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A microscopic mean-field description of heavy ions fusion is performed in the framework
of the Time-Dependent Hartree-Fock (TDHF) theory using a Skyrme interaction with the
SLy4d parametrization. A good agreement with experiments is obtained on the position
of the fusion barriers for various total masses, mass asymmetries and deformations. The
excitation function of the 16O+208Pb is overestimated by about 16% above the barrier.
The restriction to an independent particles state in the mean-field dynamics prevents
the description of sub-barrier fusion. Effect of transfer on fusion is discussed.

1. Introduction

Description of nuclear reactions is very challenging, especially at energies around

the fusion barrier generated by the competition between Coulomb and nuclear in-

teractions. It has been established that the structure of the collision partners may

affect strongly the reaction mechanisms in this energy domain, as, for instance, the

fusion cross-sections (for a review, see e.g. Ref. 1).

Upcoming exotic beams facilities at energies of a few MeV/u like SPIRAL2

will allow studies of the interplay between reaction mechanisms and exotic nuclear

structures such as haloes, neutron skins, high isospins... It is therefore recommended

to treat both structure and dynamics within the same formalism. This is the case

of fully microscopic approaches such as the Time-Dependent Hartree-Fock (TDHF)

theory proposed by P. A. M. Dirac in 1930.2 This time dependent version of the

well known Hartree-Fock (HF) theory gives a self-consistent mean-field description

of nuclear dynamics.3,4 The success of the first HF calculations based on the Skyrme

interaction5,6 led to tremendous activities to describe nuclear structure within mean-

field based approaches (see Ref. 7 for a review).

Early TDHF calculations has been done with the seek for a description of the dy-

namics of nuclei as good as their static properties.8–16 They used various symmetries

and simplified Skyrme interactions to reduce the computational time. The increase
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of computational power allowed realistic TDHF calculations of nuclear collisions in

3 dimensions with full Skyrme interactions in the last ten years.17–23

In this paper, we present a TDHF study of nuclear fusion. In a first part, we

recall the formalism and detail the calculation. In a second part, we calculate fusion

barriers for several systems with various total masses and mass asymmetries and

compare them to experimental data. We also consider the case where one of the

collision partners is prolately deformed. Finally, we calculate the excitation func-

tion for the total fusion cross section of the system 16O+208Pb and compare to

experiments before to conclude.

2. The Time-Dependent Hartree-Fock Approach

2.1. Formalism

Let us first recall some aspects of the TDHF theory. In a non relativistic microscopic

approach, the system is described by a N-particles state |ψ〉 which is solution of the

Schroedinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 (1)

with the microscopic Hamiltoniana

Ĥ =

N
∑

i=1

p̂(i)
2

2m
+

N
∑

i>j=1

v̂(i, j). (2)

The state |ψ〉 contains all the information on the system, which is more than what we

really need for a good description of the dynamics. We often need only expectation

values of one-body observables, such as the position of the fragments, their shapes

and particle numbers. These quantities are determined from the one-body density

matrix ρ with elements ρij = 〈ψ|â†j âi|ψ〉. The expectation value of a one-body

observable F̂ =
∑

ij fij â
†
i âj is then given by 〈ψ|F̂ |ψ〉 = Tr (ρf) .

The first step toward the TDHF theory is to restrict the description to one-body

observables, and to seek for an equation giving the evolution of ρ. Starting from

Eq. (1) and using the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-

chy,24–26 we can show that the one-body density matrix follows27

i ~
∂

∂t
ρ = [ h[ρ] , ρ ] + Tr2 [ v(1, 2) , C(1, 2) ] . (3)

where h[ρ] is the HF single-particle Hamiltonian with matrix elements hij =

〈i| ĥ[ρ] |j〉 = δ
δρji

〈ψ|Ĥ |ψ〉 and C is the correlated part of the two-body density

matrix.

Eq. (3) is exact but has two unknown quantities: ρ and C. The second step

toward the TDHF equation is to neglect the second term of the right hand side in

Eq. (3). This can be done in two alternative ways:

aWe consider only two-body interactions.
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(i) The correlation C vanishes if we impose |ψ〉 to be an independent particles

state at any time. The variational principle δ
[

∫

dt 〈ψ|Ĥ − i~ ∂
∂t
|ψ〉

]

= 0, which

is equivalent to Eq. (1), is then solved in the subspace of Slater determinants.

