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Long-term vegetation dynamics associated with climatic changes can be assessed using Advanced Very High
Resolution Radiometer (AVHRR) red and near-infrared reflectance data provided that the data have been
processed to remove the effects of non-target signal variability, such as atmospheric and sensor calibration
effects. Here we present a new method that performs a relative calibration of reflectance data to produce
consistent long-term vegetation information. It is based on a simple biological framework that assumes that
the position of the vegetation cover triangle is invariant in reflectance space. This assumption is in fact an
intrinsic assumption behind the commonly used Normalised Difference Vegetation Index (NDVI) and is
violated when the NDVI is calculated from inadequately corrected reflectance data. In this new method, any
temporal variability in the position of the cover triangle is removed by geometrically transforming the
observed reflectance data such that two features of the triangle—the soil line and the dark point—are
stationary in reflectance space. The fraction of Photosynthetically Active Radiation absorbed by vegetation
(fPAR; 0.0–0.95) is then calculated, via the NDVI, from calibrated reflectances. This method was tested using
two distinct, monthly AVHRR products for Australia: (i) the coarse-resolution, fully calibrated, partially
atmospherically corrected PAL data (1981–1994); and (ii) the fine-resolution, fully calibrated, non-
atmospherically corrected HRPT data (1992–2004). Results show that, in the 20-month period when the
two datasets overlap (1992–1994), the Australia-wide, root mean square difference between the two datasets
improved from 0.098 to 0.027 fPAR units. The calibrations have produced two approximately equivalent
datasets that can be combined as a single input into time-series analyses. The application of this method is
limited to areas that have a wide-enough variety of land-cover types so that the soil line and dark point are
evident in the cover triangle in every image of the time-series. Another limitation is that the methodology
performs only bulk, relative calibrations and does not remove the absolute effects of observation
uncertainties. The simplicity of the method means that the calibration procedure can be easily
incorporated into near-real-time operational remote-sensing environments. Vegetation information
produced using this invariant-cover-triangle method is expected to be well suited to the analysis of long-
term vegetation dynamics and change.

© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Remotely sensed data can be used to measure and monitor
vegetation characteristics in high spatial and temporal detail across
large areas. Historically, this has been achieved using vegetation
indices derived from multi-temporal reflectance of red (0.6–0.7 μm)
and near-infrared (NIR; 0.7–1.1 μm) radiation (e.g., Tucker, 1979;
Running & Nemani, 1988; Nemani et al., 2003). Analyses of long-term
vegetation dynamics require reflectance data that are not significantly
affected by non-target signal variability associated with remotely
sensed data (e.g., Gutman, 1999). Traditional methods for correcting
reflectance data typically require ancillary data to drive atmospheric
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hue).

l rights reserved.
or directional reflectance models (e.g., Tanre et al., 1992; Los et al.,
2005) or are delayed until publication of post-launch calibration co-
efficients (e.g., Mitchell, 1999). Across Australia, the application of
traditional correction methods to Advanced Very High Resolution
Radiometer (AVHRR) data is problematic because ancillary data
(especially water vapour and aerosol data) that span both the country
and the entire AVHRR observation period are generally unavailable.
Additionally, traditional approaches do not lend themselves to real-
time operational environments. For these reasons we developed, and
present here, a simple, biologically oriented approach to calibrating
broad-scale satellite reflectance data, akin to those of Hall et al. (1995)
and Pickup et al. (1993), where knowledge of vegetation and soil
reflectance characteristics is used to drive the calibration procedure.
There are also similarities between this current method and the ‘cover
triangle’method of Gillies and Carlson (1995; see also Carlson (2007))
which standardises the Normalised Difference Vegetation Index
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(NDVI) and surface temperature values in order to estimate soil
moisture. The basis of the method we present here is the assumption
that key features of the cover triangle (described in Section 1.2) are
spectrally invariant. Using these features, the relative temporal effects
of non-target signal variability are minimised in the data, thereby
producing consistent vegetation information suitable for long-term
time-series analysis. In the remainder of this introduction, we review
traditional methods of correcting AVHRR data and then present the
rationale for the new calibration approach. Following the introduction,
we present and discuss this new calibration methodology using, as a
case study, two monthly AVHRR data products spanning continental
Australia from June 1981 to December 2004.

1.1. Traditional approaches to correcting AVHRR reflectance data

The series of polar-orbiting environmental satellites operated by
the National Oceanographic and Atmospheric Administration (NOAA)
each carry an AVHRR sensor. These sensors measure spectral radiance
using a number of bandwidths including 0.58–0.68 μm (Channel 1)
and 0.725–1.1 μm (Channel 2) which measure red reflectance (ρR) and
NIR reflectance (ρN), respectively. The available AVHRR data record is
near-continuous from June 1981 and provides one of the longest
useful remotely sensed records of the Earth's surface. For this reason
these data are of exceptional value in the analysis of long-term
variability in vegetation, especially those relating to land-use change
(e.g., Graetz et al., 1995) and climate change (e.g., Nemani et al., 2003).
The main obstacle to using AVHRR data in terrestrial applications is
the presence of variability in the reflectance signal that originates not
from the surface target but from atmospheric dynamics, from time-
dependent changes in the sensors, and from variations in Sun-target-
sensor geometry (Cracknell, 1997). In the absence of adequate
corrections for this signal variability, time-series analyses can lead
to inaccurate conclusions about vegetation dynamics and especially
about long-term vegetation change (Gutman, 1999).

From a vegetation perspective, non-target signal variability con-
stitutes uncertainties in the reflectance data. AVHRR data are
susceptible to a variety of uncertainties, each having specific effects
on ρR and ρN and on the resultant Normalised Difference Vegetation
Index (NDVI). These uncertainties, shown in Table 1, can be broadly
categorised as atmospheric effects and satellite sensor effects. Themost
important atmospheric effects originate from the scattering and
absorption of radiation by gases and aerosols. Satellite sensor effects
are more time dependent, originating from post-launch degradation of
sensor calibrations and from changes in Sun-target-sensor geometry,
caused, in part, by satellite orbital drift (Kaufman, 1989; Price, 1991).

