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Abstract—Traditionally, image processing based on Markov
Random Field (MRF) is often addressed on a 4-connected grid
graph defined on the image. This structure is not computation-
ally efficient. In our work, we develop a multiple-trees structure
to approximate the 4-connected grid. A set of spanning trees
are generated by a new algorithm: re–weighted random walk
(RWRW). This structure effectively covers the original grid
and guarantees uniformly distributed occurrence of each edge.
Exact maximum a posterior (MAP) inference is performed on
each tree structure by dynamic programming and a median
filter is chosen to merge the results together. As an important
application, image denoising is used to validate our method.
Experimentally, our algorithm provides better performance
and higher computational efficiency than traditional methods
(such as Loopy Belief Propagation) on a 4-connected MRF.

Keywords-MRF; image denoising; spanning tree; MAP in-
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I. INTRODUCTION

MRF is a popular tool in statistics inference, and has been
widely used in image processing and computer vision [1].
While it is popular, how to balance the computational cost
and visual effectiveness is still a challenging task. The most
universal structure of MRF in image processing is the 4-
connected grid, which makes the graph more general but
not computational efficient for inference. To illustrate, graph
cuts [2] and Loopy Belief Propagation (LBP) [3], as the most
popular inference methods, are both iterative algorithms.
Due to the poor computational efficiency, inference is slow.
Our motivation for this paper is to build a multiple-trees
structure, which is loop free and effectively approximates
the 4-connected MRF.

There are three main contributions of our work: (i)
We develop a new algorithm called re–weighted random
walk (RWRW) to pick up a set of spanning trees of a 4-
connected grid. This algorithm guarantees the occurrence
of each edge in the original graph is uniformly distributed.
(ii) We get exact MAP inference on each tree structure
rapidly and use a computationally efficient but robust median
filter to combine the results together. (iii) Experimentally,
we demonstrate our RWRW spanning tree structure with

median filter outperform LBP in a 4-connected grid for
image denoising.

The theory and application of using tree structures in
image processing and computer vision are popular in re-
cent years. Paper [4] provides a tree–reweighted (TRW)
framework finding MAP based on message passing theory.
Random spanning tree theory is used by [5] to approximate
conditional random field. Our algorithm is different from all
the previous work, as will be explained later.

In addition, our algorithm is distinct from those traditional
work that use sparse representation for image processing,
such as [6] and [7]. Papers referred above mainly focus on
”learning atoms” and ”unitary dictionary” to improve the
results of image restoration. However, our work aims to build
a combined sparse structure to approximate the 4-connected
MRF and perform exact inference on it without any pre-
process and learning work.

The rest of the paper is organized in the following way:
We provide a statistical understanding to solve some image
processing tasks and choose an estimator for inference in
the next section. Section 3 provides the main procedures of
RWRW algorithm to generate a set of spanning trees. In
section 4 we analysis the method and computational cost of
performing inference on the RWRW structure, as well as the
merging strategy. We will show our experiment results and
conclusion in section 5 and 6 respectively.

II. PROBLEM FORMULATION

A. Choosing an Estimator

Many image processing and computer vision tasks, such
as image denoising, restoration and stereo are addressed by
inference on an MRF. The joint probability of an MRF as:

P (x1, x2, ...xN , y1, y2, ...yN) =
∏
i

Ψ(xi, yi)
∏
(i,j)

Ψ(xi, xj),

(1)
where (i, j) is a pair of nodes in neighborhood, N is the
number of nodes, yn and xn are the observed value and
label value at location n respectively.
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To inference on an MRF, we need to choose an estimator.
The most universal one is MAP estimator. In MAP estima-
tion, we label x1, x2...xn to each node to maximize the
Equation 1.

MAP estimation on Equation 1 is equivalent to minimiz-
ing an energy function in the following form:

E(X) =
∑
i

Di(xi) +
∑
(i,j)

S(xi, xj), (2)

where D(·) and S(·) is data term and pairwise term respec-
tively. D(·) is the cost of assigning a label to one node and
S(·) penalize the different labels assigned in neighborhood
nodes.

