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Abstract We consider a finite element method based on biorthogonal or quasi-biorthogonal
systems for the biharmonic problem. The method is based on the primal mixed finite element
method due to Ciarlet and Raviart for the biharmonic equation. Using different finite element
spaces for the stream function and vorticity, this approach leads to a formulation only based
on the stream function. We prove optimal a priori estimates for both stream function and
vorticity, and present numerical results to demonstrate the efficiency of the approach.

Keywords Biharmonic problem · Mixed finite elements · Biorthogonal or
quasi-biorthogonal system

1 Introduction

Fourth order elliptic and parabolic problems appear in many applications. Some examples
are thin beams and plates, strain gradient elasticity [8, 12], the Stokes problem [16] and
phase separation of a binary mixture [31]. The variational formulation of these problems
requires H 2-conforming finite elements, which are not so easy to construct in unstructured
meshes. This difficulty can be avoided either by using a discontinuous Galerkin method as
in [6, 12, 31] or by using a mixed formulation as in [3, 8–11, 13, 14, 26].

In this paper, we analyze the primal mixed finite method due to Ciarlet and Raviart
[8–10] using different spaces for the stream function and vorticity. We work with discrete
spaces having local basis functions satisfying the condition of biorthogonality or quasi-
biorthogonality for the discretization of the stream function and vorticity. The condition of
biorthogonality or quasi-biorthogonality is essential in our construction as it allows us to
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statically condense out the degree of freedom associated with the vorticity and the Lagrange
multiplier and arrive at a formulation involving only the degree of freedom associated with
the stream function. Hence a reduced system is obtained, which is easy to solve. The vortic-
ity and the Lagrange multiplier can be computed in a post-processing step.

The structure of the rest of the paper is organized as follows. In the next section, we
briefly recall a mixed formulation for the biharmonic equation suitable for our analysis.
Section 3 is devoted for the numerical analysis of the approach. We also present the algebraic
formulation of the problem and briefly discuss how the static condensation can be applied
to get a formulation only based on the stream function. Finally, we show some numerical
experiments in Sect. 4.

2 A Mixed Formulation of Biharmonic Equation

In this section we briefly recall a mixed formulation of the biharmonic problem. Let ! in
R2 be a bounded convex domain with polygonal boundary ∂! and outward pointing normal
n on ∂!. The biharmonic equation

#2u = f in ! (2.1)

with simply supported boundary condition

u = #u = 0 on ∂!, (2.2)

or with clamped boundary condition

u = ∂u

∂n
= 0 on ∂! (2.3)

is studied extensively in [3, 5, 6, 8–10, 13, 14, 26, 31].
Here we consider a new discretization scheme of the mixed formulation presented in

[8–10], where the variational formulation is based on the stream function, the vorticity and
the Lagrange multiplier. The central idea of our approach is to use the sets of basis func-
tions which form a biorthogonal or quasi-biorthogonal system for approximating the stream
function and vorticity.

We introduce some notations for the subsequent use. Let u : ! → R be a real-valued
function. For 1 ≤ p < ∞, the Lebesgue space Lp(!) is defined as

Lp(!) :=
{
u|

∫

!

|u(x)|p dx < ∞
}

with a natural norm defined by ‖u‖Lp(!) := (
∫

!
|u(x)|p dx)1/p , and for p = ∞

L∞(!) := {u| ess sup{|u(x)|, x ∈ !} < ∞}

with a norm ‖u‖L∞(!) := ess sup{|u(x)|, x ∈ !}.
Denoting the distributional derivative by D and a multi-index by α ∈ N2

0, for a non-
negative integer s, a Sobolev space Ws,p(!) for p ∈ [1,∞] is the set of all functions u ∈
Lp(!) such that for each multi-index α ∈ N2

0 with |α| ≤ s, Dαu exists and Dαu ∈ Lp(!).
We recall that |α| = α1 + α2. The norm in the space Ws,p(!) is defined as

‖u‖s,p,! :=
{

(
∑

|α|≤s ‖Dαu‖p
Lp(!))

1/p, 1 ≤ p < ∞
max|α|≤s ‖Dαu‖L∞(!), p = ∞.
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When p = 2, the Sobolev spaces Lp(!) and Ws,p(!) are Hilbert spaces and inner products
can be defined for them which induce the norm as defined above. The inner product for the
space L2(!) of all square-integrable functions in ! is defined as (u, v)0,! :=

∫
!

uv dx, and
that of the space Ws,2(!) is defined as

(u, v)s,! :=
(∑

|α|≤s

Dαu,
∑

|α|≤s

Dαv

)

0,!

.

For the purpose of simplicity, the norm in the space L2(!) is then denoted by ‖ · ‖0,!, and
that of the space Ws,2(!) is denoted by ‖ · ‖s,!. It is standard to write Hs(!) for the space
Ws,p(!) when p = 2. The space Hs

0 (!) is defined by completing the space C∞
0 (!) with

respect to the norm ‖ · ‖s,!. The semi-norm on the space Hs(!) or Hs
0 (!) is given by

|u|s,! =
∑

|α|=s

‖Dαu‖0,!.

Sobolev spaces Hs(!) for real s > 0 can be defined by using real interpolation [24]. We
refer to [1, 17, 24] for more information on Sobolev spaces.

Let H 2
B(!) stands for H 2

0 (!) for the clamped boundary case and for H 2(!) ∩ H 1
0 (!)

for the simply supported case. We consider the following variational form of the biharmonic
problem

J (u) = inf
v∈H 2

B(!)