Traditionally, atmospheric effects are corrected individually using
models of atmospheric optical properties. Molecular scattering and
ozone absorption effects are generally predictable over space and time
and can be corrected for relatively simply (Kaufman,1989). In contrast,
the effects of aerosol scattering and water-vapour absorption are
spatially and temporally dynamic and are therefore more difficult to
Table 1
The potential influence of atmospheric and sensor effects on ρR, ρN, and the NDVI

Source of variability Potential effect on ρR Potential effec

Molecular scattering +7% +2%

Ozone absorption −15% –

Aerosol scattering +15% +8%
Water-vapour absorption −5% −30%
Sensor calibration degradation Effect is satellite-dependent but generally de

ρR and ρN reflectance
Illumination angle due to orbital drift Effect depends on the pre-processing (e.g., le

MVC period, accuracy of atmospheric correc
and sensor calibration accuracy, and is of sign
mainly over sparsely vegetated surfaces
correct for directly (El Saleous et al., 2000). Correction of sensor effects
is particularly important prior to long-term time-series analyses of
reflectance data as these effects can introduce artificial trends into
reflectance data (Price, 1987; Gutman, 1999) as well as alter the
magnitude of atmospheric effects (Kaufmann et al., 2000). Both sensor
degradation and orbital drift effects are commonly corrected using
invariant-target analysis (Che & Price, 1992; Gordon et al., 1988;
Vermote & Kaufman, 1995; Gutman, 1999; Kaufman & Holben, 1993;
Roderick et al., 1996b). In this type of analysis, dark and bright targets
are identified in geographic space whose reflectances are assumed to
be constant. Trends in measured reflectance from invariant targets are
attributed to sensor effects and are removed from all reflectance data.
Invariant-target analysis is retrospective, typically requiring several
years of data collection prior to analysis. Illumination effects have
been addressed using bidirectional reflectance distribution functions
(BRDF) that correct reflectances to a standard Sun-target-sensor angle
(e.g., Cihlar et al., 1997; Los et al., 2005; Bacour et al., 2006). However,
many BRDF corrections require specification of land-surface para-
meters and, as these parameters can be highly dynamic, such correc-
tions can be difficult to accomplish reliably over long time-periods and
across large areas.

Another commonly used method of minimising atmospheric and
sensor effects is Maximum Value Compositing (MVC; Holben, 1986).
MVC was originally developed to minimise the effect of clouds
on calculated NDVI but it also minimises any effect that reduces
the NDVI including aerosol scattering and water-vapour absorption
(Holben,1986). Consequently,MVC preferentially selectsmeasurements
made through clear and dry atmospheres withminimumoptical depths
(Kaufman, 1989). The longer the compositing period the more effective
MVC becomes in minimising atmospheric effects (Holben, 1986);
indeed, in areas where aerosol and water-vapour effects are not large,
even 10 day composites can render these effects insignificant (Kaufman
& Tanre, 1992). Whilst traditional approaches to correcting AVHRR data
are effective at removing uncertainties, they can be complex and there
can be considerable delay after the remotely sensed data are acquired
before full corrections can be implemented. One of the motivations
behind the research presented here was to develop a calibration
methodology that is effective and simple, and the idea of enforcing a
stationary cover triangle holds potential as a means for achieving this.

1.2. A new approach for calibrating AVHRR reflectance data using the
cover triangle

The vegetation cover triangle was first described by Kauth and
Thomas (1976) who demonstrated that ρR and ρN (%) from a large
geographic area form a characteristic ‘tasselled cap’, or triangle, when
plotted in red–NIR space (Fig. 1). In this triangle, reflectance from bare
soils plot linearly along the base of the triangle and form the ‘soil line’.
ρR and ρN from bare soils are approximately equal so the soil line
generally has a slope (αs) close to 1 and an ρN-intercept (βs) near the
origin (Rondeaux et al., 1996; it should be noted that sensors from
t on ρN Potential effect on NDVI Reference

−0.23 over densely vegetated targets Tanre et al. (1992)
El Saleous et al. (2000)

+0.06 over sparsely vegetated targets As above
−0.2 over densely vegetated targets As above
−0.12 over sparsely vegetated targets As above

creases Varies between satellites Kaufman (1989)
Price (1987)

ngth of
tions)
ificance

Kaufmann et al. (2000)
Bacour et al. (2006)
Mitchell (1999)



Fig. 1. The relationship between features of the vegetation cover triangle and the spatial distribution of their associated land-cover types for Australia. Plots a and b: reflectance
density plots showing the characteristic vegetation cover triangle for amonth in summer (a) andwinter (b). These are derived fromAustralia-wide AVHRR images. Labels (e.g., S1,W1)
indicate certain features within the triangle that have equivalent reflectance between the two months. NDVI isolines are displayed as grey dotted lines and are labelled in italics. The
‘0.0’ isoline corresponds to the soil line (Note that pixel-density contour intervals are non-linear having the following steps: 2 [white], 5, 10, 20, 200, 800, 1300, and 3000 [darkest
grey]. There are 10.8×104 land pixels in each 0.08° resolution image). Plots c and d: maps showing the spatial distributions of land-cover types associated with each feature labelled in
plots a and b. Features S1 and W1 represent dense, bright vegetation and is mostly closed (N70% cover) forest in summer and closed grasslands in winter (that is, cereal crops or
improved pasture). Feature 2 represents bright soils with sparse vegetation (open grasslands and shrublands with b30% cover) which occur in the most arid deserts. Feature 3
denotes bright, bare surfaces which are typically dry salt lakes and, inwinter, includes snow cover. Feature 4 represents reflectance fromwater features such as water bodies and wet,
bare soils. Feature 5 is the reflectance from dense, dark vegetation which typically originates from open (30–70% cover) evergreen forests with dense understories in relatively wet
environments. Feature 6 is characterised by dark, moderately sparse vegetation on soils that are themselves moderately dark. This is the reflective characteristic of the majority of
Australia's land cover, which typically consists of woodlands (b30% cover), shrublands, or grasslands (the last two both having b70% cover).
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across different satellite programmes measure different red and NIR
bandwidths resulting in variations in the soil-line position between
sensors (Galvao et al., 1999)). Vegetation has a unique spectral
signature as ρR from green foliage is small compared to ρN, with the
difference between the two becoming more marked as vegetation
cover increases (Huete, 1988, Oke, 1987). Reflectance from vegetated
surfaces plots some distance above the soil line, with this distance
increasing as canopy cover increases (Graetz & Gentle, 1982, Walker et
al., 1986). The vegetation cover triangle is the data space bounded by
the soil line and the reflectance from the densest canopies (‘dense’ is
used throughout this article in reference to cover such that dense
vegetation is at or near full cover and has the highest NDVI values; Fig.
1). In contrast, the reflectance fromwater and bare, wet surfaces plots
below the dark end of the soil line (Fig. 1). This is because of the low
albedo of water generally and because water absorbs proportionally
more ρN than it does ρR (Oke, 1987; Richardson & Wiegand, 1977).

