
Boosting a Heterogeneous Pool of Fast HOG
Features for Pedestrian and Sign Detection

Gary Overett,Lars Petersson,Lars Andersson and Niklas Pettersson
National ICT Australia

Locked Bag 8001, Canberra, Australia
{gary.overett,lars.petersson,lars.andersson,niklas.pettersson}@nicta.com.au

Abstract-This paper presents a fast Histogram of Oriented
Gradients (HOG) based weak classifier that is extremely fast to
compute and highly discriminative. This feature set has been
developed in an effort to balance the required processing and
memory bandwidth so as to eliminate bottlenecks during run
time evaluation. The feature set is the next generation in a series
of features based on a novel precomputed image for HOG based
features. It contains features which are more balanced in terms
of processing and memory requirements than its predecessors,
has a larger and richer feature space, and is more discriminant
on a per feature basis.

In terms of computational complexity it is a heterogeneous
feature set. I.e. it has fast and slow variants. In order to optimize
our feature selections between the faster and slower features
available we implement a recently proposed modification to the
RealBoost feature selection rule. This modification provides an
additional means to balance processing and memory bandwidth
on ordinary PC architectures.

This feature set is suitable for use within typical boosting
frameworks. It is compared to Haar and Rectangular HOG
features, as well the related feature HistFeat. The new feature
set contains two variants, LiteHOG and LiteHOG+, which we
compare. Both LiteHOG and LiteHOG+ show promising results
on road sign and pedestrian detection tasks.

I. INTRODUCTION

Real-time visual object detection from a moving platform is
a popular problem in vehicle based computer vision. In many
such systems, both error rates and time to decision determine
the value of a given solution. In the field of computer vision
there are many successful detection approaches [1] [2] [3] [4].
The use of precomputed datatypes, such as the integral image
in [1], facilitates a much faster feature evaluation process
than previous methods. In fact, evaluation requires so little
processing time that these features are limited by bandwidth to
memory, not CPU bandwidth [5]. In response to this problem,
Pettersson et al. [5] proposed a novel precomputed datatype,
the histogram image, and a new feature, HistFeat, which is
resource efficient in terms of memory and computation. In
this paper, we will present two feature types which both make
use of the memory efficient histogram image, the LiteHOG
and LiteHOG+ features.

In the time since the widely lauded Viola & Jones [1]
object detector, there has been a trend toward improved

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program

978-1-4244-3504-3/09/$25.00 ©2009 IEEE

detection performance using ever more computationally com­
plex features. A strong emphasis on error-rates has favored
more discriminant features at the expense of computational
performance (time to decision). This may be quite reasonable
for offline applications but for tasks such as vehicle based
pedestrian and road sign detection it is not suitable. In the
case of pedestrian detection, Histograms of Oriented Gradients
(HOG features) [2][3] and Edgelet features [6] have surpassed
the error rate performance of the Haar feature, however,
these features are both significantly slower. More recently,
very high pedestrian detection rates have been attained using
Region Covariance features [7] [8]. Detection performance is
impressive but the computation and memory requirements of
the Region Covariance feature are comparably huge.

For a time constrained problem we require an analysis not
just of the error rates of different features but a comparison
of their achievable error rates in a given amount of time.
Of course, time constrained detection performance does not
only depend on the chosen feature type but also on the
chosen learning algorithm. AdaBoost [9], and its Real-Valued
counterpart RealBoost [10], are common choices. However,
researchers have found that for some problems, alternatives
such as LogitBoost [11], decrease the classification error more
quickly [7]. There are also notable learning algorithms that
directly attempt to minimize time to decision, such as the
WaldBoost algorithm [12].

Lastly, we note that per feature processing time may vary
across a given feature space, with some features taking more
processor time than others. Most popular boosting algorithms,
including 'time conscientious' algorithms like WaldBoost, do
not consider the possibility that the features available may have
a different computational penalty. A small modification to the
AdaBoost feature selection rule, is shown in [13]. This aids the
selection of features with different computational speeds on a
level playing field, see Section III-C. This small modification,
which we apply to RealBoost [10], selects the feature which
most rapidly decreases the error rather than selecting the most
discriminant feature regardless of the time taken.