J (v), (2.4)

with

J (v) = 1
2

∫

!

|#v|2 dx −
∫

!

f v dx. (2.5)

To write the weak or variational formulation of the boundary value problem, we introduce
the space V = H 1

0 (!) × L2(!) of the stream function and vorticity with the inner product
(·, ·)V defined as

((u,φ), (v,ψ))V = (∇u,∇v)0,! + (φ,ψ)0,!

and with the norm ‖ · ‖V induced by this inner product. Let Q = H 1
0 (!) for the simply

supported case and Q = H 1(!) for the clamped case. The variational problem (2.4) can be
recast as the minimization problem [8]

J (u,φ) = inf
(v,ψ)∈V

J (v,ψ), (2.6)

where

J (v,ψ) = 1
2

∫

!

|ψ |2 dx −
∫

!

f v dx, (2.7)

V = {(v,ψ) ∈ V :
∫

!

∇v · ∇q + ψ q dx = 0, q ∈ Q}. (2.8)

The problem (2.6) can be recast as a saddle point formulation: given ' ∈ H−1(!) find
((u,φ),p) ∈ V × Q so that

a((u,φ), (v,ψ)) + b((v,ψ),p) = '(v), (v,ψ) ∈ V ,

b((u,φ), q) = 0, q ∈ Q,
(2.9)
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where

a((u,φ), (v,ψ)) =
∫

!

φ ψ dx, b((v,ψ), q) =
∫

!

∇v · ∇q + ψ q dx,

(2.10)
'(v) =

∫

!

f v dx.

This mixed formulation is introduced in [8, 10], where the existence and uniqueness of the
solution is also established, see also [9]. A method based on this mixed formulation leading
to an unconstrained approach using a dual mesh is proposed in [11] for the linear finite
elements.

3 Finite Element Discretizations

We consider a quasi-uniform and shape-regular triangulation Th of the polygonal domain !,
where Th consists of triangles or parallelograms. Let Sh ⊂ H 1(!) be a standard Lagrange
finite element space, S0

h = Sh ∩ H 1
0 (!), and Mh ⊂ L2(!) be another finite element space.

Let V h = S0
h × Mh, Qh = S0

h for the simply supported case, Qh = Sh for the clamped case,
and dimMh = dimQh for both cases. In the following, we use a generic constant C, which
takes different values in different occurrences but is always independent of the mesh-size.

We assume that there is a constant β > 0 independent of the mesh-size such that

‖µh‖0,! ≤ β sup
qh∈Qh\{0}

∫
!

qhµh dx

‖qh‖0,!

, µh ∈ Mh, (3.1)

and the space Mh has the approximation property:

inf
λh∈Mh

‖φ − λh‖0,! ≤ Chk|φ|k,!, φ ∈ Hk(!). (3.2)

Moreover, the spaces Sh and S0
h are assumed to have the following approximation properties:

infvh∈Sh
‖u − vh‖1,! ≤ Chk|u|k+1,!, u ∈ Hk+1(!),

infvh∈S0
h
‖u − vh‖1,! ≤ Chk|u|k+1,!, u ∈ Hk+1(!) ∩ H 1

0 (!).
(3.3)

The discrete biharmonic problem is then given by: given '∈H−1(!), find ((uh,φh),ph)∈
V h × Qh such that

a((uh,φh), (vh,ψh)) + b((vh,ψh),ph) = '(vh), (vh,ψh) ∈ V h,

b((uh,φh), qh) = 0, qh ∈ Qh.
(3.4)

The kernels of the bilinear form b(·, ·) for the continuous and discrete setting are denoted
by KerB and KerBh, respectively. We note that

KerB = V and KerBh =
{
(vh,ψh) ∈ V h :

∫

!

∇vh · ∇qh + ψh qh dx = 0, qh ∈ Qh

}
.

(3.5)
Following Ciarlet [8], we show the coercivity of the bilinear form a(·, ·) on KerBh.
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Lemma 3.1 There exists α0 > 0 such that

a((vh,ψh), (vh,ψh)) ≥ α0(|vh|21,! + ‖ψh‖2
0,!), (vh,ψh) ∈ KerBh.

Proof As (vh,ψh) ∈ KerBh, the second equation of (3.4) yields
∫

!

∇vh · ∇qh + ψh qh dx = 0, qh ∈ Qh.

Choosing qh = vh in the above equation, we have
∫

!

∇vh · ∇vh + ψhvh dx = 0,

and hence

|vh|21,! +
∫

!

ψh vh dx = 0.

Using Cauchy-Schwarz and Poincaré inequality, we obtain

|vh|21,! ≤ C|vh|1,!‖ψh‖0,!,

which gives

|vh|1,! ≤ C‖ψh‖0,!. (3.6)

Hence

a((vh,ψh), (vh,ψh)) = ‖ψh‖2
0,! ≥ 1

C2
|vh|21,!.

Summing this inequality with a((vh,ψh), (vh,ψh)) = ‖ψh‖2
0,! and dividing by two, we ob-

tain the desired result with 2α0 = min( 1
C2 ,1). !

Lemma 3.2 Let ((u,φ),p) ∈ V × Q be the solution of the continuous problem (2.9) with
p ∈ Hk(!) and ((uh,φh),ph) ∈ V h ×Qh be that of discrete problem (3.4). Then there exists
a constant C > 0 independent of the mesh-size h so that

‖(u − uh,φ − φh)‖V ≤ C
(

inf
(wh,ξh)∈KerBh

‖(u − wh,φ − ξh)‖V + hk|p|k,!