Red- and near-infrared-based vegetation indices are designed to
capture various characteristics of the cover triangle, particularly the
location of the soil line and the differences in ρR and ρN. The most
commonly used vegetation index is theNDVI (Rouse et al.,1974), defined
as:

NDVI ¼ qN � qR
qN þ qR

: ð1Þ



Table 2
Specifications and pre-processing of the PAL and HRPT reflectance datasets used in this
study

Specification PAL HRPT

Spatial resolution 0.08° at nadir (~8 km) 0.01° at nadir (~1.1 km)
Temporal
resolution

1 month 1 month

Temporal extent 07/1981–04/1994,
excluding portions
of SE Australia for
05/1984–08/1984,
06/1988–07/1988,
and 06/1993–07/1993

04/1992–12/2004,
excluding 05/1993–08/1993,
05/1994–01/1995,
and 05/2000–08/2000

Data-sensor
lineage

07/1981–02/1985 NOAA7 04/1992–09/1994 NOAA11
03/1985–10/1988 NOAA9 02/1995–09/2000 NOAA14
11/1988–04/1994 NOAA11 10/2000–12/2004 NOAA16

Compositing
method

Maximum NDVI Maximum NDVI

Cloud removal CLAVR (Stowe et al., 1991) CLAVR (Stowe et al., 1991)
BRDF corrections None None
Atmospheric
corrections

Molecular and ozone
(Gordon et al., 1988)

None

Post-launch sensor
calibration

Rao (1993) Calwatch (Mitchell, 1999)
NOAA11—Mitchell (1999)
NOAA14—Vermote and

El Saleous (see Mitchell, 1999)
NOAA16—none applied

(E. King, pers. comm.)
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This index is based on the assumption that αs is 1, βs is 0, and that
vegetation isolines converge at the origin (see Fig. 1). The NDVI is not a
biophysical parameter and has no absolute range of values. Con-
versely, it is closely related to fractional green cover (0–1; Carlson &
Ripley, 1997; Lu et al., 2003) and to the fraction of Photosynthetically
Active Radiation absorbed by vegetation (fPAR, 0–0.95; Asrar et al.,
1984). It has been used to make inferences about vegetation
characteristics such as Leaf Area Index (e.g., McVicar et al., 1996;
Pierce et al., 1993), canopy structure (e.g., Berry & Roderick, 2002),
phenology (e.g., DeFries et al., 1995; Jolly et al., 2005; Guerschman et
al., 2003), biomass (e.g., Baret et al., 1989), and vegetation type (e.g.,
Hill et al., 1999). The NDVI has also been related to vegetation-related
phenomena—for example, landscape condition (Boer & Puigdefabre-
gas, 2003; Holm et al., 2003); drought severity (McVicar & Jupp,1998);
biodiversity (Gould, 2000); carbon assimilation (Asrar et al., 1984);
water availability (Wellens, 1997), and catchment energy and water
balances (Szilagyi, 2000; Donohue et al., 2007a).

For time-series analyses using the NDVI, it is crucial that the
position of the cover triangle—and the soil line in particular—be
correctly located through time so that any detected changes in
index values only relate to true changes in vegetation character-
istics. Properly calibrated reflectance data should display no
variability in the cover-triangle position. Several vegetation indices
(e.g., SAVI and TSAVI) have been developed which allow the char-
acteristics of the soil line, the index isolines, or both, to be in-
dividually specified (Huete, 1988; Baret & Guyot, 1991; Pickup et al.,
1993; Qi et al., 1994; Yoshioka et al., 2000) and these indices lend
themselves to time-series analyses using data that have not been
adequately calibrated (e.g., Pickup et al., 1993). The approach behind
such indices is to adapt the index structure to suit the character-
istics of the reflectance data. The alternative approach presented in
this paper is to adjust the reflectance data so the cover-triangle
position is temporally fixed in red–NIR space prior to calculating the
NDVI.

Invariant-target analysis identifies the combined effect of sig-
nal uncertainties and has the advantage that multiple-source un-
certainties can be corrected without having to account for each
source individually. Another approach to correcting reflectance data,
one that is related to invariant-target analysis, is the end-member
analysis presented by Hall et al. (1995). Although developed to make
absolute corrections to reflectance data for measuring forest struc-
tural characteristics, Hall et al. (1995) proposed that the technique
could also be used to correct for uncertainties in satellite reflectance
data. End-member analysis requires independent measurements of
surface targets that are known to uniquely occupy each apex of the
cover triangle (the ‘end members’). End-member reflectances are
then used to correctly locate the entire cover triangle. In the next
section we present the new method for calibrating remotely sensed
red–NIR data that combines the invariant-target and end-member
concepts to enforce a stationary cover triangle. In forcing this, the
methodology produces data suitable for long-term time-series
analyses of land-surface characteristics by minimising the relative
temporal impacts of atmospheric and sensor effects on the resultant
biophysical measurements.

