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Abstract—In this paper we introduce a network synthesis
theorem for linear dynamical quantum stochastic systems
that are encountered in linear quantum optics and in phe-
nomenological models of quantum linear circuits. In particular,
such a theorem will be important in the physical realization
of coherent/fully quantum linear stochastic controllers for
quantum control. We show how general linear dynamical
quantum stochastic systems can be systematically constructed
by assembling an appropriate interconnection of one degree
of freedom open quantum harmonic oscillators and, in the
quantum optics setting, provide an explicit illustrative example
of the systematic synthesis of a two degrees of freedom open
quantum harmonic oscillator.

I. INTRODUCTION
In recent years there has been increased interest in ex-

ploiting quantum mechanical systems as a basis for new
quantum technologies, giving birth to the field of quantum
information science. To develop quantum technologies, it
has been recognized that quantum control systems will be
very important for tasks such as manipulating a quantum
mechanical system to perform a desired function or to protect
it from external disturbances [1].
In particular, more recently there have been theoretical

and experimental investigations of fully quantum and mixed
quantum-classical linear controllers that are able to manipu-
late quantum signals [2]–[7]. The line of research in [3]–[6]
has raised the important open problem of how one would
systematically build or implement a general, arbitrarily com-
plex, linear quantum controller, at least approximately, from
basic quantum devices, such as quantum optical devices. This
problem can be viewed as a quantum analogue of the syn-
thesis problem of classical electrical networks that asks the
question of how to build arbitrarily complex linear electrical
circuits from elementary passive and active electrical com-
ponents such as resistors, capacitors, inductors, voltage and
current sources. Therefore the synthesis problem is not only
relevant for the construction of linear quantum stochastic
controllers, but also fundamental to the development of linear
quantum circuit theory that arises, for example, in quantum
optics and when working with phenomenological models of
quantum RLC circuits such as described in [8].
The main result of this paper is a new synthesis theorem

that allows systematic construction of arbitrarily complex
linear quantum stochastic systems based around a cascade
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connection of one degree of freedom open quantum harmonic
oscillators as basic building blocks. An explicit yet simple
example that illustrates the application of the theorem to
the synthesis of a two degrees of freedom open quantum
harmonic oscillator is provided.

II. LINEAR QUANTUM STOCHASTIC SYSTEMS
In previous works [3], [9] quantum linear stochastic sys-

tems are essentially considered as open quantum harmonic
oscillators. Here we shall consider a more general class of
linear quantum stochastic systems consisting of the cascade
of a static passive optical network with an open quantum
harmonic oscillator. However, in this paper we restrict our
attention to synthesis of linear systems with purely quantum
dynamics, whereas the earlier work [3] considers a more gen-
eral scenario where a mixture of both quantum and classical
dynamics are allowed (via the concept of an augmentation
of a quantum linear stochastic system). The class of mixed
classical and quantum controllers will be considered in a
separate work. To this end, let us first recall the definition
of an open quantum harmonic oscillator (for further details,
see [3], [4], [9]).
In this paper we shall use the following notations: i =√
−1, ∗ will denote the adjoint of a linear operator as well as

the conjugate of a complex number, if A = [ajk] is a matrix
of linear operators or complex numbers then A# = [a∗

jk],
and A† is defined as A† = (A#)T , where T denotes matrix
transposition. We also define, #{A} = (A + A#)/2 and
${A} = (A − A#)/2i and denote the identity matrix by I
whenever its size can be inferred from context and use In×n

to denote an n × n identity matrix.
Let q1, p1, q2, p2, . . . , qn, pn be the canonical position and

momentum operators, satisfying the canonical commutation
relations [qj , pk] = 2iδjk, [qj , qk] = 0, [pj , pk] = 0, of a
quantum harmonic oscillator with a quadratic Hamiltonian
H = 1

