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a b s t r a c t

An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There
was general agreement about the direction of changes in the mean annual discharge and 90% discharge
percentile predicted by the ensemble members, although a considerable range in the magnitude of pre-
dictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude
of the increase were attributed to the different mean annual actual evapotranspiration rates for each land
use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensem-
ble methods. The deterministic ensemble method based on a trimmed mean resulted in a single some-
what more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method
allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded
that the use of a model ensemble has greatly increased our confidence in the reliability of the model
predictions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction impact of future environmental change [3]. Furthermore, the
Assessing the impact of land use change on water resources on a
local, regional and global scale is a major challenge in hydrology.
Typically, this is done by setting up a hydrological catchment mod-
el for the current land use, defining the expected changes in land
use within a land use change scenario, re-running the model for
the future land use and analyzing the differences between these
two sets of simulations (e.g. [5,14,23,25] amongst others). Argu-
ably, conventional practices for validation of hydrological models
are not suitable for assessing the ability of a model to predict the
ll rights reserved.

: +49 2461 612518.
man).
ersity of Illinois at Urbana-
extensive calibration that is required to adapt most hydrological
models to the current conditions makes one wonder whether these
models are applicable for cases where the boundary conditions
(e.g., climate, land use) have changed.

Ideally, predictions of the impact of land use change made with
a specific model should be validated by comparison with data ob-
tained after the land use change has occurred. However, such
extensive validation is seldom performed (e.g. [33]). A main reason
for this is the lack of suitable datasets for this purpose, despite the
fact that there have been numerous experimental studies on the
impacts of land use change in single and paired catchments (see
[2,8,11,28]). As an alternative, Bathurst et al. [3] proposed to use
a ‘‘blind” validation technique developed by Ewen and Parkin
[13] in which the modeler is not allowed sight of the catchment
output data so that the model cannot be calibrated for the
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catchment under consideration. Such a blind validation test is
harsh, and it is likely that many models would not pass such a test
for a particular catchment.

Other environmental modeling communities also have to deal
with predicting the impact of a change in boundary conditions.
Most noticeable is the climate change community, which needs
to predict the impact of rising CO2 concentrations on the future cli-
mate. To deal with the uncertainty in these predictions of future
climate, it has become common practice in this community to ana-
lyze scenarios with an ensemble of models instead of a single mod-
el [21]. There are two general approaches to the interpretation of
ensemble modeling results. In the first so-called deterministic ap-
proach, an optimal combination of ensemble members is sought
that results in better predictions than each single ensemble mem-
ber (e.g. [12,16]). In the second so-called probabilistic approach,
the single ensemble members are treated as possible (although
not necessarily equally likely) realizations of the system response.
In this probabilistic setting, quantitative methods to determine the
uncertainty from an ensemble of scenario predictions have re-
cently been proposed [17,26,29,30].

To increase the confidence in predictions of the impact of land
use change on water resources, a set of hydrological models has
been calibrated and validated on the same catchment and thereaf-
ter applied to the same set of land use change scenarios within the
LUCHEM (‘‘Assessing the impact of Land Use Change on Hydrology
by Ensemble Modeling”) project. This paper is the third in a series
of four presenting the results of the LUCHEM project. The first pa-
per ([10], this issue) describes the general set-up of the project,
provides information on the relevant characteristics of the partic-
ipating models and discusses the performance of these models for
the current land use distribution. The second paper ([31], this is-
sue) investigates the potential of deterministic model ensembles
made up of some or all of the individual models to improve pre-
dictions of streamflow. The fourth paper ([7], this issue) investi-
gates the effects of data resolution and spatial distribution of
land use information on the simulated water balance for current
catchment conditions and land use change scenarios for a subset
of three models. In this third paper, the results of the application
of these catchment models to the same set of land use change sce-
narios are analyzed. The aims of this paper are to (1) determine to
what extent the models result in different simulations for the land
use change scenarios and to understand the reasons behind these
differences to the extent possible; (2) derive optimal (determinis-
tic) scenario predictions of the impact of land use change from the
ensemble of simulations and (3) quantify the uncertainty in the
land use change predictions from the ensemble of simulations
using probabilistic ensemble methods.
2. Materials and methods

2.1. Catchment description and available data

Land use change scenarios were developed and investigated
for the low mountainous Dill catchment (693 km2) in Germany.
The Dill catchment is characterized by shallow soils underlain
by fissured bedrock aquifers. Cambisols are the dominant soil
types, covering >60% of the area. As a consequence of solifluction
on periglacial slope deposits, the hydraulic conductivity of the
soils is anisotropic with larger conductivities in horizontal direc-
tion. Because of the shallow soils and the anisotropic hydraulic
conductivity, discharge in the Dill catchment is dominated by
lateral flow. Mean annual rainfall varies between 700 and
1100 mm within the catchment and is not only dependent on
height, but also decreases from west to east. The annual mean
temperature is 8 �C.
The landscape is characterized by a heterogeneous small struc-
tured land use pattern. The land use is comprised of deciduous for-
est (29.5%), coniferous forest (24.8%), pasture (20.6%), urban areas
(9.2%), fallow (9.1%), cropland (6.5%), and water (0.3%). The typical
crop rotation in the region is winter barley, winter rape, and oats.
Besides shallow soils and unfavorable climatic conditions, the high
proportion of fallow land is a consequence of the socio-economic
structure of the area. High opportunity costs result in a dispropor-
tionate number of part-time farmers. This leads to high machinery
costs, which are further reinforced by relatively small average field
sizes (�0.7 ha).

