different catchments showed a weak negative skew
the following transformation was applied:

BFI trans 5BFI 2; (9)

where BFItrans (–) is the transformed BFI. The inverse of
this transformation is given by:

BFI 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BFI trans

p
: (10)

[16] It is noted that the choice of techniques to compute
BFI and k tends to affect the results, and since the ‘‘true’’
BFI and k are not known the choice of techniques remains
somewhat subjective. Multicatchment studies comparing
different techniques to compute BFI and k have generally
concluded that there is high correlation, but sometimes rel-
atively large systematic differences in BFI values among
techniques [e.g., Nathan and McMahon, 1990; Vogel and
Kroll, 1996; Chapman, 1999; Sujono et al., 2004; Eck-
hardt, 2008]. For instance, Eckhardt [2008] computed BFI
values for 65 catchments using seven techniques and
reported coefficient of determination (R2) values � 0:85
between BFI values computed using the different techni-
ques (i.e., there was high correlation among techniques),
while the mean BFI values computed using the different
techniques ranged from 0.49 to 0.70 (i.e., there were rela-
tively large systematic differences among techniques).

[17] The remaining three methodological subheaders
reflect the original three objectives of this study, and are
used to structure the subsequent sections 4 and 5.

3.2. Climatic and Physiographic Controls
of BFItrans and ktrans

[18] Using regression analysis the strength and shape of
the relationships between climatic and physiographic char-
acteristics of the catchments and the transformed base flow
characteristics (BFItrans and ktrans ) were evaluated. Linear,
exponential, logarithmic, and power functions were fitted
by least squares and the function with the highest R2 was
reported. Significance levels (or p values) were not calcu-
lated as these may be misleading [Nicholls, 2001], particu-
larly when using such a large number of catchments
[Royall, 1986; Johnson, 1999].

3.3. Catchment-Scale Estimation of BFItrans and ktrans

[19] Initial attempts to estimate BFItrans and ktrans from
climatic and physiographic characteristics of the catch-
ments using multivariate linear models gave poor results
due to the often nonlinear nature of the relationships [cf.
Mazvimavi et al., 2005; Van Dijk, 2010; Pe~na-Arancibia
et al., 2010]. We therefore decided to use artificial neural
networks (ANNs), models composed of interconnected
neurons that are able to model complex nonlinear relation-
ships between inputs and outputs [Bishop, 1995]. ANNs
have been used successfully in many fields of science,
including hydrology [ASCE, 2000a, 2000b; Govindaraju
and Rao, 2000; Maier and Dandy, 2000; Mazvimavi et al.,

Figure 4. Examples of computed base flow and quick flow
for the major Köppen-Geiger climate types. Figure 3 indicates
the locations of the five selected Q gauging stations. The
computed quick flow is the observed Q minus the computed
base flow. The BFI and k values listed in each panel were
based on the complete record of each station. A water year is
defined from 1 October of one year to 30 September of the
following year, and is designated by the year in which it ends.
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2005]. Here, feed-forward ANNs based on the multilayer
perceptron (MLP) [Bishop, 1995] with one hidden layer
were used to estimate BFItrans and ktrans from the climatic
and physiographic data. The inputs (i.e., climatic and phys-
iographic data) and outputs (i.e., BFItrans and ktrans ) were
standardized using the means and standard deviations of
the catchment values. The MLP models were trained using
the Levenberg-Marquardt algorithm [Levenberg, 1944;
Marquardt, 1963], which is considered to be one of the
most efficient learning algorithms [Hagan, 1994], in com-
bination with the mean-squared error performance
function.

[20] The tenfold cross-validation procedure [Shao,
1993] was used to estimate the generalization ability of
the trained MLP models. This procedure randomly parti-
tions the original set of 3394 catchments into 10 subsam-
ples, of which each comprises 10% of the catchments
(n 5 339). For 10 iterations, each time a different subsam-
ple of catchments was used to independently test the mod-
el’s performance, the other 90% were randomly
partitioned further into a training subset consisting of 75%
of the catchments (n 5 2546) and a validation subset con-
sisting of 15% of the catchments (n 5 509). For each itera-
tion, the MLP model was trained on the training subset,
while to prevent overfitting, the training process was
stopped once the error for the validation subset started to
increase [Sarle, 1995; Bishop, 1995]. The generalization
ability of the MLP models was derived by averaging R2

and root mean square error (RMSE) statistics computed
for each cross-validation iteration from the testing subset
of catchments. The optimal number of neurons in the hid-
den layer was determined by trial and error, based on R2

and RMSE values obtained for the testing subsets. The
number of neurons in the hidden layer was set at 30, as no
further performance improvement was gained beyond 30
neurons. Using such a high number of neurons in the hid-
den layer avoids the convergence to local minima [Tetko
et al., 1995]. As a last step, the output was destandardized
using the mean and standard deviation of the catchment
values.