2. Methods and materials

2.1. Approach

Conceptually, the method for calibrating AVHRR reflectance data
presented here is an ‘invariant-cover-triangle’ approach. It utilises two
features of the cover triangle: the soil line and the dark point. The
latter represents the left-most extremity of the triangle where
absorption of red light by vegetation is at a maximum (see Section
2.3.2). Using these two features, we linearly transform the reflectance
data so the cover triangle is consistently located through time before
calculating the NDVI and fPAR. We assume that, in the absence of
atmospheric and sensor effects:

1. the NDVI is an appropriate index to use (i.e., the vegetation isolines
converge at the origin);

2. the soil line is stationary and lies along the 1:1 line (i.e., αs is 1 and
βs is 0); and

3. the dark point is stationary and is located at 2% ρR (i.e., dense
green canopies can absorb a maximum of 98% of incident red light,
see Section 2.3.2).

It is worth noting that this method presumes a global soil line and
therefore can only be applied to areas where a wide range of (un-
vegetated) soil types are encompassed in the imagery.

In this section we describe the AVHRR reflectance data used here
as a case study. We then describe the first step in this calibration
methodology which has three components: a) identify the position
of the observed soil line in red–NIR space; b) identify the position
of the observed dark point in red–NIR space; and c) correct the
reflectance data to account for the variability in these two features.
In the second step, the NDVI is calculated from the corrected
reflectances and converted to fPAR. Although it is very similar to the
NDVI, we prefer fPAR because it is a biophysical attribute that
directly links vegetation with surface energy and water fluxes (Asrar
et al., 1984). The results in Section 3 are presented using a similar
outline.

2.2. Data

Reflectance data from two AVHRR data products were used to
construct the longest complete monthly time-series for Australia as
practical; that is from July 1981 to current. The two data products are:
i) the Pathfinder AVHRR Land (PAL) Global Area Coverage (GAC) data;
and ii) the High Resolution Picture Transmission (HRPT) data. Data
specifications, including the pre-processing undertaken by NASA
(Kidwell, 1998) and CSIRO Marine and Atmospheric Research (King,
2003), are described in Table 2.

In the last 5 months of the PAL record, orbital drift of NOAA11
resulted in high Solar Zenith Angles (SZA). Consequently, data from
these months were removed from analyses. Additionally, data for



Fig. 2. Identification of the observed soil-line position. (a) is an example reflectance density plot, from December 2001, showing the location of the observed soil line. Note that pixel-
density contour intervals are non-linear: 2 [white], 5, 10, 20, 200, 800, 1300, and 3000 [darkest grey]. The profile in (b) is of cross-section J–K from (a) and shows the placement of the
soil line relative to the 20-pixel contour line. SV represents reflectance from sparse vegetation andW represents the water feature. (c) demonstrates the metrics used to describe the
position of the observed soil line, which is described by its slope, αs, and ρN-intercept, βs.
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June–August 1984, June–July 1988, and June–July 1993 were of low
quality (e.g., areas of saturated reflectance values and/or remnant
swathe boundaries) in south-eastern Australia and were masked out
(see Donohue et al., 2007b). The original HRPT dataset was missing
several months of data (September 1994–January 1995). An additional
14 monthly images (i.e., May–August 1993, April–September 1994,
Fig. 3. Graphical representation of the geometric transformation used to produce reflectan
the intercept between the soil line and the 1:1 line ([ρRs, ρNs]). (b) shows the data shifted s
to align the soil line with the 1:1 line. In (d) the data are shifted so that the soil-line–1:1
coordinates.
and May–August 2000) were entirely removed from the time-series
due to spurious reflectance values in the south of Australia related to
high SZA at the end of satellite operational lifespans. Both datasets
have had the CLAVR algorithm (Stowe et al., 1991) applied prior to
maximum value compositing in order to minimise the effect of clouds
on the compositing process. The original reflectance data (ρR, ρN) were
ce data corrected for soil-line variability. (a) is the original reflectance data and shows
o that the soil-line–1:1-line intercept is moved to the origin. In (c) the data are rotated
-line intercept ([ρRs′, ρNs′]) has the same relative position as in the original reflectance



Fig. 4. Graphical representation of the transformation used to produce reflectance data
corrected for dark-point variability. In (a) reflectance data corrected for soil-line
variability (ρR″, ρN″), showing the location of the dark point (ρRd″ ) and the minimum red
threshold (M). In (b), reflectances are shifted parallel to the soil line so that ρRd″ =M.
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used to calculate ‘original’ NDVI values (Vorig) for both the PAL and
HRPT datasets using Eq. (1).

2.3. Correcting for soil-line and dark-point variability

2.3.1. Identifying the soil line
To correct for variations in the position of the cover triangle, the

position of the soil line must be identified in an objective and
repeatable manner. The method used to identify the observed soil-
line position has three components. Firstly, an Australia-wide red–
NIR density plot was generated for each month for both PAL and
HRPT data (Fig. 2a).

Secondly, two features within each density plot were identified as
anchor points for the ends of the observed soil line (Fig. 2a). The bright
end of the soil line was anchored using the reflectance from dry salt
lakes (e.g., feature 3 in Fig. 1). This feature provides a reliable reference
point as it forms an easily identifiable, bare-soil feature quite distinct
from other parts of the cover triangle. Surface moisture is known to
alter reflectance from salt lakes (Mitchell et al., 1997) and for this
reason they are not favoured as invariant geographic features. How-
ever, the salt-lake feature in reflectance space is formed by the
reflectance from numerous dry salt lakes across Australia and is not
affected by changes in surface moisture of any one lake. The dark end
of the soil line was anchored using the top side of the water feature
(e.g., feature 4 in Fig. 1). Variability in surface moisture causes insta-
bility in the shape of the water feature, which forms the lower edge of
the cover triangle in the density plots. To avoid this soil-moisture-
induced variability, the dark end of the soil line was anchored by
aligning it against the 20-pixel contour line immediately above the
water feature. This particular contour linewas chosen as it is located at
the very sharp threshold that delineates the water feature from the
reflectance of sparse vegetation on moderately dark soils (Fig. 2b).
Therefore this contour's location in this part of the triangle represents
the reflectance from dry soils. Application of this method to other
regions would require the reassessment of which contour line lies
closest this threshold for each particular study area. These two
anchoring features were easily identified in the monthly ρR−ρN
density plots and provided a means for objectively and consistently
identifying the soil-line position.

