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Abstract  

A key requirement for the control and navigation of any autonomous 
flying vehicle is the availability of a robust attitude estimate. Small scale 
aerial robotic vehicles such as mini or micro aerial vehicles use low-cost 
lightweight inertial measurement units (characterised by high noise levels 
and time varying additive biases) and embedded avionics systems that 
make classical stochastic filter techniques unviable. This chapter proposes 
a suite of non-linear attitude observers that fuse angular velocity and orien-
tation measurements in an analogous manner to that of a complementary 
filter for a linear system. By exploiting the natural geometry of the group 
of rotations an attitude observer is derived that; requires only accelerome-
ter and gyro outputs; is suitable for implementation on embedded hard-
ware; and provides robust attitude estimates as well as estimating the gyro 
biases on-line. Experimental results from a robotic test-bed and a radio 
controlled unmanned aerial vehicle are provided to verify the filter per-
formance.   

Keywords: Complementary filter, nonlinear observer, attitude esti-
mates, special orthogonal group.  

1 Introduction 

The last decade has seen an intense world wide effort in the develop-
ment of mini aerial vehicles (mAV). Such vehicles are characterised by; 



small scale (dimensions of the order of 60cm), limited payload capacity, 
and embedded avionics systems. A key component of the avionics system 
in a mAV is the attitude estimation subsystem [2,12,30]. Such systems 
must be highly reliable and have low computational overhead to avoid 
overloading the limited computational resources available in some applica-
tions. Traditional linear and extended Kalman filter techniques [14,3,20] 
suffer from issues associated with poor modelling of the system (in par-
ticular, characterisation of noise within the system necessary for tuning fil-
ter parameters) as well as potentially high computational requirements 
[28,30]. An alternative is to use deterministic complementary filter and 
non-linear observer design techniques [35,2,1,34]. Recent work has fo-
cused on some of the practical issues encountered when data is obtained 
from low cost inertial measurement units (IMU) [26,1,34,23] as well as 
observer design for partial attitude estimation [27,21,22]. It is also worth 
mentioning the related problem of fusing IMU and vision data 
[16,25,13,7,6] and the problem of fusing IMU and GPS data [24,34]. A 
key issue in attitude observer design for systems with low-cost IMU sensor 
units is on-line identification of gyro bias terms. This problem is also im-
portant in IMU calibration of attitude observers for satellites 
[14,8,4,32,17]. An important development that came from early work on 
estimation and control of satellites was the use of the quaternion represen-
tation for the attitude kinematics [29,9,32,31]. The non-linear observer de-
signs that are based on this work have strong robustness properties and 
deal well with the bias estimation problem [34,32]. The quaternion repre-
sentation for attitude can provide a significant computational advantage in 
the implementation of observer algorithms. However, it tends to obscure 
the underlying geometric structure of the algorithms proposed.  

In this chapter, we study the design of non-linear attitude observers on 
the group of rotations, the special orthogonal group (3)SO . We term the 
proposed observers complementary filters because of the similarity of the 
architecture to that of linear complementary filters, although, for the non-
linear case we do not have a frequency domain interpretation. A general 
formulation of the error criterion and observer structure is described on the 
Lie-group structure of (3)SO . This formulation leads us to define two non-

linear observers on (3)SO , termed the direct complementary filter and 
passive complementary filter [19]. The direct complementary filter corre-
sponds (up to some minor technical differences) to non-linear observers 
proposed using the quaternion representation [29,32,34]. We do not know 
of a prior reference for the passive complementary filter. The passive 
complementary filter has several practical advantages associated with im-
plementation and low-sensitivity to noise. In particular, we show that the 



filter can be reformulated in terms of direct measurements from the IMU 
system, a formulation that we term the explicit complementary filter [11]. 
The explicit complementary filter does not require on-line algebraic recon-
struction of attitude, an implicit weakness in prior work on non-linear atti-
tude observers due to the computational overhead of the calculation and 
poor error characterisation of the constructed attitude. As a result the ob-
server is ideally suited for implementation on embedded hardware plat-
forms. Furthermore, the relative contribution of different data can be pref-
erentially weighted in the observer response, a property that allows the 
designer to adjust for application specific noise characteristics. Finally, the 
explicit complementary filter remains well defined even if the data pro-
vided is insufficient to algebraically reconstruct the attitude. This is the 
case, for example, for an IMU with only accelerometer and rate gyro sen-
sors. Although the principal results of the chapter are developed in the ma-
trix Lie group representation of (3)SO , the equivalent quaternion repre-
sentation of the observers are also derived. The authors recommend that 
the quaternion representations are used for hardware implementation.  

The body of the chapter consists of six sections. Section 2 provides a 
short discussion discussion on linear complementary filter design. Section 
3 provides a quick overview of the sensor model, geometry of (3)SO  and 
introduces the notation used. Section 4 details the derivation of the direct 
and passive complementary passive filters. The development here is delib-
erately kept simple to be clear. Section 5 integrates on-line bias estimation 
into the observer design and provides a detailed stability analysis. Section 
6 develops the explicit complementary filter, a reformulation of the passive 
complementary filter directly in terms of error measurements. A suite of 
experimental results, obtained during flight tests of the Hovereye (Fig. 7), 
are provided in Section 7 that demonstrate the performance of the pro-
posed observers. Finally section 8 is devoted to concluding remarks.  

2 A Review of complementary filtering 

Complementary filters provide a means to fuse multiple independent 
noisy measurements of the same signal that have complementary spectral 
characteristics [1]. For example, consider two measurements 1 1y x μ= +  

and 2 2y x μ= +  of a signal x  where 1μ  is predominantly high frequency 

noise and 2μ  is a predominantly low frequency disturbance. Choosing a 



pair of complementary transfer functions 1 2( ) ( ) 1F s F s+ =  with 1( )F s  

low pass and 2 ( )F s  high pass, the filtered estimate is given by  

 1 1 2 2 1 1 2 2
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )X s F s Y F s Y X s F s s F s sμ μ= + = + + .  

The signal ( )X s  is all pass in the filter output while noise components 
are high and low pass filtered as desired. This type of filter is also known 
as distorsionless filtering since the signal ( )x t  is not distorted by the filter 
[5].  

