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a b s t r a c t

Ecological theory and current evidence support the validity of various species response curves accord-
ing to a variety of environmental gradients. Various methods have been developed for building species
distribution models but it is not well known how these methods perform under various assumptions
about the form of the underlying species response. It is also not well known how spatial correlation
in species occurrence affects model performance. These effects were investigated by applying an envi-
ronmental envelope method (BIOCLIM) and three regression-based methods: logistic regression (LR),
generalized additive modelling (GAM), and classification and regression tree (CART) to simulated species
occurrence data. Each simulated species was constructed as a sum of responses with varying weights.
Three basic species response curves were assumed: Gaussian (bell-shaped), Beta (skew) and linear. The
two non-linear responses conform to standard ecological niche theory. All three responses were applied
in turn to three simulated environmental variables, each with varying degrees of spatial autocorrelation.
GAM produced the most consistent model performance over all forms of simulated species response.
BIOCLIM and CART were inclined to underrate the performance of variables with a linear response. BIO-
CLIM was less sensitive to data density. LR was susceptible to model misspecification. The use of a linear
function in LR underestimated the performance of variables with non-linear species response and con-
tributed to increased spatial autocorrelation in model residuals. Omission of important environmental
variables with non-linear species response also contributed to increased spatial autocorrelation in model
residuals. Adding a spatial autocovariate term to the LR model (autologistic model) reduced the spatial
autocorrelation and improved model performance, but did not correct the misidentification of the dom-
inant environmental determinant. This is to be expected since the autologistic approach was designed
primarily for prediction and not for inference. Given that various forms of species response to environ-
mental determinants arise commonly in nature: (1) higher order functions should always be tested when
applying LR in modelling species distribution; (2) spatial autocorrelation in species distribution model
residuals can indicate that environmental determinants with non-linear response are missing from the
model; and (3) deficiencies in LR model performance due to model misspecification can be addressed by
adding a spatial autocovariate to the model, but care should be taken when interpreting the coefficients
of the model parameters.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The prediction of species distribution is an important aspect of
conservation biology. Habitat suitability models of species based
on a set of environmental factors provide meaningful information
for the management of endangered species (Palma et al., 1999;
Engler et al., 2004), human–wildlife conflicts (Le Lay et al., 2001)
and species reintroductions (Yáñez and Floater, 2000; Schadt et
al., 2002). They can also be used to assess the impacts of climate
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and land-use change on species distribution (Guisan and Theurillat,
2000; Dirnbock et al., 2003).

Numerous methods have been developed for building species
habitat suitability models. Guisan and Zimmermann (2000) pre-
sented a comprehensive review and classified the methods into two
categories: (1) regression-based methods; and (2) environmen-
tal envelope methods. Regression methods relate species response
to single or multiple environmental predictors. These methods
include frequently used approaches such as logistic regression
(LR; Hosmer and Lemeshow, 1989), generalized additive mod-
elling (GAM; Hastie and Tibshirani, 1990), and classification and
regression tree (CART; Breiman et al., 1984). The environmen-
tal envelope method identifies the locations of species habitat
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suitability based on calculating minimal rectilinear envelopes in
multi-dimensional bioclimatic space. The method was pioneered
with the development of BIOCLIM (Nix, 1986; Busby, 1991; Houlder
et al., 1999).

The use of regression methods to predict species presence–
absence distributions has been considered inadequate without
incorporating the effect of spatial autocorrelation (SAC) on species
distribution (Lennon, 2000; Kühn, 2007). SAC occurs when the
values of variables sampled at nearby locations are not inde-
pendent from each other. SAC can lead to autocorrelated model
residuals, thus violating the assumption of independent identically
distributed errors of most standard regression procedures (Anselin,
2002). Autocorrelated residuals can also arise if predictors do not
fully reflect the actual controls on the species distribution (Augustin
et al., 1996).

Several approaches that deal with SAC exist. The autocovari-
ate logistic approach (autologistic; Augustin et al., 1996) extends
the usual regression model by adding a spatial autocovariate term
into the model. Such an approach was derived from a statistical
analysis of lattice systems by Besag (1974). In principle, there is no
restriction on the type of model that can be used with an autoco-
variate. However, autocovariates have mainly been applied to the LR
method (Augustin et al., 1996; Luoto et al., 2002; Betts et al., 2006;
McPherson and Jetz, 2007; Syartinilia and Tsuyuki, 2008) and the
GAM method (Knapp et al., 2003; Segurado and Araujo, 2004) in
species distribution modelling studies.

Species occurrence is to a certain extent determined by the
species’ underlying response to each environmental determinant.
Niche theory, as applied to both plants and animals, assumes an
approximately symmetric bell-shaped curve, in which the species
fundamental niche has a central maximum with declining values
toward higher and lower levels (Swan, 1970; Austin, 1985). How-
ever, factors such as competition, predation and disturbance, can
place pressure on a species, causing the response curve to alter from
symmetry to skewed and non-unimodal responses in the realized
niche (Austin and Meyers, 1996; Oksanen and Minchin, 2002; Olden
and Jackson, 2002). Moreover, given that species respond to each
environmental factor in different ways, the reliability of a mod-
elling method in predicting species spatial distribution depends on
its ability to take the various underlying forms of response jointly
into account.

Many studies have been carried out to assess the performance
of species distribution modelling methods (Manel et al., 1999;
Robertson et al., 2003; Segurado and Araujo, 2004; Araujo et al.,
2005; Elith et al., 2006). These methods have mainly been assessed
using real species distribution data (i.e. the model is calibrated and
evaluated using real data derived from field studies). These studies
generally arrived at similar conclusions about the predictive perfor-
mance of the modelling methods, suggesting that novel methods
with the ability to fit complex species occurrence–environmental
relationship tend to perform better than the simpler methods. How-
ever, it is not well known how the ability of modelling method to
fit species occurrence–environmental relationship affects model
accuracy. Studies have also shown that methods with flexibility
to fit complex species response form to environmental deter-
minants such as GAM yielded model residuals with lower SAC
compared with the residuals of model produced by simpler meth-
ods such as LR with a linear function (Segurado et al., 2006;
Dormann et al., 2007). It is also not well known how the abil-
ity of modelling method to fit species occurrence–environmental
relationship affects the strength of SAC in model residuals. Sim-
ulated species data offers a way to investigate these particular
issues.

Simulated data, with known properties, has increasingly been
used to evaluate the performance of modelling methods. Hirzel et
al. (2001) employed simulated species data to compare the perfor-

mance of logistic regression with a quadratic fitting function and
Ecological Niche Factor Analysis (ENFA; Hirzel et al., 2002). The sim-
ulated species data were generated using 11 real environmental
variables, three presumed species response shapes to each envi-
ronmental variable, and weights assigned to each environmental
variable with most of the weights assigned to variables with a linear
and a Gaussian species response.