)
. (3.7)

Proof Let (wh, ξh) ∈ KerBh so that (uh − wh,φh − ξh) ∈ KerBh, and hence coercivity of
a(·, ·) on KerBh yields

α0‖(uh − wh,φh − ξh)‖V ≤ sup
(vh,ψh)∈KerBh

a((uh − wh,φh − ξh), (vh,ψh))

‖(vh,ψh)‖V
.

Since a((u − uh,φ − φh), (vh,ψh)) + b((vh,ψh),p) = 0 for all (vh,ψh) ∈ KerBh, we have

a((uh − wh,φh − ξh), (vh,ψh)) = a((u − wh,φ − ξh), (vh,ψh))

+ a((uh − u,φh − φ), (vh,ψh))

= a((u − wh,φ − ξh), (vh,ψh)) + b((vh,ψh),p).
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Denoting the projection of p onto Qh with respect to H 1-inner product by p̃h, we have

∫

!

∇vh · ∇(p − p̃h) dx = −
∫

!

vh(p − p̃h) dx. (3.8)

As (vh,ψh) ∈ KerBh, using (3.8),

b((vh,ψh),p) = b((vh,ψh),p − p̃h) = −
∫

!

vh(p − p̃h) dx +
∫

!

ψh(p − p̃h) dx,

and hence approximation property of p̃h yields

|b((vh,ψh),p)| ≤ Chk|p|k,!‖(vh,ψh)‖V .

Thus

α0‖(uh − wh,φh − ξh)‖V ≤ sup
(vh,ψh)∈KerBh

a((u − wh,φ − ξh), (vh,ψh))

‖(vh,ψh)‖V
+ Chk|p|k,!

≤ ‖a‖‖(u − wh,φ − ξh)‖V + Chk|p|k,!.

Finally, a triangle inequality yields the estimate (3.7):

‖(u − uh,φ − φh)‖V ≤ ‖(u − wh,φ − ξh)‖V + ‖(wh − uh, ξh − φh)‖V

≤
(

1 + ‖a‖
α0

)
‖(u − wh,φ − ξh)‖V + C

α0
hk|p|k,!. !

Lemma 3.3 Let us assume the simply supported boundary condition (Q = H 1
0 (!) and

Qh = S0
h). Let (wh, ξh) ∈ KerBh, (w, ξ) ∈ KerB , and Rh : H 1(!) → S0

h be the Ritz-
projector defined as

∫

!

∇(Rhw − w) · ∇vh dx = 0, vh ∈ S0
h.

Then

|w − wh|1,! ≤ ‖ξ − ξh‖0,! + |Rhw − w|1,!.

Proof The idea of the proof is similar to Proposition 3 in [11]. Since (wh, ξh) ∈ KerBh and
(w, ξ) ∈ KerB satisfy

∫

!

∇w · ∇q + ξ q dx = 0, q ∈ Q, and

∫

!

∇wh · ∇qh + ξh qh dx = 0, qh ∈ Qh,

respectively, we have

∫

!

∇(w − wh) · ∇qh + (ξ − ξh) qh dx = 0, qh ∈ Qh. (3.9)
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Using the Ritz-projector Rh, we can rewrite (3.9) as

∫

!

∇(Rhw − wh) · ∇qh + (ξ − ξh) qh dx = 0, qh ∈ Qh. (3.10)

Taking qh = Rhw −wh in equation (3.10) and using Cauchy-Schwarz and Poincaré inequal-
ity, we obtain

|Rhw − wh|21,! ≤ ‖ξ − ξh‖0,!‖Rhw − wh‖0,!

≤ C‖ξ − ξh‖0,!|Rhw − wh|1,!,

which yields

|Rhw − wh|1,! ≤ C‖ξ − ξh‖0,!.

A triangle inequality gives the final result:

|w − wh|1,! ≤ |Rhw − wh|1,! + |w − Rhw|1,! ≤ C‖ξ − ξh‖0,! + |w − Rhw|1,!. !

In order to analyze the approximation property of φh, we introduce a quasi-projection
operator: +h : L2(!) → Mh, which is defined as

∫

!

+hv qh dx =
∫

!

vqh dx, v ∈ L2(!), qh ∈ Qh. (3.11)

It is easy to verify that +h is well-defined due to assumption (3.1) and dimMh = dimQh,
and is identity if restricted to Mh. Hence +h is a projection onto the space Mh. We note
that +h is not the orthogonal projection onto Mh but an oblique projection onto it. Oblique
projectors are studied extensively in [15], and different proofs on an identity on the norm of
oblique projections are provided in [30]. This type of operator is introduced in [28] in the
context of interpolation of non-smooth functions, and is extensively used in the context of
mortar finite elements [18, 19, 32]. It is useful to note that +h is stable in L2 norm [4, 18].
Furthermore, the approximation property (3.2) of the space Mh and the projection property
of the operator +h gives the following lemma.

Lemma 3.4 Under assumptions (3.1) and (3.2), there exists a constant C > 0 independent
of the mesh-size h so that

‖v − +hv‖0,! ≤ Chr |v|r,!, v ∈ Hs(!), s ≥ 0,

where r = min(s, k).

Theorem 3.5 Let ((u,φ),p) ∈ V × Q be the solution of the continuous problem (2.9)
and ((uh,φh),ph) ∈ V h × Qh be that of discrete one (3.4) for the simply supported case
(Q = H 1

0 (!) and Qh = S0
h). Let u ∈ Hk+1(!) ∩ H 1

0 (!), φ ∈ Hk(!) ∩ H 1
0 (!), p ∈ Hk(!),

and assumptions (3.1), (3.2) and (3.3) are satisfied. Then there exists a constant C > 0
independent of the mesh-size h so that

‖(u − uh,φ − φh)‖V ≤ Chk
(
|u|k+1,! + |φ|k,! + |p|k,!