Thirdly and lastly, metrics describing the location of the soil line,
now defined as a line that passes through the salt-lake feature and
tangent to the 20-pixel contour line, were determined from the ρR−ρN
density plots. These metrics, shown in Fig. 2c, include the soil-line
slope (αs) and ρN-intercept (βs).

2.3.2. Identifying the dark point
As for the soil line, correcting for variability in the position of the

dark point of the cover triangle required that the location of the
observed dark point be identified in a consistent manner. We identify
the dark point as the left-most extremity of the cover triangle and
describe it simply as a red coordinate (see Fig. 4a).

There is a physical limitation to how much red light can be ab-
sorbed by green leaves, which lies between 90 and 95% (Hume et al.,
2002; Jones, 1992). Due to the multiple scattering of light within
canopies, vegetation can absorb more red light than individual leaves.
We denote the threshold of minimum red reflectance from canopies
as M (%). Kaufman (1989) reported that ρR from forest canopies is
1–3% and from pastures 2–4% and suggested setting M to 2%; ac-
cordingly, we set M to 2% here.

2.3.3. Correcting for soil-line and dark-point variability
To correct for the variability in the cover-triangle position, the

original PAL and HRPT reflectance data were geometrically trans-
formed, firstly so that the soil line was aligned with the 1:1 line and,
secondly so that the dark point was 2% ρR for every month. This
procedure follows the two-dimensional conformal transformation
described by Wolf (1974), assuming no rescaling was necessary. Using
αs, and βs, we calculated the intercept between the soil line and the
1:1 line ([ρRs, ρNs]; Fig. 3a).

The ρR and ρN data were shifted so that [ρRs, ρNs] was located over
the origin (Fig. 3b):

qR⁎ ¼ qR � qRs ð2aÞ

qN⁎ ¼ qN � qNs: ð2bÞ

ρR⁎ and ρN⁎ were rotated to align the soil line with the 1:1 line
(Fig. 3c):

q VR ¼ qR⁎ cos Hð Þ � qN⁎ sin Hð Þ ð3aÞ

q VN ¼ qR⁎ sin Hð Þ þ qN⁎ cos Hð Þ ð3bÞ
where Θ is the difference between 45° and αs, with αs expressed in
degrees. The rotated reflectance data (ρR′, ρN′) were shifted back from
the origin so that [ρRs′, ρNs′] occupied the same relative position it had
in the original reflectances, producing reflectance data adjusted for
soil-line variability:

qWR ¼ q VR þ qRs ð4aÞ

qWN ¼ q VN þ qNs: ð4bÞ

Soil-line-adjusted NDVI (Vadj) was calculated from ρR″ and ρN″ . The
dark point [ρRd″ ] was identified as the left-most extremity of the cover
triangle plotted using the soil-line-adjusted reflectances (Fig. 4a).
Dark-point values were measured to the nearest 1%. The dark point
was anchored by shifting both ρR″ and ρN″ so that ρRd″ was moved to M,



2944 R.J. Donohue et al. / Remote Sensing of Environment 112 (2008) 2938–2949
which was set to 2% (Fig. 4d). This yielded reflectance data corrected
for both soil-line and dark-point variability (ρR− and ρN

− ):

q�R ¼ qWR þM � qWRd ð5aÞ
q�N ¼ qWN þM � qWRd: ð5bÞ

Note that ρR″d is present in both Eqs. (5a) and (5b) so that the data are
shifted along the soil line.

Corrected NDVI (Vcor) was calculated from ρR
− and ρN

− .

2.4. Conversion of NDVI to fPAR

A preliminary fPAR (Fpre) was calculated from the corrected NDVI
(Vcor) by linearly rescaling the NDVI using maximum and minimum
thresholds (Roderick et al., 1999):

Fpre ¼ Fx � Fnð Þ Vcor � Vnð Þ
Vx � Vn

þ Fn: ð6Þ

Fx and Fn are the maximum and minimum possible fPAR values and
were set to 0.95 and 0.0, respectively. Vx and Vn are the corresponding
Fig. 5. The effects of the calibrationprocess on calculatedNDVI and fPAR. Plots a–e show theAustra
(Vorig) calculated from the original reflectance data (ρR and ρN). In (b) is the NDVI (Vadj) calc
NDVI (Vcor) calculated from reflectances corrected for both soil-line and dark-point variabi
(Vcor). Lastly, (e) is the final fPAR (F) calculated from the preliminary fPAR (Fpre) with offsets
maximum and minimum NDVI thresholds, respectively. Vx represents
complete foliage cover where visible light absorption by canopy foliage
is at a maximum and Vn represents zero green vegetation cover (e.g.,
bare soil) where visible light absorption by vegetation is minimal. Fpre
was set to 0.95 when VcorNVx, and was set to 0.0 when VcorbVn.

Interim Biogeographic Regionalisation for Australia (IBRA) 5.1
(Environment Australia, 2000) regions were used to determine Vx and
Vn. Six IBRA regions with very dense vegetation cover at some time
throughout the year and six regions with minimal vegetation cover at
some time of the year were chosen, based on a priori knowledge and
interrogation of the NDVI database. We ensured that the ‘maximum’

regions included both native and agricultural vegetation and that the
‘minimum’ regions included both bright and dark soil backgrounds. A
spatially averaged Vcor time-series was created for each maximum and
minimum IBRA region. The highest (lowest) Vcor from each maximum
(minimum) IBRA time-series was identified and these six values were
averaged to produce one Vx (Vn) value for all Australia. This was done
separately for the PAL and HRPT datasets.