A detailed description of the data provided to each of the LU-
CHEM participants is given in a companion paper [10]. In sum-
mary, digital data on land use, soils and elevation were provided
on a 25 m grid. The land use distribution in 1994–1995 was ob-
tained from multi-temporal Landsat TM 5 images [24]. Soil infor-
mation was derived from digitized 1:50000 soil maps [19].
Climatic data for the period of 01.01.1980 to 31.12.1998 from the
German weather service (DWD) were also provided on a daily ba-
sis. Available data included precipitation (mm), wind speed
(m s�1), global radiation (MJ m�2 d�1), air temperature (�C) and rel-
ative humidity (%). Precipitation was measured at 12 stations in-
side and six stations outside the catchment, whereas the other
climatic variables were only recorded at two stations inside the
catchment.

2.2. ProLand model

The land use change scenarios used in this study were derived
with the ProLand (prognosis of land use) model [22,32]. ProLand
assumes that land use patterns are a function of natural, economic,
and social conditions in a landscape. It postulates land rent maxi-
mizing behavior of the land user. Land rent is defined as the sum of
monetary yields including all subsidies minus input costs, depreci-
ation, taxes, and opportunity costs for employed capital and labor.
Depending on the economic and ecological boundary conditions,
the model calculates the land rent for a set of agricultural and for-
estry land use systems for each parcel of land. ProLand only simu-
lates one type of forestry, namely mixed forests consisting of
deciduous and coniferous trees (Fagus sylvatica beech, 40%; Quercus
spp. oak, 20%; Picea abies spruce, 30%; Pinus sylvestris pine, 6%; and
Pseudotsuga menziesii Douglas fir, 4%). This forest production sys-
tem resembles the dominant forest species distribution in the
landscape investigated in this work.

The ProLand version used in this scenario analysis is based on a
pixel approach. Hence, every simulated parcel of land is equivalent
to the area of a 25 m pixel. The land use system with the highest
land rent is selected as the optimal land use for the pixel under
consideration. Farmer sentiments and costs associated with land
use change are not considered. In addition, ProLand does not con-
sider neighborhood relationships. Thus, it can happen that a pixel
with a particular land use is surrounded by different land uses. This
restriction is model specific and may sometimes produce unrealis-
tic land use patterns (‘‘an island of cropland in the forest”). The
output of the ProLand model consists of data describing the eco-
nomic performance of the calculated set of land use systems and
a spatially explicit map of the optimal land use distribution given
the provided boundary conditions. Further details of the model
set-up and performance are given in [22,32].

2.3. Field sizes scenarios

As in many other regions of Europe, the inheritance system has
had a tremendous effect on average field sizes in the Dill catch-
ment. Typically, fields were split equally amongst the inheritors.
As a result, the average field size decreased more and more. In
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the Dill catchment, the average field size decreased to less than
0.1 ha in the middle of the 20th century in some municipalities.
The average farm size was also very low with 15 ha.

From an economic point of view, the average field size is one of
the major factors affecting the costs in agriculture. Large machin-
ery cannot be used on small fields and purchasing machinery is
only profitable if farms have an adequate size. The reallocation of
small fields to create larger fields allows the use of more efficient
machinery and could, therefore, reduce labor costs. In Germany,
land reallocation has been conducted since the late 1960s to im-
prove the structure of the agrarian sector.

The ProLand model was used to investigate the potential effects
of reallocation on land use distribution. A sequence of land use
change scenarios with average field sizes of 0.5, 1.5 and 5.0 ha
were simulated. Open water and urban areas were held constant
and were not affected by land use change. The resulting land use
distribution for the three field size scenarios is shown in Fig. 1.
Land use is dominated by forest and pasture in the 0.5 ha scenario.
An increase of the average field size to 1.5 ha results in a strong in-
crease of cropland at the expense of pasture and forest in the wes-
tern and northern parts of the catchment. A further increase of the
average field size to 5.0 ha leads to a more patchy land use distri-
bution especially in the eastern part of the catchment where for-
Fig. 1. Land use scenarios as predicted by the ProLand model assumin
ested areas are now converted to cropland. Overall, the
aggregation of fields from an average field size of 0.5 ha to a field
size of 5.0 ha leads to an increase of cropland to more than 33%
of the area accompanied by a reduction of pasture area by 11%
and a reduction of forest by 22% of the area (Table 1).

2.4. Modeling approach within LUCHEM

In the LUCHEM project, 10 different models simulated hydro-
logical fluxes of the Dill and three of its tributaries, the Aar, the
Dietzhölze and the Obere Dill (see Table 2). Details on the model
instructions for the LUCHEM participants are described in detail
in [10]. In short, two sets of input data were used to evaluate the
performance of the different models in terms of their ability to
simulate hydrological fluxes under current conditions. For both
data sets, the calibration period was 1983–1989, whereas the val-
idation period was from 1990 to 1998. The first data set was pro-
vided prior to the LUCHEM workshop in order to set up the
different models. However, during the workshop it became clear
that a more homogenized dataset was necessary to ease the inter-
pretation of the model results. Details on this homogenized dataset
and the performance of the models for the current conditions are
again provided by Breuer et al. [10].
g allocation of fields to average field sizes of 0.5, 1.5 and 5.0 ha.



Table 1
Land use distribution of the ProLand land use scenarios

Land cover (%)

Cropland Pasture Forest

Dill
Baseline 6.5 20.6 54.3
0.5 ha 2.8 31.7 56.0
1.5 ha 27.1 17.6 45.8
5.0 ha 35.9 20.5 34.1

Aar
Baseline 11.3 19.2 52.8
0.5 ha 3.3 21.7 68.3
1.5 ha 20.8 13.9 58.9
5.0 ha 34.5 16.2 42.8

Dietzhölze
Baseline 3.2 17.0 60.9
0.5 ha 0.6 70.9 19.4
1.5 ha 31.7 47.3 11.8
5.0 ha 35.2 49.7 6.0

Obere Dill
Baseline 2.9 17.0 64.1
0.5 ha 0.5 58.0 36.2
1.5 ha 38.3 32.0 24.2
5.0 ha 41.4 42.4 10.8

Urban and water land covers are not reported because they are identical in the
baseline and the scenarios.