)
. (3.12)
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Proof Let (wh, ξh) ∈ V h be defined as
∫

!

(φ − ξh) qh dx = 0, qh ∈ Qh, and

∫

!

∇wh∇qh + ξhqh dx = 0, qh ∈ Qh.

Hence (wh, ξh) ∈ KerBh with ξh = +hφ, and it is easy to see that such an element is
uniquely defined. Lemma 3.4 ensures that

‖φ − ξh‖0,! ≤ Chk|φ|k,!.

Moreover, Ritz projector Rh as defined in Lemma 3.3 has the approximation property

|u − Rhu|1,! ≤ Chk|u|k+1,!.

Hence using the result of Lemma 3.3 we obtain

|u − wh|1,! ≤ ‖φ − ξh‖0,! + |u − Rhu|1,! ≤ Chk(|u|k+1,! + |φ|k,!). !

We now turn our attention to prove optimal a priori estimates in case of clamped bound-
ary condition. For that purpose, we need a lemma. The lemma can be proved by using the
ideas in [27]. See also [16, Chap. III].

Lemma 3.6 Let k ∈ N and p ∈ R such that k ≥ 1 and 2 ≤ p ≤ ∞. Let Rh be the Ritz
projection as defined in Lemma 3.3. Then for all functions w ∈ Wk+1,p(!) ∩ H 1

0 (!), there
exists a constant C > 0 such that

sup
vh∈Sh

∫
!

∇(w − Rhw) · ∇vh dx

‖vh‖0,!

≤ Chk− 1
2 − 1

p ‖w‖k+1,p,!. (3.13)

Theorem 3.7 Let ((u,φ),p) ∈ V × Q be the solution of the continuous problem (2.9) and
((uh,φh),ph) ∈ V h × Qh be that of discrete one (3.4) for the clamped case (Q = H 1(!)

and Qh = Sh). Let u ∈ Wk+1,∞(!) ∩ H 2
0 (!), φ ∈ Hk(!), p ∈ Hk(!), and the assumptions

(3.1), (3.2) and (3.3) are satisfied. Then there exists a constant C > 0 independent of the
mesh-size h so that

‖(u − uh,φ − φh)‖V ≤ C
(
hk|u|k+1,! + hk|φ|k,! + hk− 1

2 ‖u‖k+1,∞,! + hk|p|k,!

)
. (3.14)

Proof Let Rh be the Ritz projector as defined in Lemma 3.3, and wh = Rhu be the Ritz
projection of u onto S0

h . Define ξh ∈ Mh by

∫

!

∇wh · ∇qh + ξh qh dx = 0, qh ∈ Qh.

Hence (wh, ξh) ∈ KerBh. Since (u,φ) ∈ KerB , proceeding exactly as in Lemma 3.3, we
obtain

∫

!

∇(u − wh) · ∇qh + (φ − ξh) qh dx = 0, qh ∈ Qh. (3.15)
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Since (wh, ξh) ∈ KerBh, in view of Lemma 3.2, it suffices to show that

‖(u − wh,φ − ξh)‖V ≤ C
(
hk|u|k+1,! + hk|φ|k,! + hk− 1

2 ‖u‖k+1,∞,!

)
. (3.16)

A triangle inequality allows us to write

‖(u − wh,φ − ξh)‖2
V ≤ |u − wh|21,! + ‖φ − +hφ‖2

0,! + ‖+hφ − ξh‖2
0,!, (3.17)

where +h is the quasi-projection operator defined by (3.11). It is standard that wh has the
desired approximation property

|u − wh|1,! ≤ Chk|u|k+1,!,

and Lemma 3.4 ensures that

‖φ − +hφ‖0,! ≤ Chk|φ|k,!.

Hence it is sufficient to consider the term ‖+hφ − ξh‖0,! for the error estimate. We start
with the stability assumption (3.1) between the spaces Mh and Qh to write

‖ξh − +hφ‖0,! ≤ C sup
qh∈Qh\{0}

∫
!
(ξh − +hφ) qh dx

‖qh‖0,!

≤ C sup
qh∈Qh\{0}

∫
!
(ξh − φ) qh dx

‖qh‖0,!

≤ C sup
qh∈Qh\{0}

∫
!

∇(u − wh) · ∇qh dx

‖qh‖0,!

.

Since wh is the Ritz projection of u onto S0
h , the final result follows by using Lemma 3.6

with p = ∞. !

Remark 3.8 Working with a triangulation consisting of rectangles, an interpolation operator
I k
h : C0(!) → S0

h constructed in [16, p. 108] satisfies

sup
vh∈Sh

∫
!

∇(w − I k
hw) · ∇vh dx

‖vh‖0,!

≤ Chk+1‖w‖k+3,!, (3.18)

where C > 0 and vh or w = ∂w
∂n = 0 on ∂!, see [23, Lemmas 1 and 2]. Using this interpola-

tion operator, the error estimate in Theorem 3.7 can be improved to

‖(u − uh,φ − φh)‖V ≤ Chk
(
‖u‖k+3,! + |p|k,!

)

under additional regularity assumption on the stream function u.