In general, in the 20-month period when the two datasets overlap
(Apr 1992–Apr 1993 and Sep 1993–Mar 1994), HRPT Fprewas lower than
lian-average PAL (black) andHRPT (grey) data infive stages of calibration. (a) shows the NDVI
ulated from reflectances corrected for soil-line variability (ρR″ and ρN″). (c) displays the
lity (ρR

− and ρN
− ). (d) shows the preliminary fPAR (Fpre) calculated from corrected NDVI

applied to PAL Fpre. The vertical dotted lines indicate satellite data acquisition periods.



Table 3
Comparison between the original NDVI and the final fPAR derived from the PAL and
HRPT datasets

Original NDVI (Vorig) Final fPAR (F)

PAL HRPT PAL HRPT

Overall meana 0.305 [0.290] 0.228 [0.217] 0.230 0.250
Mean seasonal amplitudea,b 0.113 [0.107] 0.068 [0.065] 0.132 0.100
Mean difference in overlap
periodc

0.100 [0.095] −0.001

Root mean square difference
in overlap periodc

0.103 [0.098] 0.027

As the NDVI and fPAR values used here have slightly different scales (0.0–1.0 and 0.0–
0.95, respectively), in order to allow direct comparison between these two variables
the original NDVI are also presented in fPAR-equivalent units (that is, rescaled by
multiplying by 0.95); these values are in square brackets.

a Calculated using the entire length of each dataset.
b The seasonal amplitude is the difference between the maximum and minimum

value in each calendar year.
c Differences are calculated by subtracting the Australian-average HRPT from the

Australian-average PAL for each month in the 20 month overlap period (Apr 1992–
Apr 1993 and Sep 1993–Mar 1994).
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PAL Fpre. Calculated globally (i.e., averaged over the whole continent),
the difference between the average PAL and HRPT Fpre in the overlap
period was 0.016 fPAR units. However, when calculated regionally (i.e.,
averaged per IBRA region, which range between 4×103 and
419×103 km2), the differences varied between −0.026 and 0.133 fPAR
units. Tominimise any remaining differences between the two datasets,
the difference between the two averages for the overlap period was
calculated for every PAL-equivalent pixel in the image extent (i.e., PAL
Fpre−HRPT Fpre). These ‘offset’ values were then subtracted from the PAL
Fpre on a per-pixel basis, giving the final fPAR (F):

for PAL data; F ¼ Fpre � of fset ð7aÞ

for HRPT data; F ¼ Fpre: ð7bÞ

3. Results

3.1. Original NDVI

The original, Australian-average monthly NDVI (Vorig) calculated
from the original reflectance data for both datasets is shown in Fig. 5a.
Fig. 6. Metrics describing the position of the observed soil line in ρR−ρN space. Metrics ar
(black) and HRPT (grey) datasets. The vertical dotted lines indicate satellite data acquisiti
There are no obvious satellite-specific characteristics evident in the
PAL Vorig time-series. According to Kaufmann et al. (2000), the cor-
rections applied to the PAL data have removed enough of the sensor
calibration variability that NDVI calculated from these data can be
used for long-term time-series analyses. In contrast to this, there are
satellite-specific characteristics present in the HRPT time-series, with
NOAA14 Vorig being slightly higher than that from NOAA11 or
NOAA16. This indicates that further sensor calibrations are required
prior to time-series analyses using HRPT Vorig. Comparison between
the datasets shows that the PAL Vorig is higher on average than that
from HRPT and has larger seasonal amplitudes (Table 3). The root
mean square difference (RMSD) between the two time-series’ in the
overlap period is 0.103 NDVI units (or 0.098 in fPAR-equivalent units).
These distinct characteristics stem from the different data specifica-
tions and processing histories of the two datasets (Table 2). In their
original form, it is clear that the PAL and HRPT Vorig are not equivalent
representations of vegetation cover and are unsuitable as co-inputs to
long-term time-series analyses.

3.2. Soil-line variability

The soil-line slope (αs) and intercept (βs) determined for each
month of the AVHRR time-series is presented in Fig. 6. For nearly every
month, αs is less than 1 and βs is between 0 and 4, indicating that the
observed soil line is typically being rotated clockwise, with most
movement occurring over bright targets. Fig. 6 also shows distinct
differences in the soil-line metrics between the PAL and HRPT data,
again demonstrating the inherent differences between the two data-
sets. Of particular interest is the contrast in the internal patterns. The
PAL slopes and intercepts form a generally seamless time-series across
three satellites whereas the HRPT data contain an abrupt change
between the slopes of NOAA14 and 16.

The seasonality in αs and βs indicates that the causes of this
variability are also seasonal, which points towards atmospheric effects
and/or SZA effects. According to Tanre et al. (1992) and Kaufman
(1989), water-vapour absorption effects are likely to be the most
significant atmospheric variables over sparsely vegetated surfaces.
Considering neither dataset had water-vapour corrections applied,
that atmospheric water-vapour content is highly seasonal and de-
creases measured ρN, and that much of Australia is sparsely vegetated,
water-vapour absorption is a possible cause of the variability in the
soil line in the original reflectance data.
e the soil-line slope (αs; plot a) and ρN-intercept (βs; plot b) determined for both PAL
on periods.



Fig. 7. Monthly position of the observed dark point. The PAL and HRPT dark-point coordinates are plotted in black and grey, respectively. The ρR−ρN contour plots were developed
using data that had been rounded to the nearest integer and therefore the dark-point values aremeasured to the nearest 1%. The vertical dotted lines indicate satellite data acquisition
periods.