162 J.A. Huisman et al. / Advances in Water Resources 32 (2009) 159–170
The results of the scenario analysis presented in this paper are
based on the homogenized data set. Evaluation of the land use
change scenarios was performed for the entire simulation period
(1983–1998). All model groups provided results for the three land
use change scenarios for the Dill catchment. Apart from the MIKE-
SHE model group, all other groups also provided results for the
three subcatchments.

After model set-up, model calibration and model validation for
the current conditions, the next step in a typical scenario analysis
of the impact of land use change on hydrology is the implementa-
tion of the scenarios. For distributed models, this step most often
involves running the model with the parameterization obtained
for the current conditions, but with different fractions and a differ-
ent spatial arrangement of the land use classes. For lumped mod-
els, it involves deriving a new parameterization based on the
calibration results and the new land use fractions. Obviously, a
key factor for the simulation of land use change effects is to ac-
count for differences in evapotranspiration (ET) of different land
use classes.

Within the LUCHEM project, the models differ with respect to
the spatial and temporal representation of key factors determining
actual ET. Key differences between the 10 models are summarized
in Table 2. First of all, the spatial scale (i.e., the representative area
for which calculations are performed) ranges from 1 ha to areas
much larger than 1 km2. In addition, some of the models are fully
Table 2
Overview of spatial scale, land use type and potential evaporation method used in the sce

Model Spatial scale Land use types

DHSVM 100 m Forest, crops, pasture
MIKE-SHE 200 m Forest, crops, pasture
TOPLATS 100 m Forest, crops, pasture
WASIM 200 m Forest, crops, pasture
SWAT HRU in 52 subcatchments Forest, crops, pasture
PRMS HRU in 25 subcatchments Forest, crops, pasture
SLURP Fraction of land use in 39 subcatchments Forest, crops, pasture
HBV Fraction of land use in 10 subcatchments Forest, open vegetation
LASCAM Fraction of land use in 29 subcatchments Forest, crops, pasture
IHACRES Fraction of land use Forest, open vegetation
distributed (e.g., DHSVM) whereas other models are lumped (e.g.,
IHACRES). The impact of spatial scale on the simulation results is
explored in a companion paper [7] for a selection of distributed
models. Second, the models used different levels of aggregation
for land use. For example, HBV and IHACRES did not distinguish be-
tween crops and pasture but used a land use type ‘‘open vegeta-
tion” instead. Finally, different methods were used to calculate
potential ET. The methods ranged from the Penman–Monteith
method, which requires detailed meteorological information and
plant-specific parameters (e.g., canopy resistance), to much less
complex temperature-driven methods. For all models except
IHACRES, the temporal change of LAI was a key parameter in the
temporal representation of ET. The IHACRES model used empiri-
cally derived relationships between actual ET and land cover that
are based on an investigation by Zhang et al. [34]. To avoid differ-
ences in model predictions due to different model parameteriza-
tions of LAI, a simplification of the SWAT crop growth model was
used to derive mean monthly maximum LAI for the land use clas-
ses cropland, pasture and forest. This average monthly LAI was
used by all models considering temporal changes in LAI as the driv-
ing factor for potential ET, except for the SWAT model where the
LAI was based on the actual growing conditions within a year.
However, differences obviously remain between the models. For
example, there are different implementations for the Penman–
Monteith method. DHSVM calculates the canopy resistance based
on temperature, vapour pressure deficit and soil water content,
whereas SWAT only considers vapour pressure deficit. There is
no consensus on how to implement the Penman–Monteith meth-
od, which inevitably leads to differences.

The next critical issue causing differences between the models
is the calculation of actual ET. Most models calculate a so-called
reference (potential) ET, which describes the amount of ET under
well-watered conditions. In a next step, it is determined how much
the soil can deliver given this demand. Typically, this is done for
each layer in the model by assigning a potential root water uptake
to each layer, for example based on the root length density within
each layer. If the available water is less than the demand, the actual
amount of ET is reduced. Depending on the number of soil layers,
the method to calculate vertical flow (e.g., fill and spill, Darcy equa-
tion), the assumed (or modeled) root length density, and whether
one soil layer can compensate water deficits occurring in other lay-
ers, the actual ET calculated by different models can vary strongly.
Although the amount of water available for ET depends on the
rooting depth and density, we did not homogenize this information
between the models. It should also be noted that not all models use
this demand-and-supply concept. For example, DHSVM directly
calculates actual ET by modifying the crop resistance in response
to water shortage. Finally, interception is an important contribu-
tion to actual ET, especially for forests. The parameterization of this
process was also based on vegetation-type dependent default val-
ues within each model.
nario runs for each model

ETpot

Penman–Monteith
Penman–Monteith
Penman–Monteith
Penman–Monteith
Penman–Monteith
Jensen–Haise
Penman–Monteith

(crops + pasture) Penman–Monteith, temperature-driven monthly factors
Based on solar radiation assuming linear trend with latitude

(crops + pasture) Empirical, T- and P-driven factors [34]
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Of course, ET is not the only flux that changes with a change in
land use. For example, the partitioning of precipitation at the land
surface and the partitioning between interflow and groundwater
recharge might also be affected. However, we consider this to be
of secondary importance for the Dill catchment [6,20], and there-
fore we refrain from providing a detailed description of these pro-
cesses for each model. For this, we refer to the original
publications, which are referenced in a companion paper [10].

2.5. Deterministic and probabilistic ensemble methods

Deterministic ensemble predictions may be constructed in a
number of ways. The simplest approach is to take the raw mean
of the set of model predictions for each day. Other simple ap-
proaches are to take the daily median or to use a trimmed mean.
More complex approaches are to determine the weights for each
model based on model performance within a specified calibration
period and using these ‘‘optimal” weights to make predictions
(e.g. [16]). Alternatively, it is also possible to determine the model
weights from multiple linear regression or use conditional ensem-
bles where the model weights depend on the state of the system
(e.g. [1]).