II. BALANCING PROCESSOR AND MEMORY BANDWIDTH

The arrival of precomputed datatypes has dramatically re­
duced the processing power required to evaluate features.
Pettersson et al. [5] showed that a significant bottleneck for
such systems is memory bandwidth. It was observed that

584

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

o

4

32-bit histogramo

Histogram Image

~ ...-__~----.X

Some HOG feature implementations add more weight to an
orientation bin for stronger gradients. Within the histogram
image no such weighting is performed. Rather all gradients
with magnitudes larger than a given threshold are summed in
the relevant orientation bin.

2) The histogram image pixel: A normal RHOG imple­
mentation [2] creates a histogram over an arbitrary rectangular
region [2]. In order to concentrate all the information required
to evaluate a feature into a single histogram image pixel,
binning is only performed over each 4 x 4 image patch. Thus
the maximum value for any histogram bin is just 16. By
reducing the occasional value of 16 down to 15 we can capture
the histogram response in just 4 bits. This reduces the total
memory requirement for a single histogram image pixel to just
4 x 8 bits = 32 bits. See Figure 3.

Fig. 1. Given a greyscale image, we first compute the x and y gradients
at each pixel in the image. These gradients are then used to compute the
magnitude and orientation at each pixel. We then use these magnitudes and
orientations to create histograms at every possible 4 x 4 image patch. Each
of these histograms is packed as a pixel in the histogram image.

Fig. 2. The orientation space is divided into 8 bins. Each pixel in the grey
image is assigned to one of these orientations. The unconventional encoding
of the orientations is as defined in [5]. This encoding is designed to avoid the
evaluation of slower trigonometric identities in calculating orientations.

memory access to the precomputed datatype for Haar features
was faster than the memory bandwidth allowed. This prob­
lem was further exacerbated by the semi-random pattern of
memory accesses. This leads to poor CPU cache performance,
forcing the CPU to idle until the lengthy main memory access
returned.

For typical rectangle based features (such as, Haar [1],
Rectangular Histograms of Oriented Gradients (RHOG) [2],
and Region Covariance [7] [8]), memory access is spread out
over their respective precomputed datatypes. This causes a
high rate of cache misses and slow waits for memory, during
which time the CPU remains idle.

Pettersson et al. [5], introduced a novel precomputed image
which they called the histogram image. The histogram image
is used in a similar way to the precomputed images for other
features, but has one major advantage in terms of speed. A
feature based on the histogram image requires only a single
read of a 32-bit 'pixel' value for feature evaluation.

The HistFeat feature proposed by Pettersson et al. greatly
reduced the memory bandwidth requirements for evaluating
a single feature. However, they also reduced the processing
requirements required to evaluate a single feature. This meant
that even with just one access to the histogram image for each
feature, memory bandwidth is still the bottleneck. To further
improve such a feature would require somehow reducing the
memory bandwidth required (which is difficult with just one
access!) or by creating a more discriminant feature via the use
of the spare processing resources.

In response to this we have developed two feature types.
First is the LiteHOG feature which is designed to make use of
the spare computational resources. While LiteHOG performs
comparatively well on several problems, it was found that
its additional computational complexity meant that instead
of being memory bandwidth limited it is processor limited.
The second feature, LiteHOG+, is a modified version of the
LiteHOG feature space which is more balanced in terms
of memory and processor bandwidth. LiteHOG+ is designed
so that processing is done in about the same time taken to
receive memory from the histogram image. Our testing of
the LiteHOG+ feature shows that it is often not only a faster
feature than LiteHOG but also a more discriminant one.

III. IMPLEMENTATION

A. The Histogram Image

The process of computing the histogram image is outlined in
[5]. However, since most readers may not be familiar with its
form, we provide an outline of the content of each histogram
image pixel. An overview of the computations needed to
produce the histogram image is shown in Figure 1. Figures
1, 2 and 3 are used with the permission of Pettersson et al.
[5].

1) Orientation and magnitude binning: Any HOG feature
implementation must determine how many orientation bins to
use in the histograms and how to deal with the magnitude of
the gradients. In the histogram image only 8 separate gradient
directions are considered, see Figure 2.