[21] ANNs are often labeled as being ‘‘black boxes’’ as it
is difficult to gain insight into the nature of the relationships
between the input and the output [Sjöberg et al., 1995]. To
overcome this perception, several methods have been
developed to quantify the relative importance of the differ-
ent inputs [Gevrey et al., 2003; Olden et al., 2004]. We
employed the connection weight approach (CWA) [Olden
and Jackson, 2002], which was shown to perform best in a
comparison of nine different methods [Olden et al., 2004].
The CWA computes the relative importance of inputs
according to [Olden and Jackson, 2002]:

Si5
X30

h51

ai;hbh; (11)

where Si (–) is the relative importance, ai;h (–) are the
input-hidden connection weights, bh (–) are the hidden-
output connection weights, i51; 2; . . . ; 18 denote the
inputs, and h51; 2; . . . ; 30 denote the hidden neurons. Fig-
ure 5 illustrates the computation of S for a specific input. A
high absolute S value indicates that the input is important.
In this study, the results of all 10 trained MLP models (one

for each cross-validation iteration) were taken into account
by calculating the mean relative input importance (S (–)).
The inputs are subsequently ranked based on absolute val-
ues of the mean relative input importance (jS j).

3.4. Global Maps of BFI and k

[22] Global climatic and physiographic data were used
as input to the trained MLP models, producing 10 maps of
BFItrans and ktrans (0.25� resolution). These maps were com-
bined into single maps of BFItrans and ktrans by calculating
the per-pixel median of the 10 BFItrans or ktrans values,
respectively. The maps were subsequently transformed
back to BFI and k using equations (8) and (10), respec-
tively. The uncertainty of the estimates was quantified by
calculating the per-pixel standard deviation of the 10 BFI-
trans and ktrans values. The use of nontransformed values
would artificially inflate the uncertainty in regions with low
(high) BFI (k). Pixels attributed as ice (using the WWF ter-
restrial biomes map v2; Olson et al. [2001]) or open water
(using GlobCover v2; Bontemps et al. [2011]) were
excluded. To better understand the spatial patterns of the
global estimates, for each 0.25� latitude band the 90th per-
centile, median, and 10th percentile of the global BFI and k
estimates were computed. Additionally, the medians of the
global BFI and k estimates were computed for the major
Köppen-Geiger climate types (see Figure 3).

4. Results

4.1. Climatic and Physiographic Controls
of BFItrans and ktrans

[23] Figures 6 and 7 show scatterplots of catchment-
mean values of the 18 selected climatic and physiographic
characteristics versus observed values of the transformed
base flow characteristics (BFItrans and ktrans , respectively).
The relationships were all rather weak (R2 � 0:22) and
often characterized by high degrees of nonlinearity and/or
heteroscedasticity (i.e., uneven variability). Among the
eight climate predictors, PET, PETsi, TA, SNOW, ELEV,
and fW were moderately well related to BFItrans (Figures
6d, 6e, 6g, 6h, 6i, and 6k, respectively), whereas HI, PET,

Figure 5. Computation of the relative importance of
input 2 (S2) illustrated using a feed-forward neural network
consisting of three inputs and four hidden neurons.
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and SNOW were moderately well related to ktrans (Figures
7a, 7d, and 7h, respectively). ELEV and SLO were posi-
tively related to BFItrans and negatively related to ktrans

(Figures 6i, 7i, 6j, and 7j, respectively). Among the three
land-cover indices, fTC and NDVI were related to neither
BFItrans nor ktrans (Figures 6l, 7l, 6m, and 7m, respectively),

Figure 6. Scatterplots of catchment-mean values of the climatic and physiographic characteristics
(along the x axis) versus the observed BFItrans (along the y axis), including the best-fit regression line.
Each data point represents a catchment (n 5 3394). The x axis is linear and ranges from the minimum to
maximum value of the data (not shown). Table 1 lists descriptions of the predictor variables. Abbrevia-
tions referring to the type of regression equation: EXP, exponential ; LIN, linear; LOG, logarithmic;
and POW, power.
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whereas fW was positively related to BFItrans (Figure 6k).
The relationship between fW and BFItrans was, however,
highly heteroscedastic, demonstrating high variability at
low fW and low variability at high fW (Figure 6k). The

geology-related index PERM was related to neither BFI
nor k (Figures 6n and 7n, respectively). Among the four
soil indices, SAND was moderately well related to BFItrans

(Figure 6p).

Figure 7. Scatterplots of catchment-mean values of the climatic and physiographic characteristics (along
the x axis) versus the observed ktrans (along the y axis), including the best-fit regression line. Each data
point represents a catchment (n 5 3394). The x axis is linear and ranges from the minimum to maximum
value of the data (not shown). Table 1 lists descriptions of the predictor variables. Abbreviations referring
to the type of regression equation: EXP, exponential; LIN, linear; LOG, logarithmic; and POW, power.
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4.2. Catchment-Scale Estimation of BFItrans and ktrans

[24] Table 2 shows mean R2 and RMSE values (mean of
10 cross-validation iterations) obtained by the MLP models
for the training and testing subsets of catchments. The
mean training and testing R2 values for BFItrans are 0.74
and 0.65, respectively, whereas the corresponding values
for ktrans are somewhat poorer at 0.65 and 0.53 (Table 2).
Values of the Nash-Sutcliffe efficiency [Nash and Sutcliffe,
1970] are not listed because they were nearly identical to
the reported R2 values, suggesting that there is no bias in
the estimates. Figure 8 shows scatterplots of estimated ver-
sus observed values of BFItrans and ktrans , including the lin-
ear regression line. The estimated values are the median
estimates of the 10 MLP models (one for each cross-
validation iteration). The associated R2 values are 0.82 and
0.72 for the respective base flow characteristics (Figure 8),
and thus are substantially higher than the mean training R2

values (Table 2). The higher than unity slope of the regres-
sion equations (Figure 8) is due to the statistical phenom-
enon of regression toward the mean [Galton, 1886; Bland
and Altman, 1994].