B. Relation to previous works

Our work is motivated but distinct from the TRW message
passing framework, which uses a convex combination of
distributions on tree structures to derive upper bounds on
the cost of a MAP configuration. Tree structure is used only
to determine the edge weight in the original grid. Inference
is still performed on a 4-connected MRF, thus leading the
same disadvantage as LBP and graph cuts.

In [5], researchers provide a Conditional Random Field
(CRF) approximation work by spanning trees. However, they
only use the algorithm cited in [8] to generate a set of
trees. The original graph is not guaranteed to be completely
covered by their method. As well, edge occurrence is not
uniformly distributed. In addition, a CRF is discriminative,
which is different from the generative MRF.

III. RANDOM SPANNING TREE GENERATION USING

RE–WEIGHTED RANDOM WALK

In this section, we mainly focus on how to use a limited
number of spanning trees to approximate the 4-connected
MRF. As well, we guarantee the occurrence of each edge is
uniformly distributed.

A. Model Definition

Let G(V,E) denote the 4-connected grid, where V =
(1, 2..., n) is the collection of nodes and E(i, j) describes the
pairwise relationship between two nodes in neighborhood.

Suppose we use a total number of Ω trees to approximate
the original graph and ω represent the number of trees that
has been constructed. Occurrence number of each edge is
different among the set of spanning trees, ξ denotes edges
occurrence for each edge.

The two most important attributes of the RWRW spanning
trees structure is: (i) The collection of trees should cover the
whole image, which means ξ for each edge must larger than
or at least equal to one. (ii) The total occurrence of each
edge in the original image is a uniform distribution. Fig. 1
provides an example of our proposed RWRW spanning trees
structure for a 3× 3 grid graph.

(a) (b) (c) (d)

Figure 1. RWRW spanning trees: Tree (b), (c) and (d) are sub–graph of
grid (a) and they contains all the possible edges in (a). The frequency of
occurrence of each edge is ξ = 2 and occurrence probabilities is ε = 2/3.

B. Tree Construction Using Re–weighted Random Walk

First of all, we pick up our first spanning tree randomly
using Wilson’s method [8]. One arbitrary node r is chosen as
the root and also marked as current tree τ at the beginning.
Then an arbitrary node i is chosen as the start point, from
which we do a loop-erasing random walk until it hit the
current tree τ . Once any node encounters the current tree,
all the edges are marked from node i to the current tree
and all the nodes in this routine are added into the current
tree structure. The tree is completed when all the nodes are
marked “in tree” by a random walk.

Once the first tree is obtained, we do a depth-first search
to get the relationship between each pair of parent and child.
We add 1 to ξ(i,j) when there is one edge detected between
node i and j. The collection of edges that exist in the first
tree is defined e(i,j) and otherwise ē(i,j). As defined in
the previous step, ω is the number of trees that has been
constructed. We define W(i,j) as the weight of edge E(i,j):

W (i, j) = ξ(i,j)/ω, (3)

W (i, j) is used as the basis of building the next spanning
tree.

Secondly, we use a iterative method to make the 4-
connected grid covered by a set of trees and guarantees a
uniform distribution of edge occurrence. At each iteration,
another arbitrary node r̃ is chosen as the root and marked as
the current tree τ̃ . For any node i, we run the re–weighted
walk to make it hit the current tree.

The most important procedure is how to choose the
walking direction at each node. Due to the loop free nature
of a tree, about half of edges in the original image are
discarded in the first step, we aim to use our walk schedule
to recover the missing items ē(i,j). At each node, there are
four directions to select as the next target. W (i, j) varies
from each direction. Our “walk” schedule gives preference to
direction having the minimum weight at each node. Once a
cycle is formed by walking through one direction, we drop it
and choose another direction with a second smallest weight.