Fig. 3. Each 'pixel' in the histogram image encodes a histogram of the
orientations in a 4 x 4 neighborhood. Each orientation is represented by just
4 bits.

B. Classifier Evaluation

The histogram image facilitates feature evaluation depen­
dant on only a single memory access. How that feature is
constructed is not predetermined by the histogram image. In
the case of HistFeat [5], just 2 orientations are taken from
the histogram image pixel and used to index a 2 dimensional
histogram model. For the LiteHOG and LiteHOG+ features we
use up to 8 orientations from the histogram image pixel but

585

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

+ L (Xn - m2)(Xn - m2)T (3)

nEG2

Sw = L (xn - ml)(xn - ml)T
nEGl

needed for these points at the origin and we want the projection
to 'focus' on the remaining data.

Let,

(5)

(4)

i(x) = g(w· x)

using the subset means Xl and X2.
This gives the final projection matrix,

A sA-l(A A)
W = w ml - m2 .

C. Computational Complexity of a Feature

Unlike the LiteHOG feature, LiteHOG+ does not always
require 8 multiplications in Equation 5, fewer multiplications
results in faster feature evaluation. In order to optimize our
feature selection, we apply a simple extension to RealBoost
as defined in Dollar et al. [13]. When optimizing for speed
it is natural that if two features give the same error reduction
that we should favor the faster one. Dollar et al. introduce
the concept of a partial feature if which is defined for every
feature it with an error bound Zt and complexity Ct. The
partial feature is then defined as having an error bound of Z; =
Ztl /

Ct and complexity c~ = 1. They observe that selecting Ct
copies of if reduces the upper bound by TI~~l Z; = Zt, Le.
selecting Ct copies of if is the same as selecting one copy of
it, both in terms of computational cost and the effect on the
upper bound.

where x contains the N selected orientations from the his­
togram image and g() is the RealBoost weak learner classifica­
tion response using the Smoothed Response Binning approach
found in [19].

Ci ~ Ci such that VXj E Ci, Xj =1= 0 (2)

so that Ci is the subset of the class training data Ci without
the points at the origin. Let the within class scatter matrix Sw
be defined using the positive and negative class subsets,

Once the projection is applied, the LiteHOG+ feature re­
sponse can be dealt with in a manner similar to other scalar
feature responses, such as Haar-features. Final weak classifier
evaluation is applied as in Equation 5.

2) Creating a Model: A popular model for scalar feature
responses is the simple lookup table a posteriori maps based
on histogram statistics. These are both fast and discriminative
[17] [18]. However, the benefit of improved modelling while
keeping the fast lookup table approach has been shown in [19]
and [14]. For Haar features this modelling approach yielded a
75% average error reduction [19]. Therefore we apply a similar
Smoothed Response Binning Method to our scalar LiteHOG
and LiteHOG+ feature responses.

The final weak classifier response is defined as,
(1)

where w is the N-dimensional projection matrix, Sw is the
within class scatter matrix and ml, m2 are the means of the
positive and negative classes respectively. For LiteHOG N =
8, in the case of LiteHOG+ N E [1,8].

At this point we must deal with a 'special problem' which
arises from the histogram image. A combination of the gradi­
ent magnitude thresholding (Section III-A2) and the low level
of edges found in typical negative data (due to sky, road,
walls etc.) means that a common bin value in the histogram
image is zero for each selected dimension. That is, all N bins
counted no gradients over the given threshold. Over a typical
video sequence up to 40% of the histogram image 'pixels'
may contain straight zeros across all 8 dimensions. This may
seem an indication that the histogram image discards too much
information. However, experimentation shows that gradients
are still captured around objects such as signs and pedestrians,
and therefore only information in regions such as sky or
road are discarded. The issue for Fishers Linear Discriminant
is that it is only optimal for a Gaussian distribution. The
actual distribution at hand is 8-dimensional, concentrated at
the origin and strictly positive. Thus, we apply Fishers Linear
Discriminant only to those points which are not at the origin to
make the distribution appear more Gaussian. No projection is

project the N dimensional space into single scalar response.
This response is used to index a model which is constructed
similar to [14].