3.1 Construction of Space Mh

Our goal is to obtain an efficient numerical scheme in which all the auxiliary variables except
the stream function can be statically condensed out from the system. The other variables can
be obtained in a post-processing step after computing the stream function. To this end, we
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want to have the mass matrix corresponding to the bilinear form
∫

!
µhqh dx for µh ∈ Mh

and qh ∈ Qh to be a diagonal matrix.
Let {ϕ1, . . . ,ϕn} be the finite element basis of the space Qh. The finite element basis

{µ1, . . . ,µn} of the space Mh with suppµi = suppϕi , 1 ≤ i ≤ n, are constructed in such a
way that the basis functions of Qh and Mh satisfy a condition of biorthogonality relation

∫

!

µiϕj dx = cjδij , cj ,= 0, 1 ≤ i, j ≤ n, (3.19)

where n := dimMh = dimQh, δij is the Kronecker symbol, and cj a scaling factor. This
scaling factor cj can be chosen as proportional to the area |suppφj |.

Construction of local basis functions of the space Mh satisfying conditions (3.1), (3.2)
and (3.19) for different finite element spaces can be found in [19, 20, 22, 32]. Working with
nodal finite element basis functions based on Gauss-Lobatto quadrature nodes for rectangu-
lar or hexahedral triangulation, we have shown the construction of local basis functions of
Mh satisfying conditions (3.19), (3.1) and (3.2) for an arbitrary order finite element space
[22]. The construction of local basis functions of the space Mh satisfying all the above as-
sumptions for the lowest order simplicial finite element space can be found in [18]. Unfortu-
nately, the construction of the local basis functions of the space Mh with all these properties
for higher order non-tensor product finite element spaces is not possible. In particular, it is
shown in [19] that it is not possible to construct Mh whose basis functions have the same
support as the basis functions of Qh satisfying above conditions for the quadratic simplicial
and serendipity elements. In order to deal with these cases, we relax the biorthogonality
condition to a quasi-biorthogonal one in [20, 21], where the basis functions of the space Mh

are chosen in such a way that the global mass matrix D associated with the bilinear form∫
!

µhqh dx for qh ∈ Qh and µh ∈ Mh is of the form

D =
[

D1 0
R D2

]
, (3.20)

where D1 and D2 are diagonal matrices and R is a rectangular matrix. The matrix D is then
easy to invert and the inverse remains sparse. A matrix having this structure will be called
a quasi-diagonal matrix. Under this relaxed notion, the local basis functions of the space
Mh can be constructed for the quadratic simplicial and quadratic serendipity elements as
in [20] by modifying the finite element basis functions corresponding to the vertices. Since
the condition dimMh = dimQh was not fulfilled in the construction of these basis functions
in [19, 20], we provide the construction of local basis functions satisfying the assumption
dimMh = dimQh for these cases.

3.1.1 Quadratic Serendipity Elements

Assume that ϕ̂l
i , 1 ≤ i ≤ 4, and ϕ̂

q
i , 1 ≤ i ≤ 8, be the bilinear and quadratic serendipity finite

element basis functions on the reference square T̂ := (−1,1) × (−1,1), respectively. Here
ϕ̂

q
i , 1 ≤ i ≤ 4, are the basis functions corresponding to the vertices of T̂ , and ϕ̂

q
i , 5 ≤ i ≤ 8,

are the ones corresponding to the edges of T̂ , see the right picture of Fig. 1. For some α ,= 1,
we set

µ̂
q
1 := ϕ̂l

1 + α(ϕ̂l
3 − ϕ̂l

2 − ϕ̂l
4)

1 − α
, µ̂

q
2 := ϕ̂l

2 + α(ϕ̂l
4 − ϕ̂l

1 − ϕ̂l
3)

1 − α
,

µ̂
q
3 := ϕ̂l

3 + α(ϕ̂l
1 − ϕ̂l

2 − ϕ̂l
4)

1 − α
, and µ̂

q
4 := ϕ̂l

4 + α(ϕ̂l
2 − ϕ̂l

1 − ϕ̂l
3)

1 − α
.
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Fig. 1 Ordering of the local
finite element basis functions,
quadratic simplicial (left) and
quadratic serendipity (right)

Now, defining ϕ̃
q
1 := ϕ̂

q
1 − θ(ϕ̂

q
5 + ϕ̂

q
8 ), ϕ̃

q
2 := ϕ̂

q
2 − θ(ϕ̂

q
5 + ϕ̂

q
6 ), ϕ̃

q
3 := ϕ̂

q
3 − θ(ϕ̂

q
6 + ϕ̂

q
7 ), and

ϕ̃
q
4 := ϕ̂

q
4 − θ(ϕ̂

q
7 + ϕ̂

q
8 ), we find that with α = 1

6 and θ = − 1
5 ,

[
〈ϕ̃q

i , µ̂
q
j 〉0,T̂

]
1≤i,j≤4 = 1

5
I4,

where I4 is the identity matrix of size 4 × 4. The modified finite element basis functions on
vertices ϕ̃

q
i , 1 ≤ i ≤ 4, vanish on the opposite edges and are symmetric in the barycentric

coordinates. Since the global basis functions obtained by mapping the modified local ones
µ̂

q
i , 1 ≤ i ≤ 4, with some affine mapping and gluing them together will not be continuous,

they do not span the space of all continuous piecewise bilinear functions with respect to the
partition Th on !. However, since µ̂

q
1 +µ̂

q
2 = ϕ̂l

1 + ϕ̂l
2, µ̂q

2 +µ̂
q
3 = ϕ̂l

2 + ϕ̂l
3, µ̂q

3 +µ̂
q
4 = ϕ̂l

3 + ϕ̂l
4,

and µ̂
q
4 + µ̂

q
1 = ϕ̂l

4 + ϕ̂l
1, we find µ̂

q
1 + µ̂

q
2 = 1−y

2 , µ̂
q
2 + µ̂

q
3 = 1+x

2 , µ̂
q
3 + µ̂

q
4 = 1+y

2 , and
µ̂

q
4 + µ̂

q
1 = 1−x

2 . Denoting the edge joining the corners i and j of the reference element
T̂ by eij for four edges (e12, e23, e34, and e41), we see that µ̂