(ii) The truncation of the BBGKY hierarchy can also be done by neglecting the

residual interaction V̂res = Ĥ − ∑N
i=1 ĥ[ρ](i). This is a mean-field approx-

imation because the Hamiltonian is approximated by a one-body operator

Ĥ ' ∑

ij hij â
†
i âj . In this case, a system described by a Slater determinant

at an initial time will be an independent particles state at any time.

We finally get the TDHF equation i~ ∂
∂t
ρ = [h[ρ] , ρ ] where ρ is now the one-body

density matrix of an independent particles state. The operator associated to ρ acts

in the Hilbert space of single-particle states. It is written ρ̂ =
∑N

i=1 |ϕi〉〈ϕi| where

|ϕi〉 denotes an occupied single-particle state.

The TDHF theory neglects the pairing correlations which are contained in C.

In fact, TDHF describes the evolution of occupied single-particle wave functions in

the mean field generated by all the particles and assures an exact treatment of the

Pauli principle during the dynamics.

2.2. Practical Aspects

The advantage of TDHF is that it treats static properties and dynamics of nuclei

within the same formalism and the same interaction. The initial state is obtained

through static HF calculations which reproduce well nuclear binding energies and

deformations. TDHF can be used in two ways for nuclear reactions:

• A single nucleus is evolved in an external field,8 simulating for instance the

Coulomb field of the collision partner.28

• The evolution of two nuclei, initially with a zero overlap, is represented by a

single Slater determinant.9,16

The first case is well suited for inelastic scattering, like Coulomb excitation of vi-

brational and rotational states. The second case is used for more violent collisions

like fusion reactions. In the latter, the lack of a collision term might be a drawback.

At low energy, however, fusion is driven by one-body dissipation because the Pauli

blocking prevents nucleon-nucleon collisions. Fusion occurs by transferring relative

motion into internal excitation via one-body mechanisms well treated by TDHF.

Another important advantage of TDHF for near-barrier reaction studies is that

it contains all types of couplings between the relative motion and internal degrees

of freedom whereas in coupled channels calculations one has to include them explic-

itly according to physical intuition. The symmetries corresponding to the internal

degrees of freedom of interest have to be relaxed in TDHF. However, it gives only

classical trajectories for the time-evolution and expectation values of one-body ob-

servables. In particular, it does not include tunneling of the global wave function.
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We use the TDHF3D code built by P. Bonche and coworkers with the SLy4d

Skyrme parametrization17 which is a variant of the SLy4 one29 specifically designed

for TDHF calculations.b This code has a plane of symmetry (the collision plane).

It uses the Skyrme energy functional expressed in Eq. (A.2) of Ref. 30 where the

tensor coupling between spin and gradient has been neglected. The step size of the

network is 0.8 fm and the step time 0.45 fm/c.

A TDHF calculation of two colliding nuclei is performed assuming that the two

collision partners are initially at a distance D0 in their HF ground state. This dis-

tance has to be big enough to allow Coulomb excitation in the entrance channel (po-

larization, vibration, rotation...). This initial distance is chosen to be D0 = 44.8 fm.

We assume that before to reach this distance, the nuclei followed a Rutherford

trajectory, which determines their initial velocities v1 and v2. The Galilean trans-

formation ρ̂i(t = 0) = ei m vi·r̂ ρ̂HFi
e−i mvi·r̂ applied on the HF density matrix of

the nucleus i (i = 1 or 2) put it into motion with the velocity vi.
31

3. Fusion Barriers

Let us consider the simple case of fusion barriers. They are classically defined as the

energy threshold above which fusion occurs for a head-on collision. Experimentally,

the average position of the barrier can be approximated by the centroid of the

so-called barrier distribution DB(E) = d2

dE2
(σfus(E) E) where σfus is the fusion

cross section.32 In the special case of a single barrier for a classical system, the

barrier distribution is a Dirac distribution DB ∼ δ(E − B), whereas a width is

generated by tunneling for a quantum system. Several barriers may be generated

by the coupling between internal degrees of freedom and the relative motion.1

To determine the fusion barrier from TDHF, we consider head-on collisions at

various energies. The barrier is then located between the highest energy for which

there is no fusion and the lowest one for which fusion occurs. The average barrier

is first studied for spherical nuclei. Then the case of deformed nuclei is considered.