A large number of deterministic ensemble approaches is com-
pared in a companion paper [31]. Their results showed that of
the simple ensemble methods, the trimmed mean (i.e., the mean
of four to six central model predictions for each day) produced a
higher model efficiency than the raw mean, the median or any sin-
gle member of the ensemble. In addition, they showed that the
more complex combination methods often performed better dur-
ing the calibration period, but that the performance during the val-
idation period was similar or worse than the trimmed mean.
Therefore, we decided to use a six-member trimmed mean of daily
streamflow as the best deterministic combination for the Dill
catchment. For the gauged subcatchments of the Dill, a five-mem-
ber trimmed mean was used because MIKE-SHE did not provide
scenario results for these gauges.

Deterministic ensemble methods result in a single ‘‘optimal”
prediction based on some combination of single ensemble mem-
bers. However, the model ensemble can also be interpreted in a
probabilistic sense. Such a probabilistic interpretation was pre-
sented by Giorgi and Mearns [18] based on the work of Giorgi
and Mearns [17]. They called their method reliability ensemble
averaging (REA) and it was used to quantify the average and uncer-
tainty range of simulated climate change from an ensemble of dif-
ferent atmosphere–ocean global circulation models. For this study,
the REA method was adapted to hydrological scenario analysis.

The REA method relies on two general ‘‘reliability criteria” to as-
sess the reliability of simulated changes in mean annual discharge.
In hydrological terms, the first is based on the ability of the models
to predict current river discharge. Models that represent the cur-
rent discharge well can be expected to produce more reliable sce-
nario predictions. The second criterion is based on the convergence
of simulations by different models for a given scenario. Greater
convergence of the scenario predictions implies a robust change
prediction, despite differences in model structure. In mathematical
terms, these two reliability criteria can be stated as a model reli-
ability factor, Ri for a particular model i as [17]

Ri ¼ RB;i � RD;i ¼
e

absðBiÞ

� �
e

absðDiÞ

� �
ð1Þ

In this equation, RB is a factor that measures the model reliability as
a function of the model bias (B) in simulating present-day dis-
charge. Model bias is defined in [10]. The higher the bias, the lower
is the model reliability. Here, the bias is calculated for the entire 16-
yr simulation period (1983–1998) of the LUCHEM project. RD is a
factor that measures the model reliability in terms of the distance
(D) of the change for a specific model from the REA average change
ðDeQ Þ and is defined as

Di ¼ DQ i � DeQ ¼ DQi �
PN

i¼1RiDQ iPN
i¼1Ri

ð2Þ

where DQi is the simulated change for ensemble member i and N is
the total number of ensemble members. Again, the higher the dis-
tance, D, the lower is the reliability. Since the REA average change
is not known a priori, it is obtained in an iterative way as described
in detail by Giorgi and Mearns [17]. To calculate the uncertainty
range around the REA average change, the weighted root mean
square difference (RMSD) is calculated:

RMSD ¼
PN

i¼1RiðDQ i � D eQ Þ2PN
i¼1Ri

 !1=2

ð3Þ

Assuming that the probability density function is somewhere be-
tween uniform and Gaussian, the REA average change plus and
minus the RMSD can be interpreted as a 60–70% confidence interval
[17].

The parameter e in Eq. (1) is a measure of natural variability in
16-yr average discharge. To calculate e, we computed 16-yr mov-
ing averages for the discharge time series of the catchments under
consideration. Typically, 35–45 yr of discharge measurements
were available. As suggested by Giorgi and Mearns [17] for short
time series, we then used the difference between the minimum
and maximum values of the moving average time series after linear
detrending as a measure of the natural variability. An important
aspect of the REA method is that RB and RD are set to 1 when B
and D are smaller than e, respectively. Essentially, this implies that
a model prediction is reliable when both its bias and its deviation
from the weighted ensemble average are lower than the natural
variability.

The concept of the reliability factor can also be used to estimate
the probability of the predicted changes from a model ensemble.
Giorgi and Mearns [18] suggested that the likelihood of a model-
simulated change (Pi) is proportional to the reliability factor de-
fined above. The normalization of the likelihood yields the
definition

Pi ¼
RiPN
i¼1Ri

ð4Þ

In other words, it is assumed that the change simulated by a more
reliable model (in the sense of Eq. (1)) is more likely to occur. From
Eq. (4) it follows that, for a given land use change scenario, the
probability of a discharge change exceeding a threshold DQth is gi-
ven by

PDQ th
¼
X

i

Pi ¼
X

i

RiPN
i¼1Ri

; DQ i 6 DQ th ð5Þ

Thus, the probability that a certain threshold is not exceeded equals
the sum of the probability of all models that do not exceed the
threshold. If all models are equally reliable, this equation corre-
sponds to the probability analysis method proposed by Räisänen
and Palmer [26].

3. Results and discussion

3.1. Scenario analysis

Fig. 2 presents the results of the scenario predictions as com-
pared to the baseline run for the mean annual discharge of the Dill
catchment. As discussed in a companion paper [10], the baseline
runs show a considerable variation in bias in cumulative volume
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Fig. 2. Annual discharge in the Dill catchment for the baseline and three field-size scenarios. Results are presented for all participating models and a deterministic ensemble
method (trimmed mean).

