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Preface

Examples of How New Experimental Technologies Have Enabled Landmark 
Advances in Understanding of Plant Immunity Over the Last Half-Century

This volume of Methods in Molecular Biology was designed to emphasize emerging 
technologies that can be applied to outstanding questions in plant immunity. The content 
is complementary to another recent, excellent volume in the series with a similar focus (1). 
Below, I provide a brief historical overview highlighting major conceptual advances in 
molecular plant–microbe interactions that would not have been possible without exploita-
tion of new technologies. Additionally, I outline current conceptual challenges in our field 
that can be addressed with methods described in this volume. Finally, I speculate on tech-
nological advances in the near term that enable deeper understanding of plant immunity 
and support rational strategies for durable disease control.

As all readers of this volume know, much effort has been invested in understanding 
the molecular mechanisms through which plants and microbes interact. Much of the 
progress in this field has been fueled by timely, thoughtful exploitation of new methodolo-
gies. For example, H.H. Flor’s use of classical genetics clearly demonstrated that the out-
come of encounters between flax and flax rust can be dictated by single genes on both 
sides of the interaction (2). Equally important, his methodology revealed striking specific-
ity in these interactions, which led to formulation of the seminal “gene-for-gene” model. 
This genetics-driven model provided a conceptual framework for the plant immunity that 
proved generally applicable and remains relevant today (3, 4).

Subsequent emergence of molecular biology tools enabled the gene-for-gene model 
to be elaborated in molecular terms. For example, gene cloning technologies were used to 
isolate avirulence (avr) genes, resistance (R) genes, and additional components of patho-
genicity and immunity. Molecular approaches, along with judicious biochemistry, pro-
vided for critical examination of “receptor-ligand” models that predicted direct interaction 
between the products of R and avr genes (e.g., (5)). Three important themes emerged 
from these efforts: First, the majority of plant resistance genes encode proteins from a 
single superfamily, defined by a nucleotide-binding site and leucine-rich repeats (NB-LRR) 
(6). Second, pathogen Avr proteins are, in many cases, translocated into plant cells where 
they act as effectors to reprogram plant cells for susceptibility (7). Third, NB-LRR pro-
teins often do not interact directly with corresponding Avr proteins but instead monitor 
guardees or decoys that are modified by the Avr protein (8–10). In addition, experiments 
with pathogen “elicitor” molecules revealed a second branch of the plant immune system, 
which directly recognizes pathogen-associated molecular patterns (PAMPs) that are evo-
lutionarily conserved among diverse pathogens (11). The two branches of the plant 
immune system have been connected by recent models predicting that pathogen effectors 
may have evolved to interfere with PAMP-triggered immunity (12). NB-LRR receptors 
thereby provide a second line of defense by recognizing the molecular signatures of 
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effector activity. In sum, the adoption of molecular biology methods led to major advances 
in understanding of plant immunity that could not have been anticipated by models based 
(however logically) on genetic data alone.

At present, “omics” tools are being used to build on molecular advances and provide 
new insights. For example, it is now possible to survey a plant genome and identify all of 
the potential immune receptors using queries based on conserved motifs (e.g., (13)). 
From this, it has become clear that plants maintain hundreds of probable immune recep-
tors, which in many cases appear to be evolving dynamically to cope with ever-changing 
pathogen populations (14). From an applied perspective, these inventories can greatly 
accelerate the process of resistance gene identification (e.g., for cloning and/or marker-
assisted breeding of R genes from wild relatives into crops).

Similar advances are underway in pathogen genomics. For example, molecular signa-
tures are being developed for pathogen effector proteins that enable comprehensive effec-
tor gene inventories to be predicted in silico. Genome level comparisons have revealed that 
pathogen genomes contain dozens (in prokaryotes) to hundreds (in eukaryotes) of effec-
tor genes (15, 16). Like the cognate surveillance genes in plants, these genes are often 
variable and subject to rapid turnover. Large-scale characterization of effector functions is 
a major focus of effort in the field of plant immunity that is discussed further below.