1) Finding a 1D Projection: Feature modelling and hypoth­
esis construction is simpler and faster in 1 dimensional space
than in higher dimensions. Thus we require a suitable means of
dimensionality reduction. Examining several options, we have
selected Fishers Linear Discriminant (FDA) [15] because it is
fast to compute during training while producing meaningful
projections. FDA finds an optimal projection for separating
2 Gaussian class means in a high dimensional space. While
our distributions are not Gaussian we find that discriminant
projections are still achieved. Other methods such as Local
Fisher Discriminant Analysis [16] would probably supply an
even better projection. Unfortunately, this method is too slow
to compute for a reasonable portion of the feature space.

A downside of the FDA algorithm is that it produces only
a single projection which is not necessarily optimal for the
training data. Therefore, to create the larger LiteHOG+ feature
space we find 256 possible projections using FDA on arbitrary
subsets of the 8 dimensional histogram image pixel.

Apart from finding better projections, the LiteHOG+ ap­
proach gives a significant reduction in the computation re­
quired to evaluate some features. Consider the example where
the most discriminant feature is found using a projection of just
3 dimensions. In this case only 3 multiplications and additions,
rather than 8, are required in Equation 5. Thus this feature is
both faster and more discriminant.

Linear projections are found according to the canonical
variate of Fishers Linear Discriminant as shown in [15],

586

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

The final update rule selects the feature it with computation
cost Ct and error Et which minimizes

While it is possible to estimate the computational cost of a
feature quite accurately on its own, it is not always possible
to estimate the cost of adding that feature in conjunction
with others. For example, if a feature il has such a low
computational cost that it leaves the CPU idle while waiting
for memory, it is possible to add a more complex feature
io to be evaluated before it in order to use the 'spare'
processing resources. Thus the cost of adding io to the stage
is not necessarily as high as initially thought. It is likely
that exhaustive evaluation is the only means of determining
the true cost of a feature. Since this is not possible we take
the approach of merely managing the ratios of high and low
complexity features using the selection rule in Equation 6. The
modified RealBoost algorithm is shown in Algorithm 1.

as in [14]. RHOG features are implemented in a similar
fashion to the Rectangular HOG features in [2]. Our native
version of this feature differs slightly in its orientation binning
scheme, descriptor block arrangement, and discards the block
normalization. These differences are generally either required
to fit within our boosting implementation or give a greater
emphasis on speed.

Significant effort has been put into the speed optimization
of all features compared, down to the assembly level. I.e.
we are not comparing our speed optimized features with
weaker/slower implementations of the other features. Features
are optimized by producing two implementations of each fea­
ture. One for training purposes and another highly optimized
version for run-time evaluation. This second version allows
the rearrangement of features so as to collocate features which
will reference similar (x, y) coordinates in their precomputed
datatype.

A. Time-Constrained Strong Classifier Performance

We employ the same experimental evaluation technique as
in [5]. That is, we train single stage classifiers instead of
cascade structured classifiers. Cascade classifiers are highly
sensitive to small changes in rejection thresholds making
reasonable comparisons between methods difficult. Of course,
single stage classifiers do not achieve the best possible classi­
fication or speed performance but we believe that the resulting
comparisons are more reliable.

Fig. 4. Example images of different types of road signs in our dataset.

11111111110

(8)

(6)

trainClassifiers(X, Y, F) :
X = {XI, X2, , XN }, the set of example windows
Y = {YI, Y2, , YN}, Yi E -1,1, the corresponding labels
F = {fI, f2, , fM}, the set of features
Dl(i) = liN, the set of training weights
For t = 1, ... , T (or until the desired rate is met)

1) Train classifiers hj using distribution Dt. The classifier takes on two

possible values: h+ = ~ln (: :~) and h- = ~ln (: :::~) for

positive and negative examples respectively. Wpq is the weight of the
examples given the label p which have true label q.