Complementary filters are particularly well suited to fusing low band-
width position measurements with high band width rate measurements for 
first order kinematic systems. Consider the linear kinematics  
 x u= .&  (1) 

with typical measurement characteristics  
                                              ( ) ( )x x u uy L s x y u b tμ μ= + , = + +    (2) 

where ( )L s  is low pass filter associated with sensor characteristics, μ  

represents noise in both measurements and ( )b t  is a deterministic pertur-
bation that is dominated by low-frequency content. Normally the low pass 
filter ( ) 1L s ≈  over the frequency range on which the measurement xy  is 

of interest. The rate measurement is integrated uy
s  to obtain an estimate of 

the state and the noise and bias characteristics of the integrated signal are 
dominantly low frequency effects. Choosing  
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with ( )C s  all pass such that 1( ) ( ) 1L s F s ≈  over the bandwidth of 

( )L s . Then  

1
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By suitable choice of ( )C s  it is possible to tune the filters 1( )F s  and 

1 ( ( ) )C s s/ +  to obtain satisfactory noise attenuation.  
In practice, the filter structure is implemented by exploiting the com-

plementary sensitivity structure of a linear feedback system subject to load 
disturbance. Consider the block diagram in Figure 1.  

 



 

Fig. 1. Block diagram of a classical complementary filter 

The output x̂  can be written  
( )( )ˆ( ) ( )

( ) ( )
( )( ) ( ) ( )
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where ( )S s  is the sensitivity function of the closed-loop system and 

( )T s  is the complementary sensitivity. This architecture is easy to imple-
ment efficiently and allows one to use classical control design techniques 
for ( )C s  in the filter design.  

The simplest choice is a proportional feedback ( ) PC s k= . In this case 

the closed-loop dynamics of the filter are given by  

                                                     ˆ ˆ( )u P xx y k y x= + − .&  (3) 
The frequency domain complementary filters associated with this choice 

are 1( ) P

P

k
s kF s +=  and 2 ( )

P

s
s kF s += . Note that the crossover frequency for 

the filter is at Pk rad/s. The gain Pk  is typically chosen based on the low 

pass characteristics of xy  and the low frequency noise characteristics of 

uy  to choose the best crossover frequency to tradeoff between the two 

measurements. If the rate measurement bias, 0( )b t b= , is a constant then it 

is natural to add an integrator into the compensator to make the system 
type I  

                                                      ( ) I
P

kC s k
s

= + .  (4) 

A type I system will reject the constant load disturbance 0b  from the 

output. Gain design for Pk  and Ik  is typically based on classical fre-

quency design methods.  



The non-linear development in the body of the chapter requires a 
Lyapunov analysis of closed-loop system Eq. 3. Applying the PI compen-
sator, Eq. 4, one obtains state space filter with dynamics  

ˆ ˆˆ ˆ ˆ( ) ( )u x I xx y b k y x b k y x= − + − , = − −&&  
The negative sign in the integrator state is introduced to indicate that the 

state b̂  will cancel the bias in uy . Consider the Lyapunov function  

2 2
0

1 1 ˆˆ
2 2 I

L x x b b
k

= | − | + | − |  

Abusing notation for the noise processes, and using ˆ( )x x x= −% , and 

0
ˆ( )b b b= −% , one has  

2 ( )P u x
d L k x x b kx
dt

μ μ= − | | − + −%% % %  

In the absence of noise one may apply Lyapunov’s direct method to 
prove convergence of the state estimate. LaSalles principal of invariance 

may be used to show that 0b̂ b→ . When the underlying system is linear, 

then the linear form of the feedback and adaptation law ensure that the 
closed-loop system is linear and stability implies exponential stability.  

3 Notation and definitions. 

3.1 Notation and mathematical identities 

The special orthogonal group is denoted (3)SO . The associated Lie-
algebra is the set of anti-symmetric matrices  

3 3(3) { }TA A AR ×= ∈ | = −so  

For any two matrices n nA B R ×, ∈  then the Lie-bracket (or matrix com-

mutator) is [ ]A B AB BA, = − . Let 3RΩ∈  then we define  

3 2
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2 1

0
0

0
×

−Ω Ω⎛ ⎞
⎜ ⎟Ω = Ω −Ω .⎜ ⎟
⎜ ⎟−Ω Ω⎝ ⎠

 



For any 3v R∈  then v v×Ω = Ω×  is the vector cross product. The op-

erator 3vex (3) R: →so  denotes the inverse of the ×Ω  operator  

( ) 3vex
vex( ) (3)

R
A A A

×

×

Ω = Ω,   Ω ∈ .

= ,   ∈ so
 

 

 
For any two matrices n nA B R ×, ∈  the Euclidean matrix inner product 

and Frobenius norm are defined  
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The following identities are used in the chapter  
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The following notation for frames of reference is used  

• { }A  denotes an inertial (fixed) frame of reference.  

• { }B  denotes a body-fixed-frame of reference.  

• { }E  denotes the estimator frame of reference.  

Let aP , sP  denote, respectively, the anti-symmetric and symmetric pro-

jection operators in square matrix space  
1 1( ) ( ) ( ) ( )
2 2

T T
a sP H H H P H H H= − , = + .  

 



Let ( )aθ ,  ( 1a| |= ) denote the angle-axis coordinates of (3)R SO∈ . 
One has  

exp( ) log( )
1cos( ) (tr( ) 1) ( ) sin( )
2 a

R a R a

R P R a

θ θ

θ θ

× ×

×

= , =

= − , = .
 

For any (3)R SO∈  then 3 tr( ) 1R≥ ≥ − . If tr( ) 3R =  then 0θ =  in 

angle-axis coordinates and R I= . If tr( ) 1R = −  thenθ π= ± , R  has real 

eigenvalues (1 1 1), − ,− .  
The unit quaternion representation of rotations is commonly used for the 

realisation of algorithms on (3)SO  since it offers considerable efficiency 
in code implementation. The set of quaternions is de-
noted 3{ ( ) }Q q s v R qR= = , ∈ × :| |= 1 . The set Q  is a group under the 
operation  

1 2 1 2
1 2

1 2 2 1 1 2

Ts s v v
q q

s v s v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
⊗ =

+ + ×
 

with identity element (1 0 0 0)= , , ,1 . The group of quaternions are 

homomorphic to (3)SO  via the map  
2

3(3) ( ) 2 2F Q SO F q I sv v× ×: → , := + +  

This map is a two to one mapping of Q  onto (3)SO  with ker-

nel{(1 0 0 0) ( 1 0 0 0)}, , , , − , , , , thus, Q  is locally isomorphic to (3)SO  

via F . Given (3)R SO∈  such that exp( )R aθ ×=  then 
1

2 2( ) { (cos( ) sin( ) )}F R aθ θ− = ± , . Let { }AΩ∈  denote a body-fixed frame 

velocity, then the pure quaternion ( ) (0 )Ω = ,Ωp  is associated with a qua-
ternion velocity.  