Transcript profiling is also impacting understanding of plant immunity. For example, 
early experiments with microarrays revealed massive transcriptional changes that accom-
pany the activation of the immune system and illuminated molecular distinctions between 
different resistance mechanisms (e.g., (17)). Subsequent studies that combine transcript 
profiling with immune response mutants have provided insight into the structure of the 
defense hierarchy and have identified previously unknown components of the network 
(e.g., (18)). Analyses of transcript profiles have also provided important insights into the 
molecular mechanisms through which pathogens manipulate the environment inside plant 
tissue (e.g., (19)).

At present, it is inarguable that our current, exciting level of understanding of plant 
immunity (and pathogen evasion thereof) owes much to the timely adoption of new meth-
odologies in genetics and molecular biology, as well as genomics. However, we remain far 
from a complete understanding of how the plant immune system functions, or how its 
functionality is perturbed by adapted pathogens. Many questions remain that will require 
new methodologies to be developed, optimized, and widely adopted. This volume of 
Methods in Molecular Biology was designed to emphasize emerging technologies that can 
be applied to outstanding questions in plant immunity.

For example, although NB-LRR immune surveillance proteins have now been known 
of for 1.5 decades, we still do not understand exactly how they function, and it is not 
clear whether all NB-LRR proteins function in a similar manner (20, 21). Moreover, we 
still lack a complete inventory of downstream signaling components, and we do not 
understand how these components interact. Methods that can be applied for new insights 
into molecular functionality of NB-LRR proteins and other immune signaling compo-
nents are described in Chaps. 1–4. Chapter 1 addresses the understudied question of 
exactly where in the cell NB-LRR proteins exercise their functions of surveillance and 
downstream activation. In particular, the approaches therein can be applied to study 
dynamic relocalization of NB-LRRs in response to pathogen invasion (e.g., (22)). 
Chapter 2 describes a very innovative “fragment complementation” approach for under-
standing the functions of intramolecular interactions between different NB-LRR func-
tional domains (e.g., (23)). Chapters 3 and 4 provide new protocols for the oft-vexing 
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process of purifying low-abundance protein complexes. These protocols were developed with 
the immediate goal of identifying the components within immune surveillance complexes 
(e.g., (24, 25)), but are also potentially applicable to any protein expressed in planta.

Chapters 5–7 have similarly broad applicability. Chapter 5 describes chromatin immu-
noprecipitation, which is being widely used to characterize protein–DNA interactions 
in vivo and identify targets of transcription factors in a variety of organisms (e.g., (26)). 
This chapter was written in reference to WRKY transcription factors, which are ubiquitous 
in plants and are key regulators of immunity and other plant processes. The procedures 
could be adapted for other plant proteins (e.g., NB-LRR proteins that function inside the 
nucleus) or for pathogen effector proteins that mimic plant transcription factors. Chapter 6 
provides new information on an inducible system for plant transgene expression that is 
frequently used in studies of plant immunity (e.g., for expressing effector proteins in 
planta (27)). This chapter helps researchers maximize the versatility of this system and 
clearly understand its limitations. Chapter 7 describes a creative method for detection and 
quantification of alternatively spliced transcripts (28). Alternative splicing is important for 
the regulation of some NB-LRR resistance gene regulation and is currently understudied 
with respect to immune system function (29).

Chapters 8–17 describe methods used to identify and functionally characterize patho-
gen effector proteins. As mentioned above, pathogen genomics have revealed a plethora 
of candidate effectors. Understanding how they function is one of the most active areas in 
plant–pathogen research at present (15, 16). One emergent generality is that almost all 
types of pathogens deploy moderate to large batallions of secreted effectors, many of 
which operate inside plant cells. Chapters 9 and 10 provide approaches to isolate plant 
cells that are in intimate contact with fungi and nematodes, respectively. These cells can 
serve as sources for cDNA libraries that are enriched for transcripts encoding effectors 
(e.g., (30, 31)). This is a proven approach toward effector gene discovery for pathogens 
with no reference genome sequence.

