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Abstract: Uncertainty in scientific predictions of outcome of decisions is currently 
of substantial interest, with a common perception, at least in groundwater 
modelling, that some decision makers have unrealistic expectations of accuracy. A 
feeling shared by some practitioners is that with a proper stakeholder engagement 
process, uncertainty is no longer such a difficult issue. This paper argues that the 
key is precisely specifying purpose and expectations, and the definition of closed 
questions provides a useful approach to do so. A closed question, also known as a 
fixed-choice or pre-coded question, has a finite set of answers, e.g. yes/no or A, B, 
C. If an answer is possible, it will always be certain, but science may need to say 
“we do not know”. The approach is conceptually simple, though not necessarily 
trivial in practice, often requiring iteration between interest groups and modellers. 
Closed questions provide an interface between scientists and stakeholders which 
has a number of advantages, illustrated using examples from the published 
literature. Defining closed questions demands that proper attention be paid to 
problem formulation, which has long been recognised as important in the 
treatment of messy problems so pervasive in environmental modelling. The 
stakeholder engagement process manages the uncertainty in the definition of the 
problem, freeing the scientific process to concentrate on uncertainty in the model. 
Closed questions specify the purpose and required precision of the prediction, 
allowing the use of simpler models and techniques. This helps address the 
challenges of defining context-dependent criteria for acceptable model quality and 
determining appropriate model complexity. By addressing values in a proper 
process involving both stakeholders and scientists, the role of the scientist in 
providing objective predictions is separated from their potentially more subjective 
contributions to the remainder of the process. The common use of scientific 
hypothesis testing shows that probabilistic uncertainty can also be represented, 
allowing stakeholders to explicitly accept risk. As a result, a well-run, engaging 
process using closed questions allows science to promptly answer stakeholder 
questions with certainty, or recognize that an answer is not possible with the 
allocated resources, and therefore that the problem must be treated as trans-
scientific. 
 
Keywords: uncertainty; stakeholder engagement; closed questions; first order 
logic; falsification.  
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1 INTRODUCTION 
 
Increasingly science is expected to support decisions by providing urgent answers 
to complex, uncertain questions. Typical complaints are that science takes too long, 
or provides unreliable answers that turn out to contradict stakeholders’ experiences. 
The resulting stakeholder disappointment has even led to the comment by Voss 
[2011] that “groundwater modelling has become a self-supporting industry of 
fantastical promises that cannot be kept”. One response has suggested that 
expectations need to be lowered. The issue is that models can seemingly predict 
anything, to arbitrary precision. Calculating uncertainty bounds around point 
estimates is proposed as an obvious solution – except that, ironically, it implies that 
we can also quantify the uncertainty in our estimates – what we do not know – to 
arbitrary precision. In both cases, the worry is that stakeholders will consider the 
model to be unreliable, destroying its utility and credibility. In other words, the aim is 
to provide certainty to the user (albeit conditional on current understanding). While 
this is obviously impossible if we are to state the value of a variable to arbitrary 
precision, fortunately decision makers can usually make do with far vaguer 
statements. The key is to specify expectations as precisely as possible. The 
concept is clearly not new: 
 
“Far better an approximate answer to the right question, which is often vague, than 
an exact answer to the wrong question, which can always be made precise.” Tukey 
[1962] 
 
Stakeholders must necessarily work together to define the right question, and 
delineate how approximate the answer can be, and still be useful. Scientists must 
define how vague the question can be, and still be studied. Both require certainty – 
of expectations for a given question, and of reliability of the answer (contingent on 
current understanding). This paper proposes that the use of closed questions 
provides an intuitive, natural language approach that satisfies these requirements. 
By better defining the interaction between stakeholders and scientists, it provides a 
useful tool for the integration of modelling and stakeholder participation, particularly 
for ill-structured problems, as are common in environmental management. 
 