3.2 Measurements 

The measurements available from a typical inertial measurement unit 
are 3-axis rate gyros, 3-axis accelerometers and 3-axis magnetometers 
measurements. The reference frame of the strap down IMU is termed the 
body-fixed-frame{ }B . The inertial frame is denoted{ }A . The rotation 

A
BR R=  denotes the relative orientation of { }B  with respect to{ }A .  



Rate Gyros: The rate gyro measures angular velocity of { }B  relative 

to{ }A  expressed in the body-fixed-frame of reference{ }B . The error 
model used is  

3y b RμΩ = Ω + + ∈  
where { }BΩ∈  denotes the true value, μ  denotes additive measure-

ment noise and b  denotes a constant (or slowly time-varying) gyro bias.  
Accelerometer: Denote the instantaneous linear acceleration of { }B  

relative to{ }A , expressed in{ }A , by v& . An ideal accelerometer, ‘strapped 

down’ to the body-fixed-frame{ }B , measures the instantaneous linear ac-

celeration of { }B  minus the (conservative) gravitational acceleration field 

0g  (where we consider 0g  expressed in the inertial frame{ }A ), and pro-

vides a measurement expressed in the body-fixed-frame { }B . In practice, 
the output a  from a MEMS component accelerometer has added bias and 
noise,  

0( )T
a aa R v g b μ= − + + ,&  

where ab  is a bias term and aμ  denotes additive measurement noise. 

Normally, the gravitational field 0 0 3g g e=| |  where 0 9 8g| |≈ .  dominates 

the value of a  for low frequency response. Thus, it is common to use  

3
T

a
av R e
a

= ≈ −
| |

 

as a low-frequency estimate of the inertial z -axis expressed in the 
body-fixed-frame.  

Magnetometer: The magnetometers provide measurements of the mag-
netic field  

T A
m bm R m B μ= + +  

where Am  is the Earths magnetic field (expressed in the inertial frame), 

mB  is a body-fixed-frame expression for the local magnetic disturbance 

and bμ  denotes measurement noise. The noise bμ  is usually quite low for 

magnetometer readings, however, the local magnetic disturbance can be 
very significant, especially if the IMU is strapped down to a mAV with 
electric motors. Only the direction of the magnetometer output is relevant 
for attitude estimation and we will use a vectorial measurement  

m
mv
m

=
| |

 



in the following development  
The measured vectors av  and mv  can be used to construct an instanta-

neous algebraic measurement of the rotation { } { }A
BR B A: →   

2 2
1 3 2(3)

arg min A B
y a m m AR SO

R e Rv v Rv Rλ λ⎛ ⎞
⎜ ⎟
⎝ ⎠∈

= | − | + | − | ≈  

where A
mv  is the inertial direction of the magnetic field in the locality 

where data is acquired. The weights 1λ  and 2λ  are chosen depending on 

the relative confidence in the sensor outputs. Due to the computational 
complexity of solving an optimisation problem the reconstructed rotation 
is often obtained in a suboptimal manner where the constraints are applied 
in sequence; that is, two degrees of freedom in the rotation matrix are re-
solved by the acceleration readings and the final degree of freedom is re-
solved using the magnetometer. As a consequence, the error properties of 
the reconstructed attitude yR  can be difficult to characterise. 

 
Moreover, if either magnetometer or accelerometer readings are un-

available (due to local magnetic disturbance or high acceleration manoeu-
vres) then it is impossible to resolve the vectorial measurements into a 
unique instantaneous algebraic measurement of attitude.  

3.3 Error criteria for estimation on (3)SO  

Let R̂  denote an estimate of the body-fixed rotation matrix A
BR R= . 

The rotation R̂  can be considered as coordinates for the estimator frame of 
reference{ }E . It is also associated with the frame transformation  

ˆ ˆ { } { }A
ER E AR= : → .  

The goal of attitude estimate is to drive R̂ R→ . The estimation error 
we propose to use is the relative rotation from body-fixed-frame { }B  to 

the estimator frame { }E   

                                            ˆ { } { }T E
BR R R B ERR:= , = : → .% % %  (5) 

 
The proposed observer design is based on Lyapunov stability analysis. 

The Lyapunov functions used are inspired by the cost function  

                                            2
3 3

1 1 tr( )
2 2trE I R I R:= || − || = −% %  (6) 



One has that  

                                    21 tr( ) (1 cos( )) 2sin( 2)
2trE I R θ θ:= − = − = / .%  (7) 

where θ  is the angle associated with the rotation from { }B  to frame 

{ }E . Thus, driving Eq. 6 to zero ensures that 0θ → .  

4 Complementary filters on (3)SO  

In this section, a general framework for non-linear complementary fil-
tering on the special orthogonal group is introduced. The theory is first de-
veloped for the idealised case where ( )R t  and ( )tΩ  are assumed to be 
known and used to drive the filter dynamics. Filter design for real world 
signals is considered in later sections.  