164 J.A. Huisman et al. / Advances in Water Resources 32 (2009) 159–170
with respect to the observed discharge (437 mm yr�1). However,
based on an analysis of several performance metrics it was con-
cluded that no single model outperformed the others and it was,
therefore, suggested that all models contain useful information
that could be exploited in an ensemble analysis [10,31]. It can also
be seen in Fig. 2 that all models predict that mean annual discharge
will increase with an increase in field size. As with the IPCC climate
predictions [21], this agreement with respect to the direction of
change increases our confidence in the reliability of these scenario
predictions. However, it is obvious that the bias in the baseline
runs is propagated within the scenario analysis and that the varia-
tion in bias between the models is responsible for a significant
fraction of the variation in the scenario predictions. This suggests
that in order to reduce the uncertainty in the scenario predictions,
it might be just as important to focus on reducing the model struc-
ture uncertainty (i.e., reducing the variability in the bias). In the
following, we interpret the results of the scenario analysis by look-
ing at the change in mean annual discharge relative to baseline
runs (Fig. 3). It is quite common to analyze scenarios in this way.
For example, IPCC climate change predictions are also reported rel-
ative to baseline runs and not relative to climatic observations [21].
However, there is no doubt that confidence in change predictions
would further increase when model structural uncertainty is
reduced.

Although all models predict the same direction of change, the
rate of increase differs between models (Figs. 2 and 3). For exam-
ple, the lowest difference between the 0.5 and the 5.0 ha scenario
was 14.5 mm yr�1 and the highest difference was 102.1 mm yr�1

for the Dill catchment. Based on Figs. 2 and 3, it appears that 7
of the 10 models provide rather similar predictions for the Dill
catchment, whereas the three remaining models perform quite dif-
ferently (DHSVM, TOPLATS and SLURP). Although these three mod-
els simulated the lowest (TOPLATS) and highest (DHSVM, SLURP)
mean annual discharge in the baseline run, it only becomes appar-
ent from the current scenario analysis that these models behave
differently. Obviously, the possibility to compare scenario predic-
tions has turned out to be a big advantage of using an ensemble
of models, highlighting differences in model performance that
were not fully apparent previously.
Fig. 3 also presents the results for the three subcatchments of
the Dill. The results for the subcatchments again confirm that all
models predict an increase in discharge with increasing field sizes.
The difference between the 0.5 and 5.0 ha field size scenario for the
subcatchments is also similar to the scenario predictions for the
Dill. For example, the median increase in discharge going from
the 0.5 ha to the 5.0 ha scenario is 31 mm yr�1 for the Dietzhölze
and 27 mm yr�1 for the Dill catchment. However, the models pre-
dict a much wider range of differences between the scenario runs
and the baseline run for both the Dietzhölze and the Obere Dill. Fi-
nally, the change in mean annual discharge for a dry year, a wet
year and for the summer and winter periods for the three scenarios
relative to the baseline is shown in Fig. 4 for the Dill catchment.
Again, the direction and magnitude of change are similar for seven
models, and DHSVM, SLURP and TOPLATS perform differently.

From water balance considerations, it is obvious that differ-
ences in mean annual discharge must be attributed to differences
in actual ET between the models because variability in mean an-
nual precipitation was relatively small [10]. To understand differ-
ences in simulated actual ET between the models, it is important
to note that (1) the main land use change within the scenarios is
an increase in cropland at the expense of pasture and/or forest;
(2) the current land use used in the baseline run is most similar
to the 0.5 ha scenario for the Dill catchment; (3) the current land
use for the Dietzhölze and Obere Dill catchment deviates strongly
from the land use in all three scenarios; and (4) the baseline run
considers both coniferous and deciduous forest, whereas the sce-
nario analysis considers mixed forest only.

The bulk of the models show little sensitivity to changes in land
use. In fact, it seems likely that some of the simulated differences
are insignificant given the typical uncertainty in model parameter-
ization. However, a quantification of the uncertainty in the pre-
dicted changes for individual ensemble members as was done in
[9] is beyond the scope of this study. The lack of sensitivity to land
use change indicates that actual ET estimates for the different land
use classes are quite similar for these models. For example, the
SWAT model predicts mean annual actual ET values of 477 mm
for forest, 487 mm for pasture and 396 mm for crop land for the
baseline run. These mean actual ET values are similar for the land
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Fig. 3. Predicted change of annual discharge for all subcatchments and land use change scenarios as predicted by 10 hydrological models and a deterministic ensemble
method (trimmed mean). Change in annual discharge is expressed as the difference from the baseline scenario. Models are ranked according to their complexity from left
(complex) to right (simple). Ranking is discussed in more detail in [8].
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use scenarios. The difference of 80–90 mm between cropland and
the other land uses nicely agrees with the predicted �30 mm in-
crease in discharge with a 30% increase in cropland between the
0.5 and 5.0 ha scenarios for the Dill catchment. The fact that this
simple calculation works out so well foreshadows the finding in
[7] that the spatial arrangement of land use does not strongly affect
the scenario results for a subset of the semi-distributed and dis-
tributed models.

As noted above, three models have deviating scenario predic-
tions. Fig. 2 shows that there is a strong difference between the
baseline and scenario run for two of these models (SLURP and
TOPLATS). For SLURP, we completely attribute this to the presence
of mixed forests in the scenario runs and deciduous and coniferous
forest in the baseline run. Apparently, the mixed forest parameter-
ization in SLURP underestimates the actual ET for this land use
type. This conclusion is based on the following three observations:
First, the difference between baseline and scenario runs is larger
than the changes between scenarios for all catchments despite
large changes in land use between scenarios. Second, there is a
large increase in discharge between the baseline run and the sce-
nario runs for the Dill catchment despite similar land use fractions.
Finally, the increase between baseline and scenario runs is stron-
gest for the Obere Dill and Dietzhöze catchment where the change
in forest is largest between the baseline and scenario runs.