Rather than discussing details of methods, this paper focuses on the method-
independent benefits, illustrated by simple examples. The concept of a closed 
question is introduced (Section 2) as it applies to integrated modelling and 
stakeholders. A poorly defined question can cause difficulties for scientists and 
result in disappointment for stakeholders. Closed questions emphasise the 
importance of this issue (2.1), though they are not a solution. Once defined, they do 
help reduce the difficulty stakeholders have in specifying in scientific terms what 
makes a model’s performance fit for purpose (2.2) and assessing whether it is 
sufficiently simple or complex (2.3). Discussion of closed questions forces the use 
of black and white terms, rather than the shades of grey inherent in the way model 
outputs and probabilities are used. While this is not always appropriate, in the 
context of prediction, it emphasises the importance of defining the limits of 
science’s capabilities – of being able to say “we don’t know” (2.4). If the shades of 
grey are really necessary, the risks involved must be explicitly accepted within the 
closed question (2.5). 
 
 
2 COMMUNICATION OF PREDICTIONS 
 
Any interaction between stakeholders and science should have a clear purpose. 
Predictions are logical assertions. They make claims about what is true. The 
required truth claim should therefore be clear before modelling starts. This sets 
stakeholders expectations, and allows scientists to choose the best available 
method to evaluate the required truth claim. Of course this can be an iterative 
process where a purpose is refined in response to the scientist’s conclusion that 
methods cannot provide a useful outcome. 
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If we have a truth claim such as “this plan will meet its objectives”, the easiest way 
to turn it into a question is to ask - “will this plan meet its objectives?” A question 
such as “Option A is better than Option B” can however also be phrased as “which 
option is better – A or B?” The natural way of dealing with predictions as logical 
assertions is to formulate them as questions with a finite number of a priori stated 
answers, that is, closed questions. Closed-ended questions are well-established in 
the design of surveys and questionnaires where they are also known as fixed-
choice or pre-coded questions (Schuman and Presser [1979]). This is in opposition 
to the vague, open questions “how does this plan perform?” and “how good is 
option A?” This simple observation motivates our main argument - for predictions 
intended to support decisions, science questions must be formulated as 
unambiguously-phrased closed questions. 
 
It is obvious that yes/no answers are equivalent to testing whether the assertion is 
true. Where the closed question specifies a choice between options, it translates to 
an optimisation problem. Uncertainty is, however, omnipresent. We must ask - is 
there a clear answer, or is there too much uncertainty? And so, instead of yes/no, 
the answer may be “we cannot give a definite answer”, and we might have to say 
that option B could be equally as good as option A. In the latter case, we therefore 
always deal with optimisation under uncertainty. If it turns out that the question 
cannot be conclusively answered with current knowledge, science may still be able 
to contribute. The question can be modified by accepting risk (see Section 2.5), or 
by allocating additional resources to allow science to reduce the uncertainty. In this 
way, uncertainty is inherently addressed in the process of defining the right 
question, and the production of a certain yet approximate answer. 
 
Closed questions are proposed exclusively as a replacement for asking for 
predictions of arbitrary accuracy. Dialogue and lateral thinking are better 
encouraged with open-ended questions, or less structured discussions. Closed 
questions are more suitable in a setting where stakeholders seek confirmation, not 
in an exploratory context. Often numerical models are used to create predictions 
when qualitative conceptual models would suffice. If a closed question cannot be 
formulated, such as in an exploration exercise, a first step should therefore be to 
check whether a numerical prediction is actually necessary. We therefore expect 
the approach to be applicable in most cases where predictions are used. 
 
 
2.1 Uncertainty in defining the closed question 
 
Defining a closed question is not a trivial exercise. The importance of uncertainty in 
defining the question to be asked of a model is commonly recognised, but 
frequently only paid lip service. It is also known as Type III error in statistics, 
described by Kimball [1957] as “giving the right answer to the wrong problem”, 
context location of uncertainty in Walker et al. [2003], scoping and framing as in 
Guillaume et al [2010], or problem formulation in an optimisation context or decision 
theoretic context as in Guillaume & Pierce [2011].  
 