The goal of attitude estimation is to provide a set of dynamics for an es-

timate ˆ( ) (3)R t SO∈  to drive the error rotation (Eq. 5) 3( )R t I→% . The 

kinematics of the true system are  

                                                 ( )R R R R× ×= Ω = Ω&  (8) 

where { }BΩ∈ . The proposed observer equation is posed directly as a 

kinematic system for an attitude estimate R̂ on (3)SO . The observer 

kinematics include a prediction term based on the Ω  measurement and an 

innovation or correction term, Pk ω , with ( )Rω ω:= %  derived from the er-

ror R%  and 0Pk >  a positive gain. The general form proposed for the ob-

server is  

                                        0
ˆ ˆ ˆ ˆ ˆ( ) (0) .PR R k R R R Rω ×= Ω + , =&

 (9) 

The term ˆ( ) { }PR k R AωΩ + ∈  is expressed in the inertial frame. The 

body-fixed-frame angular velocity is mapped back into the inertial frame 
A RΩ = Ω . If no correction term is used ( 0Pk ω ≡ ) then the error rotation 

R%  is constant,  
 

          ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) 0T T TTR R R R R R R RR R R× × × ×= Ω + Ω = − Ω + Ω = .&%  (10) 

 



The correction term pk ω  consists of a proportional gain 0Pk >  and the 

vector error term ( ) { }R Eω ω:= ∈% , considered to be in the estimator 
frame of reference. The vector error term can be thought of as a non-linear 

approximation of the error between R  and R̂ . In practice, it will be im-
plemented as an error between a measured estimate yR  of R  and the es-

timate R̂ . The goal of the observer design is to find a simple expression 

for ω  that leads to robust convergence of R I→% . In this chapter we con-
sider the choice  

                                                           vex( ( ))aP Rω = .%  (11) 
 

Lemma 1.  [Complementary filter.] Consider the attitude kinemat-
ics (Eq. 8) and assume that R  and Ω  are known. Choose ω  accord-
ing to Eq. 11 and choose 0Pk >  a positive gain. Let ˆ( )R t  denote the 
solution of Eq. 9 for initial condition 0R̂ . Then  

22 cos ( 2)tr P trk EE θ= − /&  

where trE  is defined in Eq. 7. For any initial condition 0R̂  such that 

0tr( ) 1R ≠ −%  then ˆ( ) ( )R t R t→  exponentially.  
Proof: Deriving the Lyapunov function trE  subject to dynamics 
Eq. 9 yields  

( )1 tr( ) tr
2 2

tr ( ( ) ( )) tr ( )
2 2
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2
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P
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kR RE
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k P R
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ω

×

× ×

×

= − = −

⎡ ⎤ ⎡ ⎤= − + = −⎣ ⎦ ⎣ ⎦

= − << , >>

&% %&

% % %
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Substituting for ω , Eq. 11, yields  
2 2( )

2
P

tr a P
kE P R k ω= − || || = − | | .%  

Defining θ  by the angle axis convention sin( ) ( )aa P Rθ × = %  for 
1a| |= , one has 2a×|| ||=  and  

2 2 2

2 2 2

sin ( ) 2 sin ( )

8 sin ( 2)cos ( 2) 2 cos ( 2)
tr P P

P P tr

E k a k

k k E

θ θ

θ θ θ
× ×= − || || = −

= − / / = − / .
 



The condition on the initial condition 0R%  guarantees that 

0π θ π− < < . The result follows from applying Lyapunov’s direct 
method. QED.  
We term the filter Eq. 9 a complementary filter on (3)SO  since it re-
captures the block diagram structure of a classical complementary 
filter (cf. §2).   

 

 

Fig. 2. Block diagram of the general form of a complementary filter on (3)SO  

In Figure 2: The ‘ ˆT
R ’ operation is an inverse operation on (3)SO  

and is equivalent to a ‘ − ’ operation for a linear complementary fil-
ter. The ‘ ˆTRR ’ operation is equivalent to generating the error term 
‘ ˆy x− ’. The two operations ( )aP R%  and ( )R ×Ω  are maps from error 
space and velocity space into the tangent space of (3)SO ; operations 
that are unnecessary on Euclidean space due to the identification 

n n
xT R R≡ . The kinematic model is the Lie-group equivalent of a 

first order integrator.  
To implement the complementary filter it is necessary to map the 
body-fixed-frame velocity Ω  into the inertial frame. In practice, the 
‘true’ rotation R  is not available and an estimate of the rotation 
must be used. Two possibilities are considered:  
direct complementary filter: The constructed attitude yR  is used to 

map the velocity into the inertial frame A
y yRΩ ≈ Ω . A block dia-

gram of this filter design is shown in Figure 3. This approach can be 
linked to observers documented in earlier work [29,32]. The ap-



proach has the advantage that it does not introduce an additional 
feedback loop in the filter dynamics, however, noise in the recon-
structed attitude yR  will enter into the feed-forward term of the fil-
ter.  

 

Fig. 3. Block diagram of the direct complementary filter on (3)SO  

passive complementary filter: The filtered attitude R̂  is used in the 
predictive velocity term ˆA

yRΩ ≈ Ω . A block diagram of this archi-
tecture is shown in Figure 4. The advantage lies in avoiding corrupt-
ing the predictive angular velocity term with the noise in the recon-
structed pose. However, the approach introduces a secondary 
feedback loop in the filter and stability needs to be proved.   

 

Fig. 4. Block diagram of the passive complementary filter on (3)SO  

Lemma 2.  [Passive complementary filter.] Consider the rotation 
kinematics Eq. 8 and assume that R  and Ω  are known. Let 0Pk >  



and choose ω  according to Eq. 11. Let the attitude estimate ˆ( )R t  be 
given by the solution of  
                                     ( ) 0

ˆ ˆ ˆ ˆ ˆ ˆ(0)PR R k R R R Rω
×

= Ω + , =&
 (12) 

Then  
22 cos ( 2)tr P trk EE θ= − /&  

where trE  is defined in Eq. 7. For any initial condition 0R̂  such that 

0tr( ) 1R ≠ −% , then ˆ( ) ( )R t R t→  exponentially.  
Proof: Observe that  

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ T
P P PR k R R R k R R kRω ω ω

× ××
Ω + = Ω + = Ω +  

Differentiating trE  subject to dynamics Eq. 12 yields  
1 1tr( ) tr( ( ) )
2 2

1 tr([ ]) tr( )
2 2

( )
2

tr P
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P
a

E R k R R

kR R

k P R

ω
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ω

× ×

× ×

×

= − = − − Ω + + Ω

= − ,Ω −

= − << , >>
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since the trace of a commutator is zero, tr([ ]) 0R ×,Ω =% , a property of 
the passivity of the rotational kinematics on (3)SO . The remainder 
of the proof is identical to that of Lemma 1. QED.  
It is important to note that the direct and the passive complementary 
filters have different solutions even though the Lyapunov stability 
analysis appears identical. The different trajectories of 3R̂e  are 
shown in Figure 5 for identical initial conditions and constant angu-
lar velocity Ω . The level sets of the Lyapunov function are the 
small circles of the hemisphere and the two trajectories always lie on 
the same small circle during the evolution of the filter.  