2xT
0 Rx0 (x0 = (q1, p1, . . . , qn, pn)T ), where R =

RT ∈ Rn×n. The integer n will be referred to as the degrees
of freedom of the oscillator. Let A1(t), A2(t), . . . , Am(t) be
bosonic vacuum quantum noise fields satisfying the quan-
tum Ito multiplication rules [10], [11]: dAjdA∗

k = δjkdt
and dAjdAk = 0 ∀j, k = 1, . . . , m, where δjk is the
Kronecker delta which takes on the value 0 unless j = k
in which case it takes on the value 1. Formally speaking,
the fields A1(t), A2(t), . . . , Am(t) are, respectively, inte-
grated versions of singular quantum white noise processes
η1(t), η2(t), . . . , ηm(t) satisfying the singular commutation
relations : [ηj(t), ηk(t′)∗] = δjkδ(t− t′), where δ(t) denotes
the Dirac delta function, ∀j, k and ∀t, t′ ≥ 0. An open
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quantum harmonic oscillator, or simply an open oscillator,
is defined as a quantum harmonic oscillator coupled to A(t)
via the formal time-varying idealized interaction Hamiltonian
[12, Chapter 11]

HInt(t) = i(LT η(t)∗ − L†η(t)),

where L is a linear coupling operator given by L = Kx0

with K ∈ Cm×n and η(t) = (η1(t), η2(t), . . . , ηm(t))T .
Although the Hamiltonian is formal since the ηj(t)’s are
singular quantum white noise processes, it can be given a
rigorous interpretation in terms of Markov limits (e.g., [13],
[12, Chapter 11]). The evolution of the open oscillator is
then governed by the unitary process {U(t)}t≥0 satisfying
the quantum stochastic differential equation (QSDE) [3], [9],
[12]:

dU(t) = (−iHdt + LT dA(t)# − L†dA(t) −
1
2
L†Ldt)U(t); U(0) = I. (1)

The time evolved canonical operators are given by x(t) =
U(t)∗x0U(t) and satisfy the QSDE:

dx(t) = 2Θ(R + ${K†K})x(t)dt+

2iΘ[ −K† KT ]
[

dA(t)
dA(t)#

]
, x(0) = x0,

(2)

where Θ is a canonical commutation matrix of the form Θ =
diag(J, J, . . . , J) with

J =
[

0 1
−1 0

]
,

while the output bosonic fields Y (t) = (Y1(t), . . . , Yn(t))T

that results from interaction of A(t) with the harmonic
oscillator are given by Y (t) = U(t)∗A(t)U(t) and satisfy
the QSDE:

dY (t) = Kx(t)dt + dA(t). (3)

Note that the dynamics of x(t) and Y (t) are linear.
The input A(t) of an open oscillator can first be passed

through a static passive linear optical network (see, e.g., [14],
[15] for details) without affecting the linearity of the overall
system dynamics, this is shown in Fig. 1. Such an operation
effects the transformation A(t) )→ Ã(t) = SA(t), where S ∈
Cm×m is a complex unitary matrix (i.e., S†S = SS† = I).
Thus Ã(t) will be a new set of vacuum noise fields satisfying
the same Ito rule as A(t).

Static passive linear
network Open oscillator

A(t) y(t)A(t)~

Fig. 1. A generalized open oscillator

Letting S = [Sij ]i,j=1,...,m, it can be shown by straightfor-
ward calculations using the quantum Ito stochastic calculus
that the cascade is equivalent (in the sense that it produces
the same dynamics for x(t) and y(t)) to a linear quantum

system whose dynamics is governed by a unitary process
{Ũ(t)}t≥0 satisfying the QSDE (for a general treatment, see
[16]):

dŨ(t) = (
m∑

j,k=1

(Sjk − δjk)dΛjk(t) − iHdt+

LT dA(t)# − L†dA(t) − 1
2
L†Ldt)Ũ(t); Ũ(0) = I,

(4)

where Λjk(t) (j, k = 1, . . . , m) are fundamental processes,
called the gauge processes, satisfying the quantum Ito rules:

dΛjkdΛj′k′ = δlk′dΛkl′dt; dAj(t)dAkl(t) = δjkdAl(t).

For convenience, in the remainder of the paper we shall refer
to the cascade of a static passive linear optical network with
an open oscillator as a generalized open oscillator.
Let G be a generalized open oscillator that evolves accord-

ing to the QSDE (4) with given parameters S, L = Kx0 and
H = 1

2xT
0 Rx0. For compactness, we shall use a shorthand

notation of [16] and denote such a generalized open oscillator
by G = (S,L,H). In the next section we briefly recall
the concatenation and series product developed in [16] that
allows one to systematically obtain the parameters of a
generalized open oscillator built up from an interconnection
of generalized open oscillators of one degree of freedom.