In this study, the approach for generating simulated species data
introduced by Hirzel et al. (2001) was adapted to investigate the
performance of species distribution modelling methods under var-
ious assumed underlying species response forms. Four modelling
methods were assessed. These were the environmental envelope
method BIOCLIM (DIVA version) and three regression-based meth-
ods: LR with a linear, quadratic and cubic fitting functions, GAM
with smoothing spline function, and the CART. The effectiveness of
the autologistic approach in dealing with spatially autocorrelated
residual in LR was also assessed.

The use of simulated data in this study is essential to permit
the evaluation of the outcome of analysis against the predefined
“truth”. The simulated species data were generated by using three
artificial environmental variables with varying degrees of SAC;
three presumed species responses to the environmental variables:
Gaussian (bell-shaped), Beta (skew) and linear; and numerous
weighting combinations representing the importance of each vari-
able in determining spatial occurrences of each simulated species.
Following Hirzel et al. (2001), it was assumed that the three artificial
variables combine in an additive way to determine overall species
occurrence.

The simulation approach used in this study systematically exam-
ined various weighting combinations assigned to each variable.
This extends the original construction proposed by Hirzel et al.
(2001) that used a single set of prescribed weights to achieve certain
properties of the simulated data. By using the various weighting
combinations, this study addresses several questions: (1) how does
species response form affect the predictive performance of the fit-
ted species distribution model; (2) how does model structure affect
SAC in model residuals and predictive performance; and (3) how
does the density of calibration data affect SAC in model residuals
and model performance.

2. Materials and methods

The study has five main stages:

(1) generating presence and absence data of the simulated species;
(2) fitting species distribution models using four modelling meth-

ods;
(3) assessing the performance of the modelling methods;
(4) assessing the impact of SAC in model residuals; and
(5) assessing the impact of incorporating spatial autocovariate into

LR model.

Probability or habitat suitability maps for the simulated species
were generated using three artificial environmental variables, three
assumed species responses and numerous variable weights. Species
presence–absence maps were then simulated by employing a
fixed threshold for determining the probability of species pres-
ence and absence. These maps were assumed to represent the true
presence–absence status of species and were later used to test
the performance of models generated by modelling methods (i.e.
simulated evaluation data sets). To build species distribution mod-
els, perturbed versions of the true species presence–absence maps
were used. This was achieved by adding error components to the
original species probability maps (i.e. simulated calibration data
sets).
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Fig. 1. Three simulated patterns with spatial realization of 60 × 60 cells, representing three spatially dependent continuous environmental variables. The numbers for each
level are the same for each pattern. The degree of spatial dependence for each variable as quantified by global Moran’s I is 0.900, 0.802 and 0.721 for variables A, B and C,
respectively.

The simulated calibration data sets were submitted to each
modelling method to generate species presence–absence predic-
tion maps. These were used to assess the predictive performance,
goodness-of-fit, and the residuals of the models. The predictive
performance of the models was evaluated using the simulated eval-
uation data sets. The goodness-of-fit of the LR and GAM models
was tested using a standard goodness-of-fit indicator the Akaike’s
Information Criterion (AIC; Akaike, 1974). Finally, the residuals
of the models were assessed by examining the significance of
SAC in model residuals for each type of species response. Pro-
cedures for each stage are explained in detail in the following
sections.

2.1. Generating presence–absence of simulated species

2.1.1. Calculating probability of occurrence of the simulated
species

Adopting the construction of Hirzel et al. (2001), for each sim-
ulated species s, the probability of occurrence psij was calculated
as:

psij =
∑

m ∈ {A,B,C}
wsmHsmij with

∑
m ∈ {A,B,C}

wsm = 1 (1)

where Hsmij denotes the habitat suitability score of cell (i,j) rep-
resenting the shape of the response of species s to the simulated
environmental variable m; wsm denotes the weight or importance
assigned to the variable m for species s.

2.1.2. The three artificial environmental variables
Three environmental variables A, B and C, each were assigned a

spatial pattern over a 3600 cells in a square lattice. Each cell within
each pattern had a value ranging from 0.5 to 5.5. The values were
split into five levels to give the patterns shown in Fig. 1. The num-
bers of grid cells for each level are the same for each simulated
environmental variable.

Variables A, B and C were constructed to have various strengths
of spatial clustering or SAC. The strength of SAC reduces from vari-
able A to variable C, as quantified by the global Moran’s I coefficient
(Moran, 1950; Fortin and Dale, 2005). Using the eight nearest neigh-
bours’ rule to determine the connectivity between cells, values of
Moran’s I of 0.900, 0.802 and 0.721 were obtained for variables A,
B and C, respectively. Moran’s I coefficient of a variable typically
ranges from −1 to 1, with −1 indicating a strong negative SAC (i.e.
the value of sites that are close to each other are more dissimilar
than those that are far apart) and 1 indicating a strong positive SAC
(i.e. the value of sites that are close to each other are more similar
than those that are far apart).

2.1.3. Assumed shapes of species response curves
The relationship between species occurrence and the environ-

mental gradient was constructed to take one of three shapes:
Gaussian (bell-shaped), Beta (skew), and linear. A Gaussian species
response favours intermediate level conditions and gradually
avoids low and high values of the environmental variable in a sym-

metric fashion. A Beta species response also favours intermediate
values but the response to either high or low values is sharply
reduced. This may occur under limiting conditions, such as compe-
tition, predation and disturbance which drives the response curve
to shift from symmetry to sharply skewed in the realized niche
(Austin and Meyers, 1996; Oksanen and Minchin, 2002). The linear
response is a simple non-unimodal response that can arise with
environmental variables that are not closely aligned with control-
ling processes (Austin and Meyers, 1996). It has also been posed by
Olden and Jackson (2002).

The Gaussian species response can be modelled using the fol-
lowing function (Hirzel et al., 2001; Oksanen and Minchin, 2002;
Olden and Jackson, 2002):

H.gaussiansmij = exp

[
−(gsmij − �sm)2

2�2
sm

]
(2)

where H.gaussiansmij represents the Gaussian habitat suitability
score of cell (i,j) given the value gsmij of variable m at cell (i,j) for
species s; �sm denotes the mean or optimum condition of variable
m for species s; and �sm denotes the standard deviation or tolerance
of variables m for species s.

The skewed Beta species response to an environmental vari-
able can be modelled using the following function (Austin, 1976;
Minchin, 1987; Austin et al., 1994; Oksanen and Minchin, 2002):

H.betasmij = csm(gsmij − k1sm)˛sm (k2sm − gsmij)
�sm (3)

where H.betasmij represents the Beta habitat suitability score of cell
(i,j) given the value gsmij of variable m at cell (i,j) for species s; k1sm
and k2sm denote the endpoints of the range of occurrences of species
s within variable m; csm denotes the scaling parameter adjusting the
response height to fit the observations of variable m for species s;
and ˛sm and �sm denote the parameters for determining the shape
of response curve (i.e. location of the optimum, skewness and kur-
tosis) of variable m for species s. If ˛sm > �sm, the shape of the species
response curve would lean towards the left, i.e. positive-skew. How-
ever, if ˛sm < �sm, the shape of the species response curve would lean
towards the right, i.e. negative-skew.