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
passive filter
direct filter

 
Fig. 5. Trajectories of 3Re%  for direct and passive complementary filters on the 

plan 1 2{ }e e,  for initial deviation, 0R% , corresponding to a rotation of 2
π  rad 

around the 2e  axis and 30 3eΩ = .  rad/s 

If tr( )(0) 1R = −% , then for both the direct and passive filter, it is eas-
ily verified that tr( ( )) 0R t =&  for all 0t ≥ . Hence, the set 

0 { (3) tr( ) 1}U R SO R= ∈ : = −% %  is an invariant set of the error dynam-
ics. This set corresponds to a maximum of the cost function trE  and 
the descent condition in the Lyapunov arguments for both filters en-
sures that the invariant set is unstable.  
There is no particular theoretical advantage to either the direct or the 
passive filter architecture in the case where exact measurements are 
assumed. However, it is straightforward to see that the passive filter 
(Eq. 12) can be written  
                                                           ˆ ˆ ( ( ))P aR R k P R×= Ω + .& %  (13) 

This formulation suppresses entirely the requirement to represent Ω  
and ( )P ak P Rω = %  in the inertial frame and leads to the architecture 
shown in Figure 6. The passive complementary filter avoids cou-
pling the reconstructed attitude noise into the predictive velocity 
term of the observer, has a strong Lyapunov stability analysis 



(Lemma 2), and provides a simple and elegant realisation that will 
lead to the results in Section 6.   

 
Fig. 6. Block diagram of the simplified form of the passive complementary filter 

5. Adaptive gyro bias compensation 

In this section, the direct and passive complementary filters on 
(3)SO  are extended to provide on-line estimation of time-varying 

bias terms in the gyroscope measurements.  
For the following work it is assumed that a reconstructed rotation 

yR  and a biased measure of angular velocity yΩ  are available  
                                       valid for low frequenciesyR R≈ , ,  (14) 

                                      , for constant biasy b bΩ ≈ Ω + .  (15) 
 
The approach taken is to add an integrator to the compensator term 
in the feedback equation of the complementary filter.  
Let 0P Ik k, >  be positive gains and define:  
Direct complementary filter with bias correction:  
                              ( ) 0

ˆˆ ˆ ˆˆ ˆ(0)( )y
y PR R RR b k R Rω

×
= , = ,Ω − +&

 (16) 

                               0
ˆ ˆ ˆ(0)Ib k b bω= − , = ,&

 (17) 

                              ˆvex( ( )) T
a yP R R RRω = , = .% %  (18) 

 
 
Passive complementary filter with bias correction:  



                        ( ) 0
ˆˆ ˆ ˆ ˆ(0)y

PR R Rb k Rω
×

= , = ,Ω − +&
 (19) 

                         0
ˆ ˆ ˆ(0)Ib k b bω= − , = ,&

 (20) 

                        ˆvex( ( )) T
a yP R R RRω = , = .% %  (21) 

 
The additional dynamics introduced for the b̂  term can be thought 
of as an adaptive estimate of the gyro bias. The stability analysis is 
based on the same approach as the adaptive control Lyapunov func-
tion interpretation of the classical complementary filter presented in 
Section 2. The non-linear state space (3)SO  introduces several 
complexities to the analysis, the most important following from the 
existence of local maxima of the Lyapunov function due to the topo-
logical structure of (3)SO . The proofs of the following two theo-
rems are contained in the technical report [18]. Local stability results 
are given in [19].  
Theorem 1.  [Direct complementary filter with bias correction] 
Consider the rotation kinematics Eq. 8 for a time-varying 

( ) (3)R t SO∈  and with measurements given by Eq. 14-15. Let 
ˆˆ( ( ) ( ))R t b t,  denote the solution of Eq. 16-18. Define error variables 

ˆTR RR=%  and ˆb b b= −% . Define 3(3)U SO R⊆ ×  by  

                                   { }( ) tr( ) 1 ( ) 0aU R b R P Rb×= , | = − , = .%% % %%  (22) 

Then:  
1. The set U  is forward invariant and unstable with re-
spect to the dynamic system Eq. 16-18.  
2. The error ( ( ) ( ))R t b t, %%  is locally exponentially stable 
to ( 0)I , .  
3. For almost all initial conditions 0 0( ) UR b, ∈/%%  the tra-

jectory ˆˆ( ( ) ( ))R t b t,  converges to the trajectory ( ( ) )R t b, .  
 

Theorem 2.  [Passive complementary filter with bias correction] 
Consider the rotation kinematics Eq. 8 for a time-varying 

( ) (3)R t SO∈  and with measurements given by Eq. 14-15. Let 
ˆˆ( ( ) ( ))R t b t,  denote the solution of Eq. 19-21. Define error variables 



ˆ TR RR=%  and ˆb b b= −%  and assume that ( )tΩ  is a bounded, abso-
lutely continuous signal that is persistently exciting and uncorrelated 
to the error signal ˆ TR RR=% . Define 3

0 (3)U SO R⊆ ×  by  

                                          { }0 ( ) tr( ) 1 0U R b R b= , | = − , = .% %% %  (23) 

Then:  
1. The set 0U  is forward invariant and unstable with re-
spect to the dynamic system 19-21.  
2. The error ( ( ) ( ))R t b t, %%  is locally exponentially stable 
to ( 0)I , .  
3. For almost all initial conditions 0 00( ) UR b, ∈/%%  the tra-

jectory ˆˆ( ( ) ( ))R t b t,  converges to the trajectory ( ( ) )R t b, .  
Apart from the expected conditions inherited from Theorem 1 the 
key assumption in Theorem 2 is the persistence of excitation 
of ( )tΩ . The perturbation of the passive dynamics by the driving 
term Ω  provides a disturbance that ensures that the adaptive bias es-
timate converges to the true gyroscopes’ bias, a particularly useful 
property in practical applications.  