III. THE CONCATENATION AND SERIES PRODUCT OF
GENERALIZED OPEN OSCILLATORS AND REDUCIBLE

QUANTUM NETWORKS

In this section we will recall the formalisms of concatena-
tion product, series product and reducible network developed
in [16] for the manipulation of networks of generalized open
oscillators.
Let G1 = (S1, K1x1,0,

1
2xT

1,0R1x1,0) and G2 =
(S2, K2x2,0,

1
2xT

2,0R2x2,0) be two generalized open os-
cillators, where xk,0 = xk(0). The concatenation
product G1 ! G2 of G1 and G2 is defined as
G1 ! G2 = (S1!2, (K1x1,0, K2x2,0)T , 1

2xT
1,0R1x1,0 +

1
2xT

2,0R2x2,0), where

S1!2 =
[

S1 0
0 S2

]
.

It is important to note here that the possibility that x1,0 =
x2,0 or that some components of x1,0 coincide with those
of x2,0 are allowed. If G1 and G2 are independent oscil-
lators (i.e., the components of x1,0 commute with those of
x2,0) then the concatenation can be interpreted simply as
the “stacking” or grouping of the variables of two non-
interacting generalized open oscillators to form a larger
generalized open oscillator.
It is also possible to feed the output of a system G1 to the

input of system G2, with the proviso that G1 and G2 have the
same number of input and output channels. This operation
of cascading or loading of G2 onto G1 is represented by the
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series product G2 # G1 defined by:

G2 # G1

= (S2S1,K2x2,0 + S2K1x1,0,
1
2
xT

1,0R1x1,0 +

1
2
xT

2,0R2x2,0 +
1
2i

xT
2,0(K

†
2S2K1 − KT

2 S#
2 K#

1 )x1,0).

Note that G2 #G1 is again a generalized open oscillator with
a scattering matrix, coupling operator and Hamiltonian as
given by the above formula.
With concatenation and series products having been de-

fined we now come to the important notion of a reducible
network of open quantum systems [16]. This type of net-
work consists of a set of l generalized open oscillators
G = {Gk = (Sk,Kkxk,0,

1
2xT

k,0Rkxk,0); k = 1, . . . , l}
having the same number of input and output fields, along
with the specification of a direct interaction Hamiltonian
Hd =

∑
j

∑
k=j+1 xT

j Rjkxk (Rjk ∈ R2×2) and a list
S = {Gj # Gk} of series connections among generalized
open oscillators Gj and Gk, j += k, with the condition that
each input and each output (relative to the decomposition
G = !l

j=1Gj) has at most one connection, i.e., lists of
connections such as {G2 # G1, G3 # G2, G1 # G3} are
disallowed.
Let C denote the set of maximal-length chains drawn from

the list of series connections S (here a (series) chain is a
system of the form Gjp #Gkp # · · ·#Gj1 #Gk1 with p ≤ l/2,
Gj· # Gk· ∈ S, and (jr, kr) += (jr′ , kr′) whenever r += r′),
and let U denote the set of components in G not involved
in any series connection. Then a reducible network N can
be expressed (up to a reordering of the input and output
fields, since the concatenation product is not commutative)
as N = (!Ck∈CCk) ! (!Gl∈UGl) ! (I, 0,Hd). Therefore,
such a reducible network N again forms a generalized open
oscillator and is denoted by N = {{Gk}k=1,...,l, Hd,S}.
Note that if N0 is a reducible network defined as N0 =
{{Gk}k=1,...,l, 0,S} = (S0, L0,H0) then N , which is N0

equipped with the direct interaction Hamiltonian Hd, is
simply given by N = (S0, L0,H0 + Hd).

IV. MAIN SYNTHESIS THEOREM
The main result of this paper is the following synthesis

theorem:
Theorem 4.1: Let G be an n-degrees of freedom general-

ized open oscillator with Hamiltonian matrix R ∈ R2n×2n,
coupling matrix K ∈ Cm×2n and unitary scattering matrix
S ∈ Cm×m. Let R be written in terms of blocks of 2 × 2
matrices as R = [Rjk]j,k=1,...,n, where the Rjk’s are real
2× 2 matrix satisfying Rkj = RT

jk for all j, k, and let K be
written as

K = [ K1 K2 . . . Kn ],

where for each j, Kj ∈ Cm×2. For j = 1, . . . , n, let
Gj = (Sj , K̃jxj ,

1
2xT

j Rjjxj) be independent one degree of
freedom generalized open oscillators with canonical opera-
tors xj = (qi, pi)T ,m output fields, Hamiltonian matrix Rjj ,
coupling matrix K̃j and scattering matrix Sj . Also, define
Sk"j for j ≤ k + 1 as Sk"j = SkSk−1 · · ·Sj for j < k,