Linear species responses can be modelled using the following
function (Hirzel et al., 2001; Olden and Jackson, 2002):

H.linearsmij = gsmij − minsm

maxsm − minsm
(4)

where H.linearsmij represents the linear habitat suitability score of
cell (i,j) given the value gsmij of variable m at cell (i,j) for species
s; and minsm and maxsm represent the lower and upper tolerable
bound of variable m for species s.

For all simulated species, the parameter values for determin-
ing the shape of each species response were fixed for each type
of response. Parameter values of � = 3 and � = 0.6 were used for
the Gaussian response; c = 0.0375, k1 = 1, k2 = 5, ˛ = 1, and � = 3 were
used for the Beta response; and min = 1 and max = 5 were used for
the linear response. The three species response curves are shown
in Fig. 2.
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Fig. 2. Gaussian, Beta and linear species environmental response curves. The curves were generated using parameter values of � = 3 and � = 0.6 for the Gaussian response;
c = 0.0375, k1 = 1, k2 = 5, ˛ = 1, and � = 3 for the Beta response; and min = 1 and max = 5 for the linear response.

2.1.4. Assigning weights for the simulated species
Each simulated species was constructed by assigning three pos-

sible combinations for the Gaussian, Beta, and linear responses to
the set of simulated spatially dependent environmental variables A,
B and C. These were: (1) Gaussian, Beta, and linear responses (G-B-
L); (2) Beta, linear, and Gaussian responses (B-L-G); and (3) linear,
Gaussian, and Beta responses (L-G-B), each assigned to variables A,
B and C, respectively.

These combinations were applied with all possible weights,
ranging from 0 to 1 with an increment of 0.1, for each of the envi-
ronmental variables A, B and C (Fig. 1). These weights represented
the contribution of each variable in determining spatial occurrence
of each simulated species. In each case the three weights added to
1, thus giving 66 weighting combinations for wA, wB and wC cor-
responding to the weights of the variables A, B and C (see Eq. (1)).
Except for 6 cases with two equal weights, there were 20 weighting
combinations with one dominant weight for each environmental
variable. Given the different type of responses and weighting com-
binations assigned to variables A, B and C, a total of 198 (66 × 3)
simulated species were generated.

2.1.5. Generating simulated species presence–absence for
calibration and evaluation sets

The habitat suitability maps of the simulated species were
translated into records of species presence–absence by applying
a threshold of 0.5 to each probability score. The average number
of species occurrences obtained for each map varied between 1800
and 1900 records (over 60 × 60 = 3600 cells in total). These data rep-
resent the true simulated species presences and absences data and
constituted the evaluation datasets.

The model calibration datasets were generated by perturbing
the original habitat suitability maps. This was done by adding an
error component (sampled from a normal distribution error with
mean zero and standard deviation 0.25) to the cells of the original
habitat suitability maps whose scores lay between 0.2 and 0.8. The
size of the perturbations was set so that the areas with extremely
high habitat suitability would remain highly favoured while the
areas with extremely low habitat suitability would remain less
favoured. Species occurrence in the areas with intermediate level
habitat suitability was more uncertain. A threshold of 0.5 was
applied to the perturbed habitat suitability scores to obtain the
simulated species presence–absences for model calibration. The
average number of presences for each calibration dataset varied
between 1700 and 1800 records (over 60 × 60 = 3600 cells in total).

In a real modelling situation, data used for model calibration
are normally incomplete or even scarce. Thus it is worthwhile to
investigate how modelling methods perform with sampled data.
This was achieved by randomly sampled the full calibration data
(3600 presence–absence records) to obtain subsets of 720 (20%
of the full data), 360 (10% of the full data) and 72 (2% of the full
data) presence–absence observations. For each of the 66 simulated
species and each of the 720, 360 and 72 presence–absence obser-
vations, 50 different calibration samples were drawn.

2.2. Fitting the species distribution models

The simulated species presence–absence data were submitted
to each modelling method to fit predictive models of simulated
species distributions. Four modelling methods were used.

2.2.1. BIOCLIM
The original BIOCLIM method (Nix, 1986; Busby, 1991; Houlder

et al., 1999) defines the ecological niche of a species as a bounding
hyper-box that includes all species records in bioclimatic space. It
creates a rectilinear envelope in environmental space, defined by
pre-determined lower and upper percentiles of the species occur-
rence with respect to each environmental variable. The BIOCLIM
method implemented in DIVA-GIS software package (Hijmans et
al., 2005) extends the original version by assessing records for all
percentile ranges to construct species habitat suitability scores.

2.2.2. Logistic regression (LR)
Logistic regression (Hosmer and Lemeshow, 1989) is a special

form of the generalized linear modelling (GLM; McCullagh and
Nelder, 1983). Assuming that the probability of presence p given
factors X1,. . ., Xn is to be modelled, the logistic model assumes that
the log of the odds (i.e. logit of the probability of presence p) is
linear, i.e.

log
(

p

1 − p

)
= ˇ0 + ˇ1X1 + · · · + ˇnXn

where ˇ0, ˇ1, . . ., ˇn denote the set of parameters to be estimated.
To allow further flexibility in fitting the relationship between

the probability of presences and a set of predictors, a higher order
polynomial fitting function was introduced in LR (Ferrer-Castan et
al., 1995; Guisan et al., 1999; Thuiller, 2003), i.e.

log
(

p

1 − p

)
= ˇ + f (X1) + · · · + f (Xn) (5)

where f(X1),. . .,f(Xn) denote polynomial functions for each vari-
able, which were allowed to take linear (i.e. f (Xq) = ıq1 Xq,
with q ∈ {1,. . .,n}), quadratic (i.e. f (Xq) = ıq2 X2

q + ıq1 Xq, with
q ∈ {1,. . .,n}), or cubic form (i.e. f (Xq) = ϕq3 X3

q + ϕq2 X2
q + ϕq1 Xq, with

q ∈ {1,. . .,n}). ˇ, ıq1 , ıq2 , ϕq1 , ϕq2 , ϕq3 with q ∈ {1,. . .,n}denote the set
of parameters to be estimated. This study assessed the performance
of LR method using the three polynomial functions. The LR method
with the linear, quadratic and cubic function was denoted as LR-L,
LR-Q and LR-C respectively. Statistical analyses for the LR method
were performed using the glm function in standard R library (R
Development Core Team, 2007).