[25] Table 3 presents for both base flow characteristics
the mean relative input importance (S ) calculated from the
connection weights of the trained ANN models and the cor-
responding ranking based on absolute S values. For BFItrans

the three most important inputs are fW, SNOW, and ELEV,
and for ktrans TA, P, and CLAY (Table 3). fW is important
for BFItrans (rank 1) but not ktrans (rank 9), whereas P is
important for ktrans (rank 2) but not BFItrans (rank 16; Table
3). The inputs related to geology and soils are relatively
unimportant for both base flow characteristics, with the
exception of CLAY for ktrans (rank 3; Table 3). Overall,
the results indicate that climate-related inputs are more
important for ktrans than for BFItrans (Table 3).

4.3. Global Maps of BFI and k

[26] Figures 9a and 10a present global maps of BFI and
k, respectively. These were produced in turn, using global
climatic and physiographic data as input to the 10 trained
MLP models (one for each cross-validation iteration), cal-
culating the per-pixel median, and back-transforming the
result. A large base flow fraction and slow recessions are
found in the tropics, in the tundra-taiga zone, and for moun-
tain ranges (notably the Chilean Andes, the Rocky Mts.,
and the Himalayas). To facilitate the comparison of spatial
patterns, Figures 9b and 10b show the observed values. The
BFI and k estimates appear to be relatively unbiased and
the maps generally agree well with the observations (Fig-
ures 9 and 10).

[27] Figure 11 presents for each 0.25� latitude band the
median and degree of dispersion of the global BFI and k
estimates, illustrating how values vary according to

latitude. High values of BFI are generally found between
�15�S and �10�N and between �45�N and �65�N,
whereas low k values are found between �10�S and �5�N
and north of �50�N (Figure 11). The spread in BFI values
is relatively even across the whole latitudinal range,
whereas there is a lower spread in k values around the equa-
tor and north of �60�N (Figure 11). Table 4 lists for each
base flow characteristic and major Köppen-Geiger climate
type the median of the global maps. The variability in
median BFI between climate types is relatively small, with
values ranging from 0.49 for the ‘‘BW’’ climate type (arid,
desert) to 0.77 for the ‘‘Ds’’ climate type (cold, dry
summer). Values for k range from 0.04 for the ‘‘EF’’ cli-
mate type (polar, frost) to 0.27 for the ‘‘BW’’ climate type
(arid, desert).

Table 2. Mean R2 and RMSE Statistics Obtained for the Training
and Testing Subsets of Catchments

Base Flow
Characteristic

Mean R2 Mean RMSE (–)

Training Testing Training Testing

BFItrans 0.74 0.65 0.11 0.13
ktrans 0.65 0.53 0.36 0.41

Figure 8. Scatterplots of estimated versus observed val-
ues of (a) BFItrans and (b) ktrans . The linear regression is
indicated by a solid line and the 1:1 relation by a dashed
line. Each data point represents a catchment (n 5 3394).
The estimated values are the median estimates of the 10
artificial neural networks used (one for each cross-
validation iteration). For each iteration, the training, valida-
tion, and testing subsets were included. Scatterplots using
the nontransformed base flow characteristics (BFI and k)
were not made as being based on non-normally distributed
data these would result in nonrobust regressions.
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[28] Figure 12 shows for the transformed base flow char-
acteristics (BFItrans and ktrans ) the uncertainty of the global
estimates, as computed from the estimation spread of the 10
trained MLP models. For both base flow characteristics, a
lower uncertainty is found in North America, Europe, and
southeastern Australia due to higher input data densities in
these regions (Figure 1), whereas greater uncertainty is asso-
ciated with (semi-)arid and (sub-)arctic regions (Figure 12).

5. Discussion

5.1. Climatic and Physiographic Controls of
BFItrans and ktrans

[29] Table 5 provides an overview of previous studies of
(nontransformed) BFI or k regionalization. Although most
of these studies were regional in nature, three had a conti-
nental scope [Gustard and Irving, 1994; Schneider et al.,
2007; Santhi et al., 2008], and one covered the entire
tropics [Pe~na-Arancibia et al., 2010]. The most commonly
used climate-related indices were mean annual precipita-
tion (P) [Lacey and Grayson, 1998; Haberlandt et al.,
2001; Mazvimavi et al., 2005; Longobardi and Villani,
2008; Pe~na-Arancibia et al., 2010; Krakauer and Temimi,
2011], humidity index (HI) [Lacey and Grayson, 1998;
Mwakalila et al., 2002; Van Dijk, 2010; Pe~na-Arancibia
et al., 2010], and mean annual potential evaporation (PET)
[Lacey and Grayson, 1998; Van Dijk, 2010]. The studies
generally reported a positive (negative) relationship of BFI
(k) with HI, an inconsistent relationship with P, and a nega-
tive (positive) relationship with PET. This is all in agree-
ment with the present results (Figures 6a, 7a, 6b, 7b, 6d,
and 7d, respectively). However, HI was only weakly
related to BFItrans, while the relationship between HI and
ktrans was characterized by a high degree of heteroscedas-
ticity (Figures 6a and 7a, respectively). Our results are con-
sistent with the expectation that catchments with a high
evaporative demand dry out faster after rainfall events,

resulting in flows dominated by short-duration events (i.e.,
low BFI and high k). The positive relationship found
between BFItrans and mean snow water equivalent depth
(SNOW) and the negative relationship found between ktrans

and SNOW (Figures 6h and 7h, respectively) can be attrib-
uted to the gradual release of meltwater to Q.