Sk"k = Sk and Sk"k+1 = Im×m, and let Hd be a direct
interaction Hamiltonian given by

Hd =
n−1∑

j=1

n∑

k=j+1

xT
k

(
RT

jk−

1
2i

(K̃†
kSk"j+1K̃j − K̃T

k S#
k"j+1K̃

#
j )

)
xj (5)

If S1, . . . , Sn satisfies SnSn−1 · · ·S1 = S and K̃k sat-
isfies K̃k = S†

n"k+1Kk for k = 1, . . . , n then the re-
ducible network of harmonic oscillators N given by N =
{{G1, . . . , Gn}, Hd, {G2 #G1, G3 #G2, . . . , Gn #Gn−1}} is
equivalent to G. That is, G can be synthesized via a series
connection Gn#. . .#G2#G1 of n one degree of freedom gen-
eralized open oscillators along with a suitable bilinear direct
interaction Hamiltonian involving the canonical operators of
these oscillators. In particular, if S = Im×m (no scattering)
then Sk can be chosen to be Sk = Im×m and K̃k can be
chosen to be K̃k = Kk for k = 1, . . . , n.
For a proof of the theorem, see [17]. Therefore, according

to the theorem, synthesis of an arbitrary n-degrees of free-
dom linear quantum stochastic system is in principle possible
if the following two requirements can be met:
1) Arbitrary one degree of freedom open oscillators G =

(I, L,H) with m input and output fields can be synthe-
sized. In particular, it follows from this that one degree
of freedom generalized open oscillators G′ = (S,L,H)
can be synthesized as G′ = (I, L,H) # (S, 0, 0).

2) The bilinear interaction Hamiltonian Hd as given by (5)
can be synthesized.

Due to space limitation, in this paper we will not com-
pletely address the problem of systematically building arbi-
trary one degree of freedom open oscillators and implement-
ing arbitrary bilinear interaction Hamiltonians between them,
the details can be found in [17]. However, in order to give
a better feel for Theorem 4.1, in the next section we shall
develop a simple illustrative example of the synthesis of a
two degrees of freedom open oscillator from two one degree
of freedom open oscillators, in the setting of quantum optics.

V. ILLUSTRATIVE SYNTHESIS EXAMPLE

Consider a two degrees of freedom open oscillator G
coupled to a single external bosonic noise field A(t)
given by G = (I4×4,Kx, 1

2xT diag(R1, R2)x) with x =
(q1, p1, q2, p2)T , K = [ 3/2 1/2i 1 i ], R1 =[

2 0.5
0.5 3

]
and R2 =

[
1 0
0 1

]
.

Let G1 and G2 be two independent one degree of freedom
open oscillators given by G1 = (I2×2, K1x1,

1
2xT

1 R11x) and
G2 = (I2×2, K2x2,

1
2xT

2 R2x2) with x1 = (q1, p1)T , x2 =
(q2, p2)T , K1 = [ 3/2 i/2 ] and K2 = [ 1 i ]. Since
the scattering matrix for G is an identity matrix, it follows
from Theorem 4.1 that G may be constructed as a reducible
network given by G = {{G1, G2}, Hd

12, G2 # G1} with the
direct interaction HamiltonianHd

12 between G1 and G2 given
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by (cf. (5)):

Hd
12 = − 1

2i
xT

2 (K†
2K1 − KT

2 K#
1 )x1

=
1
2
xT

2

[
0 −1
3 0

]
x1.

This network is depicted in Fig. 2.

G1 G2
A(t) Y(t)

H12d

Direct interac-
tion

G

Fig. 2. Cascade connection of G1 and G2 with indirect interaction Hd
12

that realizes G

In the following we shall consider how to build G1 and G2

and how Hd
12 can be implemented to synthesize the overall

system G.