2) Select the classifier ht which minimizes

z~ = Z:lct = (t Dt(i)exp(-Yiht(Xi))) l/et (7)

3) Update distribution Dt+l(i) = Dt<i)exP~Yiht<Xi))

The final strong classifier (cascade stage) is

Alg. 1: The modified RealBoost Algorithm

IV. EXPERIMENTS

In this section, we perform a set of experiments to evaluate
the speed and classification tradeoffs of different features,
particularly the LiteHOG and LiteHOG+ features.

These experiments provide a per feature comparison of:

• Strong classifier performance given a range of CPU time
budgets. This allows us to select the fastest feature for a
desired classification performance.

• The number of features that can be evaluated per second
in video data.

Comparisons are performed on five different feature types.
Our new LiteHOG and LiteHOG+ features, its predecessor
HistFeat, as well as the Haar and RHOG features. HistFeat is
implemented as in [5]. Haar features are implemented in the
classical fashion but we use the improved smoothed learning

Fig. 5. A selection of 32x80 color images from the NICTA Pedestrian
Dataset.

1) Dataset: Positive input data to the RealBoost training
process for the different object types are listed in Table I. The
numbers reflect the original raw hand-labelled images taken by
a digital camera, and the number of images after distortions
have been applied as in [5]. Pedestrian images are a subset
taken from the NICTA Pedestrian Dataset [20]. As such, the
only distortion applied is mirroring. A total of 10,000 negative
training data and 100,000 validation data were used in all road
sign experiments.

2) Training and evaluation: For each object type listed in
Table I, RealBoost was used to train 1000 different strong
classifiers consisting of 1 to 1000 features. For each of the
strong classifiers we calculated the ROC curves and the scan
time on a typical video sequence.

By pairing the ROC and scan time data we produced
the time-error curves shown in Figure 6. To give a clearer

587

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

TABLE I
POSITIVE INPUT DATA, RAW IMAGES FROM A DIGITAL CAMERA AND

DISTORTED IMAGES GENERATED FROM THE ORIGINAL RAW IMAGES.

1Standard Definition Video; No such single standard exists! Generally
with resolutions of around 704 x 480 to 768 x 576. This paper uses Standard
Definition PAL at 768 x 576.

representation of the resulting error versus time tradeoffs we
sample the ROC curve at 3 operation points; a) the (knee', see
below b) false negative rate = 0.01; and c) false positive rate
= 0.01.

The minimum total error E on the ROC curve is taken to
be at the 'knee' of the curve, where the ROC curve is closest
to perfect classification.

where E is the total error, Fp is the false positive rate and Fn

is the false negative rate.
In Figure 6, we note several interesting results.

No single feature dominates an entire peiformance curve:
This is apparent in all three time-error plots in Figure 6. The
LiteHOG and LiteHOG+ features are no exception. We believe
this is a strong justification for this kind of performance versus
computing time analysis.

Haar features and RHOG features dominate the curves
for slower classification speeds: This is particularly apparent
in Figures 6(a) and 6(b) for pedestrians and speed signs. So for
applications where detection accuracy is preferred over speed
Haar and RHOG features are probably more suitable choices
than the new LiteHOG and LiteHOG+ features. Additionally,
one might consider the Region Covariance feature [7] which
is known to give particularly impressive detection results for
pedestrians.

HistFeat is the best performer for very fast classifiers:
HistFeat is the fastest of all the features on a per feature
basis and therefore can be expected to dominate at the fastest
end of the curves. Each individual application will have its
own desired speed requirements. We note that many useful
applications such as in-vehicle sign and pedestrian detection
become plausible with a low latency processing of standard
definition video 1 frames at a frequency of around 10-200Hz
(5-1OOms/frame). This is the region highlighted in yellow in
Figure 6. Evaluation slower than lOOms introduces a latency
at which signs and pedestrians can not be detected at normal
driving speeds. Evaluation speeds of up to 200Hz can be useful
if multiple detectors are to run on a single architecture.

LiteHOG+ pedestrian classifier dominates at speeds of
20-1000ms: See Figure 6(a). For much of the highlighted
speed range LiteHOG+ is 2-4 times faster than a Haar or

(10)T = Tp + lave' N . Te

RHOG classifier of equivalent error-rate performance. There­
fore, even if higher accuracy is required it may be desirable
to use LiteHOG+ in the early stages of the cascade to avoid
the evaluation of slower Haar or RHOG features on every
incoming image patch.