Refsgaard et al. [2006] provided an invaluable example where they asked five 
consultants to model, “which parts of this area are most vulnerable to pollution and 
need to be protected?” While this is a closed question (choosing between specified 
parts), the result was that “the differences between the five estimates are striking 
and clearly do not provide a sound basis for deciding anything about which areas 
should be protected.” Refsgaard et al. use this example to argue for the need to 
consider and evaluate multiple conceptual models. However, they also remark that 
the consultants “were known to have different views and preferences on which 
methodologies are most suitable for assessing vulnerability”. It can also be 
concluded from their observations that this closed question is not sufficiently 
specified, and that value judgements about the meaning of “vulnerability” have a 
significant impact.  
 
Uncertainty in definition of the problem, and uncertainty in modelling or the scientific 
process are often confounded, especially in wicked or messy problems (as defined 
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by Rittel and Webber [1973]), with the result that value judgements that are best 
defined by stakeholders are left to the responsibility of the scientist. It is no surprise 
that stakeholders would end up rejecting a model or decision support system in 
these circumstances. In the operations research and soft systems literature, the 
issue is addressed through the use of problem structuring methods, as described 
by Rosenhead [1996] and Rosenhead & Mingers [2001]. Guillaume & Pierce [2011] 
suggest that some of these methods do not go far enough, as they fail to translate 
the resulting stakeholder view to a model question. 
 
Defining closed questions forces modellers and stakeholders to go through a 
distinct phase of problem formulation. It impels stakeholders to identify why a 
particular assertion is necessary, and how it will be used. The role of the scientist in 
providing objective predictions is separated from their role in helping to define the 
question which typically requires a very different approach. 
 
While the problem formulation phase is distinct, it should be seen as iterative, and 
never final. Stakeholder needs may evolve, modellers may discover that additional 
input is required, that the questions are intractable within the allocated resources or 
vice-versa. Answering a closed question may in fact lead to a change in the 
question, contributing to the process of retrieving elements to structure a problem, 
as described by Simon [1973]. In the meantime, scientists have clear requirements 
about what their model, or other work, needs to achieve. In the scientific context, it 
is better to have clear requirements that change than to have vague requirements 
or none at all. 
 
 
2.2 Defining criteria for acceptable model performance 
 
Refsgaard & Henriksen [2004] recognise that stakeholders will ultimately decide 
whether a model’s performance is acceptable: 
 
“The key responsibilities of the water resources manager are to specify the 
objectives and define the acceptance limits of accuracy performance criteria for the 
model application. Furthermore, it is the manager’s responsibility to define 
requirements for code verification and model validation.”  
 
These responsibilities seemingly involve a high level of technical expertise in 
modelling – and some are even open research issues in the modelling literature. 
Water resource managers would be well justified in resisting this extra burden. 
Closed questions provide a simple approach to partly overcome this issue. It is 
generally accepted that the precision at which a result is interpreted should be no 
greater than its accuracy. Closed questions implicitly specify the precision required 
in order to be able to answer the question. It follows that the accuracy must be at 
least as good as this required precision. This only partially addresses the issue 
because the modeller still needs an accepted method for determining accuracy – or 
equivalently, uncertainty. The key value judgements are however addressed and 
closed questions can help determine whether the complexity of the system is 
sufficiently represented (Section 2.3). We leave the rest to future work. 
 
By defining the required accuracy for a specific prediction, closed questions can 
also make seemingly unanswerable questions feasible. Reichert and Borsuk [2005] 
give an example where the reduction of phosphorous loading due to a management 
option is assessed. The probability distributions overlap such that it is seems 
possible that the management option could have no effect. However, they point out 
that “if the major management objective is to achieve a phosphorus load reduction 
to the lake in any particular year, then it is important to correctly calculate the 
distributions of differences across alternatives” (our emphasis). The distribution of 
differences shows that the management option will always achieve a reduction. 
Directly asking “is there a reduction in phosphorus loading in this scenario?” 
provided (conditional) certainty, while answering the question indirectly by first 
asking “what is the phosphorus loading in this scenario?” only resulted in “we 
cannot tell”. 
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Closed questions about model performance can also add value for a manager’s 
understanding of the crucial strengths and limitations of a model. For example, 
stakeholders can start by asking “under what conditions are the model’s predictions 
able to differentiate between specified options?” and “under what conditions” is the 
model definitely incapable of such differentiation?” In some cases these questions 
might require more closure. For instance one might pose “under what climate 
conditions (and/or land use change or demographic change or international policy 
changes) is the model definitely not able to differentiate between options?” Rarely 
does one see such delineation of conditions reported from a modelling exercise. 
 