A. Synthesis of G1 and G2

Let us now consider the synthesis of G1 =
(I2×2,K1x1,

1
2xT

1 R1x1). We first note that a general
quadratic Hamiltonian of the form H1 = 1

2xT
1 R1x1 can be

constructed in the same fashion as a Degenerate Parametric
Amplifier (DPA) based around an optical cavity inserted
with an optical nonlinear crystal that is pumped by a
classical pump beam, following the treatment in [12,
Section 10.2]. Such a system realizes a Hamiltonian of the
form: H1 = ωcava∗

1a1 + i1
2 (εe−iωpt(a∗

1)2 − ε∗e−iωpta2
1) [12,

eq. 10.2.1], where a1 = q1+ip1
2 is the cavity annihilation

operator (or cavity mode), ωcav is the cavity mode (angular)
frequency, ωp is the pump beam frequency, and ε is a
complex number representing the pump beam effective
intensity. Let∆ be the detuning frequency between the cavity
mode and reference frequency ωr given by ∆ = ωcav − ωr.
By taking a reference frequency ωr = ωp/2 and making a
transformation to a rotating frame with respect to ωr via
the substitution a1 → a1eiωrt, H1 can be reformulated in
this frame in the form: H1 = ∆a∗

1a1 + i1
2 (ε(a∗

1)2 − ε∗a2
1),

and be written compactly as H1 = 1
2xT

1 R′
1x1 + c with

R′
1 =

1
2

[
∆ + i

2 (ε− ε∗) 1
2 (ε + ε∗)

1
2 (ε + ε∗) ∆ − i

2 (ε− ε∗)

]
,

and c is some complex constant. Since c has no effect on
the dynamics of the system observables, we may simply
discard it. Therefore, it is clear from this that any choice
of a real symmetric coupling matrix R′

1 can be realized by
appropriately choosing the parameters ∆ and ε. In particular,
R1 =

[
2 0.5

0.5 3

]
is realized by choosing ∆ =5 and

ε = 0.5 + 0.5i.
The coupling operator L1 = K1x1 can be realized by a

combination of two squeezers and a mirror (see the Appendix
for a more detailed discussion). Here an external vacuum
noise field A1(t) is passed through a squeezer Q that imple-
ments the transformation A1(t) )→ Z1(t) = 1√

3
#{A(t)} +

i
√

3${A(t)}. Z1(t) is a new noise field (it satisfies the
canonical commutation relation [dZ1(t), dZ1(t)∗] = dt)
which is a squeezed version of A1(t) in which the real
quadrature of A1(t) is squeezed by an amount of 1√

3
< 1.

Then Z1(t) is allowed to interact with the cavity mode
a1 via a partially transmitting mirror with a coupling co-
efficient γ of γ = 3. To obtain the output Y1(t) of G1,
the light reflected from this mirror, say Z1,out(t), is then
passed through another squeezer Q−1, the inverse of Q,
that implements the transformation Z1,out(t) )→ Y1(t) =√

3#{Z1,out(t)}+ i 1√
3
${Z1,out(t)}, i.e., Q−1 squeezes the

imaginary quadrature of Z1,out by 1√
3
. Overall, the open

oscillator G1 with Hamiltonian H1 and coupling operator
L1 can be implemented around a ring cavity structure as
shown in Fig. 3.
Remark 5.1: In the figures, black rectangles will be used

to denote mirrors which are fully reflecting at the cavity
frequencies and fully transmitting at the pump frequency,
while white rectangles lines will denote partially transmitting
mirrors at the cavity frequencies.

Nonlinear 
crystal

Classical 
 pump beam

Q

A1(t)

Z1(t)

Q-1

a1

Z1,out(t)

Y1(t)

Classical 
pump beam

Fig. 3. Realization of G1

The open oscillator G2 can be implemented in a similar
way to G1. Taking the same reference frequency ωr as
before, in the rotating frame with respect to ωr the Hamil-
tonian H2 = 1

2xT
2 R2x2 can be implemented in the same

way as H1 by the choice ∆ =1 and ε = 0. Since ε = 0,
this means no nonlinear optical crystal and pump beam are
required to implement R2, but it suffices to have a cavity
that is detuned from ωr by an amount ∆ =1 . The coupling
operator L2 = q2 + ip2 = 2a2, where a2 is the annihilation
operator/cavity mode of cavity, is standard (e.g., see [3]) and
can be implemented via one partially transmitting mirror with
coupling coefficient κ of κ = 4, on which an external vacuum
noise field A2(t) interacts with the cavity mode a2 to produce
an outgoing field Y2(t). The implementation of G2 is shown
in Fig. 4.