The deviating results for TOPLATS are also partly related to an
inadequate parameterization of the mixed forest. In the baseline
run, mean annual actual ET is 330 mm for deciduous forest and
609 mm for coniferous forest. The mean annual actual ET of mixed



Fig. 4. Effect of dry and wet years as well as season on predicted discharge for the Dill catchment. Winter season is defined from 01.11. to 30.04. Dry year and wet year were
selected based on the years with lowest and highest annual precipitation, respectively. Results are presented for all participating models and a deterministic ensemble
method (trimmed mean).
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forest is 554 mm in the scenarios, which does not adequately re-
flect the proportions of deciduous and coniferous forest in the
baseline run. This explains the difference between the baseline
run and the 0.5 ha scenario. The relatively strong increase in dis-
charge going from the 0.5 ha to the 5.0 ha scenario is related to dif-
fering mean actual ET rates for each land use. TOPLATS calculated a
high mean annual ET of 760 mm for pasture and a low mean an-
nual rate of 323 mm for cropland. Again, these mean annual rates
were relatively independent of the scenario under consideration
[7]. Combining these rates with the land use fractions for the 0.5
and 5.0 ha scenarios (Table 1) results in a predicted decrease in
mean annual ET of 100 mm. This corresponds very well with the
increase in discharge of 102 mm yr�1 presented in Fig. 3. The high
rate for pasture as compared to cropland was attributed to the high
LAI (1.5–5.3) and the low stomatal resistance (72 s m�1) used for
pasture.

The third model that provides deviating results is DHSVM. This
model has the largest bias for the baseline run. It should be noted
that this was introduced by the process of data homogenization
[10] when the yearly course of LAI was prescribed. With the pre-
scribed LAI, the actual ET of forest was considerably reduced and
a positive bias in mean annual discharge was introduced. In addi-
tion, DHSVM reacts more sensitive to changes in land use than the
other models (Figs. 2 and 3), which is related to differences in ac-
tual ET in the winter period (Fig. 4). The high sensitivity in winter
indicates strongly differing mean actual ET rates between the
perennial plants and cropland in this period. Since ET rates are
low in winter for cropland because of bare soils and low energy,
it is concluded that the simulated mean actual ET of perennial
plants in the winter period must be higher in DHSVM than in the
other models in the ensemble.

From the above, it is clear that we can interpret the differences
in scenario predictions between the models in terms of different ET
estimates for each land use type. The question then arises whether
the ‘‘minor changes” prediction of the bulk of the models is realis-
tic. We believe that this is the case. For large parts of the year, the
Dill catchment is energy-limited. Given the conditions within the
catchment, it is reasonable to conclude that actual ET rates for
cropland, pasture and forest are relatively similar and in the range
of 400–600 mm yr�1. These small contrasts in actual ET will cause
only small to moderate changes in discharge, even in the case of
substantial changes in land use. As outlined above, the models dif-
fer considerably in their approaches to calculate actual ET. How-
ever, in a dominantly energy-limited environment these model
structural differences are not propagated into the scenario predic-
tions. Therefore, it might be interesting to repeat this kind of
ensemble scenario analysis for a water-limited environment,
where stronger differences between models would be expected.

One might argue that in energy limited environments runoff is
an important component of the water balance and how the models
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capture the runoff generation processes will also be important. Our
perceptual model of runoff generation in the Dill catchment con-
sists of a dominant interflow component in addition to minor frac-
tions of quick (e.g., surface runoff) and slow (e.g., base flow) flow
components. Because these flowpaths are determined by the geo-
morphology and geology and not so much by the land use, we be-
lieve that it is reasonable that we consider the impact of land use
change on the flowpaths and the subsequent feedback to actual
ET of secondary importance. As argued in [6,20], this is a peculiar-
ity of the Dill catchment and should not be extended to other
environments.

Finally, it is interesting to note that all three models providing
deviating results use the highly parameterized Penman–Monteith
model, and that the development of two of these three models
(DHSVM and TOPLATS) has focused on a physically-based repre-
sentation of soil–vegetation–atmosphere relationships. Arguably,
the results for these models partly reflects the shortcomings of
the current calibration practice, where catchment models are
mainly calibrated to discharge without considering internal catch-
ment processes, such as ET of different land use types [4]. It is now
well recognized that calibration to a single gauge only does not
guarantee that internal processes are simulated correctly [15,27].
In this study, only discharge data were available for the main
catchment outlet and the outlets of three subcatchments. There-
fore, the parameterization of the ET modules and the validation
of the ET results were largely based on experience of the modelers.
In future ensemble studies of this kind, more attention should be
paid to the validation of ET predictions for single land use types.
This can be achieved by direct comparison with measurements
(e.g., derived from remote sensing or micrometeorological meth-
ods) or by selecting a catchment with gauged subcatchments with
strongly varying land uses.

3.2. Deterministic ensemble results

In a companion paper [31], it was argued that an optimal com-
bination of model simulations could average out model structural
error and provide an estimate of the most probable state of the sys-
tem. This is explored in this section. Figs. 2–4 show the results for a
six-member trimmed mean of daily streamflow for the Dill catch-
ment and a five-member trimmed mean for the gauged subcatch-
ments. The second paper in this series [31] has shown that this
simple ensemble method results in superior predictions of stream-
flow as compared to the more complicated combination methods
for the Dill catchment (model efficiency of 0.937 and a bias of
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Fig. 5. Comparison of the effects of equal weighing and REA for the probability distribu
scenario for the Dill and the Dietzhölze catchment.
3.2% for the validation period). Although no validation is possible
for the scenario results, we assume that this trimmed mean also
provides the best estimate of the expected changes in the scenario
analysis.

Figs. 2–4 show that the ensemble method results in predictions
close to the median of scenario predictions. Although this seems
obvious because a trimmed mean discards extreme predictions
that might distort the raw mean, it is not self-evident because
the trimmed mean is calculated on a daily basis. All models con-
tributed to the trimmed mean for a considerable amount of time.
For the Dill catchment, the model with the lowest average contri-
bution for all scenarios (SLURP) is still selected 38% of the time. The
highest contributing model (PRMS) was selected 79% of the time.
The contributions of each model to the trimmed mean ensembles
for the gauged subcatchments were similar. For the DHSVM model
applied to the Dill catchment, there was a strong decrease in con-
tribution going from the trimmed mean ensemble for the actual
conditions (68% of the time) to the average contribution to the
trimmed mean ensembles for the land use change scenarios (52%
of the time). This reflects that the scenario predictions of this mod-
el deviate more from the other models in the scenario analysis than
in the application to the current conditions. The contributions of
the other models were approximately equal for the actual condi-
tions and the land use change scenarios.