2.2.3. Autocovariate model
The autocovariate model addresses SAC by estimating how much

the response variable at any one site reflects response values at
surrounding sites. This is achieved for the GLM model by adding a
distance-weighted function of neighbouring response values. This
additional predictor is known as the autocovariate.
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Applying the autocovariate approach to the LR model (i.e. autol-
ogistic) transforms the standard form of Eq. (5) to:

log
(

p

1 − p

)
= ˇ + f (X1) + . . . + f (Xn) + �R

where � is the estimated coefficient of the autocovariate R.
The autocovariate R at any site u is calculated as:

Ru =
∑

v ∈ ru
ωuvyv∑

v ∈ ru
ωuv

where yv is the observed value at site v surrounding site u, ωuv is the
weight of site v in relation to site u, and ru is the number of neigh-
bouring sites considered to be influential for site u (Augustin et al.,
1996; Gumpertz et al., 1997). The weight of site v in relation to site
u can be defined as a function of geographical distance (Augustin et
al., 1996; Osborne et al., 2001; Segurado et al., 2006) or environmen-
tal distance between the two sites (Augustin et al., 1998; Ferrier et
al., 2002). In this study, the reciprocal of Euclidean distance between
sites was employed to define the neighbouring weight. The spatial
autocovariate term was calculated utilizing autocov dist function
in spdep R library (Bivand, 2008).

The application of autologistic model is straightforward when
presence–absence is surveyed at every site. However, when data
are available only from a sample of sites, the autocovariate can-
not be calculated directly as the species presence–absence pattern
in neighbouring sites is not known. A solution to this problem
is to estimate the probabilities of occurrence for the unsurveyed
sites using the LR method. Once these estimated probabilities were
obtained, the autocovariate for each site can be calculated. Then, the
autologistic model can be constructed using these autocovariates
and the estimated probabilities for each site can be obtained.

Augustin et al. (1996) recommended applying a Gibbs sampler
algorithm to optimize the performance of autocovariate models
on sampled data. The application of Gibbs sampler can be com-
puter intensive. Many studies that use autocovariates do not use
Gibbs sampler, yet these studies showed that the use of autocovari-
ates alone improved predictive performance of the LR models and
reduced SAC in the model residuals (Sanderson et al., 2005; Piorecky
and Prescott, 2006). In the present study, the performance of the
autocovariate logistic on sampled calibration data was assessed
without the application of the Gibbs sampler routine.

2.2.4. Generalized additive modelling (GAM)
Generalized additive modelling (Hastie and Tibshirani, 1990) is

a semi-parametric form of LR. It uses smooth functions instead of
the usual regression coefficients used in LR. GAM was fitted using
cubic splines f(X1), . . ., f(Xn) as the smooth functions, i.e.

log
(

p

1 − p

)
= ˇ + f (X1) + . . . + f (Xn)

Statistical analyses for the GAM method were performed using
the gam function in the gam R library (Hastie, 2006).

2.2.5. Classification and regression tree (CART)
Classification and regression tree (CART; Breiman et al., 1984) is

a non-parametric approach based on recursive partitions of dimen-
sional space defined by dividing the predictor variables into groups
that are as homogenous as possible for the response variable. A
recursive algorithm is used to split the data into successive binary
branches that at each stage yield the maximum reduction in resid-
ual deviance or improvement in the model overall fit. Any split that
does not improve the overall fit by a prescribed factor, namely the
complexity parameter, is not attempted. This procedure is called
pruning. Although the main aim of pruning is to save computing

time, it can also improve model accuracy by removing tree branches
reflecting noise in the data (Han and Kamber, 2000, p. 373).

In this study, each simulated species was submitted to CART
models by applying in turn complexity parameters of 0.01, 0.025,
0.05, 0.075, and 0.1. The model that yielded the maximum accuracy
over these range of complexity parameters was chosen for further
analysis. CART method was implemented using the rpart function
in rpart R library (Therneau and Atkinson, 2008).

2.3. Assessing the performance of the modelling methods

2.3.1. Assessing the predictive performance of the fitted models
The first assessment for testing the reliability of modelling

methods in responding to various species response forms was to
evaluate the predictive performance of the fitted models against the
independent simulated evaluation datasets. This predictive perfor-
mance was assessed in two ways: (1) by examining the predictive
performance of the univariate models (i.e. models including only
one predictor variable); and (2) by examining the predictive per-
formance of the full models (i.e. models which incorporate all three
predictor variables) produced by each modelling method.

The assessment of the predictive performance of a univariate
model can be used to infer which variables exert the greatest influ-
ence on species distribution. When modelling real data, the relative
importance of the environmental variables for species distribution
and the underlying species responses to the environmental vari-
ables are not known explicitly. Therefore, it is not possible to test the
performance of univariate models in delivering correct inferences
on the contributions of variables in determining species occurrence.
However, given that in this simulation study the relative importance
of each variable and the responses of the simulated species to each
environmental variable were known, the success of each modelling
method in identifying the relative contributions of the contribut-
ing variables was able to be assessed. Predictive accuracies of the
univariate models should conform with the weight of the variable
assigned for each simulated species. The correctness of the esti-
mated univariate model predictive accuracy provided an indication
of the sensitivity of the modelling method to species response form.
For each modelling method, 594 (66 × 3 × 3) univariate models for
the complete data (3600 data points) and 29,700 (66 × 3 × 3 × 50)
models for each of the sampled calibration data (sampled data with
720, 360 and 72 data points) were evaluated.

The analysis of the full models assessed whether predictive
performance varied with respect to the form of species response
applied to the dominant variable (i.e. the variable with the high-
est contribution or weight). A good method would therefore be the
one that was able to accurately predict occurrences for all simulated
species, regardless of the type of species response of the dominant
variable. For each modelling method, 198 (66 × 3) full models for
the complete data (3600 data points) and 9900 (66 × 3 × 50) mod-
els for each of the sampled calibration data (sampled data with 720,
360 and 72 data points) were evaluated.

Regression methods such as LR, GAM and CART require records
of both presences and absences for model calibration. Therefore, all
presence and absence information of the simulated calibration data
was used to fit these models. The environmental envelope method
BIOCLIM only requires presence records to calibrate the simulated
species distribution model. Therefore, only presence records of the
simulated calibration data were needed to run this model. The per-
formance of the models produced by all modelling methods was
evaluated using both presence and absence records of the simulated
evaluation data.

Two indicators for measuring the predictive performance were
used. These were the kappa accuracy index (denoted by �; Cohen,
1960) and the Area under the Receiver Operating Characteristic
curve (AUC; Hanley and McNeil, 1982).
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The range of possible values of � is from −1 to 1. Positive values
indicate higher model predictive performance, with unity repre-
senting perfect agreement (i.e. both model and evaluation (actual)
datasets agree in their classification in every case). Because � has
various values depending on the choice of probability threshold
used to define species presence and absence, Liu et al. (2005) rec-
ommended the use of � value that maximizes the model predictive
performance across various thresholds as a representation of the
overall accuracy of the model. This is denoted as �max which will be
used henceforth throughout this paper.