Fig. 8. The average difference in the overlap period between preliminary fPAR calculated
from the PAL and HRPT datasets. The period of overlap is Apr 1992–Apr 1993 and Sep
1993–Mar 1994. The difference is calculated as PAL Fpre–HRPT Fpre and is calculated for
every 0.08°pixel. The 0th, 5th, 95th, and 100th percentiles were −0.400, −0.030, 0.112
and 0.563, respectively. Values are in units of fPAR.
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The satellite-specific characteristics in αs and βs also suggest that
some of the variability in the soil-line position is due to the effectiveness
of post-launch calibrations. Both Kaufmann et al. (2000) and Tanre et al.
(1992) report that the PAL calibrations are accurate and this is
confirmed—in a relative sense—in Fig. 6. In contrast, the calibrations
applied to theHRPT data have not been as effective and form one source
of variability in the soil line that is addressed by this calibration
methodology. The effect on the NDVI of removing soil-line variability
from the reflectance data can be seen in Fig. 5b. The differences
between the two datasets have been reduced and most of the satellite-
specific differences within the HRPT Vadj have been removed.

3.3. Dark-point variability

There is a strong contrast in the dark-point location between the
PAL and the HRPT data (Fig. 7). Corrections for molecular scattering
generally decrease measured ρR (O'Brien et al., 2000) and those
applied to the PAL data have produced a low and almost stationary
dark point, located generally at 1% ρR″. The HRPT data have not been
corrected for molecular scattering (Table 2) and consequently the dark
point is high and quite variable, containing a strong seasonal pattern.
This variability appears to be due to molecular scattering, which
increase measured ρR over densely vegetated targets. The spike bet-
ween 1991 and 1993 coincides with the Mount Pinatubo eruption
(Robock, 2000) which suggests that the dark-point corrections are
capturing some of the effects of tropospheric aerosol scattering. The
HRPT dark-point values (Fig. 7) have satellite-specific characteristics
stemming from the interplay between atmospheric and sensor
calibration effects (Kaufmann et al., 2000).

An implication of the sensitivity of the NDVI to variations in
reflectances (O'Brien et al., 2000, Roderick et al., 1996a) is that the
closer the cover triangle is to the origin, the more NDVI isolines are
traversed by any given fluctuation in reflectance (Fig. 1) and the
greater the resulting variability in the NDVI. As the ρRd″ values for the
PAL and the NOAA16 HRPT data are generally less than 2%, removal of
dark-point variability from these data has effectively moved the cover
triangle further away from the origin. This should have not only
lowered Vcor relative to Vadj but also dampened the amplitude of the
seasonal pattern in Vcor. Although subtle, these effects are present in
Fig. 5c. Conversely, ρRd″ values of the NOAA11 and 14 HRPT data were
already close to 2% and there is little discernable difference between
Vadj and Vcor values for these datasets at this continent-wide scale. The
dark-point corrections have brought the two datasets further into
agreement in the overlap period.

3.4. Conversion of NDVI to fPAR

The main effect of the conversion of Vcor to Fpre has been to amplify
the seasonal variation in the signal (Fig. 5d). The calculated minimum
and maximum NDVI thresholds, Vx and Vn, were 0.67 and 0.09 for the
PAL data and 0.64 and 0.09 for the HRPT, respectively. The technique of
converting Vcor to Fpre rescales each dataset between two absolute and
biologically meaningful thresholds and thereby standardises the data
range of the two datasets. As such, this is an important step in the
overall calibration methodology.

The calculated offset values (Fig. 8) indicate that differences still
exist between the two datasets. That such differences remain means
this methodology does not fully account for all non-target signal
variability within the data and/or that there remain inherent differ-
ences between the two datasets unrelated to atmospheric conditions
and calibration variability. The geographic patterns in the offset values
generally match patterns of landscape complexity (heterogeneity of
surface cover). One possible reason for this is that the combination of
imprecise geolocation and theMVC procedure biases NDVI values over
complex landscapes (Holben, 1986, Tan et al., 2006). As the PAL data
were created using the GAC sub-sampling procedure (Cracknell, 1997),
this bias is more pronounced in the PAL data.

The geolocation of the HRPT imagery used here is precise to within
half a pixel (E. King, pers. comm.). Even this level of precision causes any
given pixel to ‘wander’ around its true location in the landscape. If that
pixel wanders over an areawith relatively highNDVI then,whenMVC is
applied, the high NDVI value is preferentially selected as the composited
value. Consequently, over boundaries between high and low NDVI
targets, high NDVI values effectively spread out into the adjacent low



Fig. 9. Comparison of the original NDVI and the final fPAR for three IBRA regions. Plots a–c are the Australian Alps (8×103 km2), the Riverina (96×103 km2), and the Murchison
(281×103 km2) bioregions, respectively. Each plot shows a map of the IBRA region (left), the regionally averaged, monthly original NDVI (Vorig; top time-series in each plot) and final
fPAR (F; bottom time-series in each) for both PAL (black line) and HRPT (grey line) data. The grey dotted lines indicate satellite data acquisition periods.
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NDVI areas (Holben,1986). InGAC-sub-sampleddata, the average of four
HRPTpixels (~1 km2each) is used to represent thevalueof oneGACpixel
(~16 km2). Even slight wanderings in the four-pixel averages caused by
geolocation errors can alter the value of entire GAC cells. Further,
resampling of the averaged HRPT values to the GAC grid can exacerbate
the wandering effect of the original HRPT cells (King, 2003). This means
that the effective spatial footprint of a high–low NDVI boundary is
greater in GAC imagery than in the original HRPT imagery. The overall
effect is that, with typical geolocation errors, maximum-value-compos-
ited PALNDVIwill tend to behigher than the equivalentHRPTNDVI over
landscapes containing discontinuities between dense and sparse (or no)
vegetation.