HistFeat, LiteHOG and LiteHOG+ features overfit on
speed sign data: Results on the speed sign classifiers, Figure
6(b), show significant overfitting for some features. We see
that these features do suffer some overtraining effects at
which point learning stalls and classification performance
actually gets worse. However, LiteHOG+ is still an outstanding
performer for fast classifiers. This suggests using it in a
prefilter stage or perhaps attempting to prevent the overtraining
through the use of a larger and more diverse training set. We
note, however, that the low number of validation samples at
such high accuracies means that validation is somewhat noisy.
Therefore this portion of the road sign results is not entirely
conclusive.

HistFeat, LiteHOG and LiteHOG+ features build sig­
nificantly faster classifiers on stop sign data: Figure 6(c),
shows huge speed gains on stop sign data. These features
are almost an order of magnitude faster than RHOG features
and sometimes two orders of magnitude faster than Haar
features! This suggests than gradients were a more useful
low level feature on the somewhat homogeneous stop sign
dataset (unlike speed signs which may have different speed
values printed on the face). Haar features do not capture such
gradients as effectively.

B. Features Per Second

Equation 10 defines the total time spent per frame of video.
This is dependant on the preprocessing time for a single frame
of video Tp , the average number of features computed in each
image window lave, the total number of inspected windows
per frame N, and the evaluation time per feature Te .

Figure 7 shows the number of features which can be
calculated per second for different classifier stage lengths.
LiteHOG+ is clearly faster to evaluate than the LiteHOG
feature. Since the LiteHOG+ feature also provides significantly
more discriminant features for pedestrians this speed gain is
particularly pleasing. I.e. the LiteHOG+ features learns a better
classifier in fewer features and the features themselves are
faster to compute! For very short classifiers (less than 10
features) the processor is able to cache all the memory required
to evaluate the classifier, this means that features with very low
computational demands, such as HistFeat, evaluate many times
faster. Conversely, larger classifiers justify the use of a feature
such as LiteHOG+ which balances the wait for memory with
extended processor use.

C. A Heterogeneous Classifier

In order to produce a set of classifiers with performance
comparable to the best of either HistFeat or LiteHOG+ in
Figure 6(a), we trained a set of combination classifiers, with

(9)E = min(JFi + F~)

Type Raw Train Raw Valid Dist Train Dist Valid

Speed Sign 1110 222 10000 2500

Stop Sign 129 32 10000 2500

Give Way Sign 154 38 10000 2500

Pedestrian 4926 1865 9852 1865

588

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

\
... \
~
":,.~

~ ;.--,:, .j~:,

.~~~' ~~i""'~

.."~~.~ ~\~ ~~I
'{'if; '~~

l~

.JfoJ

101 102 103

ms/frame
(c) Stop signs

101 102 103

ms/frame
(0 Stop signs

101 102 103

ms/frame
(i) Stop signs

\

". :\
':\
)}

",

[~ 1;:\
I::P

n:

\

\\
:\

.\

;.\

J~i

\
'i

~

,'If\' -tJ

10°

~ 10-1e
CD
g
.9 10-2
Q)
C>
ctS
CD

~ 10-3

101 102 103

ms/frame
(h) Speed signs

101 102 103

ms/frame
(e) Speed signs

101 102 103

ms/frame
(b) Speed signs

\

.~

:\

.:" ~ ~.- _.'
~

Vv- ll(fltl~
..rt"U'

j ;/

::

.,"'---

~

::\

'\ ...