The bacterium Pseudomonas syringae has been at the forefront of effector characteriza-
tion, and Chap. 10 describes methods whereby single or multiple gene knockouts can be 
constructed. This approach is vital to establish loss-of-function phenotypes, deconvolute the 
redundancy in effector repertoires, and evaluate the contribution of effectors to bacterial 
host range (e.g., (32)). In the eukaryotic kingdom, oomycetes from the Phytophthora genus 
have been at the forefront of effector identification; however, transformation of Phytophthora 
is often challenging even for experienced labs (33). Chapter 11 provides procedures for 
transformation of P. capcisi, which appears more amenable to genetic manipulation and can 
infect N. benthamiana and defense-compromised Arabidopsis mutants. Chapter 12 describes 
procedures pertaining to a second oomycete, Hyaloperonsopora arabidopsidis, that has long 
been used as a model pathogen of Arabidopsis and is becoming even more widely used for 
oomycete comparative genomes and investigation of oomycete effector proteins (34).

Bacteria deploy dozens of effectors, and oomycetes, fungi, and nematodes likely 
produce many-fold more (15, 16). To facilitate functional characterization of large col-
lections of effectors, several high-throughput assays have been recently developed. Two 
such assays, presented in Chaps. 13 and 14, can be used to estimate immune-suppres-
sive capacity of effectors from almost any pathogen (e.g., (35–37)). Chapter 15 
describes a transient expression system optimized for protein complex purification, 
similar to Chaps. 3 and 4, that can be applied at medium-throughput to identify plant 
proteins which interact with pathogen effectors (or other types of protein interactions 
in planta). Chapters 16 and 17 describe approaches for visualizing subcellular localization 
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of effectors in plant cells, which is of key importance for understanding effector function 
(e.g., (38)).

In the final chapters, the focus returns to the plant at a fine spatial scale. One aspect of 
plant–pathogen interactions that has not been adequately addressed relates to spatial dif-
ferences in the molecular responses of plant cells in different locations of the infected 
organ, relative to pathogen infection structures. Chapters 18–20 provide information on 
laser microdissection, which is one of the most promising technologies for addressing 
questions relating to spatio-temporal differences in different cell types in infected organs 
(e.g., (39)). Finally, Chap. 21 zooms in even further (completing a spatial circle with 
Chap. 1) to describe exciting approaches to visualize subcellular dynamics in infected cells 
(e.g., (40)). This is undoubtedly one of the major emerging areas in plant–microbe inter-
actions in the upcoming years (41).

The authors of these chapters sincerely hope that our contributions are of use, and we 
wish readers the best of success in applying these methods to their favorite pathosystems. We 
also look forward to the next volume(s) in this series that address plant–microbe interac-
tions. Perhaps the next volume describes new technologies for structural studies of immune 
receptor complexes, along with advanced proteomic and metabolomic surveys of infected 
tissue at fine spatial scales. A major challenge will be to integrate data from disparate 
approaches, with the potential payoff being holistic models of infected cells, tissues, and 
organs. It would be particularly valuable to understand regulatory connections between 
immunity and other plant processes that might predict undesirable side effects of engineered 
resistance strategies (e.g., yield loss, reduced resistance to abiotic stress). It is exciting to 
imagine that such depth of understanding might even prompt a subsequent Methods vol-
ume focusing on “translational” approaches; for example, bioinformatic approaches to effi-
ciently identify durable resistance genes for breeding or transgenics, or even surveillance 
genes that are custom-designed to detect PAMPs or indispensable pathogen effectors. Is this 
far-fetched? Perhaps…but if we were plant breeders in the 1950s could we have anticipated 
the depth of understanding that has already been achieved in only five short decades?

Blackburg, VA John M. McDowell
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