[30] To date, no other studies have examined the rela-
tionship between BFI and precipitation seasonality (Psi ).
Pe~na-Arancibia et al. [2010] found no relationship between
Psi and k, in agreement with this study (Figure 7c). The
relationships obtained between potential evaporation sea-
sonality (PETsi) and the base flow characteristics (Figures
6e and 7e) are probably not because PETsi is a controlling
variable, but rather because of the strong similarity between
PET and PETsi patterns. Several previous studies reported
that the seasonal correlation between water supply and
demand (CORR) is negatively related to the runoff coeffi-
cient (defined as the ratio of long-term Q to P) due to a
strongly in-phase seasonality in supply and demand of
water (i.e., high CORR) resulting in increased evaporation
and hence drier soils [e.g., Milly, 1994; Wolock and
McCabe, 1999; Potter et al., 2005]. These drier soils would
favor lower BFI and higher k and we would therefore
expect a negative (positive) relationship between CORR
and BFItrans (ktrans ) to be present. The expected relation-
ships are indeed present for both base flow characteristics,
although the relationships are very weak (Figures 6f
and 7f).

[31] The relationship obtained here between catchment-
mean surface slope (SLO) and BFItrans was positive and
between SLO and ktrans negative (Figures 6j and 7j, respec-
tively), which is in agreement with some other regionaliza-
tion studies [Lacey and Grayson, 1998; Mazvimavi et al.,
2005; Longobardi and Villani, 2008; Pe~na-Arancibia
et al., 2010; Van Dijk, 2010; Krakauer and Temimi, 2011]
and a sensitivity experiment using TOPMODEL [Wolock
et al., 1989]. However, the relationships were rather weak
and somewhat heteroscedastic (Figures 6j and 7j), indicat-
ing that topography is not a major control of base flow, par-
ticularly in catchments with gentle slopes. Consequently,
the use of TOPMODEL-based runoff parameterizations in
such catchments may be inappropriate [cf. Beven, 1997; Li
et al., 2011]. Conversely, other regionalization studies
found a negative relationship between SLO and BFI [Hab-
erlandt et al., 2001] or a positive relationship between SLO
and k [Zecharias and Brutsaert, 1988; Post and Jakeman,
1996; Brandes et al., 2005], although these studies used
only a limited number of catchments (� 25). Additionally,
the relationships found here (and by others) seems to con-
tradict general drainage theory, which would predict a neg-
ative (positive) relationship between SLO and BFI (k)
based on the premise that more steeply sloping aquifers
drain faster [Brutsaert and Nieber, 1977; Zecharias and
Brutsaert, 1988; Vogel and Kroll, 1992]. There are three
potential explanations for this discrepancy. The first is that
SLO may be a poor proxy for the aquifer flow gradient.
However, this explanation fails to clarify why a positive
(negative) relationship was obtained for BFI (k). The sec-
ond is that SLO accounts for the effects of orography on
climate, although the climate data sets used here (Table 1)
did apply orographic corrections. The third is that SLO
(which is based on relatively high-resolution SRTM data,

Table 3. For BFItrans and ktrans the Mean Relative Input Impor-
tance of the 18 Climatic and Physiographic Inputs as Expressed
by S and the Corresponding Ranking Based on Absolute S Values

Inputa

BFItrans ktrans

S Rank S Rank

HI 20.25 9 0.18 12
P 20.07 16 20.56 2
Psi 20.10 15 20.06 16
PET 0.01 18 0.27 6
PETsi 20.34 7 0.29 5
CORR 20.51 5 0.14 15
TA 0.20 13 1.41 1
SNOW 0.84 2 20.25 7
ELEV 0.63 3 20.15 13
SLO 0.24 10 20.31 4
fW 1.02 1 0.21 9
fTC 20.44 6 20.05 17
NDVI 0.60 4 20.14 14
PERM 20.20 11 20.22 8
GRAV 20.14 14 20.18 11
SAND 0.03 17 0.05 18
SILT 0.27 8 0.18 10
CLAY 20.20 12 0.39 3

aInputs are defined in Table 1.
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cf. Table 1) acts as a surrogate for hydrologic characteris-
tics of soils and geology in the absence of more detailed
data on substrates. Topography is one of the primary influ-
ences on pedogenesis [Price, 2011], with soils forming on
steep slopes often being more permeable than their counter-
parts on gentle slopes [e.g., Ciolkosz et al., 1989; Janeau
et al., 2003; Soulsby and Tetzlaff, 2008]. Since permeable
soils promote base flow contributions relative to less per-
meable soils [Boorman et al., 1995], this could explain the
positive relationship obtained between SLO and BFI and
the negative relationship obtained between SLO and k. A
counter argument could be that bedrock usually occurs at
more shallow depths on steep slopes than on gentler slopes,

although bedrock is not necessarily impermeable due to fis-
sures and fractures [Davis, 1969; Tromp-van Meerveld
et al., 2007] and can contribute a considerable portion of
total Q [Uchida et al., 2003].