 
2.3 How complex does a model need to be? 
 
How simple or complex a model should be is ongoing matter of debate in the 
modelling community, and one which influences interaction with stakeholders due 
to its effect on run-times, model development times and hence the time scales of 
stakeholder engagement processes. Both sides in the simplicity-complexity debate 
seem to agree on the quote attributed to Einstein, that “a model should be as 
simple as possible but no simpler”. The point of contention is what constitutes “as 
simple as possible”. The need for a purpose is implied, and closed questions 
provide a clear answer in the case of prediction. The model must be sufficiently 
complex so as to capture the necessary processes to answer the closed question, 
and verify that it is answered robustly – that no uncertainties have been missed. 
From this perspective, simple models may be argued to be insufficient, but the 
burden of proof is on complex models or techniques to show that they make an 
additional contribution. 
 
The ability to capture additional processes does not necessarily require more 
parameters, though complex models often do. Jakeman and Hornberger [1993] 
present a spatially lumped rainfall-runoff model in terms of transfer functions. While 
distributed models describe flow spatially and temporally, “in physical terms, the 
transfer function representation corresponds to a flexible configuration of linear 
storages connected in parallel and/or series paths for the transit of excess rainfall 
to the stream.” A much simpler model can capture the same processes by using 
emergent properties of flow. It does not differentiate between these processes, so it 
has a restricted domain of applicability – it is only appropriate for answering some 
questions. It can answer the question “will there be enough stream-flow for 
irrigation?” If there is enough historical data, it may be able to answer how flow 
varies with climate. It cannot deal with change of land use as this would alter the 
emergent properties of flow. It cannot answer the question “Will there be enough 
stream-flow for irrigation after the catchment is re-forested?” The precisely defined 
aim identified using the closed question allows the modeller to determine whether 
this simple model is sufficient. 
 
 
2.4 Defining the limits of science using closed questions 
 
By making the required assertion clear, closed questions clarify what is required of 
science, and what will be handled by other means. This is crucial with so-called 
trans-scientific questions. Weinberg [1972] defines trans-scientific questions as 
those “which can be asked of science and yet which cannot be answered by 
science”. This includes the case where decisions are made on the basis of 
incomplete data, such as in engineering, and where values influence the question, 
as in public policy. In that context, a scientist has a responsibility “to make clear 
where science ends and trans-science begins”. 
 
Due to the nature of scientific uncertainty, the scientist may not be able to give a 
definite answer, particularly with limited resources. Consider the question: if the 
general population is exposed to more than 170 millirems of radiation per year, 
from a sample of 1000, will the number of cases of leukaemia and cancer increase 
by more than 5? Weinberg [1972] and Holcomb [1970] observe that at the time, 
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science could not give a definite answer – maybe yes, maybe no. Experimentation 
was difficult (and on humans, forbidden), and assumptions were difficult to test. 
However, Weinberg’s analysis [1972] was that “neither side was willing to say that 
the question was simply unresolvable”. Honesty keeps expectations of science 
realistic, and directs the end-user to use methods that can handle indeterminate 
facts. It may be that this provides a strong argument for allocating additional 
resources to the scientific challenge. On the other hand, when a clear answer can 
be provided, this allows the end-user to claim scientific uncertainty (barring 
surprises in new data).  
 
It is hoped that the process of asking and answering a closed question shares the 
advantages assigned by Weinberg [1972] to legal adversary procedures, in “forcing 
scientists to be more honest, to say where science ends and trans-science begins, 
as well as to help weigh the ethical issues which underlie whatever choices the 
society makes between technological alternatives”. 
 
 
2.5 Accepting risk 
 
The desire to express a probabilistic result or degree of confidence is a common 
objection to the certainty embodied in closed questions. The widespread adoption 
of hypothesis testing in science shows how this supposed obstacle is easily 
overcome.  
 