After the offset was applied, the final Australian-averaged fPAR (F)
show extremely good agreement between the PAL and HRPT datasets
(Fig. 5e and Table 3). The overall means and seasonal amplitudes are
comparable and the RMSD in the overlap period is 0.027 fPAR units—
an improvement from the original 0.098—a difference which is now
only slightly greater than the best possible precision of AVHRR-
derived NDVI (Roderick et al., 1996a), which is approximately 0.02.
This is a pleasing result considering the inherent differences in the
original data specifications (Table 2). There are no longer obvious
differences between the two datasets nor between satellite periods
within either dataset. The same conclusions are made when exa-
mining results at regional scales (Fig. 9) meaning that, even though
the method requires the analysis area to be large enough to encom-
pass the full range of soil types, the final fPAR can be applied at both
small and large scales. It can be seen from Fig. 9 that the methodology
is effective in regions with high vegetation cover (Fig. 9a), with strong
seasonal cycles in cover (Fig. 9b), and with low and sporadic ve-
getation cover (Fig. 9c). The effects of vegetation disturbance (e.g., the
widespread fires of January 2003 in southeast Australia; Fig. 9a) and of
climate variability (e.g., the El Niño-related droughts of 1982/83 and
2002/03 in eastern Australia; Fig. 9b) are preserved in the final fPAR
data. The invariant-cover-triangle method has produced, from two
distinct datasets, one essentially equivalent dataset suitable for use as
a single input in long-term time-series analyses of vegetation.

4. Discussion and conclusion

We demonstrated the invariant-cover-triangle calibration method
using, as a case study, two distinct AVHRR datasets. Results indicate
that the methodology is robust and effective when applied to AVHRR
data that have had different degrees of corrections applied—that is,
atmospheric corrections and sensor calibrations. We expect the me-
thodology to be applicable to red–NIR reflectance data acquired from
any one sensor, regardless of which corrections have been applied,
whether none, partial, or full atmospheric corrections, and regardless
of the accuracy of post-launch calibrations. However, due to the va-
riance in spectral bandwidths of different sensors, this method cannot
be expected to effectively harmonise red–NIR reflectances acquired
from different sensors, unless a spectral translation is performed (e.g.,
Yoshioka et al., 2003) prior to the invariant-cover-triangle calibration.
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The advantage of the approach we have outlined in this paper is that
data with distinctly different correction histories can be rendered
approximately equivalent and combined for the purposes of long-
term time-series analyses.

One of the assumptions within this calibrationmethodology is that
two features of the cover triangle—the soil line and the dark point—are
temporally invariant in red–NIR reflectance space. Enforcing this
stationarity therefore assumes an absence of trends in the spectral
properties of bare soils and of dark, dense foliage across the study area
(note that this is different from assuming the reflectance from these
targets is constant). The difference between these assumptions in this
invariant-cover-triangle approach and those inherent within tradi-
tional invariant-target approaches is significant. In the latter, reflec-
tance from specific geographic targets and land-cover types are
assumed constant whereas in the former all geographic locations and
cover types are free from this constraint. In fact, the calibrated Aus-
tralian AVHRR data used as a case study in this paper indicate that
deserts and rainforests (which are commonly used invariant geo-
graphic targets) have all generally experienced long-term changes in
fPAR over the analysis period (Donohue et al., 2007b; Schmidt et al.
(2008) report similar results). The freedom of the cover-triangle
approach from assumptions about ground target stability is a
significant advantage when analysing long-term vegetation changes.

The invariant cover-triangle methodology performs a relative
calibration and is designed to produce consistent, long-term vegeta-
tion information. It was not designed as a correction procedure per se
and so doesn't quantify, or remove in an absolute sense, non-target
signal variability. We haven't performed an assessment of the me-
thod's effectiveness in correcting for these uncertainties (as it is
outside the scope of this paper) and we can only speculate about
which are being removed. Themethodology takes a ‘lumped’ approach,
in that it removes the continentally averaged effects of scattering and
absorption and of viewing angle variations. As such, it doesn't address
the spatial variability in these effects. The results indicate that inter-
sensor calibration discrepancies have been removed (Figs. 6 and 7). It
seems reasonable, then, that sensor drift effects should also have been
removed, although there is limited evidence of time-dependent trends
in the soil-line and dark-point metrics (Figs. 6 and 7). We are confident
that the dark-point corrections mimic Rayleigh corrections and are
therefore removing much of the effect of molecular scattering (Fig. 7).
The results suggest that the dark-point corrections are also removing
some of the tropospheric aerosol scattering effects (Fig. 7) although
evidence for this is less convincing. Finally, it is difficult to make
conclusions from the results about the effectiveness of these corrections
in removing water-vapour absorption, aerosol scattering, and viewing
angle effects. Regardless, this technique has value because it uses two
absolute and biologically meaningful reflectance features to remove the
temporal effects of observation errors evident between each sensor in
the time-series.

The example presented here used continental Australia as the study
area, which spans 45° of longitude (110° E to 155° E) and 35° latitude
(10° S to 45° S). We expect the invariant-cover-triangle method to be
applicable to any study area that encompasses a sufficiently wide range
of (unvegetated) soil types and that contains sufficient dark, dense
vegetation cover so that both the soil line and dark point are identifiable
in each image of the time-series. How large a study area must be to
include these features depends on the spatial resolution of the sensor,
the heterogeneity of cover types, and the range in the timing of growing
seasons of vegetation within the imagery. In the absence of dry salt
lakes within a study area, some other surface feature that is bright,
spectrally invariant andwhich reflects approximately equal proportions
of ρR and ρN (such as snow or water glint or perhaps concrete) must be
present so that the soil line can be anchored consistently through time.
The 20-pixel contour line chosen here to anchor the dark end of the soil
line may not be the appropriate contour to use in other areas; an
alternative region-specific value should be identified in each study.
SettingM as 2% should be widely applicable, however the soil-line and
dark-point metrics are specific to each case study.

The invariant-cover-triangle method lends itself to use in opera-
tional environments as it is simple, quick to implement (only requiring
that an operator select the soil line and dark point), and does not
require additional measured or modelled input data. The methodol-
ogy can be further developed to be automatically implemented if the
tasks of identifying the soil line and the dark point are automated,
taking a similar approach to that of Fox et al. (2004). If AVHRR com-
posite reflectance data are available in near-real-time, the invariant-
cover-triangle methodology can be used for real-time applications
since each new dataset can be immediately processed without the
need for re-processing of the entire time-series or the need to wait for
the publication of post-launch calibration coefficients.
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