The Area under the Receiver Operating Characteristic curve
is a threshold-independent accuracy measure. Receiver Operat-
ing Curve is a graphical method that represents the relationship
between false positive (1–specificity) and sensitivity as a function
of probability thresholds ranging from 0 to 1. If all predictions were
expected to occur by chance alone, the relationship would be a 45◦

line. Good model performance is characterized by a curve that max-
imizes sensitivity for low values of (1–specificity) or when the curve
passes close to the upper left corner of the plot. The area between
the 45◦ line and the curve measures the ability of the model to
correctly classify a species as present or absent. The calculation
of AUC for each model was performed using the roc.area function
in the verification R library (NCAR Research Application Program,
2008).

2.3.2. Assessing goodness-of-fit of the LR and GAM models
The second assessment for testing the performance of mod-

elling method in responding to various species response form was
to examine the goodness-of-fit of the LR and GAM models. A stan-
dard regression goodness-of-fit measure, the Akaike’s Information
Criterion (Akaike, 1974) based on a maximum likelihood estimate
(MLE) was used to assess the models’ fitness. The performance of
LR and GAM was assessed by examining the trend of the relation-
ship between the AIC of the univariate models produced by each
method against the predefined variable weight for the simulated
species.

2.3.3. Assessing residuals of models generated by the regression
methods

The third assessment for testing the performance of modelling
methods in responding to various species response forms was to
examine the strength of SAC in the deviance residuals (McCullagh
and Nelder, 1983; Pierce and Schafer, 1986) of the fitted univariate
models and the fitted full models generated by the regression-based
methods. The deviance residuals of univariate regression models
were assessed by: (1) testing whether predictors with a particular
type of species response left out of a model inflated the strength
of SAC in the model residuals; (2) testing whether the level of SAC
in model residuals due to missing important explanatory variables
was higher for some modelling methods than others; and (3) testing
whether the density of data used for model building affected the
significance of SAC being detected in model residuals.

The strength of SAC of the residuals of the models was measured
by global Moran’s I (Fortin and Dale, 2005). The eight nearest neigh-
bours’ contiguity rule was employed for defining the links between
sites. The Moran’s I coefficients were calculated by the moran func-
tion in the spdep R library (Bivand, 2008). The strength of SAC in
the residuals of the full regression models was used to measure the
impact of the inability of the regression methods to respond to a par-
ticular type of species response. A Moran’s I of approximately zero
indicates the lack of SAC. A good modelling method would therefore
be one that is able to yield model residuals with Moran’s I values
concentrated around zero, i.e. randomly distributed residuals, for
any type of species response applied to the dominant variable in
the simulated species.

2.3.4. Assessing the impact of incorporating spatial autocovariate
into logistic regression

The concluding aim of this study was to assess whether the
inclusion of a spatial autocovariate term into the logistic regres-
sion model could improve the predictive ability of the LR model
and reduce the SAC of the model residuals. The performance of the
autologistic model was tested by adding the spatial autocovariate
term to the LR model with each of the three polynomial functions.
To differentiate among the three models, the application of auto-
covariate regression to LR model with linear, quadratic and cubic
functions was denoted by ACL-L, ACL-Q and ACL-C, respectively.

The impact of spatial autocovariate term was investigated using
the full calibration set (3600 data points) and random calibration
samples of 720 data points (20% of the full data). For the full calibra-
tion set, all neighbours within a 1.5 unit distance from the central
point were used to define the neighbouring links between sites.
For the random calibration samples, all neighbours within a 1.5, 3,
and 5 unit distances from the central point were used to define the
neighbouring links.

3. Results

3.1. Model predictive performance

3.1.1. Predictive performance of the univariate models
Fig. 3 shows the predictive performance of the univariate mod-

els based on AUC generated using the full calibration set (3600
data points) in relation to the dominant contributing environmental
variable for simulated species with B-L-G set of responses. Similar
results were obtained for �max and the other two sets of responses
(G-B-L and L-G-B). All modelling methods correctly identified the
species with a dominant Beta response, as shown in first row of
Fig. 3. Row 3 of Fig. 3 shows that the LR-L method did not identify
the simulated species with a dominant Gaussian response. BIOCLIM
tended to underrate the contributions of variables with a linear
response, as shown in row 2 of Fig. 3. This is to be expected since
BIOCLIM is based on an assumption that all of the modelled environ-
mental responses are bell-shaped. The impact is less serious than
the deficiency in LR-L described above, but illustrates a shortcom-
ing in BIOCLIM when the simulated species responds to important
environmental variables in a linear way.

3.1.2. Predictive performance of the full models
The performance of the full models generated by each mod-

elling method based on AUC as a function of calibration size for
simulated species with B-L-G set of responses is shown in Fig. 4.
Similar results were obtained for �max and the other two sets of
responses (G-B-L and L-G-B). For the full samples calibration data
(3600 data points), as shown in Fig. 4, the GAM method and the
higher order LR methods yielded good predictive performance for
all types of species responses of the dominant variables. BIOCLIM
and CART methods had poorer predictive performance for sim-
ulated species whose dominant predictor had a linear response
compared with those whose dominant predictors had a Gaussian
response. Discrepancies between the predictive performance for
the two different species were more significant for models fitted by
BIOCLIM compared with the discrepancies for the models fitted by
CART, confirming the finding from the univariate analysis that BIO-
CLIM, and to an extent CART, performs less well when the dominant
environmental response is linear.

As the density of the calibration data decreased, the perfor-
mance of BIOCLIM, CART, GAM and the higher order LR methods
became comparable. While data density had minimal impact on
the performance of BIOCLIM, it caused the predictive ability of
CART, GAM and the higher order LR to reduce substantially with
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Fig. 3. The predictive performance, as measured by AUC, of the univariate models generated by each modelling method using full sample calibration data for simulated
species with the B-L-G set of responses. The results are grouped by the dominant simulated variable for each type of species response. Each boxplot summarized the results
for 20 univariate models.

sparse calibration data. Among the modelling methods studied,
BIOCLIM produced the least reduction rate and variability in the
predictive performance as density of the calibration data decreased,
as shown in Fig. 5 for simulated species with the B-L-G set of
responses.

3.2. Goodness-of-fit of the LR and GAM models

Fig. 6 shows that the AIC of the univariate models generated by
LR-Q and LR-C declined as the weights of variables increased for all
types of species response. This indicated the consistency of LR-Q

and LR-C in providing correct inferences about the contributions of
variables. The AIC of GAM univariate models also showed a decline
as the weight of variable increased. However LR-L showed almost
no response as the variable weights increased for species with a
Gaussian response.