The deterministic ensemble predictions presented here are one
option to summarize the results of the model ensemble. It has been
shown that multi-model ensemble methods typically outperform
all individual models [31], and references therein and, therefore,
it can be expected that scenario predictions obtained here are also
more reliable. However, the deterministic approaches do not con-
sider the opportunity to use the ensemble results to not only derive
an optimal scenario prediction but to also derive an estimate of the
uncertainty in these scenario predictions. Clearly, this would be a
significant contribution, and, therefore, a probabilistic method that
allows such uncertainty quantification is discussed next.

3.3. Reliability ensemble averaging (REA)

To quantify the uncertainty in the scenario predictions, the
model ensemble was used to derive approximate probability den-
sity functions (PDF). Fig. 5 presents the PDF describing the proba-
bility that the change in discharge will exceed a certain threshold
for the Dill and the Dietzhölze for the 5.0 ha scenario. Two methods
were used to derive these PDF. In the first method, all models were
weighted equally and in the second method the REA method was
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tion of changes in annual discharge. Predictions shown are for the 5.0 ha land use
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used to weight the different models. The REA method assumes that
models that perform poorly for the present-day discharge (see
[10]) and models that deviate strongly from the average change
predicted by the ensemble are less reliable. As discussed in Section
3.1, there are three models that provide deviating scenario predic-
tions for reasons discussed earlier. Since this deviating behavior
was not evident from the present-day conditions, it seems appro-
priate to consider both the present-day performance and the sim-
ilarity to the scenario predictions of the other models in the
ensemble analysis. Fig. 5 shows that the difference between the
two methods is small for the Dill catchment. For example, both
methods predict that there is a 50% probability that the change
in annual discharge will exceed 23 mm yr�1 for this land use
change scenario. The small difference can be explained by the
coherency of the scenario predictions and the relatively low bias
in simulating present-day discharge. One model was deemed
slightly less reliable because the model bias for the actual condi-
tions exceeded the natural variability (DHVSM, R = 0.74), and the
reliability of another model was decreased because its scenario
prediction deviated more from the ensemble mean than expected
from the natural variability (SLURP, R = 0.71). The difference be-
tween the two methods is much larger for the Dietzhölze. For this
catchment, four models were less reliable because of a high bias
and three models were less reliable because of strongly deviating
scenario predictions (R values ranged from 0.39 to 1.00). It should
be noted that there is a weak correlation between bias and devia-
tion from the ensemble mean of the scenario predictions, which
means that the reliability of some models is reduced for both rea-
sons. The observed differences in Fig. 5 are in line with the results
Fig. 6. Probability of change in annual discharge for the Dill catchments and three of its
(REA) method.
presented in [10], who showed that the individual models per-
formed better for the Dill catchment than for the subcatchments.

The impact of the REA method on the PDF is evident from
Fig. 5b. The reduced reliability for scenario prediction of seven
models has led to an assumed smaller likelihood for the scenario
predictions of these models. In case of the Dietzhölze, this caused
a tightening of the PDF as compared to equal weighting of each
scenario prediction. Because models with large deviations from
the average scenario change are also deemed less reliable, the
REA method will often cause such a tightening. However, if models
that predict close to the average scenario change are less reliable
because of a high bias, the PDF can also be wider for the REA
weighting as compared to equal weighting of all scenario predic-
tions. In the following, we apply the REA method to the remaining
scenario predictions because it seems a convenient way to deal
with varying model quality and deviating scenario predictions.

Fig. 6 presents the PDF for the four catchments and three field
size scenarios. Table 3 presents the mean, the trimmed mean, the
REA average and the REA RMSD of the ensemble of scenario predic-
tions. Fig. 6 and Table 3 show that the ensemble predicts that the
mean annual discharge will increase with increasing field size, as
was already observed in Figs. 2 and 3. For example, the REA mean
of the difference between scenario and baseline run in the Dill
catchment increases from �1.9 mm yr�1 for the 0.5 ha scenario
to 30.8 mm yr�1 for the 5.0 ha scenario (Table 3). Table 3 also
shows that the REA average is closer to the trimmed mean predic-
tion than to the raw mean prediction. It should be noted that this
raw mean ensemble prediction was shown to have a rather large
bias and less than optimal model efficiency in a companion paper
subcatchments. Probability was estimated using the reliability ensemble averaging



Table 3
Trimmed mean, mean, REA mean and REA root mean square difference (RMSD) for the
Dill catchment and three of its subcatchments for three field size scenarios

Trimmed mean
(mm yr�1)

Mean
(mm yr�1)

REA mean
(mm yr�1)

REA RMSD
(mm yr�1)

Dill
0.5 ha �2.5 �3.8 �1.9 35.3
1.5 ha 18.0 21.2 18.6 26.7
5.0 ha 28.0 33.9 30.7 41.3

Aar
0.5 ha �18.0 �18.7 �19.3 36.1
1.5 ha �3.2 �0.1 �3.3 27.6
5.0 ha 12.8 18.3 14.9 26.5

Dietzhölze
0.5 ha 34.6 39.9 41.6 56.0
1.5 ha 64.9 79.4 65.2 51.5
5.0 ha 71.7 88.2 71.8 54.0

Obere Dill
0.5 ha 23.1 25.4 29.0 52.8
1.5 ha 58.6 72.6 69.1 44.8
5.0 ha 70.2 87.1 78.0 54.2
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[31] and this might explain this tendency. In addition, both the
trimmed mean and the REA method punish simulations that devi-
ate strongly from the mean prediction, which might also have
caused the similarity.

