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Spatially selective broadband emission enhancement of quantum dots
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Abstract

We demonstrate broadband enhancement of quantum-dot

photoluminescence through spatially selective photochem-

ical deposition of silver nanoparticles on domain patterned

ferroelectric crystals. This enhancement is a consequence

of coupling of broadband plasmonic modes to the quantum-

dot emission.

1. Introduction
Semiconductor quantum dots (QDs) are ideal fluorophores

for multiplex photoluminescent applications owing to their

broad excitation and narrow, tunable emission spectra, as

well as high stability and good quantum yields. Spatially

controlled, broadband enhancement of QD photolumines-

cence (PL) is desirable for demanding applications involv-

ing sensors, microarrays and single molecule studies [1, 2].

PL enhancement can be achieved by coupling to suitable

metal nanoparticles, however, their generation with high

throughput and a high spatial resolution at the same time

remains an open challenge. Here, we propose and demon-

strate ferroelectric domain engineered photochemical depo-

sition to achieve arbitrary spatial control of PL enhance-

ment over a broad spectral range.

2. Results and discussions
In our work we use photochemical deposition of silver onto

the domains of ternary ferroelectric single crystal (PIMNT)

to achieve high-spatial accuracy pattering of QD PL. First,

a checkerboard pattern of c+ and c- domains is created on

the surface of the PIMNT crystal by applying a voltage to

the tip of an atomic force microscope. Next, the crystal is

immersed into a silver nitrate solution and irradiated with

ultraviolet (UV) light. The UV illumination leads to an

upward [downward] bending of the crystal’s energy bands

for the c- [c+] domains, respectively. As a result, photo-

generated electrons are driven towards the surface for the

c+ domains, and away from the surface for the c- domains,

leading to the formation of silver nanoparticles on the sur-

face for the c+ domains only. The generated silver nanopar-

ticles have multifarious shapes and random sizes ranging
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Figure 1: (a) Schematic of silver nanoparticles photo-

deposited onto domain patterned PIMNT and covered by

QDs. (b) Measured PL map of QDs, emitting at 800 nm,

above a checkerboard pattern of regions with and without

silver nanoparticles. (c) Typical PL spectra of QDs for a

region with and without silver nanoparticles (red and black

line, respectively). Normalised time-resolved photolumi-

nescence at 800 nm for (red) region with QDs over silver

nanoparticles and (black) region with QDs only. The green

line is a guide for the eye.

from several to hundreds of nanometers [3]. Such mixture

of silver nanoparticles supports inhomogeneously localized

plasmonic excitations similar to those of percolating metal

films [4]. Importantly, the spectrum of such modes is ex-

tremely broadband, allowing for high local-field enhance-

ment over a large spectral bandwidth. After silver depo-

sition, a uniform mixture of streptavidin coated QDs dis-

persed in polyvinyl alcohol (PVA) is spin-coated onto the

ferroelectric. A schematic of the resulting sample geome-

try is shown in Fig. 1(a).



We have optically characterized the samples using

micro- PL-mapping, PL-spectroscopy, and time-resolved

PL measurements. A confocal PL map of QDs emitting

at 800 nm on top of a checkerboard pattern of deposited

silver is shown in Fig. 1(b). It is evident that the QD emis-

sion above the deposited silver patterns is enhanced (yel-

low regions) compared to emission in regions without sil-

ver nanoparticles. Typical QD photoluminescence spec-

tra of the regions with and without silver nanoparticles are

shown in Fig. 1(c). The photoluminescence of the QDs is

enhanced roughly sixfold by the silver nanoparticles. Ad-

ditional experiments have been performed to eliminate the

possibility of photoluminescence from silver nanoparticles

on PIMNT. Furthermore, insertion of an analyzer into the

photoluminescence detection path shows that presence of

silver nano-particles does not affect the photoluminescence

polarization. Nor was the photoluminescence polarization

affected by rotation of the incident polarization of the pump

beam by 90◦.

Time-resolved photoluminescence was also performed

to determine the total PL enhancement factor. Figure 1(d)

shows typical time-resolved photoluminescence, measured

at 800 nm. Because the QDs are randomly distributed in

the PVA film, a single-exponential fit cannot account for

the emission decay of an ensemble of QDs. Instead, as a

quantitative measure of the lifetimes we consider the time

it takes for the normalized intensity to drop to 10%. We

find that the lifetime is 0.4 ns for the QDs emission in the

region with silver nanoparticles, while it is approximately

2.3 ns for the region with only QDs.

The photoluminescence enhancement of a mixture of

QDs emitting at 655 nm and 705 nm is also demonstrated in

Fig. 2. The QD photoluminescence is enhanced about ten-

fold. This photoluminescence enhancement demonstrates

the potential of ferroelectric photo-deposited silver in en-

hancing fluorophores with emission wavelengths spanning

a broad spectral bandwidth. Moreover, comparing both

curves in Fig. 2 we can conclude that the enhancement fac-

tor appears practically independent of the wavelength.

In order to explain our experimental results we recall

that the enhanced QD photoluminescence is comprised of

two effects: an electric field enhancement and plasmon-

fluorophore coupling. In the former, metal particles con-

centrate the local electric field near the sharp edges of the

particles leading to an increase in the rate of excitation of

fluorophores and consequently in the photoluminescence

emission. The photoluminescence lifetime is unaffected by

this mechanism. In the latter, the fluorophore couples to

localised plasmon modes of the silver nanoparticles, where

the coupling interaction is confined to distances of about

20 nm. This leads to an increase in the photoluminescence

emission of the metal-fluorophore system due to an en-

hanced Purcell factor. Additionally, the enhanced Purcell

factor leads to a reduction in the photoluminescence life-

time (Fig. 1(d)). The observed lifetime reduction strongly

indicates coupling between the QDs and the surface plas-

mon modes of the silver nanoparticles, and results in in-

Figure 2: Typical photoluminescence spectra for: (blue

line) a region with QDs over silver nanoparticles and (green

line) a region with QDs only. A mixture of QDs emitting at

655 m and 705 nm is used.

creased photo-stability and photon flux. The strength of

coupling is dependent on the spectral overlap of the fluo-

rophores emission spectrum and the plasmonic resonances

of the metal nanoparticles. Typically, for narrowband plas-

monic excitations, this leads to a photoluminescence en-

hancement that strongly depends on the emission charac-

teristic (spectrum) of the fluorophore. In our case, how-

ever, because of the continuum-like collection of localized

plasmon modes, the overlap between the emission of the

different kinds of QDs and the plasmon modes of silver

nanoparticles remains comparable over the entire measure-

ment spectral range.

3. Conclusions
In conclusion, our results demonstrate that coupling of QDs

to silver nanoparticles generated via area-selective ferro-

electric photochemical deposition allows for spatial con-

trol of broadband enhancement of QD PL that may prove

useful in diverse applications in multiplex detection of

biomolecules.
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