Let Pω+1
i denote the walking path from any beginning

node towards i at tree ω + 1, the edge selected in the next
step is expressed as:

Eω+1
(i,j) := argminW(i,j), j /∈ Pω+1

i (4)
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Once it touches the current tree τ̃ , the“walk” finishes and all
nodes in this path are added into the current tree structure.

After several iterations, all the edges in the original grid
have been covered. Compared to the previous work [5]
we take the preference of minimum weight into account.
The most significant advantage compared is the uniformly
distributed occurrence of each edge. Figure 2 (in experiment
part) provides an example result of the advantage of our
algorithm.

IV. DYNAMIC PROGRAMMING ON TREE AND MERGING

STRATEGY

A. Dynamic Programming on Tree

Tree dynamic programming is an efficient algorithm to
estimate MAP on a tree structure. It is used by [9] for
object detection and improved by [10]. According to our
energy formulation, each node i (except for the root) passes
a minimum energy to its parent j in this form (Ci is the
collection of children of i):

Ei(xj) = min
(
Di(xi) + S(xi, xj) +

∑
w∈Ci

Ew(xi)
)

(5)

Energy is summed at the root then a label xr is decided
by the minimum energy. Labels of the other nodes are
recursively decided by their parents.

The computational complexity of dynamic programming
on a tree is linear with the number of nodes and quadratic
with the number of labels, totally O(NL2). (L is the length
of label space). This cost can be optimized to O(NL) by the
distance transform strategy used in the smoothness penalty
computation referred in [11].

B. Merging Strategy

Inference result on single spanning tree is limited for the
whole 4-connected grid, losing much pairwise information.
Therefore, it is necessary to find a applicable strategy to
combine those results obtained from each spanning tree
together. According to our algorithm, a median filter is
chosen as the merging strategy.

Median filter: Let P (x|y, τ) be defined as a posteriori
probability obtained by exact inference on tree τ , τ ∈ T .

xMAP (τ) := argmaxP (x|y, τ) (6)

The merging strategy works by taking the median value of
xMAP (τ) for the observed value y:

x∗|y = Median{xi, xi ∈ xMAP |y} (7)

Notice that our inference strategy provides more robust re-
sults and have better edge-preserving property than ordinary
Loopy BP. The robustness mainly comes from the sparse
yet uniform edge distribution and the median operator.
Specifically, sparse connections in the chosen trees leads
to less smoothing effect on average, and for those pixels
nearby object boundaries, the median operation guarantees

that the smoothing effect would come from the same side
of boundaries with high probability. Compared with another
voting method referred in [5], which takes x∗|y as the one
that has the most frequent occurrence in collection xMAP |y.
The advantage of median filter provides a more robust results
experimentally. For those pixels in the interior of regions,
the uniform edge property would still give similar isotropic
smooth effect as the original random field. We will compare
the results between merging strategy in [5] and our median
filter in the experimentation part.

Considering the computing complexity and performance,
the median operator is simple but very effective. At the
meantime, based on the ensemble learning framework [12],
we can choose other complicated methods, such as adaptive
weighting and bagging instead. Using those trainable algo-
rithms, we can analysis the importance of each spanning tree
and develop a more complicated and stronger combination
method.

V. EXPERIMENTAL RESULTS
A. Edges Distribution

The re-weighted random walk aims to cover a 4-connected
MRF in a few iterations and provides a uniform distribution
for each edge. First of all, we compare the edge distribution
of our algorithm with Wilson’s method used in [5].

As shown in Fig. 2 and Fig. 3, after 20 iterations, all
the edges in original grid have been covered by RWRW
and most importantly edges distribution center around 10.
Compared with ours, Wilson’s algorithm not only fail to
cover the whole image, but provides a quite nonuniform
distribution of edges.
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Figure 2. Edges occurrence after 20 iterations for both Wilson’s algorithm
and re–weighted random walk. Edges are sampled from a 300× 400 grid
(For better visual convenient, edges’ ID is sorted by edges occurrence).
Our algorithm well covers the original graph and provides a uniformly
distributed edges occurrence.