B. Synthesis of Hd
12

We now consider the implementation of the direct interac-
tion Hamiltonian Hd

12 given by Hd
12 = 1

2xT
2

[
0 −1
3 0

]
x1.

To proceed, we first note that Hd
12 may be reexpressed in

terms of the cavity modes a1 and a2 as Hd
12 = −2i(a∗

1a2 −
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A2(t)

a2

Y2(t)

Fig. 4. Realization of G2

a1a∗
2) + i(a∗

1a
∗
2 − a1a2). Define Hd

12,1 = −2i(a∗
1a2 − a1a∗

2)
and Hd

12,2 = i(a∗
1a

∗
2 − a1a2) so that Hd

12 = Hd
12,1 + Hd

12,2.
The first part Hd

12,1 = −2i(a∗
1a2 − a1a∗

2) can be simply
implemented as a beam splitter with a rotation/mixing angle
of −2 (e.g., see [15, Section 3.3]) as shown in Figure 5.

a1

Beam 
    splitter

a2

Fig. 5. Beam splitter the direct interaction Hamiltonian Hd
12,1

On the other hand, the second part Hd
12,2 = i(a∗

1a
∗
2−a1a2)

can be implemented by having the two modes ak and al

interact in a suitable χ(2) nonlinear crystal using a classical
pump beam of frequency ωp = 2ωr and effective intensity
ε = 1 in an amplification process as depicted in Figure 6.

Classical 
    pump beam

a1

a2

Fig. 6. Implementation of direct interaction Hamiltonian Hd
12,2

Remark 5.2: Although experimental realization of bilinear
interaction Hamiltonians as proposed here may be challeng-
ing for systems with more than a few degrees of freedom
with current technology, it is in principle possible and may
become easier to implement with the development of new
methods and technologies in experimental quantum optics.
Moreover, alternative architectures for implementing bilinear
interaction Hamiltonians are possible and one such architec-
ture is investigated in [18].
Remark 5.3: It is assumed here that the equations for the

dynamics of generalized open operators are given with re-
spect to a common rotating frame of frequency ωr, including
the transformation of all bosonic noises Ai(t) according to
Ai(t) )→ Ai(t)eiωr(t), and that classical pumps employed
for interaction between different cavity modes in a nonlinear
crystal are all of frequency ωp = 2ωr. This is a natural
setting in quantum optics where a rotating frame is essential
for obtaining linear time invariant QSDE models for active
devices that require an external source of quanta. In a control
setting, this means both the quantum plant and the controller
equations have been expressed in the same rotating frame.

C. Complete realization of G = {{G1, G2}, Hd
12, G2 # G1}

The overall two degrees of freedom open oscillator G
can now be realized by (i) positioning the arms of the two
(ring) cavities of G1 and G2 to allow their internal light
beams to “overlap” at two points where a beam splitter and
a non-linear crystal are placed to implementHd

12,1 andHd
12,2,

respectively, and (ii) passing the output Y1(t) of G1 as input
to G2. This implementation is shown in Fig. 7.

Beam 
    splitter

Classical
     pump beam

Nonlinear 
crystal

Q

A(t)

Q-1
Y1(t)

Classical
           pump beam

Classical
     pump beam

Y(t) 

Y1(t)

G1

G2

Fig. 7. Realization of G

VI. CONCLUSIONS

In this paper we have developed a network theory for
synthesizing arbitrarily complex linear dynamical quantum
stochastic systems from one degree of freedom open os-
cillators in a systematic way. We also provide an explicit
synthesis example where a two degrees of freedom open
oscillator was constructed from a network of two one degree
of freedom open oscillators, in the setting of quantum optics.
A complete theory that addresses how to build arbitrary
one degree of freedom open oscillators and arbitrary direct
interaction between them is presented in [17].
Together with advances in experimental physics and the

availability of high quality basic quantum devices, it is
hoped the results of this paper will assist in the systematic
realization of coherent linear quantum stochastic controllers
and linear photonic circuits in the laboratory for applications
in quantum control and quantum information science.