The PDF in Fig. 6 also illustrates the uncertainty in the predic-
tions. For example, for the 5.0 ha scenario, the ensemble predicts
that there is a 74% probability that the increase in discharge is
between 15 and 35 mm yr�1 in the Dill catchment. It also pre-
dicts that the probability of a change in discharge exceeding
>35 mm yr�1 is 15%. Besides the direct interpretation of the PDF,
the uncertainty in the scenario predictions can also be quantified
with the REA RMSD provided in Table 3. However, due to the asym-
metric density functions for our scenario predictions (Fig. 6), this
uncertainty measure is less suited to convey the uncertainties
within the model scenario ensemble.

Fig. 6 also nicely illustrates that there are substantial differ-
ences between the scenario predictions for the four catchments.
For example, the uncertainty in the scenario predictions for the
Dietzhölze and the Obere Dill is much larger than for the Dill and
the Aar catchment. Interestingly, Fig. 6 also shows that the 1.5
and 5.0 ha scenarios result in similar annual changes in discharge
for the Dietzhölze and the Obere Dill catchment, as would have
been expected from the land use distribution in Table 1. This obser-
vation was not apparent from the more qualitative Fig. 3.
Fig. 7. Probability of change in 90% discharge percentile for the Dill catchment.
Probability was estimated using the reliability ensemble averaging (REA) method.
The analysis so far has focused on quantifying the uncertainty in
the change in mean annual discharge for the three field-size sce-
narios. However, it is also of interest to consider high flows.
Fig. 7 presents the PDF for the change in the 90% discharge percen-
tile for all three scenarios in the Dill catchment. To obtain these
PDF, the REA method was slightly adapted. The model quality for
current discharge (RB in Eq. (1)) was defined as the difference be-
tween observed and simulated 90% percentiles. The parameter e
in Eq. (1) was computed from the difference between the mini-
mum and maximum 90% discharge percentile of a 16-yr long mov-
ing window after linear detrending on the 35-yr long Dill discharge
time series. As for the mean annual discharge, the model ensemble
predicts an increase in high flows with an increase in field size. The
REA mean changes were �0.019 mm d�1, 0.112 mm d�1 and
0.190 mm d�1, respectively for the 0.5, 1.5 and 5.0 ha scenarios. A
comparison with the results in Table 3 shows that the high flows
reacted more sensitive to land use change than the mean flows.
Most likely, this is related to the increase of quickflow components
with an increase in cropland.

Although the probabilistic interpretation of the land use change
scenarios is considered to be an important step, it should be real-
ized that the sample size used to derive these PDF was still rather
limited. Clearly, care should be taken not to overextend the quan-
titative interpretation of Fig. 6. In climate change scenario analysis,
the number of simulations has typically been increased by addi-
tionally considering model runs made with a single model, but
with different equally probable parameterizations. In this study,
it has not been attempted to increase the sample size with addi-
tional Monte Carlo simulations, but it is worthwhile to consider
it for future studies of this kind. Finally, it is worth mentioning that
the REA method can easily be extended with additional reliability
measures. One could think of alternative quantitative error mea-
sures, such as the fit to interior basins not included in the calibra-
tion and the deterioration from calibration to validation, or
perhaps one could even consider less conventional measures, such
as the number of calibration parameters and the number of suc-
cessful applications.

4. Conclusions

In the LUCHEM project, an ensemble of hydrological models
was applied to the same set of land use change scenarios. Although
the model ensemble produced a considerable range of predictions
for the scenarios and catchments under consideration, there was
general agreement amongst the models with respect to the direc-
tion of change. Compared to previous analyses of these land use
change scenarios with a single model, this coherence within the
model ensemble increases our confidence in the scenario predic-
tions. Nevertheless, there remains the possibility that all models
did not capture the essential hydrological processes determining
the impact of land use change. For this reason, it would be worth-
while to repeat this type of model experiment in a well-instru-
mented catchment that has experienced (or still is experiencing)
land use change.

The predicted amount of change varied between models. Seven
out of ten models showed a small increase in mean annual discharge,
which was explained by similar mean annual ET for the different
land use classes. Three models provided deviating scenario predic-
tions because of deviating mean annual ET for single (or multiple)
land uses, despite an acceptable performance for the present-day
conditions. This is a consequence of current calibration and valida-
tion practice, where the focus is on predicting discharge correctly.
Unfortunately, internal catchment data for improved calibration
and validation were not available in this study. Although model
ensembles cannot entirely overcome problems inherent to hydro-
logical model calibration, it can be used to either average out model
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structural error by optimally combining ensemble members or to
obtain an estimate of uncertainty introduced into the scenario pre-
dictions by variations in model structure.

A trimmed mean was used to combine the ensemble member
predictions into a single deterministic scenario prediction.
Although it cannot be verified, it is assumed that this prediction
is more accurate than the prediction of every single model because
this is typically observed when deterministic ensemble methods
are applied to actual conditions where validation data are avail-
able. Although deterministic ensemble methods are promising, it
seems a missed opportunity to not use the information present
in the ensemble to derive uncertainty estimates. To this end, we
applied the probabilistic reliability ensemble averaging (REA)
method. This method considers both the performance of the
ensemble member for the current conditions and the deviation of
the scenario prediction from the ensemble average to derive
weights for each model within the ensemble. It was concluded that
the REA method is a convenient way to summarize the information
in the multi-model ensemble in a quantitative way. To the best of
our knowledge, this is the first attempt to quantify the uncertainty
in scenario predictions due to structural differences in hydrological
models, which is often argued to be an important source of uncer-
tainty. As such, we believe that the uncertainty estimates of the
scenario predictions derived in this study are more realistic than
previous estimates based on a single model. Clearly, realistic esti-
mates of predictive uncertainty are paramount for risk assessment
and communication with decision makers.
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