':\' ~Yr.i~
:: M f ib~ ("

il~1 I

: :U m)~I,

\
.",

~ .. '

'yv '~,... r-

1J:.v ~"'

'i

10°

~ 10-1e
CD
g
.9 10-2
Q)
C>
ctS
CD

~ 10-3

101 102 103

ms/frame
(a) Pedestrians

101 102 103

ms/frame
(d) Pedestrians

101 102 103

ms/frame
(g) Pedestrians

'\

'\\
"\

\
<':"":..
0..'\ ~\,

"":~~~

\::t~".';;

\~,

0.01
10°

o
ci

II
Q)

>
+:i
·00
oa.
Q)
(J)

~
ca 0.1
Q)

~
Q)
>
~
C>
Q)
C

~ 0.01 °
~ 10

o
ci

II
Q)
>
~
C>
Q)
C
Q)
(J)

~ca 0.1
Q)

~
Q)

>
+:i
·00
oa.
~ 0.01 °
~ 10

Fig. 6. Performance versus computing time. The top row shows average total error versus computing time for the different object classes. The middle row
shows the performance for a fixed negative rate of 0.01. The last row shows performance for a fixed false positive rate of 0.01. Note that the pedestrian column
has a different scale on the y-axis. In these plots we see that LiteHOG+ is well suited to fast pedestrian detection problems. While it does not dominate all
of the time-error plots it is often the best feature for much of the target range (yellow region), 5-100ms/frame.

up to 50 features, using both HistFeat and LiteHOG+ features.
Figure 7 includes the features per second performance of
these classifiers. The resulting classifiers clearly evaluate at
only slightly slower speeds than the pure HistFeat classifiers.
Figure 8 shows the performance of the combined classifier on
the pedestrian data. For slower computing times (more than
11ms) the classifiers are similar but slightly worse than pure
LiteHOG+. This is probably due to selection bias toward the
overfitting HistFeat features, a problem discussed in [21]. For
faster classifier speeds the results are comparable to the best
of either HistFeat or LiteHOG+.

v. CONCLUSION

In this paper, two novel features LiteHOG and LiteHOG+
were presented. Both have been shown to be extremely fast
and discriminant features, particularly suited to low latency
pedestrian detection problems. The expanded feature set Lite­
HOG+ is generally the dominant feature on most detection
tasks. The features are suitable for use in a cascade of boosted
weak classifiers, but may also be useful within other machine
learning frameworks.

Experiments on real world video data provides a compar­
ison of the LiteHOG and LiteHOG+ features to HistFeat, a

589

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Viola and M. Jones, "Rapid Object Detection Using a Boosted
Cascade of Simple Features," in IEEE Computer Society Conference
On Computer Vision And Pattern Recognition, vol. 1. IEEE Computer
Society; 1999, 2001.

[2] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," Computer Vision and Pattern Recognition, vol. 01, pp. 886­
893,2005.

[3] Q. Zhu, S. Avidan, M. Yeh, and K. Cheng, "Fast human detection using a
cascade of histograms of oriented gradients," in IEEE Computer Society
Conference on Computer vision and Pattern Recognition, vol. 2, 2006,
pp. 1491-1498.

[4] B. Alefs, G. Eschemann, H. Ramoser, and C. Beleznai, "Road sign
detection from edge orientation histograms," in IEEE Intelligent Vehicles
Symposium (IV2007), June 2007.

[5] N. Pettersson, L. Petersson, and L. Andersson, "The histogram feature
- a resource-efficient weak classifier," in IEEE Intelligent Vehicles
Symposium (IV2008), June 2008.

[6] B. Wu and R. Nevatia, "Detection and tracking of multiple, partially
occluded humans by bayesian combination of edgelet based part detec­
tors," International Journal of Computer Vision, 2007.

[7] O. Tuzel, F. Porikli, and P. Meer, "Human detection via classification
on riemannian manifolds." in CVPR. IEEE Computer Society, 2007.

[8] S. Paisitkriangkrai, C. Shen, and J. Zhang, "Fast pedestrian detection
using a cascade of boosted covariance features," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1140­
1151, August 2008.

[9] Y. Freund and R. E. Schapire, "A short introduction to boosting," Journal
ofJapanese Society for Artificial Intelligence, vol. 14, pp. 771-780, sept
1999.

[10] R. E. Schapire and Y. Singer, "Improved boosting using confidence­
rated predictions," Machine Learning, vol. 37, no. 3, pp. 297-336, 1999.
[Online]. Available: citeseer.ist.psu.edu/article/singer99improved.html

[11] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression:
a statistical view of boosting," The Annals of Statistics, vol. 38, no. 2,
pp. 337-374, 2000.