APPENDIX
REALIZATION OF THE LINEAR COUPLING L1 = 3

2q1 + i
2p1

The purpose of this Appendix is discuss in more detail the
realization of the linear coupling L1 = 3

2q1 + i
2p1 for the

open oscillator G1 of Section V. To this end, first let α = 3/2
and β = i/2. Then in terms of a1 = q1+ip1

2 and a∗
1 = q1−ip1

2 ,
L1 can be expressed as L1 = α̃a1+β̃a∗

1 with α̃ = α−iβ = 2
and β̃ = α+iβ = 1. Define γ = |α̃|2−|β̃|2 = 3 and consider
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the interaction Hamiltonian HInt corresponding to L1:

HInt(t) = i(L1η1(t)∗ − L∗
1η1(t))

= i((α̃a1 + β̃a∗
1)η1(t)∗−

(α̃∗a∗
1 + β̃∗a1)η1(t)),

where η1 is a vacuum quantum white noise field interacting
with G1 via L1. Let us rewrite this Hamiltonian as follows:

HInt(t) = i(a1(α̃η1(t)∗ − β̃∗η1(t))−
a∗
1(α̃

∗η1(t) − β̃η1(t)∗))
= i

√
γ(a1ξ1(t)∗ − a∗

1ξ1(t)),

where ξ1(t) = 1√
γ (α̃∗η1(t) − β̃η1(t)∗) = 1√

3
(2η1(t) −

η1(t)∗). Let A1(t) =
∫ t
0 η1(s)ds and Z1(t) =

∫ t
0 ξ1(s)ds.

Then we have that
[

dZ1(t)
dZ1(t)∗

]
= Q

[
dA1(t)
dA1(t)∗

]
; Q =




α̃∗
√

γ − β̃√
γ

− β̃∗
√

γ
α̃√
γ



 .

Since |α̃/
√
γ|2 − |β̃/

√
γ|2 = 1 it follows that Q is a quasi-

unitary linear transformation [15, Section 3.1] that preserves
the field commutation relations. Hence Z1(t) is a new field
satisfying [dZ1(t), dZ1(t)∗] = dt and the Ito rules:
[

dZ1(t)
dZ1(t)∗

] [
dZ1(t) dZ1(t)∗

]
= Q

[
0 1
0 0

]
QT dt.

In particular, since Z1(t) = 1√
3
#{A1(t)} + i

√
3${A1(t)},

it is a real/amplitude quadrature squeezed version of A1(t)
(i.e., the quadrature #{A1(t)} is squeezed by 1/

√
3 while

${A1(t)} is amplified by
√

3) and is obtained by passing
A1(t) through a corresponding squeezer which we denote
by Q.
The main idea here is that instead of considering an

oscillator mode a1 interacting with A1(t), we consider the
same oscillator interacting with the new field Z1(t) via
the interaction HInt(t) = i

√
γ(a1ξ1(t)∗ − a∗

1ξ1(t)). This
interaction can be implemented in one arm of a ring cavity
with a fully reflecting mirror M and a partially transmitting
mirror M’ with coupling coefficient γ, with Z1(t) incident on
M’. After the interaction, an output field Z1,out(t) is reflected
by M’ given by

Z1,out(t) = U(t)∗Z1(t)U(t)

=
α̃∗
√
γ

U(t)∗A1(t)U(t) − β̃
√
γ

U(t)∗A1(t)∗U(t).

However, the actual output that is of interest is the output
Y1(t) = U(t)∗A1(t)U(t) when the oscillator interacts di-
rectly with the field A1(t). To recover Y1(t) from Z1,out(t),
first notice that since Q is a quasi-unitary transformation
it has an inverse Q−1 which is again quasi-unitary (as
quasi-unitary matrices form a group). Hence Y1(t) can be
recovered from Z1,out(t) by exploiting the following relation

that follows directly from the fact that (Z1(t), Z1(t)∗)T =
Q(A1(t), A1(t)∗)T :

[
Y1(t)
Y1(t)∗

]
= Q−1

[
Z1,out(t)
Z1,out(t)∗

]
.

Q−1 as the inverse of Q is an imaginary/phase quadrature
squeezing operation (i.e., it squeezes ${Z1,out(t)} by 1/

√
3,

while #{Z1,out(t)} is amplified by
√

3), and Y1(t) is the out-
put of passing Z1,out(t) through a phase quadrature squeezer
that realizes Q−1. Overall, this yields the implementation of
L1 as depicted in Fig. 3.
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