3.1. Spherical Nuclei

Fig. 1 shows the density plot for a 16O+208Pb central collision at a center of mass

energy E = 74.44 MeV. After a neck formation, the system separates into two frag-

ments. Fig. 2 shows the same reaction at E = 74.45 MeV. We see that adding 10 keV

is enough to fuse. We deduce the fusion barrier V TDHF
B = 74.445±0.005 MeV. This

value is in excellent agreement with the experimental one V exp.
B ' 74.5 MeV.33 It is

interesting to note that, if we assume frozen HF densities of the collision partners

obtained with the same interaction, we get a barrier V frozen
B = 76.55 MeV at a

radius Rfrozen
B = 11.73 fm. These values are close to the Bass barrier V Bass

B =

bThe calculations are performed in the laboratory frame and not in the intrinsic frame. It is then
necessary to remove the center of mass correction in the fitting procedure of the interaction and
in the initial HF calculations of the collision partners. The “d” in SLy4d stands for dynamics.
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77.10 MeV at RBass
B = 11.42 fm,34,35 but overestimate the experimental fusion

barrier. We conclude that the TDHF calculations contain dynamical effects that re-

duce the barrier by ∼ 2 MeV as compared to the frozen approximation. It has been

suggested that transfer may affect the barrier for this system.33 Indeed, we see in

Fig. 2 that the two fragments are linked by a neck and form a di-nuclear system

during ∼ 400 fm/c. It is enough time for the nuclei to transfer nucleons, leading to

a dynamical evolution of the barrier.

To get a deeper insight into this transfer preceding fusion, we focus on the

case just below the barrier (Fig. 1). Here, almost two protons and no neutron, in

average, have been transfered from the 16O to the 208Pb. The two-protons transfer

from the light to the heavy nucleus is then expected to be an important channel

at the barrier. This is consistent with experimental observations of relatively high

Carbon production cross sections, of the same order of the Nitrogen ones, in the

exit channel of 16O+208Pb at the barrier.36,37

Fig. 1. Densities associated to a 16O+208Pb central collision at a center of mass energy E =
74.44 MeV. The surface corresponds to an isodensity at half the saturation density. Each plot is
separated by 135 fm/c.

Fig. 2. Same as Fig. 1 at E = 74.45 MeV.

Finally, Fig. 3 shows a comparison between experimental fusion barriers and

those from TDHF calculations for systems with various total masses and mass asym-

metries. The lowest barrier is for 40Ca+40Ca and the highest one for 48Ti+208Pb.

The agreement is of the same order than with the Bass barrier.34,35 Remembering

that TDHF has no adjustable parameter on reaction mechanisms, we conclude that

one can use it for fusion barriers prediction with confidence.

3.2. Effect of Deformation on Fusion

We now consider collisions of a spherical nucleus on a deformed one. In such a case,

the barrier depends on the orientation of the deformed nucleus at the touching

point, leading to a wider barrier distribution than the single barrier case.1
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Fig. 3. Theoretical fusion barriers from TDHF calculations (circles) and the Bass barriers (stars)
as function of the experimental values (from barrier distributions centroid).

3.2.1. Heavy Deformed + Light Spherical Nuclei

Fig. 4 shows barrier distributions for collisions with a light spherical projectile (16O)

on heavy prolately deformed targets 154Sm (left) and 238U (right).38,39 Their width

are ∼ 7 to 10 MeV and cannot be explained by tunneling alone. The latter adds a

width of only 2 to 3 MeV.32 Such barrier distributions are usually well reproduced

in the framework of coupled channel calculations.1 In addition, microscopic theories

like TDHF can help to understand the physics process generating these couplings.

The barriers predicted by the TDHF calculations for these systems are also

shown (arrows) on Fig. 4 for two extreme configurations of central collisions where

the collision and deformation axis are either parallel or perpendicular. In the parallel

configuration, the Coulomb repulsion is smaller and so is the resulting barrier. All

the intermediate orientations at the touching point give fusion barriers between the

parallel and perpendicular configurations ones. In addition to a good reproduction

of the centroid, the TDHF calculations also reproduce the width of the barrier

distributions generated by a static deformation of the target without any adjustment

of parameters.