Hypothesis testing replaces certainty on a case-by-case basis for certainty in the 
acceptance of risk. In the theory of statistical inference formulated by Neyman and 
Pearson [1933], certainty is provided about the long-run frequency of errors:  
“Without hoping to know whether each separate hypothesis is true or false, we may 
search for rules to govern our behaviour with regard to them, in following which we 
insure that, in the long run of experience, we shall not be too often wrong”. 
 
As described by Gigerenzer et al. [1990], consider a plant that produces widgets. 
During testing, if the size of the widgets is too small, the plant must be stopped. The 
question is asked “Should the plant be stopped?” With the normal variation in 
widget size, it is impossible to give a definite answer, so instead the question asked 
is “We accept that the plant will be stopped in error up to one day a month. 
Accepting this risk, should the plant be stopped?” Neyman and Pearson [1933] do 
not advocate a standard 95% confidence level, and do not jump to conclusions by 
interpreting 95% confidence as certainty. They explicitly accept the risk of type I 
and II errors, of false acceptance and false rejection of the hypothesis. In their 
words:  “in some cases it will be more important to avoid the first, in others the 
second. ... The use of these statistical tools in any given case, in determining just 
how the balance should be struck, must be left to the investigator”. 
 
Long-run frequency of errors is admittedly not suitable for many environmental 
decisions and problems. Anderson [1998] however recommends the presentation 
of probabilities using a frequency format, as is intuitively done with long-run errors. 
Cognitive errors occur due to the activation of different probability-related concepts.  
The frequency format allows people to intuitively use reasoning compatible with the 
formal rules of probability. Anderson gives an example using open questions: 
 
Probability format: "What is the probability that this watershed, for which you have 
planned a forest ecosystem network, will retain all 14 species of passerines 40 
years from now?" 
 
Frequency format: "Picture 100 watersheds like this one. For each, you have 
planned a similar forest ecosystem network. How many will retain all 14 species of 
passerines 40 years from now?" 
 
With similar wording to the widget example, we can easily formulate a closed 
question: “We accept that in 5 out of 100 watersheds like this one, we would lose a 
species. With this exception, will all species be retained 40 years from now?” 
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As Lehmann [1993] describes, the Bayesian view and the statistician R.A. Fisher 
take a contrasting evidentiary view, stating probability rather than using an 
acceptance/rejection procedure. The scientists ‘gains a better understanding’ by 
using the degree of confidence as a ‘means of learning’. This is clearly a different 
purpose to prediction, and when it comes to making decisions, even Fisher himself 
claimed that a research worker is interested in answering the (closed!) questions: 
“ought I take notice of that?” and "Is this particular hypothesis overthrown, and if so 
at what level of significance, by this particular body of observations?".  
 
The use of standard significance levels is now common practice in science, but 
Neyman and Pearson’s [1933] behavioural approach seems more appropriate in 
the case of environmental prediction. Whereas decisions in scientific hypothesis 
testing typically have intangible consequences on accumulated knowledge, 
decisions resulting from a prediction can have significant direct impact on society at 
large. A 95% confidence level on river levels would imply that society accepts that 
flooding occurs on 5 out of 100 days. It is essential that stakeholders explicitly and 
consciously accept risk. Scientists must not implicitly accept risk on their behalf. 
 
 
3 CONCLUSIONS 
 
Closed questions provide an intuitive, natural language means of structuring 
interaction regarding predictions between science and stakeholders. They precisely 
define the purpose of scientific input with a number of advantages. They are easily 
translated to the mathematical concepts of testing of assertions and optimisation 
under uncertainty. They demand that proper attention be paid to problem 
formulation. They help modellers define acceptable model performance, and can 
help simplify problems. They acknowledge that it is acceptable for science not to 
know, and demand that risk be explicitly accepted by stakeholders. The result is 
that uncertainty in predictions is handled intuitively, and the expectations of 
stakeholders are clear as to what aspect of a prediction can be interpreted with 
certainty. This paper has not discussed how stakeholder groups should formulate 
closed questions, or how science should provide answers – there remain 
substantial issues in practice, but at a methodological level, the concept is so 
simple, that even a sceptic can give it a chance. Next time you need a prediction, 
consider: will it help to phrase it as a closed question? 
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