3.3. Spatial autocorrelation in regression model residuals

3.3.1. Spatial autocorrelation in univariate model residuals
Fig. 7 shows the SAC in univariate model residuals for the

four regression-based methods generated using the full calibra-

Fig. 4. The predictive performance, as measured by AUC, of the full models generated by each modelling method as a function of calibration size for simulated species with the
B-L-G set of responses. Labels on vertical axis denote the dominant simulated variable for each type of species response. Each boxplot for the full calibration data summarized
the results for 20 full models and each boxplot for the sampled calibration data summarized the results for 1000 (20 × 50) full models.
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Fig. 5. Quadratic trend in the mean and standard deviation of predictive performance (measured by AUC) on log calibration size for the simulated species with the B-L-G set
of responses. BIOCLIM produced the least reduction rate and variability in the predictive performance as calibration size decreased.

tion samples (3600 data points) with respect to the dominance
of each predictor variable for simulated species with B-L-G set of
response. Similar results were obtained for the G-B-L and L-G-B sets
of response. The largest SAC in model residuals occurred in row 3
of Fig. 7 for all four methods when the dominant predictor with a
Gaussian response was omitted from the model. Similarly, the SAC
in model residuals showed a moderate increase in first row of Fig. 7
when the dominant predictor with a Beta response was omitted
from the model.

Moreover, the LR method, showed an increase in SAC in model
residuals when the functional form of true species response was
misspecified (i.e. linear function was used to fit the non-linear
species response). This can be seen for the residuals of the LR-L
model for simulated species whose dominant variables respond in
a Gaussian way as shown in the row 3 of Fig. 7.

3.3.2. Spatial autocorrelations in full model residuals
The strength of SAC in the residuals of full regression models

as a function of calibration size for simulated species B-L-G are
shown in Fig. 8. Similar results were obtained for the other two

Fig. 6. The relationship between the mean goodness-of-fit of the univariate models,
as measured by AIC, generated by the GAM and LR methods using full sample cal-
ibration data and variable weights by variable A, B and C for the simulated species
G-B-L, L-G-B, and B-L-G. Solid lines represent cubic fits.

sets of responses (G-B-L and L-G-B). Analysis using the complete
calibration data (3600 data points) suggests that misspecification
of the functional form of true species response in LR-L model sub-
stantially increased the SAC in the model residuals. The strength
of SAC in the model residuals for species whose dominant vari-
ables possessed a Beta and Gaussian response were substantially
higher compared with model residuals for species whose dominant
variables possessed a linear response. The strength of SAC as a con-
sequence of misspecification of the functional form of true species
response in LR-L model residuals became less significant for less
dense calibration data.

3.4. The effect of incorporating spatial autocovariate into logistic
regression

The three full LR models were extended by including an auto-
covariate term. The resulting predictive performance of the full
models measured by AUC before and after the inclusion of the
spatial autocovariate term for simulated species B-L-G is shown in
Fig. 9. Similar results were obtained for �max and the other two sets
of responses. For the complete calibration data (3600 data points),
the predictive performance of models for species predominantly
affected by variables with Gaussian response improved dramati-
cally after the spatial autocovariate term was added to the LR-L
models (first row and third column of Fig. 9a). Consequently, the
SAC in model residuals was dramatically reduced for the ACL-L (i.e.
autologistic approach applied to LR with linear function) compared
with LR-L (second row and third column of Fig. 9a).

The incorporation of the spatial autocovariate variable into the
LR-L full model was found to be less effective with limited cali-
bration data. Predictive performance of the LR-L model showed
no improvement for models with a dominant Gaussian response
based on 720 samples (first row and third column of Fig. 9b). The
strength of SAC in the model residuals reduced mildly after adding
the autocovariate term (second row and third column of Fig. 9b).

The resulting predictive performance of the univariate mod-
els measured by AUC before and after the inclusion of the spatial
autocovariate term with respect to the dominance of each pre-
dictor variable for simulated species B-L-G is shown in Fig. 10.
Similar results were obtained for �max and the other two sets of
responses. Adding autocovariates to the LR univariate models using
complete calibration data substantially improved predictive perfor-
mance (rows 1, 2, and 3 of Fig. 10a) and reduced the SAC in the
residuals of the models (rows 4, 5, and 6 of Fig. 10a). For the sam-
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Fig. 7. The strength of SAC in the residuals of the univariate models (measured by Moran’s I) generated by each regression-based method using full sample calibration data
for the simulated species B-L-G grouped by the dominant variable. This shows the impact of omitting important explanatory variables with Gaussian response. Each boxplot
summarized the results for 20 univariate model residuals.

pled calibration data (720 data points), the autocovariates offered a
mild improvement in model predictive performance (rows 1, 2, and
3 of Fig. 10b) and reduction in the strength of SAC in the LR model
residuals (rows 4, 5, and 6 of Fig. 10b).

The significance of estimated variable coefficients for the LR and
ACL full models for simulated species with B-L-G set of responses
grouped by the dominant variable are shown in Fig. 11. Similar
results were obtained for the G-B-L and L-G-B sets of responses.
Incorporating the spatial autocovariate term into the LR-L full
model using full calibration samples (3600 data points) did not

change markedly the significance of the estimated coefficients
of variables A, B and C (corresponding to B, L and G types of
responses, respectively) for the species with a dominant linear
or beta response (first and second row of Fig. 11a). However,
the significance of the coefficient of variable C (with G type of
response) for species with a dominant Gaussian response declined
markedly, while the coefficient of the corresponding autocovariate
was highly significant (third row of Fig. 11a). This indicated that
the good predictive performance of the ACL-L model on species
with a dominant Gaussian response was solely due to the full

Fig. 8. The strength of SAC in the residuals of full models (measured by Moran’s I) generated by each regression-based method as a function of calibration size for simulated
species B-L-G. Labels on vertical axis denote the dominant simulated variable for each type of species response. Each boxplot for the full calibration data summarized the
results for 20 full model residuals and each boxplot for the sampled calibration data summarized the results for 1000 (20 × 50) full model residuals.
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Fig. 9. The predictive performance of the LR and ACL full models (measured by AUC) and the strength of SAC in the residuals of the models (measured by Moran’s I) for the
B-L-G set of simulated species using calibration data with: (a) full samples (3600 data points); and (b) 720 data points. Each boxplot for the full calibration data summarized
the results for 20 full models, while each boxplot for the sampled calibration data summarized the results for 1000 (20 × 50) LR models and 3000 (20 × 50 × 3) ACL models.

spatial coverage of the calibration data. This was confirmed by
the decline in the ACL-L performance on less dense data. For
sparse data the autocovariate was unable to make up for the defi-
ciency in the LR-L model for species with a dominant Gaussian
response.