The shape of these distributions is due to a prolate deformation of the target:

the distribution is more peaked at higher energies. The configuration where the

collision and deformation axis are parallel corresponds to only one possible orienta-

tion, whereas the perpendicular configuration can be reached by any orientation for

which the deformation axis is contained in the plane perpendicular to the collision

axis. If one assumes an isotropic distribution of the orientations at the touching

point, which is a reasonable approximation when the spherical nucleus is light and
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Fig. 4. Experimental barrier distributions for 16O+154Sm (left) and 16O+238U (right). The ar-
rows indicate the barriers obtained from TDHF calculations for two extreme configurations where
the collision and deformation axis are parallel (lowest barriers) and perpendicular (highest barri-
ers).

the deformed one heavy,28 then the perpendicular configuration is more probable

than the parallel one and the barrier distribution is peaked at high energies. One

gets the opposite with an oblate nucleus instead of a prolate one.

3.2.2. Light Deformed + Heavy Spherical Nuclei

The case of a light deformed projectile on a heavy spherical target has been in-

vestigated theoretically in Ref. 28 both within the TDHF and the coupled channel

frameworks with the code CCFULL.40 For such systems, the barrier distribution

gets affected due to reorientation of the deformed nucleus in the Coulomb field of

the target. This breaks the isotropy of the orientation axis distribution and results

to a fusion hindrance at low energies. Experimental evidences of this effect have

been reported recently.41 The reorientation is proportional to Aspherical/Atotal and

then does not affect the systems studied in Fig. 4.c

4. Excitation Function of 16O+208Pb

We now focus on fusion cross sections given by

σfus(E) =
π~

2

2µE

∞
∑

l=0

(2l + 1) Pfus(E, l) (4)

where µ is the reduced mass of the system and Pfus(E, l) is the fusion probability

at a center of mass energy E and an angular momentum
√

l(l+ 1)~. The restriction

to an independent particles state, as in TDHF, leads to Pfus = 1 for l ≤ lmax and

cThough it is a Coulomb effect, the reorientation does not depend on the charges of the nuclei but
on their masses as we can see in Eq. (5) of Ref. 28.
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0 for l > lmax. We then get the so-called “quantum sharp cut-off formula”42

σfus(E) =
π~

2

2µE
(lmax + 1)2. (5)

To avoid discontinuities introduced by the cut-off and the integer nature of lmax, we

approximate (lmax + 1)~ by its classical equivalent Lc. The latter is the threshold

of the classical angular momentum L =
√

2µE b, b being the impact parameter,

below which fusion occurs.35 This approximation is justified by the fact that both

(lmax + 1)2 and L2
c/~

2 are greater than lmax(lmax + 1) and smaller than (lmax

+1)(lmax + 2). We finally get the classical expression for the fusion cross section

σfus(E) ' πL2
c/2µE.

Figure 5 shows the excitation function obtained for the 16O+208Pb system in

comparison to experimental data.33 There is a good agreement above the barrier,

though the fusion cross sections are overestimated by about 16 %. However, the

fusion cross section vanishes below the barrier, following a classical behavior. This

drawback of TDHF is well known and is due to the restriction to a single independent

particles state. Indeed, to get a fusion probability between 0 and 1, we need at least

two Slater determinants: one describing the two well separated fragments after the

collision when fusion does not occur and one describing the fused system. It is

necessary to go beyond TDHF to treat a sum of Slater determinants and then to

describe sub-barrier fusion due to tunneling effects.
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Fig. 5. Experimental fusion excitation function (stars) for 16O+208Pb. The lines denote the upper
and lower limits for the fusion cross sections obtained from TDHF calculations.

5. Conclusions and Perspectives

We presented some applications of the Time-Dependent Hartree-Fock theory to

nuclear fusion. The only phenomenological input is the set of parameters of the
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SLy4d force which have not been adjusted on any reaction mechanism like cross

sections or fusion barriers for instance. Despite this, the agreement between the

TDHF calculations and the experimental fusion barriers is excellent for a wide

range of projectiles and targets. The width of fusion barrier distributions generated

by a static deformation of the target is also well reproduced.

The TDHF calculations overestimate the fusion cross sections for the system
16O+208Pb above the barrier by about 16%. Below the barrier, the fusion cross

section vanishes in TDHF calculations. The sub-barrier fusion due to quantum

tunneling of the many-body wave function is not present in TDHF. This is due to

the restriction to a single independent particles state.

Though the fusion cross section has a classical behavior, the quantum nature

of the single-particle wave functions is well treated. Thus, it would be interesting

to study the transfer of nucleons from one nucleus to the other within TDHF.d An

illustration of such transfer is seen in the TDHF calculation of the 16O+208Pb just

below the barrier.
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