q
i + µ̂

q
j = 1 on eij , and µ̂

q
i +

µ̂
q
j = 0 on the edge opposite to eij . Thus we can conclude that the global basis functions

obtained by mapping the modified local ones with some affine mapping and gluing them
together will reproduce any continuous piecewise linear polynomial. Since the four local
basis functions µ̂

q
i , 1 ≤ i ≤ 4, corresponding to the vertices of the reference square has the

required approximation property, other four local basis functions corresponding to the four
edges can be taken to be four quadratic functions which are biorthogonal to the four local
basis functions ϕ̃

q
i , 5 ≤ i ≤ 8. These four local basis functions are given by

µ̂
q
5(x, y) = −63

5
+ 108x + 27

5
y − 108x2 − 162xy + 18y2 + 162x2y,

µ̂
q
6(x, y) = 54

5
− 207

5
x − 54y + 18x2 + 162xy + 54y2 − 162xy2,

µ̂
q
7(x, y) = 54

5
− 54x − 207

5
y + 54x2 + 162xy + 18y2 − 162x2y, and

µ̂
q
8(x, y) = −63

5
+ 27

5
x + 108y + 18x2 − 162xy − 108y2 + 162xy2.

3.1.2 Simplicial Quadratic Finite Elements

Following the same idea as in the previous paragraph, we show the construction of local
basis functions of Mh for the simplicial quadratic finite elements, see also [20]. Assume
that ϕ̂l

i , 1 ≤ i ≤ 3, and ϕ̂
q
i , 1 ≤ i ≤ 6, be the linear and quadratic finite element basis func-

tions on the reference triangle T̂ , respectively. Here ϕ̂
q
i , 1 ≤ i ≤ 3, are the basis functions
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corresponding to the vertices of the reference triangle T̂ and ϕ̂
q
i , 4 ≤ i ≤ 6, are the ones

corresponding to the edges of T̂ , where T̂ := {(x, y)| 0 ≤ x,0 ≤ y, x + y ≤ 1}, see the left
picture of Fig. 1. Letting µ̂

q
i = ϕ̂l

i 1 ≤ i ≤ 3, we have

[
〈ϕ̂q

i , µ̂
q
j 〉0,T̂

]
1≤i,j≤3 =




1

60 − 1
120 − 1

120
− 1

120
1

60 − 1
120

− 1
120 − 1

120
1

60



 .

Hence if we define

ϕ̃
q
1 := ϕ̂

q
1 + 1

12
(ϕ̂

q
4 + ϕ̂

q
6 ), ϕ̃

q
2 := ϕ̂

q
2 + 1

12
(ϕ̂

q
4 + ϕ̂

q
5 ), and ϕ̃

q
3 := ϕ̂

q
3 + 1

12
(ϕ̂

q
5 + ϕ̂

q
6 ),

we obtain
[
〈ϕ̃q

i , µ̂
q
j 〉0,T̂

]
1≤i,j≤3 = 1

36
I3,

where I3 is the identity matrix of size 3 × 3. We point out that the modified vertex basis
functions ϕ̃

q
i , 1 ≤ i ≤ 3, vanish on the opposite edges and are symmetric in the barycentric

coordinates as in the previous paragraph. As the three local basis functions corresponding to
the vertices of the reference triangle are sufficient for the approximation purpose, the other
three local basis functions corresponding to the three edges can be defined just to fulfill the
quasi-biorthogonality property. These three basis functions are then given by

µ̂
q
4(x, y) = −10 + 120x − 10y − 120x2 − 120xy + 30y2,

µ̂
q
5(x, y) = 10 − 50x − 50y + 30x2 + 180xy + 30y2, and

µ̂
q
6(x, y) = −10 − 10x + 120y + 30x2 − 120xy − 120y2.

If we use the ordering of the local basis functions as shown in Fig. 1, the local matrix
associated with the bilinear form

∫
!

µhqh dx for qh ∈ Qh and µh ∈ Mh is exactly of the form
(3.20). Using the global ordering in such a way that the degree of freedom corresponding to
edges come after the degree of freedom corresponding to vertices, the global matrix D will
have the structure as in (3.20).

Remark 3.9 In order to show that our basis functions for Mh and Qh satisfy inequality (3.1),
we proceed as follows. Let hi be the local mesh-size at i-th node, and let

qh =
n∑

i=1

aiϕi , µh =
n∑

i=1

aiµi.

Then by using the structure of the Gram matrix, we can show that
∫

!

qh µh dx,

‖qh‖2
0,! and ‖µh‖2

0,! are equivalent to
∑nk

i=1 h2
i a

2
i , which guarantees (3.1), see also [19].

Remark 3.10 We have assumed dimMh = dimQh for both clamped and simply supported
boundary conditions. In the case of clamped boundary condition, this condition is automat-
ically satisfied as dimMh = dimQh by construction. However, for the simply supported
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boundary condition, the degree of freedom of Mh corresponding the Dirichlet nodes should
be removed to satisfy the condition dimMh = dimQh. The removal of the degree of freedom
of Mh corresponding to the boundary of the interface is called boundary modification in the
context of mortar finite elements, which is essential to obtain optimal a priori estimates [19,
20, 22]. We note that the same modification as discussed in [19, 20, 22] should be applied to
the basis functions of Mh so that the approximation property of Mh remains valid even after
removing the degree of freedom corresponding to the Dirichlet nodes.