[32] No clear evidence of relationships between fTC and
the transformed base flow characteristics was obtained here
(Figures 6l and 7l), nor in several other BFI regionalization
studies [Demuth and Hagemann, 1994; Mazvimavi et al.,
2005; Longobardi and Villani, 2008], suggesting that the
presence of forests has little effect on the base flow fraction
and recession rate. Although other regionalization studies
did find relationships between fTC and BFI [Lacey and
Grayson, 1998] or k [Brandes et al., 2005; Pe~na-Arancibia

Figure 9. Global maps of (a) median estimated and (b) observed BFI. The estimated values in Figure
9a are the back-transformed medians of the 10 cross-validation iterations. Each data point in Figure 9b
represents a catchment centroid (n 5 3394).
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et al., 2010; Krakauer and Temimi, 2011], the direction
and strength of the relationships varied [cf. Price, 2011].
By contrast, the relationship between the fraction of open
water (fW) and BFItrans was positive (Figure 6k), suggest-
ing that surface waters provide a steady supply of base
flow. Similar relationships were obtained in BFI regionali-
zation studies for the Great Lakes region of North America
[Neff et al., 2005; Ahiablame et al., 2013].

[33] Soils and geology are undoubtedly two of the domi-
nant controls of base flow [Farvolden, 1963; Davis, 1969;
Tague and Grant, 2004] as confirmed by the fact that 16 of
the 20 considered regionalization studies incorporated one,
or more, indices related to soils or geology into their mod-
els (Table 5). Here, an index related to the permeability of

the geology (PERM) and four indices related to soil texture
(GRAV, SAND, SILT, and CLAY) were used. No relation-
ships with PERM were found (Figures 6n and 7n), which
does not mean that geology does not influence BFI or k, but
rather that the data are not sufficiently accurate or that other
hydrogeological properties are more important. A moderate
relationship between the mean sand content of the soil
(SAND) and BFI was found (Figure 6p), in agreement with
BFI regionalization studies for the conterminous USA
[Santhi et al., 2008] and the UK [Boorman et al., 1995].
The weaker relationship found here (Figure 6p) is most
likely due to the quality of the global HWSD data set com-
pared to the regional soil data sets used in the two previ-
ously mentioned studies.

Figure 10. Global maps of (a) median estimated and (b) observed k. The estimated values in Figure
10a are the back-transformed medians of the 10 cross-validation iterations. Each data point in Figure
10b represents a catchment centroid (n 5 3394).
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5.2. Catchment-Scale Estimation of BFItrans and ktrans

[34] Most regionalization studies used multivariate linear
regression (Table 5) and nontransformed values of the base
flow characteristics (BFI and k). However, the pronounced
skewness of the BFI and k distributions found here suggests
the need for transformation of the data to achieve greater
normality. Additionally, the nonlinear relationships
between the predictors and the (transformed) base flow
characteristics obtained here [cf. Figures 6 and 7; Mazvi-
mavi et al., 2005; Van Dijk, 2010; Pe~na-Arancibia et al.,
2010] suggest the usefulness of ANNs. Many regionaliza-
tion studies have used a relatively small number of catch-
ments (<100; Table 5), which may have led to less reliable
or overfitted models. In general, studies with <100 catch-
ments obtained higher training R2 values than studies based
on a larger number of catchments (� 100; Table 5). For
BFItrans, the training R2 value obtained here (0.74; Table 2)
falls in the upper range of values reported for other studies
with � 100 catchments (0.34–0.79; Table 5). For ktrans , the
training R2 value obtained here (0.65; Table 2) is much
higher than the corresponding values reported for other
studies with � 100 catchments (0.25–0.49; Table 5). Two
of these studies [Van Dijk, 2010; Pe~na-Arancibia et al.,
2010, Table 5] incorporated only one (climate related) pre-
dictor in their model, whereas better results might have
been achieved using multiple predictors.

[35] Assessing a model’s performance on an independent
data set (i.e., to provide an estimate of generalization) is a
crucial aspect of model development. Here, mean testing

R2 values of 0.65 and 0.53 were obtained for BFItrans and
ktrans , respectively (Table 2). We consider these results to
be acceptable given the large geographic spread and the
wide range of geology, soils, topography, climate, and land
use covered by the catchments. Only three other (BFI)
regionalization studies conducted a generalization assess-
ment of their established models [Haberlandt et al., 2001;
Schneider et al., 2007; Bloomfield et al., 2009]. Of these
three studies, only one reported the associated statistical
measures [Haberlandt et al., 2001]. We would recommend

Figure 11. The 90th percentile, median, and 10th percentile values for (a) BFI and BFItrans and (b) k
and ktrans for each 0.25� latitude band derived from the global maps. Values are plotted only if there are
>60 pixels of 0.25� resolution with a value within the latitudinal band.

