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Abstract: We study the properties of the chaotic wave fields generated in the frame of the
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reveal the reason for the skewed profile of the exact rogue wave solutions.
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Studies of rogue waves in recent years are becoming extensive [1-3]. It is an interesting object in science as re-
searchers want to understand the physics behind the phenomenon [4]. The field also provides sufficient material for
mathematicians as rogue waves can be studied using rigorous analytical tools [5—7]. Moreover, the concept of rogue
waves is presently emerging in optics [8—10]. The research naturally started with the simplest nonlinear mathematical
model which is the nonlinear Schrédinger equation (NLSE) [11]. This approach allowed us to find unexpected solu-
tions even for this well known equation [12, 13]. However, the NLSE has limitations related to the approximations
used in its derivation.

The Sasa-Satsuma equation (SSE) is one of the known integrable extensions of the NLSE. It contains the most essen-
tial contributions often found in important physical applications, such as pulse propagation in optical fibers. Namely, it
contains the terms describing third order dispersion, self-frequency shift and self-steepening in fixed proportions that
make it integrable. According to the original work of Sasa and Satsuma [14], the equation can be written in the form:
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Here, the arbitrary real parameter € scales the integrable perturbations of the NLSE. When € = 0, Eq. (1) reduces to
the standard NLSE which has only the terms describing lowest order dispersion and self-phase modulation.

Analytical solutions for rogue waves are always located on a plane wave background. The latter serves as the source
from which the emerging rogue wave acquires its energy. The Sasa-Satsuma equation (1) admits the family of plane-
wave solutions given by
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where the amplitude parameter c, the wavenumber, k, and the frequency, m, are coupled through the dispersion relation
® = k> 4+ k*> — 6¢%k — 2¢%. The solution has two free independent parameters, ¢ and k. Despite this solution looks
singular with respect to the equation parameter €, we can always adjust ¢, k and @ to be of the order of €. When taking
the NLSE limit, £ — 0, we can take ¢ and k to be directly proportional to & while taking @ ~ €2 to eliminate the
singularity.

Equation (1) is normalized. For consistency, we consider its normalized solutions. Thus, without restricting gener-
ality, we shall deal with plane waves with the amplitude set to one. This means that we can choose the parameter ¢
to be equal to 2¢€. More specifically, c = 1 and € = 0.5. This is the choice that we keep in all numerical simulations
below. This, in turn, means that the only free parameter of the plane wave solution is k.

One important conclusion from the expression for the plane wave is that the group velocity is different from the
phase velocity. The group velocity calculated from Eq.(2) is:
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As we can see from here, the group velocity is negative at small k and becomes positive above k ~= 1.12.

The exact rogue wave solution of the SSE has been presented for the first time in the work [15]. The solution is
cumbersome and will not be reproduced here. Remarkably, it contains the same two free parameters (k,c) as the plane
wave on which it resides. The third one is €, which is the parameter of the equation. An example of rogue wave solution
for k = 0.25 is shown in Figure 1(a). The solution has a double peak and is skewed to the left.

We have numerically solved the SSE, taking as initial condition the plane-wave solution (2) perturbed with white
noise of small amplitude. Modulation instability seeded by this noise, creates a chaotic wave field that starts from
this initial plane-wave. False color plot of a wave field generated this way is shown in Fig.1(b). The figure shows the
field amplitude vs x and 7. Remarkably, the chaotic wave field does have rogue waves. One of them is encircled by an
ellipse. It is worth noticing that the filaments that appear in this plot move with a group velocity that is approximately
given by Eq.(3). Importantly enough, the exact rogue wave solution shown in Fig.1(a) has the same velocity.
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Fig. 1. (a) False color plot of a rogue wave of the SSE with parameters c = 1, € = 0.5, and k = 0.25.
(b) Chaotic wave field created by the SSE for the same parameters. (c) Probability density function
calculated using the data in (b). The peak amplitude of the rogue wave solution presented in (a) is
shown in (c) by the dotted vertical line.

An example of probability density function (PDF) constructed for this chaotic wave field is shown in Fig.1(c). The
red curve shows the probability, in logarithmic scale, of having a wave with a given peak amplitude. The amplitude of
the exact rogue wave solution for the same value of k is shown in the plot by the vertical dotted line. As we can see, a
significant number of the field maxima lies above this line.
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