4.1 Quaternion versions of direct and passive complementary 
filters 

Consider the rotation kinematics on (3)SO  Eq. 8. The associated 
quaternion kinematics are given by  

                                                           
1 ( )
2

q q= ⊗ Ωp&  (24) 

 
Let yq q≈  be a low frequency measure of q , and y bΩ ≈ Ω +  (for 
constant bias b ) be the angular velocity measure. Let q̂  denote the 
observer estimate and quaternion error q%   

1ˆ
s

q qq
v

− ⎡ ⎤
= ⊗ = ⎢ ⎥

⎣ ⎦

%
%

%
 

Note that  



 
12 2cos( 2)sin( 2) (sin ) vex( ( ))
2 asv a a P Rθ θ θ= / / = = %%%  

where ( )aθ ,  is the angle axis representation of ( )R F q=% % .  
The direct complimentary filter is closely related to quaternion based 
attitude filters published over the last fifteen years [29,34,32]. The 
quaternion representation of the Direct complementary filter 
(Eq. 16-18) is:  

                                              
1 ˆˆ ˆ ( ( ) 2 )
2 y Pq q R b k sv= ⊗ Ω − +p& % %%  (25) 

                                              ˆ 2 Ib k sv= −&
%%  (26) 

 
There is a fifteen year history of using the quaternion representation 
and Lyapunov design methodology for filtering on (3)SO  (for ex-
ample cf. [34,29,32]). To the authors knowledge the Lyapunov 
analysis in all cases has been based around the cost function  

2 2( ) ( 1)q s vΦ = | | − + | | .% % %  
Due to the unit norm condition it is straightforward to show that  

( )( ) 2(1 ) 2 1 cos( 2)q s θΦ = − | | = − | / |% %  

The cost function proposed in this chapter is (1 cos( ))trE θ= −  
(Eq. 7). It follows that the quadratic approximation of both cost 
functions around the point 0θ =  is the quadratic 2 2θ / . The quater-
nion cost function Φ , however, is non-differentiable at the point 
θ π= ±  while the cost tr( )I R− %  has a smooth local minima at this 
point.  
Almost all quaternion filters in the published literature have a simi-
lar flavour that dates back to the seminal work of Salcudean [29]. 
The closest published work to that undertaken in the present chapter 
was published by Thienel in her doctoral dissertation [33] and paper 
[32]. The filter considered by Thienel et al.[0.001mm] is given by  

                                     
1 ˆˆ ˆ ( ( sgn( ) ))
2 y Pq q R b k s v= ⊗ Ω − +p& % % %  (27) 

                                      ˆ sgn( )Ib k s v= −&
% %  (28) 

The sgn( )s%  term enters naturally in the filter design from the differ-
ential, sgn( )d d

dt dts s s| |=% % % , of the absolute value term in the cost func-



tion Φ , during the Lyapunov design process.  
 
Consider the observer obtained by replacing sgn( )s%  in Eqn’s 27-28 
by 2s% . Note that with this substitution, Eq. 28 is transformed into 
Eq. 26. To show that Eq. 27 transforms to Eq. 25 it is sufficient to 
show that Rv v=% % % . This is straightforward from  

2 (2 ) vex( ( ))

vex( ( ) ) vex( ( )) 2
a

T
a a

sRv R sv R P R

RP R P R svR

= =

= = =

% % % %% % % %

% % %% %%
 

It is shown that the quaternion filter Eqn’s 27-28 is obtained from 
the standard form of the complimentary filter proposed Eq. 16-18 
with the innovation term Eq. 18 replaced by  

1 ˆsgn( ) ( )T
q s v q F RRω −= , ∈ .% % %  

Note that the innovation defined in Eq. 18 can be written 2svω = %% . It 
follows that  

sgn( )
2q

s
s

ω ω=
%

%
 

The innovation term for the two filters varies only by the positive 
scaling factor sgn( ) (2 )s s/% % . The quaternion innovation qω  is not well 
defined for 0s =%  (where θ π= ± ) and these points are not well de-
fined in the filter dynamics 27-28. It should be noted, however, that 

qω| |  is bounded at 0s =%  and, apart from possible switching behav-
iour, the filter can still be implemented on the remainder of 

3(3)SO R× . An argument for the use of the innovation qω  is that the 
resulting error dynamics strongly force the estimate away from the 
unstable set U  (cf. Eq. 22). An argument against its use is that, in 
practice, such situations will only occur due to extreme transients 
that would overwhelm the bounded innovation term qω  in any case, 
and cause the numerical implementation of the filter to deal with a 
discontinuous argument. In practice, it is an issue of little signifi-
cance since the filter will work sufficiently well to avoid any issues 
with the set U  for either choice of innovation. For 1s →% , corre-
sponding to 0θ = , the innovation qω  scales to a factor of 1 2/  the 
innovation ω . A simple scaling factor like this is compensated for 
the in choice of filter gains Pk  and Ik  and makes no difference to 



the performance of the filter.  
The quaternion representation of the Passive complementary filter 
(Eq. 19-21) is:  

                                            
1 ˆˆ ˆ ( 2 )
2 y Pq q b k sv= ⊗ Ω − +p& %%  (29) 

                                             ˆ 2 Ib k sv= −&
%%  (30) 

To the authors knowledge this version of the complementary filter 
on the quaternion group has not been considered in prior work. It is 
not surprising that the passive complementary filter has not been 
proposed by authors working purely in the quaternion representation 
since the passivity property is somewhat obscure in this 
representation.  

6 Explicit error formulation of the passive complementary 
filter 

A weakness of the implementation of both the direct and passive 
complementary filters is the requirement for a reconstructed estimate 
of the attitude, yR , to use as the driving term for the error dynamics. 
The reconstruction cannot be avoided in the direct filter implementa-
tion because the reconstructed attitude is also used to transform the 
measured angular velocity into the inertial frame. In this section, we 
show how the passive complementary filter may be reformulated in 
terms of direct measurements from the inertial unit.  
Let 0 { }iv A∈ , 1i … n= , , , denote a set of n  known inertial directions. 
The measurements considered are body-fixed-frame observations of 
the fixed inertial directions  
                                               0 { }T

i i i iv R v v Bμ= + , ∈  (31) 

where iμ  is a noise process. Since only the direction of the meas-
urement is relevant to the observer we assume that 0 1iv| |=  and nor-
malise all measurements to ensure 1iv| |= .  