Table 4. Median Estimated BFI and k for the Major Köppen-
Geiger Climate Types

Climate Typea BFI (–) k (d21)

Af: tropical, rainforest 0.77 0.05
Am: tropical, monsoon 0.74 0.06
Aw: tropical, savannah 0.71 0.08
BW: arid, desert 0.49 0.27
BS: arid, steppe 0.57 0.17
Cs: temperate, dry summer 0.65 0.09
Cw: temperate, dry winter 0.67 0.07
Cf: temperate, no dry season 0.63 0.08
Ds: cold, dry summer 0.77 0.05
Dw: cold, dry winter 0.74 0.07
Df: cold, no dry season 0.74 0.05
ET: polar, tundra 0.64 0.05
EF: polar, frost 0.70 0.04

aThe locations of the major Köppen-Geiger climate types are shown in
Figure 3.
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all future researchers to explicitly report generalization
assessment statistics in their papers. Haberlandt et al.
[2001] used multivariate linear regression, ordinary krig-
ing, and external drift kriging to estimate BFI from 10 cli-
matic and physiographic characteristics for 25 catchments
located in the German part of the Elbe River Basin. Based
on a leave-one-out cross-validation, they obtained RMSE
values of 0.09, 0.11, and 0.08 for the respective
approaches. Their RMSE values are comparable to the
mean RMSE value of 0.11 computed here from back-
transformed observed and estimated BFI for the testing
subsets (noting that the value of 0.13 in Table 2 was
derived from transformed BFI values).

[36] The performance statistics obtained for BFItrans

were better than those for ktrans (cf. Table 2 and Figure 8),

in agreement with previous studies using nontransformed
values (Table 5). The better performance of BFI may be
attributable to several factors. First, k has been found to
vary somewhat seasonally in response to changes in actual
evaporation [Czikowsky and Fitzjarrald, 2004]. Moreover,
if the base flow recession of a catchment is nonlinear, the
assumption of a linear reservoir to derive k as used here
will lead to different estimates of k depending on the flow
rate [Wittenberg, 1999; Krakauer and Temimi, 2011].
Additionally, k is calculated from low-flow periods in the
Q record that are subject to relatively lower instrument pre-
cision than intermediate flows [Carter, 1963] and are
affected by rating-curve uncertainty [Tomkins, 2013].
Finally, k suffers from a greater sampling error than BFI as
it is computed from only parts of the overall Q record.

Figure 12. Global maps of the uncertainty of (a) BFItrans and (b) ktrans . The data represent the per-pixel
standard deviation of the 10 transformed estimates (one for each cross-validation iteration). Note that the
use of untransformed values would artificially inflate the uncertainty in regions with low (high) BFI (k).
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Table 5. Overview of BFI or k Regionalization Studies, Listed in Order of the Number of Q Gauges Used, by BFI Then k

Base Flow
Characteristic Reference

Number
of Gauges Region Climate Modela R2b RMSEb Predictor(s)c

BFI Mwakalila
et al. [2002]

15 Tanzania Semiarid LIN 0.89 – HI, catchment fraction underlain
by permeable geology

Ahiablame
et al. [2013]

22 Indiana, USA Temperate LOG 0.91 – fW, catchment fractions of two
soil infiltration capacity
classes

Haberlandt
et al. [2001]

25 NE Germany Temperate LIN 0.87 0.07 SLO, TWI, soil hydraulic
conductivity, P

Longobardi and
Villani [2008]

28 Southern Italy Mediterranean LIN 0.68 0.17 Catchment fraction underlain by
permeable geology

LIN 0.80 – Catchment fraction underlain by
permeable geology, P, ELEV,
SLO, fTC

Bloomfield
et al. [2009]

44 Thames Basin, UK Temperate LIN 0.89 0.09 Catchment fractions of six
hydrogeological classes

Mazvimavi
et al. [2005]

52 Zimbabwe Subtropical LIN 0.75 0.09 P, drainage density, 75th
percentile of slopes in the
catchment

ANN 0.77 0.02 P, drainage density, 10th
percentile of slopes in the
catchment

Schneider
et al. [2007]

103 Europe Temperate LIN – – Catchment fractions of 29 soil
classes

Lacey and Grayson
[1998]

114 VIC, Australia Temperate LIN 0.72 – Catchment area, ELEV, PET,
fTC, catchment fraction
underlain by sedimentary rock,
P, channel length

Van Dijk [2010] 183 SE Australia Temperate,
subtropical

EXP 0.34 0.16 PET

Boorman et al. [1995] 575 UK Temperate LIN 0.79 0.09 Catchment fractions of 29 soil
classes

Neff et al. [2005] 959 Great Lakes Basin,
North America

Temperate EXP 0.53 0.11 Surficial geology, fW

Gustard and
Irving [1994]

1530 Europe Temperate LIN 0.46 – Catchment fractions of nine soil
classes

Current studyd 3394 Global Various ANN 0.74 0.10 HI, P;Psi , PET, PETsi, CORR,
TA, SNOW, ELEV, SLO, fW,
fTC, NDVI, PERM, GRAV,
SAND, SILT, CLAY

Santhi et al. [2008] �8600 Conterminous USA (Semi)arid,
temperate,
subtropical

LIN 0.79 – SAND, elevation range of
catchment

k Post and Jakeman
[1996]

16 VIC, Australia Temperate LIN 0.53 – SLO
LIN 0.41 – Catchment shape

Brandes et al. [2005] 24 Pennsylvania, USA Temperate POW 0.80 0.02 Drainage density, soil hydraulic
conductivity, SLO

Demuth and
Hagemann [1994]

57 SW Germany Temperate POW 0.70 – Catchment fractions of 14
hydrogeological classes

Krakauer and
Temimi [2011]

61 USA Temperate LIN 0.3–0.5 – Longitude, soil infiltration
capacity, latitude, channel
length, fTC, P

Hughes [1997] 134 South Africa Subtropical,
Mediterranean

LIN 0.25 – Rainfall seasonality classes,
modeled estimates of recharge,
geological index