3.2 Algebraic Formulation

To arrive at the algebraic formulation, we consider the discrete saddle point problem (3.4) in
more detail. Choosing the test function vh = 0 and ψh = 0 successively in the first equation
of (3.4), we have

∫

!

φhψh dx +
∫

!

phψh dx = 0, ψh ∈ Mh,
∫

!

∇vh · ∇ph dx = '(vh), vh ∈ S0
h.

In the following, we use the same notation for the vector representation of the solution
and the solution as elements in V h and Qh. Let A, M and D be the matrices associated
with the bilinear forms

∫
!

∇vh · ∇qh dx,
∫

!
φhψh dx and

∫
!

φhqh dx, respectively, where
vh ∈ S0

h , qh ∈ Qh, φh ∈ Mh and ψh ∈ Mh. Then the algebraic formulation of the saddle point
problem (3.4) is given by

[ 0 0 AT

0 M DT

A D 0

][
uh

φh

ph

]

=
[

fh

0
0

]

, (3.21)

where fh is the discretized vector associated with the linear form '(vh). Since the matrix D
is diagonal or quasi-diagonal, we can do the static condensation of unknowns φh and ph,
and arrive at the following linear system based on unknown associated only with the stream
function:

(
AT (D−1)T MD−1A

)
uh = fh. (3.22)

The vorticity φh and the Lagrange multiplier ph can be computed after solving (3.22) by
simply inverting a diagonal or quasi-diagonal matrix using the second and third blocks of
(3.21).

Remark 3.11 Because of the special structure of inverse of the matrix D, the system matrix
in (3.22) is sparse. It is important to have the system matrix to have sparse structure if an it-
erative solver is to be applied. However, the condition number of the system matrix in (3.22)
is worse than a system matrix arising from the discretization Poisson equation, see [2, 7].
The condition number of our system is the same as the original approach proposed by Ciar-
let and Raviart [10], see also [2, 25, 29]. Therefore, one has to apply similar preconditioners
for the system (3.22) as proposed in [2, 25, 29] to introduce an efficient iterative methods.
Since we do not focus on this aspect of this approach, we simply solve the problem by using
LU factorization.
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Table 1 Discretization errors in different norms for the clamped boundary condition, triangles and linear

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 32 5.34290e–01 6.32693e–01 6.32041e–01

1 128 3.26972e–01 0.71 4.01635e–01 0.66 5.16879e–01 0.29

2 512 1.30302e–01 1.33 1.89139e–01 1.09 3.34937e–01 0.63

3 2048 3.99107e–02 1.71 8.32646e–02 1.18 1.88319e–01 0.83

4 8192 1.08809e–02 1.87 3.88438e–02 1.10 9.92016e–02 0.93

5 32768 2.82773e–03 1.94 1.89646e–02 1.03 5.08074e–02 0.97

6 131072 7.19891e–04 1.97 9.41839e–03 1.01 2.56967e–02 0.98

7 524288 1.81559e–04 1.99 4.70081e–03 1.00 1.29204e–02 0.99

4 Numerical Results

In this section, we show some numerical experiments for the biharmonic equation using
clamped and simply supported boundary conditions. In particular, we want to compute the
convergence rates of the relative errors in L2- and H 1-norms for the stream function and
the convergence rates of the relative errors in L2-norm for the vorticity using linear and
quadratic finite element spaces.

In all our examples we solve #2u = f using the clamped and simply supported bound-
ary condition in ! := (0,1)2, where the right hand side f is computed by using the exact
solution.

In our first example, we consider the exact solution

u(x, y) = (ex + (x + 1)ey)x2y2(1 − x)2(1 − y)2,

which satisfies the clamped boundary condition with u = 0 and ∂u
∂n = 0 on ∂!. Discretiza-

tion errors along with the rates of convergence in various steps of refinement and in various
norms are given in Tables 1–5. In all our tables, we observe the optimal asymptotic conver-
gence rates as predicted by the theory. As can be seen from these tables, the relative L2-error
in vorticity shows the convergence rate of order h in the linear and bilinear case for simpli-
cial and rectangular partition, the quadratic case shows a different picture. For the simplicial
partition, the convergence rate is only of order h

3
2 , whereas the convergence rate is of order

h2 for the rectangular partition using serendipity elements showing a better convergence be-
havior in case of rectangular partition of !. The convergence rates for the vorticity are even
better for biquadratic finite elements. We note that the space Mh for the quadratic serendip-
ity case contains only linear finite element space, whereas the space Mh for the biquadratic
case contains bilinear finite element space.

Remark 4.1 We have a sharp convergence rate for the quadratic simplicial elements in con-
trast to better convergence rates for other cases. Although we obtain theoretically predicted
convergence rates all cases, the better convergence rates in some cases give a hope to im-
prove the theoretical convergence rates in these cases. The better convergence for the quadri-
lateral case is explained by using the theory in [23]. However, more investigation is neces-
sary in the simplicial cases.
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Table 2 Discretization errors in different norms for the clamped boundary condition, rectangles and bilinear

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 16 3.63341e–01 0 5.05331e–01 0 5.77392e–01 0