Let R̂  be an estimate of R . Define  

0ˆˆ T
i ivv R=  



to be the associated estimate of iv . For a single direction iv , the er-
ror considered is  

1 cos( ) 1ˆ ˆi ii i iE v vv v= − ∠ , = − < , >  

which yields  

0 0 0 0ˆ1 tr( ) 1 tr( )T T T T
i i i i iE v v R RR v v RR= − = − %  

For multiple measures iv  the following cost function is considered  

                      
1 1

tr( ) 0
n n

mes i i i i
i i

E k E k RM k
= =

= = − , > ,∑ ∑ %                         (32) 

where  

                                 0 0 0 0
1

with
n

T T
i i i

i

M R M R M k v v
=

= = ∑  (33) 

Assume linearly independent inertial direction 0{ }iv  then the matrix 
M  is positive definite ( 0)M >  if 3n ≥ . For 2n ≤  then M  is posi-
tive semi-definite with one eigenvalue zero. The weights 0ik >  are 
chosen depending on the relative confidence in the measurements iv . 
For technical reasons in the proof of Theorem 1 we assume addi-
tionally that the weights ik  are chosen such that 0M  has three dis-
tinct eigenvalues 1 2 3λ λ λ> > .  
A full proof of the following theorem is contained in the technical 
report [18]. A local stability proof is contained in the paper [11].  

 
Theorem 1. [Explicit complementary filter with bias correction] 
Consider the rotation kinematics Eq. 8 for a time-varying 

( ) (3)R t SO∈  and with measurements given by Eqn’s 31 and 15. As-
sume that there are two or more, ( 2n ≥ ) vectorial measurements iv  
available. Choose 0ik >  such that 0M  (defined by Eq. 33) has three 
distinct eigenvalues. Consider the filter kinematics given by  

                              0
ˆˆ ˆ ˆ ˆ( ) ( ) (0)y

P mesR R b k R Rω⎛ ⎞
⎜ ⎟⎜ ⎟× ×⎝ ⎠

= Ω − + , =&
 (34) 

                               ˆ
I mesb k ω= −&

 (35) 

                        
1

0ˆ
n

imes i i i
i

k v kvω
=

:= × , > .∑  (36) 

 



and let ˆˆ( ( ) ( ))R t b t,  denote the solution of Eqn’s 34-36. Assume that 
( )tΩ  is a bounded, absolutely continuous signal that is persistently 

exciting and uncorrelated to the error signal ˆ TR RR=% . Then:  
1. There are three unstable equilibria of the filter charac-
terised by  

 ( )0 0ˆˆ( ) 1 2 3T
ii i U DU R b iR b∗ ∗, = , , = , , ,  

2. where 1 diag(1 1 1)D = ,− ,− , 2 diag( 1 1 1)D = − , ,−  and 

3 diag(1 1 1)D = ,− ,−  are diagonal matrices with entries as 
shown and 0 (3)U SO∈  such that 0 0 0

TM U U= Λ  where 

1 2 3diag( )λ λ λΛ = , ,  is a diagonal matrix.  

3. The error ( ( ) ( ))R t b t, %%  is locally exponentially stable 
to ( 0)I , .  
4. For almost all initial conditions 0 0 ˆ( ) ( )T

iR bR b R∗, ≠ ,%% , 

1i = , 3…, , the trajectory ˆˆ( ( ) ( ))R t b t,  converges to the trajec-
tory ( ( ) )R t b, .  

The quaternion representation of Explicit complementary filter 
(Eq. 34-36) is:  

                                   
1

vex ( )ˆ
2

n
T Ti

imes i i i
i

k v v vvω
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠
∑ ... (37) 

                                        
1 ˆˆ ˆ ( )
2 y P mesq q b k ω= ⊗ Ω − +p&  (38) 

                                        ˆ
I mesb k ω= − .&

………………….. (39) 
 
 
If 3n = , the weights 1ik = , and the measured directions are or-
thogonal ( 0 )T

i jv v i j= ,∀ ≠  then 3M I= . The cost function mesE  be-
comes  

33 tr( ) tr( )mes trE RM I R E= − = − = .% %  

In this case, the explicit complementary filter (Eqn’s 34-36) and the 
passive complementary filter (Eqn’s 19-21) are identical.  
 



If 2n = , the two typical measurements obtained from an IMU unit 
are estimates of the gravitational, a , and magnetic, m , vector fields  

0 0

0 0

T T
a m

a mv R v R
a m

= , = .
| | | |

 

The cost function mesE  becomes  

1 2(1 ) (1 )ˆ ˆa mmes a mE k v k vv v= − < , > + − < , >  

The weights 1k  and 2k  are introduced to weight the confidence in 
each measure. In situations where the IMU is subject to high magni-
tude accelerations (such as during takeoff or landing manoeuvres) it 
may be wise to reduce the relative weighting of the accelerometer 
data ( 1 2k k<< ) compared to the magnetometer data. Conversely, in 
many applications the IMU is mounted in the proximity to powerful 
electric motors and their power supply busses leading to low confi-
dence in the magnetometer readings (choose 1 2k k>> ). This is a very 
common situation in the case of mini aerial vehicles with electric 
motors. In extreme cases the magnetometer data is unusable and 
provides motivation for a filter based solely on accelerometer data.  

1. Estimation from the measurements of a single direction 

Let av  be a measured body fixed frame direction associated with a 
single inertial direction 0av , 0

T
a av R v= . Let ˆav  be an esti-

mate 0ˆˆ T
a avv R= . The error considered is  

0 01 tr( ) T T
mes a aE RM M R v v R= − ; =%  

A proof to the following corollary is provided in the technical report 
[18]. Local stability is proved in the paper [11].  
Corollary 2.  Consider the rotation kinematics Eq. 8 for a time-
varying ( ) (3)R t SO∈  and with measurements given by Eqn’s 31 (for 
a single measurement 1 av v= ) and 15. Let ˆˆ( ( ) ( ))R t b t,  denote the so-
lution of Eqn’s 34-36. Assume that ( )tΩ  is a bounded, absolutely 
continuous signal that is persistently exciting and uncorrelated to the 
error signal ˆ TR RR=% . Define  

1 0 0{( ) 1 0}T
a aU R b v Rv b= , : = − , = .% %% %  



Then:  
1. The set 1U  is forward invariant and unstable under 
the closed-loop filter dynamics.  
2. The estimate ˆ( )ˆa bv ,  is locally exponentially stable to 
( )av b, .  
3. For almost all initial conditions 0 10( ) UR b, ∈/%%  then 

ˆ( )ˆa bv ,  converges to the trajectory ( ( ) )av t b, .  
An important aspect of Corollary 2 is the convergence of the bias 
terms in all degrees of freedom. This ensures that (in the asymptotic 
limit) the drift in the attitude estimate around the unmeasured axis 

0av  will be driven by a zero mean noise process rather than a 
constant bias term. In a practical setting, this makes the proposed 
filter a practical algorithm for most mAV applications.  