Pe~na-Arancibia
et al. [2010]

167 Entire tropics (Sub)tropical LOG 0.49 – HI

EXP 0.49 – P
Van Dijk [2010] 183 SE Australia Temperate,

subtropical
POW 0.27 – HI

Current studyd 3394 Global Various ANN 0.65 0.03 HI, P;Psi , PET, PETsi, CORR,
TA, SNOW, ELEV, SLO, fW,
fTC, NDVI, PERM, GRAV,
SAND, SILT, CLAY

aLists the type of (multivariate) regression equation used. Abbreviations used: LIN, linear; POW, power; LOG, logarithmic; EXP, exponential; ANN,
artificial neural network.

bDash indicates the information was not reported in the study or is not directly comparable to other studies.
cLists the predictors included in the model only and not all predictors considered. See Table 1 for descriptions of the predictor variables.
dThe current study is added for the sake of completeness. The R2 of the current study represents the mean training R2 (cf. Table 2), whereas the RMSE

represents the mean RMSE computed from back-transformed observed and estimated values of the base flow characteristics for the training subsets. Note
that the RMSE in Table 2 was computed from transformed observed and estimated values of the base flow characteristics.
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[37] The R2 values of the scatterplots exceed the mean
training R2 values (cf. Figure 8 and Table 2) because the
estimated values in the scatterplots represent the mean of
the 10 MLP models (one for each cross-validation itera-
tion). Ensemble modeling (i.e., using the outputs from mul-
tiple models or from different realizations of the same
model) is widely used in atmospheric, climate, and hydro-
logic sciences and is known to typically improve predictive
accuracy [e.g., Wandishin et al., 2001; Tebaldi and Knutti,
2007; Breuer et al., 2009; Viney et al., 2009]. Addition-
ally, several studies have reported that using ensembles of
neural networks also improves the accuracy compared to

using single neural networks [Hansen and Salamon, 1990;
Tetko et al., 1995; Shu and Burn, 2004; Ouarda and Shu,
2009].

[38] The fraction of open water (fW) was identified as an
important input for estimating BFItrans but not ktrans (Table
3), probably because the BFI computation also considers
peak flows which are delayed in catchments with high fW.
Mean elevation (ELEV) was identified as important for the
estimation of BFItrans (Table 3), but since ELEV merely
indicates the relative position it cannot physically influence
the base flow characteristics. However, it is possible that
ELEV, which was based on relatively high-resolution data
(cf. Table 1), accounts for the effects of orography on cli-
mate and/or acts as a surrogate for soils and geology in the
absence of more detailed data on substrates. The inputs
related to geology and soils were mostly identified as unim-
portant (Table 3), probably due to the quality of the data.
Note that the CWA results should be interpreted with
caution as the approach does not account for [Sarle, 2000]:
(1) the ‘‘squashing’’ effect of the hidden-layer activation
function; (2) biases in the hidden and output layers ; and
(3) dependency among the input variables.

5.3. Global Maps of BFI and k

[39] To the best of our knowledge, our study is the first
attempt to estimate BFI and k globally. However, several
authors have produced regional BFI maps using various
methods to compute and spatially estimate BFI [Bullock
et al., 1997; Haberlandt et al., 2001; Wolock, 2003; Neff
et al., 2005; Lee et al., 2006; Santhi et al., 2008]. Wolock
[2003] and Santhi et al. [2008] produced BFI maps for the
conterminous USA by interpolating the BFI values of 8249
and �8600 catchments, respectively, using the inverse-
distance weighting (IDW) technique. The BFI map of
Wolock [2003] was available to us and is compared to the
newly derived map in Figure 13. Our newly derived map
and the map of Wolock [2003] exhibit similar spatial pat-
terns, although the latter has a smoother appearance owing
to the use of IDW interpolation (Figure 13). A per-pixel
comparison of the maps was possible by resampling the
map of Wolock [2003] using averaging to the resolution of
the newly derived map (0.25�). The least squares linear
regression equation associated with this comparison yields
an R2 of 0.50 and a RMSE of 0.14, indicating moderate
agreement. For the newly derived map, the mean and stand-
ard deviation of BFI values for the conterminous USA are
0.61 and 0.18, respectively; for the map of Wolock [2003],
the same figures are 0.43 and 0.19, respectively. The sys-
tematic difference in BFI values between the two maps is
attributable to the use of different base flow separation
procedures.

[40] Neff et al. [2005] presented a BFI map for the Great
Lakes region of North America based on exponential rela-
tionships with the fraction of open water (fW) and a geo-
logical index. Comparing the BFI map of Neff et al. [2005]
with our map (Figure 9a) reveals that the mean BFI for this
region is similar at �0.75. Bullock et al. [1997] produced a
BFI map for Southern Africa by assigning the BFI values
computed from the Q records of �650 gauging stations to
the associated catchments. Some of the catchments used by
Bullock et al. [1997] were rather large (8% of the catch-
ments were >10,000 km2 and 2% >100,000 km2), which

Figure 13. Map of the conterminous USA showing (a)
estimated BFI from Wolock [2003], (b) median estimated
BFI from this study, and (c) observed BFI. In (b) only val-
ues for the conterminous USA are shown. The BFI values
in (a) were computed using a different method than the BFI
values in (b) and (c). The maps have limits 25–48�N and
125–70�W and grid lines at every 10� latitude and 15�

longitude.
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may have led to inflated BFI values due to channel routing
effects. Nevertheless, the BFI map of Bullock et al. [1997]
and the corresponding part of our map (Figure 9a) agree
well in terms of spatial patterns—both maps showed mark-
edly higher BFI values north of �15�S. Lee et al. [2006]
produced a BFI map for Taiwan by interpolation of BFI
values computed from the Q records of 174 gauging sta-
tions. Again, our map and that of Lee et al. [2006] showed
very similar spatial patterns. Similarly, the BFI maps of
Haberlandt et al. [2001] for the German part of the Elbe
River Basin and our map agreed well ; both maps give a
mean BFI of �0.75 and place the highest BFI values in the
central part of the Elbe.