B. Image Denoising

We choose image denoising as our task to test the pro-
posed RWRW spanning trees structure. According to the
inference method, we first define our data term and pairwise
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Figure 3. Most of the edges occurrence ranges from 9 to 11 times after 20
iterations by the RWRW algorithm, compared with that of Wilson’s from
6 to 15 times.

term of energy function. We use truncated L1 norm for both
the data term and pairwise term:

Di(xi) = min(|Ĩi − xi|, t) (8)

S(xi, xj) = min(λ|xi − xj |, γ) (9)

Ĩi is the pixel i’s intensity in the noisy image, λis a scale
factor used to represent the relative importance of data term
and pairwise term. t and γ are truncated values, which are
chosen variably from different images.

Table I
COMPARISON OF DIFFERENT ALGORITHMS

Penguin Castle Mushroom

PSNR (dB)
RWRW+median 30.33 29.18 29.73

RWRW+majority voting 29.98 28.78 29.14
Accelerated LBP 24.26 24.06 25.34

Timing
RWRW+median 2s 8s 8s

RWRW+majority voting 2s 8s 8s
Accelerated LBP 17s 70s 65s

We compared our algorithm with accelerated loopy be-
lief propagation both on accuracy and timing, image data
is chosen from [1] and [13]. Peak signal-to-noise ratio
(PSNR = 20 log10 (255/RMSE)) is used to evaluate
denoising results. RMSE is root mean square errors, defined
as:

RMSE =

√√√√ 1

N

N∑
i=1

(Ii − Îi)2 (10)

Ii and Îi is intensity of node i for original and restored
image respectively.

According to our experiment, the results of proposed
method on RWRW spanning trees structure outperforms
LBP on a 4-connected MRF both in accuracy and computa-
tional cost. We test different images with different level of
Gaussian noise (σ = 20 and σ = 25), the results are shown
in Fig. 4 and Fig. 5 respectively.

Compared with LBP on a 4-connected MRF, our al-
gorithm not only effectively removes the noise, but also
well keeps details of the original image. However, images
restored by LBP are oversmooth, some details around the
edges are missing. The oversmooth results is mainly due to
the message passing rules with the 4-connected structure.
Pixels tend to be consistent with their neighbors which lead
to a partially fuzzy result and also a high root mean square
error.

For our proposed algorithm, generating RWRW spanning
trees structure costs the largest component of time; despite
that, it is still much fast than accelerated LBP with dis-
tance transform. To balance the the computational cost and
denoising performance, the number of spanning trees are
suggested between 10 and 20, since we experimentally find
there is only slightly improvement although we use a large
number of trees. However, if the input image size is known
in advance, we can just generate a set of spanning trees by
our algorithm and fix it before denoising. The computational
complexity for each inference is O(NL2) (L is the length of
label space). In addition, in our experiment, we choose 15
spanning trees to do the MAP inference. We have compared
the running time in table 1, the timing for our proposed
method does not include the tree building time.

We also compare the denoising performance between our
merging strategy and the method referred in [5]. As shown
in table 1, using the same multi-spanning-tree structure, our
median filter performs better than the majority voting in [5].

Notice that our method have addressed the image de-
noising problem in a distinct way from some classical
methods, such as [14]. Instead of focusing on kernel based
work or training methods [6], we mainly demonstrate that
our RWRW spanning trees structure with a median filter
performs good in approximating the traditional 4-connected
grid in image processing tasks.

VI. CONCLUSION

In this paper, we have proposed a new algorithm to
generate a RWRW spanning trees structure to approximate
the 4-connected MRF. This structure is easy to understand
and to code. This RWRW spanning trees structure jointly
covers all the edges in the original 4-connected MRF in
a few iterations and provides a uniform distribution of
each edge. In the future, we will focus on the ensemble
learning framework and analyses other strategies to combine
inference result obtained at individual tree.
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