7 Experimental results 

In this section, we present experimental results to demonstrate the 
performance of the proposed observers.  

 
Fig. 7. The VTOL mAV HoverEye ©  of Bertin Technologies 

Experiments were undertaken on two real platforms to demonstrate 
the convergence of the attitude and gyro bias estimates.  

1. The first experiment was undertaken on a robotic ma-
nipulator with an IMU mounted on the end effector and sup-



plied with synthetic estimates of the magnetic field meas-
urement. The robotic manipulator was programmed to simu-
late the movement of a flying vehicle in hovering flight re-
gime. The filter estimates are compared to orientation 
measurements computed from the forward kinematics of the 
manipulator. Only the passive and direct complimentary fil-
ters were run on this test bed.  
2. The second experiment was undertaken on the VTOL 
mAV HoverEye ©  developed by Bertin Technologies (Fig-
ure 7). The VTOL belongs to the class of ‘sit on tail’ ducted 
fan VTOL mAV, like the iSTAR9 and Kestrel developed re-
spectively by Allied Aerospace [15] and Honeywell [10]. It 
was equipped with a low-cost IMU that consists of 3-axis ac-
celerometers and 3-axis gyroscopes. Magnetometers were 
not integrated in the mAV due to perturbations caused by 
electrical motors. The explicit complementary filter was used 
in this experiment.  

For both experiments the gains of the proposed filters were chosen 
to be: 1 11rd s and 0 3rd sP Ik k− −= . = . . . The inertial data was acquired 
at rates of 25Hz for the first experiment and 50Hz for the second ex-
periment. The quaternion version of the filters were implemented 
with first order Euler numerical integration followed by rescaling to 
preserve the unit norm condition.  
Experimental results for the direct and passive versions of the filter 
are shown in Figures 8 and 9. In Figure 8 the only significant differ-
ence between the two responses lies in the initial transient responses. 
This is to be expected, since both filters will have the same theoreti-
cal asymptotic performance. In practice, however, the increased sen-
sitivity of the direct filter to noise introduced in the computation of 
the measured rotation yR  is expected to contribute to slightly higher 
noise in this filter compared to the passive.  
The response of the bias estimates is shown in Figure 9. Once again 
the asymptotic performance of the filters is similar after an initial 
transient. From this figure it is clear that the passive filter displays 
slightly less noise in the bias estimates than for the direct filter (note 
the different scales in the y -axis).   
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Fig. 8. Euler angles from direct and passive complementary filters 
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Fig. 9. Bias estimation from direct and passive complementary filters 

Figures 10 and 11 relate to the second experiment. The experimental 
flight of the mAV was undertaken under remote control by an opera-
tor. The experimental flight plan used was: First, the vehicle was lo-
cated on the ground, initially headed toward (0) 0ψ = . After take 
off, the vehicle was stabilized in hovering condition, around a fixed 
heading which remains close the initial heading of the vehicle on the 
ground. Then, the operator undertakes a 90o -left turn manoeuvre, 
returns to the initial heading, and follows with a 90o -right turn 
manoeuvre, before returning to the initial heading and landing the 
vehicle. After landing, the vehicle is placed by hand at its initial 
pose such that final and initial attitudes are the identical.  
Figure 10 plots the pitch and roll angles ( )φ θ,  estimated directly 
from the accelerometer measurements against the estimated values 
from the explicit complementary filter. Note the large amounts of 
high frequency noise in the raw attitude estimates. The plots demon-
strate that the filter is highly successful in reconstructing the pitch 
and roll estimates.   
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Fig. 10. Estimation results of the Pitch and roll angles  

Figure 11 presents the gyros bias estimation verses the predicted 
yaw angle (φ ) based on open loop integration of the gyroscopes. 
Note that the explicit complementary filter here is based solely on 
estimation of the gravitational direction. Consequently, the yaw an-
gle is the indeterminate angle that is not directly stabilised in Corol-
lary 2. Figure 11 demonstrates that the proposed filter has success-
fully identified the bias of the yaw axis gyro. The final error in yaw 
orientation of the microdrone after landing is less than 5 degrees 
over a two minute flight. Much of this error would be due to the ini-
tial transient when the bias estimate was converging. Note that the 
second part of the figure indicates that the bias estimates are not 
constant. Although some of this effect may be numerical, it is also to 
be expected that the gyro bias on low cost IMU systems are highly 
susceptible to vibration effects and changes in temperature. Under 
flight conditions changing engine speeds and aerodynamic condi-
tions can cause quite fast changes in gyro bias.   
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Fig.  11. Gyros bias estimation and influence of the observer on yaw angle. 

8 Conclusions 

This chapter presents a general analysis of attitude observer design 
posed directly on the special orthogonal group. Three non-linear ob-
servers are proposed:  
Direct complementary filter: A non-linear observer posed on 

(3)SO  that is related to previously published non-linear observers 
derived using the quaternion representation of (3)SO .  
Passive complementary filter: A non-linear filter equation that 
takes advantage of the symmetry of (3)SO  to avoid transformation 
of the predictive angular velocity term into the estimator frame of 
reference. The resulting observer kinematics are considerably sim-
plified and avoid coupling of constructed attitude error into the pre-
dictive velocity update.  

Explicit complementary filter: A reformulation of the passive 
complementary filter in terms of direct vectorial measurements, such 



as gravitational or magnetic field directions obtained for an IMU. 
This observer does not require on-line algebraic reconstruction of at-
titude and is ideally suited for implementation on embedded hard-
ware platforms. Moreover, the filter remains well conditioned in the 
case where only a single vector direction is measured.  
The explicit complementary filter is now implemented as the 
primary attitude estimation system on several mAV vehicles world 
wide.  
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