[12] J. Sochman and J. Matas, "Waldboost - learning for time constrained
sequential detection," Computer Vision and Pattern Recognition, vol. 2,
pp. 150- 156, 2005.

[13] P. Dollar, Z. Tu, H. Tao, and S. Belongie, "Feature Mining for Image
Classification," in Computer Vision and Pattern Recognition, 2007.
CVPR '07. IEEE Conference on, 2007, pp. 1-8.

[14] G. Overett and L. Petersson, "Improved response modelling on weak
classifiers for boosting," IEEE International Conference on Robotics and
Automation, 2007.

[15] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification
(2nd Edition). Wiley-Interscience, November 2000. [Online].
Available: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09­
20&path=ASIN/0471056693

[16] M. Sugiyama, "Local Fisher discriminant analysis for supervised dimen­
sionality reduction," in Proceedings of the 23rd international conference
on Machine learning. ACM New York, NY, USA, 2006, pp. 905-912.

[17] B. Rasolzadeh, L. Petersson, and N. Pettersson, "Response binning:
Improved weak classifiers for boosting," in IEEE Intelligent Vehicles
Symposium (IV2006), June 2006.

[18] B. Wu, H. Ai, C. Huang, and S. Lao, "Fast rotation invariant multi-view
face detection based on real adaboost," IEEE International Conference
on Automatic Face and Gesture Recognition, 2004.

[19] G. Overett and L. Petersson, "On the importance of accurate weak
classifier learning for boosted weak classifiers," in IEEE Intelligent
Vehicles Symposium (IV2008), June 2008.

[20] G. Overett, L. Petersson, N. Brewer, L. Andersson, and N. Pettersson,
"A new pedestrian dataset for supervised learning," in IEEE Intelligent
Vehicles Symposium (IV2008), June 2008.

[21] G. Overett and L. Petersson, "Boosting with multiple classifier families,"
IEEE Intelligent Vehicle Symposium, 2007.

100806040

features in classifier

Histfeat AMD64
LiteHOG AMD64

LiteHOG+ AMD64
HistFeatLiteHOG+ AMD64

Haar AMD64.

20

4.5e+08

4e+08

"'0
3.5e+08

c
0 3e+080
Q)
en

2.5e+08Q>
a.
en 2e+08
Q)

~ 1.5e+08ca
~

1e+08

5e+07

0
0

101

ms/frame

HistFeatLiteHOG+
LiteHOG+ -- -- +- --

LiteHOG --+­
-----+----

Fig. 7. The number of features that can be evaluated per second, on an
AMD64 2.2GHz machine, for LiteHOG+, LiteHOG, HistFeat, and the Haar
features. Measurements were done on a video with 101 frames and a resolution
of 768 x 576. The (x, y) step was (1,1), which results in about 365,000
patches per frame. For larger classifiers LiteHOG+ is only slightly slower per
feature than HistFeat. This indicates that LiteHOG+ is only weakly processor
limited. The LiteHOG feature is significantly slower than HistFeat the still
much faster than Haar features. This shows that LiteHOG is a processor
limited feature.

Rectangular Histogram of Oriented Gradients feature (RHOG)
and Haar features. The experiments shown provide guidance
to researches seeking a suitable feature for various time
constrained detection tasks.

Detailed analysis has been given, outlining the behavior of
various feature types on typical PC architectures. A method
for balancing processing and memory bandwidth has been
given. This makes use of a simple change to the AdaBoost or
RealBoost feature selection algorithm. This change means that
selections consider the computational complexity of prospec­
tive feature selections. Its usefulness was demonstrated in a
classifier consisting of LiteHOG+ and HistFeat features.

Fig. 8. Pedestrians: Performance vs computing time. The combined classifiers
using HistFeat and LiteHOG+ has a competitive performance over a range of
speeds though it does not dominate at any point.

590

Authorized licensed use limited to: Australian National University. Downloaded on March 26,2010 at 01:13:59 EDT from IEEE Xplore. Restrictions apply.