The estimated coefficients of the autocovariate variable in higher
order LR models (quadratic and cubic) for the full data coverage
were significant, particularly for simulated species with a dominant
Gaussian response (row 3 of Fig. 11a). The estimated coefficient of
the spatial autocovariate variable was significant whether or not

Fig. 10. The predictive performance of the LR and ACL univariate models (measured by AUC) and the strength of SAC in the residuals of the models (measured by Moran’s I) for
each simulated species B-L-G using calibration data with: (a) full samples (3600 data points); and (b) 720 data points. Each boxplot for the full calibration data summarized
the results for 20 univariate models, while each boxplot for the sampled calibration data summarized the results for 1000 (20 × 50) LR models and 3000 (20 × 50 × 3) ACL
models.
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Fig. 11. The significance (P-value) of estimated variable coefficients for the LR and ACL full models for simulated species B-L-G grouped by the dominant variable, using
calibration data with (a) full samples (3600 data points); and (b) 720 data points. Lower P-value indicates that there is evidence to reject the null hypothesis that the
coefficient is zero. AC denotes the spatial autocovariate variable.

the LR model alone has captured adequately the effect of the envi-
ronmental determinants. With sparser data (720 data points), the
estimated coefficients of the spatial autocovariate term became less
significant (row 3 of Fig. 11b).

4. Discussion

Simulated data have increasingly been used for evaluating the
performance of species distribution modelling methods (Hirzel et
al., 2001; Austin et al., 2006; Meynard and Quinn, 2007). Simulated
data provide a more reliable tool for assessing the performance of
modelling methods compared with real data sampled in the field.
Statistical methods for modelling species distribution are difficult
to evaluate using real data because real data are confounded by
unknown driving factors. The level of complexity of real data may
be different from one species to another. Some modelling meth-
ods may respond to particular data characteristics better than other

methods. When real species distribution data with particular prop-
erty are used to assess the performance of modelling methods, the
methods that respond to this property better than other methods
may have superior performance than the other methods.

Data density also affects the reliability of real species data for
evaluating the performance of modelling methods. The density of
data for model building has been shown to contribute to mod-
elling uncertainties (Stockwell and Peterson, 2002; Barry and Elith,
2006; Hernandez et al., 2006; Wisz et al., 2008). As shown in this
study, each modelling method responds to calibration data density
in different manner in terms of predictive performance.

In this study, the data were constructed so that:

(1) spatial distributions of the simulated species were determined
by spatially correlated environmental variables;

(2) the response of the simulated species to each environmental
variable took a variety of forms (i.e. linear and non-linear);
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(3) the environmental determinants were combined in an additive
manner (i.e. there was no multiplicative effect or interactions
between the environmental determinants);

(4) no species biological distance-related process (e.g. species dis-
persal, active spatial aggregation) were considered;

(5) data errors were likely to occur at sites where habitat suitability
score for the simulated species were at intermediate level (i.e.
high degree of uncertainty); and

(6) the simulated species were assumed to have the same level
of rarity (prevalence or proportion of species presence over all
sampled sites) of 0.5.

Although the simulated data used in this study do not reflect
all aspects of actual species distribution found in nature, it does
represent a range of realistic species distribution behaviour and
incorporates the possibility of error arising during field sampling.
The simulated species data proved to be an effective instrument
in exploring how modelling methods perform in response to var-
ious underlying forms of species responses to spatially correlated
environmental variables and the density of calibration data.

4.1. Model performance with respect to species response form and
data density

The simulation results obtained from full samples calibration
data (3600 data points) showed that among the four modelling
methods studied, GAM was able to maintain the consistency of
model predictive performance across various forms of species
response of the simulated species. With sparse data this method
was however inclined to underrate the performance of variables
possessing linear response.

The LR method was prone to failing to capture the underlying
species response forms in relation to environmental factors. This
occurred, particularly when LR with a linear fitting function was
applied to a non-linear species response. Under such conditions,
LR-L severely underrated the significance of variables with a non-
linear species response. This can yield false inferences pertaining
to the true significant environmental factors related to species dis-
tribution.

The use of the LR method for predicting spatial distributions
of plants and animals is common. When applying LR method, the
common practice is to apply linear, quadratic or cubic polynomial
fitting functions. Austin (2007) however recently noted that mod-
ellers using the LR method for predicting species presence–absence
distributions often do not recognize the need: (1) to specify the type
of function of species response; and (2) to investigate the possibility
of using higher order polynomial functions. The application of the
LR-L method without justification that a species responds to a set of
environmental candidates in purely linear way can lead to serious
bias.

Unlike LR-L which responds poorly to variables with a non-linear
response, the simulation study using complete sample calibration
data (3600 data points) showed that BIOCLIM and CART meth-
ods had a tendency to underrate the significance of variables with
a linear response compared with the variables with a non-linear
response studied. The discrepancy between the performance of
variables with non-linear response and the performance of vari-
ables with linear response was larger for BIOCLIM than for CART,
suggesting that BIOCLIM was more susceptible to variation in types
of species response than the CART method. Because BIOCLIM and
CART methods were able to rank univariate model performance
appropriately according to the true contributions of the variables,
they may not cause a serious bias. Nonetheless, users of BIOCLIM
and CART should be aware of such effects when an assessment
of univariate model predictive performance is used as a basis for
selecting important explanatory variables.

In practice, species distributions are usually determined from
relatively sparse sample data. BIOCLIM was less sensitive to den-
sity of calibration data. The predictive ability of models generated
from CART, GAM and higher order LR reduced substantially under
limited calibration data (72 data points or 2% of the full data
points). A study carried out by Stockwell and Peterson (2002) found
a similar conclusion about the sensitivity of the performance of
higher order LR models on calibration size. Wisz et al. (2008) also
recently reported that novel methods with capabilities to incorpo-
rate complex species response forms such as multivariate adaptive
regression splines (MARS; Friedman, 1991), a modified version of
GAM, performed well with large calibration datasets but less well
with limited calibration data.

4.2. The causes of spatial autocorrelation in regression model
residuals

While the former applies particularly to LR-L method, the later
can occur with all regression-based methods. This study showed
that model misspecification increased the strength of SAC in regres-
sion model residuals. Model misspecification was caused by:

(1) incorrect specification of functional form of species response
curve (i.e. using a linear function to fit a non-linear species
response); and/or

(2) omission of important predictors with a Gaussian response.

The occurrence of SAC in model residuals caused by using the
incorrect functional form has been described in spatial analysis and
regression modelling literature, mainly in the context of ordinary
least square (OLS) application (Haining, 1990, p. 332; Cliff and Ord,
1981, p. 211). The occurrence of SAC in model residuals caused by
omission of important predictors has also been highlighted in spa-
tial analysis literature (Cliff and Ord, 1981, p. 197; McMillen, 2003).
However, the fact that omitting important predictors with a non-
linear response contributed to increased SAC in model residual is
not explicitly well known.

Besides the model misspecifications described above, SAC can
also occur due to omission of species biological distance-related
processes, such as speciation, extinction, dispersal, growth rate and
species interaction (Bahn et al., 2007; Miller et al., 2007). Given the
work of this paper, omission of important predictors with a non-
linear response can be considered to fall into the same category as
omission of species biological distance-related processes, because
in both situations the model omits the important environmental
determinants which account for SAC for species distribution.