[41] Pe~na-Arancibia et al. [2010] produced a k map for
the entire tropics extending between 35�S and 30�N based
on an exponential relationship with mean annual precipita-
tion (P). They used the same method to compute k, the
same data to derive P, and many catchments that are also
used in this study. Consequently, the map of Pe~na-Aranci-
bia et al. [2010] and our newly produced map (Figure 10a)
show good consistency in terms of both spatial patterns and
absolute magnitude.

[42] The global maps of the estimation uncertainty for
BFI and k exhibit similar patterns (Figure 12). The generally
greater uncertainty in (semi-)arid and (sub-)arctic regions
(Figure 12) is due to application of the MLP models outside
the climatic and physiographic domain of the catchment
data. Additional efforts are recommended to validate and/or
improve the present results for these regions. In light of this,
the declining number of Q gauging stations in operation
around the globe is cause for concern [Stokstad, 1999; Shi-
klomanov et al., 2002; Fekete and Vörösmarty, 2007].

[43] The global maps of BFI and k produced here may be
useful for a range of large-scale hydrological applications,
including the diagnosis and parameterization of land sur-
face schemes and global hydrological models, water
resource assessments, and catchment classification. How-
ever, some important characteristics and limitations should
be noted. First, the maps reflect flows under natural,
unregulated conditions. Second, in cold regions the main
source of base flow is a combination of snow and ice melt.
Third, the outflow from surface waters, such as lakes, wet-
lands, and reservoirs, can comprise a large part of the base
flow. Fourth, the effects of river channel routing should be
accounted for when using the maps for catchments
>10,000 km2. Finally, the BFI values in arid regions (nota-
bly the Sahara) are perhaps higher than expected, but this
can be attributed to the approach used to compute BFI and
k. The maps are available for free download from http://
www.hydrology-amsterdam.nl.

6. Conclusion

[44] This study is the first attempt to estimate two impor-
tant base flow characteristics (BFI and k) globally. A highly
heterogeneous set of 3394 catchments was used to con-
struct widely applicable models relating climatic and phys-
iographic characteristics to BFI and k. The main findings
are:

[45] 1. Since the BFI and k distributions showed negative
and positive skewness, respectively, a data transformation
was needed to better approximate a normal distribution,

required to avoid bias in the estimates. The relationships
between climatic and physiographic characteristics of the
catchments and the transformed base flow characteristics
(BFItrans and ktrans) were often highly nonlinear and hetero-
scedastic. Among the catchment characteristics pertaining
to climate, the mean annual potential evaporation (PET),
PET seasonality (PETsi), mean annual air temperature
(TA), and mean snow water equivalent depth (SNOW)
were best related to BFItrans, whereas the humidity index
(HI), PET, and SNOW were best related to ktrans. The mean
surface slope (SLO) was positively related to BFItrans and
negatively related to ktrans , which seems to contradict clas-
sical drainage theory and may represent a spurious relation-
ship due to underlying patterns in soil hydrology and/or
hydrogeology. Among the predictors pertaining to land
cover, the fraction of forest (fTC) and the mean normalized
difference vegetation index (NDVI) were related to
neither BFItrans nor ktrans, whereas the fraction of open
water (fW) showed a moderate (positive) relationship with
BFItrans. A moderate (positive) relationship was also found
between the mean sand content of the soil (SAND) and
BFItrans.

[46] 2. The nonlinear relationships obtained between cli-
matic and physiographic characteristics of the catchments
and BFItrans or ktrans justified the use of artificial neural net-
works to estimate BFItrans and ktrans. It proved possible to
satisfactorily estimate BFItrans and ktrans from climatic and
physiographic data of catchments, yielding training R2 val-
ues of 0.74 and 0.65, respectively. It was found that averag-
ing the estimates of the ten artificial neural-network models
(one for each cross-validation iteration) resulted in more
accurate estimates. The results further show that artificial
neural networks can be considered a viable and perhaps
better alternative to the commonly used multivariate linear
regression. The connection weights of the trained artificial
neural networks indicated that climate-related inputs are
more important for estimating ktrans than BFItrans.

[47] 3. Global maps of BFI and k were obtained by using
global climatic and physiographic data as input to the
established models and back-transforming the result. The
BFI and k values showed higher uncertainty in compara-
tively data-poor (semi-)arid and (sub-)arctic regions, and
lower uncertainty in the more data-rich North America,
Europe, and southeastern Australia. The global maps will
prove useful for a variety of large-scale hydrological appli-
cations, although further validation of the maps is recom-
mended, particularly in poorly gauged and ungauged
regions.
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