1 64 2.18880e–01 0.73 3.06596e–01 0.72 4.61843e–01 0.32

2 256 8.02639e–02 1.45 1.40782e–01 1.12 2.84812e–01 0.70

3 1024 2.36341e–02 1.76 6.40446e–02 1.14 1.56135e–01 0.87

4 4096 6.36319e–03 1.89 3.07178e–02 1.06 8.14364e–02 0.94

5 16384 1.64784e–03 1.95 1.51580e–02 1.02 4.15487e–02 0.97

6 65536 4.19102e–04 1.98 7.55147e–03 1.01 2.09804e–02 0.99

7 262144 1.05669e–04 1.99 3.77214e–03 1.00 1.05415e–02 0.99

Table 3 Discretization errors in different norms for the clamped boundary condition, triangles and quadratic

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 32 7.21130e–02 1.73764e–01 2.24893e–01

1 128 7.67699e–03 3.23 4.61574e–02 1.91 7.39127e–02 1.61

2 512 8.36813e–04 3.20 1.18158e–02 1.97 2.48864e–02 1.57

3 2048 1.00174e–04 3.06 2.97468e–03 1.99 8.77516e–03 1.50

4 8192 1.24057e–05 3.01 7.44945e–04 2 3.12711e–03 1.49

5 32768 1.54909e–06 3 1.86302e–04 2 1.11290e–03 1.49

6 131072 1.93720e–07 3 4.65777e–05 2 3.95040e–04 1.49

Table 4 Discretization errors in different norms for the clamped boundary condition, rectangles and
quadratic serendipity

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 16 3.51301e–02 1.36042e–01 1.57615e–01

1 64 3.71421e–03 3.24 3.38321e–02 2.01 4.40283e–02 1.84

2 256 4.20670e–04 3.14 8.46059e–03 2 1.09815e–02 2.00

3 1024 5.08994e–05 3.05 2.11683e–03 2 2.57099e–03 2.09

4 4096 6.32166e–06 3.01 5.29376e–04 2 6.05036e–04 2.09

5 16384 7.89256e–07 3 1.32357e–04 2 1.45262e–04 2.06

6 65536 9.86327e–08 3 3.30902e–05 2 3.54722e–05 2.03

Our second example is concerned with the exact solution u defined by

u(x, y) = (yex + xey)x3y3(1 − x)3(1 − y)3,

which satisfies the simply supported boundary condition u = 0 and #u = 0 on ∂!. We
compute the relative errors in L2 and H 1-norms for the stream function and the relative
errors in L2-norm for the vorticity using linear and bilinear finite element space and the
corresponding space Mh. As can be seen in Tables 6–7, the convergence rates for the stream
function are of order h and h2 in H 1 and L2-norms, respectively, and the convergence rate
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Table 5 Discretization errors in different norms for the clamped boundary condition, rectangles and bi-
quadratic

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 16 2.35528e–02 1.27617e–01 2.46599e–02

1 64 3.15699e–03 2.90 3.33867e–02 1.93 3.23521e–03 2.93

2 256 4.01609e–04 2.97 8.43997e–03 1.98 4.14979e–04 2.96

3 1024 5.04224e–05 2.99 2.11584e–03 2 5.28399e–05 2.97

4 4096 6.30974e–06 3 5.29325e–04 2 6.68037e–06 2.98

5 16384 7.88934e–07 3 1.32354e–04 2 8.40308e–07 2.99

Table 6 Discretization errors in different norms for the simply supported boundary condition, triangles and
linear

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 32 1.00000e+00 1.00000e+00 1.00000e+00

1 128 7.12820e–01 0.49 7.14584e–01 0.49 7.83438e–01 0.350

2 512 2.10740e–01 1.76 2.57361e–01 1.47 4.16608e–01 0.911

3 2048 5.80843e–02 1.86 1.00223e–01 1.36 2.23862e–01 0.896

4 8192 1.60359e–02 1.86 4.40289e–02 1.19 1.16898e–01 0.937

5 32768 4.20144e–03 1.93 2.09303e–02 1.07 5.92290e–02 0.981

6 131072 1.07363e–03 1.97 1.03099e–02 1.02 2.97219e–02 0.995

7 524288 2.71255e–04 1.98 5.13455e–03 1.01 1.48750e–02 0.999

Table 7 Discretization errors in different norms for the simply supported boundary condition, rectangles and
bilinear

Level # elem.
‖u−uh‖0,!

‖u‖0,!

|u−uh|1,!
|u|1,!

‖φ−φh‖0,!
‖φ‖0,!

0 16 1.00000e+00 1.00000e+00 1.00000e+00

1 64 8.59993e–01 0.22 8.42251e–01 0.25 8.91205e–01 0.17

2 256 1.43223e–01 2.59 1.95467e–01 2.11 3.67212e–01 1.28

3 1024 2.46450e–02 2.54 7.05286e–02 1.47 1.83978e–01 1.00

4 4096 6.17898e–03 2 3.25399e–02 1.12 9.54341e–02 0.95

5 16384 1.55362e–03 2 1.58651e–02 1.04 4.82796e–02 0.98

6 65536 3.88985e–04 2 7.87881e–03 1.01 2.42181e–02 1.00

7 262144 9.72822e–05 2 3.93257e–03 1 1.21194e–02 1.00

for the vorticity is of order h. We point out that the convergence rates for the vorticity can
be improved by projecting the solution on the finite element space S0

h or Sh.

5 Conclusion

We have presented a mixed finite element method for the biharmonic equation with sim-
ply supported or clamped boundary condition using different finite element spaces for the
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stream function and vorticity. As the sets of basis functions for the discretization of the
stream function and vorticity are constructed in such a way that they satisfy a condition of
biorthogonality or quasi-biorthogonality, other auxiliary variables except the degree of free-
dom corresponding to the stream function can be statically condensed out from the system.
The presented numerical results demonstrate the efficiency and optimality of the approach.
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