It should be noted that the simulated species data used in
this study were constructed from artificial environmental variables
with some degree of SAC. This mimics natural phenomena where
environmental factors are likely to be spatially structured. Spatially
autocorrelated residuals caused by model misspecification may not
occur if the simulated species are generated from a randomly dis-
tributed artificial variable with no spatial dependence.

The strength of SAC observed in the residuals of regression-
based models can vary depending on the amount of information
carried by calibration data. For the LR method with a linear fitting
function, SAC in the model residuals was significant when species
data were densely sampled, but insignificant when species data
were sparse. This explains why the commonly used sub-sampling
procedure can be successful in eliminating the effect of SAC when
fitting linear functions with the LR model. Segurado et al. (2006)
have reported that by systematically sub-sampling the study area,
the effect of SAC in the LR-L model can be reduced. Although this
approach lessened the effect of SAC in the LR-L model, it may not
correct the misinterpretations of the dominant predictors found by
the model.
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4.3. Autocovariate logistic in species distribution modelling

When SAC occurs in model residuals, a common approach to
eliminate the effect is to add a spatial autocovariate term to the
model. When applied to the LR model, this is known as the autol-
ogistic approach. Although the autocovariate can in principle be
added to LR model with any form of fitting function, it has mainly
been applied to LR with a linear function models (Sanderson et al.,
2005; Jewell et al., 2007).

The autologistic model was first introduced in species presence–
absence modelling by Augustin et al. (1996) to improve the per-
formance of an earlier LR-L model for red deer distribution in the
Grampian Region in Scotland (Buckland and Elston, 1993). The
authors noted that the SAC in the earlier LR-L model residuals
occurred because the available covariates did not fully reflect the
actual conditions for the red deer distribution. The autologistic
approach was shown to improve the predictive performance of the
LR-L model and reduce the strength of SAC in the model residu-
als. Given that the authors applied the autocovariates specifically
to LR with a linear function model to real species data, it is not
clear whether the autocovariates essentially addressed the spatially
correlated residuals due to model misspecification or addressed
species biological distance-related processes.

Concern regarding the possible misuse of the autocovariates
with LR with a linear function models was raised by Austin (2002).
The author pointed out that the autocorrelation found to be reduced
in several earlier papers by incorporating a spatial autocovariate
term in LR with linear function was probably due to model mis-
specification.

The performance of the autologistic approach has so far mainly
been assessed on its ability to address the effect of species dispersal
(Wintle and Bardos, 2006; Dormann et al., 2007). To our knowl-
edge, this was the first study to focus specifically on the effect of
model misspecification. Moreover, because the performance of the
autologistic approach was evaluated on full data coverage and sam-
pled calibration data, the practical utility of the approach could be
assessed.

In this study, it was found that with complete sample calibra-
tion data (3600 data points), the predictive performance of models
for species predominantly affected by variables with a Gaussian
response improved dramatically after a spatial autocovariate term
was added to the LR with linear fitting function (LR-L) models. The
level of SAC in the model residuals was markedly reduced and the
predictive performance of the model improved substantially. This
suggests that the autocovariate also has a prominent effect on mod-
els that have omitted important non-linear response predictors.
Thus, with full data coverage, the autocovariates successfully make
up for the lack of model performance due to model misspecifica-
tion, whether it was due to misspecifying the functional form in
LR-L or omission of non-linear environmental determinants from
the regression model. However, it is important to note that the
improved model performance was solely due to the information
obtained from the complete coverage of the calibration data via
the autocovariate. The significance of the predictor based on the
Gaussian variable declined.

The results of analysis based on the complete data coincided
with the findings from an earlier study by Dormann et al. (2007).
The autocovariate approach is superior in terms of improving model
prediction and eliminating the effect of SAC in LR model residuals
when information regarding species presence–absence is avail-
able from each neighbouring sites. However, care should be taken
when interpreting the parameter coefficients based on the autolo-
gistic model. Augustin et al. (1998) noted that the autocovariate
approach may be suitable for improving the prediction use of
regression rather than for parameter estimation or inferential pur-
poses.

In the more realistic application where calibration data are rel-
atively sparse, the basic autocovariate approach offered a mild
improvement in the performance of LR model and reduction in the
strength of SAC in the model residuals. The performance of the auto-
covariate approach on sampled data may perform better with the
application of Gibbs sampler routine, the approach that was not
attempted in the present study. The Gibbs sampler routine extends
the basic autologistic approach by iteratively updating the proba-
bility of species occurrence for each unsurveyed site based on the
probability value of the neighbouring sites. Improved prediction has
been found in studies using Gibbs sampler in autologistic modelling
(Hoeting et al., 2000; McPherson et al., 2004).

Despite the omission of the Gibbs sampler, the present anal-
ysis has provided an insight into the scope of problems that the
basic autocovariate model can address. The autocovariate model
performs at best when there is full data coverage (i.e. when
presence–absence information is available at each neighbouring
site). In the more practical applications with sampled data, the
basic autocovariates slightly improved the LR model performance
where the deficiency was due to model misspecification, as shown
in Fig. 10b.

5. Conclusion

This study assessed the performance of four modelling methods
in terms of their abilities to respond to various underlying species
responses to environmental variables. Using simulated species dis-
tribution data, it was found that GAM produced the most consistent
model performance among the four non-spatial methods, regard-
less of the forms of species response of the simulated species.
BIOCLIM and CART had a tendency to underrate the significance
of variables with a linear response compared with variables with a
non-linear response. The BIOCLIM model was least sensitive to data
density.

Logistic regression was susceptible to failing to accurately iden-
tify the importance of determinant variables for the simulated
species distribution. This occurred particularly when LR method
applied an incorrect function of the true species–environmental
relationship, i.e. when a linear function was used to fit a non-
linear species response. The misspecification of the functional
form in LR had crucial implications: (1) an underestimation of
variables with non-linear properties; and (2) an increased spatial
autocorrelation in model residuals. Omission of important envi-
ronmental predictors with a non-linear response in the simulated
species distribution model also contributed to an increase spa-
tial autocorrelation in the model residuals. Given that non-linear
species response to environmental determinants arises commonly
in nature, it can be concluded that: (1) higher order functions
should always be tested when applying LR in modelling species
distribution; and (2) spatially correlated regression model resid-
uals can indicate missing non-linear environmental determinants
for species distribution in the model.

The use of the autologistic approach was able to improve model
prediction and reduce the strength of spatial autocorrelation in
the model residuals in the presence of full coverage of calibration
data, but this did not help the model to identify the true domi-
nant Gaussian predictor. This is to be expected since autologistic
approach was designed primarily for improving the prediction in
regression and not for model estimation. However, improved pre-
diction in the presence of full coverage of data has limited practical
value. In the presence of sparse data, the more usual application,
when the predictors in the LR were misspecified, the basic autoco-
variate offered only a mild improvement in the performance and a
mild reduction in strength of spatial autocorrelation in the model
residuals.
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