
A Trust Ontology for Semantic Services

Wanita Sherchan, Surya Nepal, Jonathon Hunklinger, Athman Bouguettaya
CSIRO ICT Centre, Australia

Email: {Firstname.Lastname}@csiro.au

Abstract—We propose a novel semantic service trust organi-
zation that uses an ontological approach to model service trust.
In particular, our ontology-based organization supports various
trust phases including trust bootstrapping, atomic service trust,
trust composition and trust propagation. We describe the
implementation of the proposed trust organization.

Keywords-Semantic Services; Web Services; Trust Ontology;
Trust Management; Trust Service; Reputation

I. INTRODUCTION

Emerging trends in the World Wide Web indicate a shift
from the current data-oriented Web to a service-oriented
Web [1]. The service-oriented Web (Service Web), consisting
of services and the Web enriched with semantics, will
create an environment where users and applications can
query and compose services in an automatic and seamless
manner. Enriching the Web with semantics would facilitate
the organization, location and quality-based querying of
these services. As a result, the Service Web will be a place
where a large number of Web services will compete to
offer similar functionalities. The Service Web will have
unique characteristics such as (i) a service provider may
also be a service consumer and vice-versa, (ii) services may
outsource part of their functionality to other Web services
[2], (iii) services may not have interacted before, and (iv)
services may provide misleading information about their
Quality of Service (QoS). For a service consumer, a major
concern would be selecting which service to invoke among
the competing services. Therefore, a key requirement for
the Service Web is to provide a trust framework for quality
access and retrieval of services [3].

Various approaches have been proposed for establishing
trust in Web Services [4], [5], [6], [7]. Since the Service
Web environment is open, distributed, and semantically
enabled, it is not only necessary to have trust techniques but
these techniques should also be annotated with semantics
to facilitate quality access and retrieval of trust information.
This is especially significant considering the fact that various
trust algorithms and metrics [8] are available for trust
management. In this respect, there is a need for a com-
mon trust service ontology that captures the relationships
between various trust concepts relevant to service-oriented
environments. Such a trust service ontology would improve
knowledge re-usability and semantic interoperability of trust
services regardless of trust algorithms/mechanisms used by

the services.
A number of trust ontologies have been proposed for

a variety of application domains in an effort to organize
and formalize trust concepts and relationships [9], [10],
[11], [12], [13], [14], [15]. Current approaches to trust
ontology have focused on a particular aspect of trust such
as transitivity [9], trust classification based on the types of
trustees in the environment [11], dynamic characteristics of
trust [14], analysis and modelling of trust relationships [3]
and trust classification based on trust decision input factors
[15]. Trust ontologies specifically developed for semantic
service-oriented environments also focus on issues such
as the properties/dimensions of trust [12], types of trust
based on how trust is evaluated in semantic service-oriented
environments [11] and how trust ontology can be used for
selection based on security and trust [10]. Existing service
trust ontologies have focused on concepts related to trust
evaluation and making trust decisions. These ontologies
do not consider the general trust concepts such as trust
bootstrapping and trust concepts specific to services such
as trust composition and trust propagation in composite
services.

This paper introduces the concept of trust service ontology
and discusses trust concepts and their relationships specific
to semantic service-oriented environments. In this ontology,
we consider not only services trust but also trust as a
service. Our trust service ontology captures the whole life
cycle of services trust - from initialization of trust with trust
bootstrapping to various phases specific to services trust,
such as composition and propagation of trust in composite
services. This is a major departure from the current literature
that focuses on trust evaluation and trust decision making.
The major contributions of the paper can be summarized as
follows.

• The proposed approach is “truly” service-oriented
where each node of the ontology, representing a stage
in trust life cycle, is mapped to the service providing
this functionality. This enables easy representation of
the whole life cycle of services trust.

• The proposed approach differentiates and explicitly
defines the relationship between trust concepts and the
trust algorithms. Existing approaches do not make such
explicit distinction between them.

• Separating trust algorithms from trust concepts enables
the proposed approach to model a large number of

2010 IEEE International Conference on Services Computing

978-0-7695-4126-6/10 $26.00 © 2010 IEEE

DOI 10.1109/SCC.2010.42

313

Figure 1. Trust service ontology

trust algorithms provided by different service providers.
For example, a number of bootstrapping algorithms
provided by different third parties can be mapped to
the node representing “trust bootstrapping” service.

The remainder of the paper is structured as follows.
Section II presents the major concepts and relationships in
our proposed trust service ontology. Section III discusses the
implementation of a trust management framework that uses
the proposed trust service ontology. Using a case study of a
travel scenario, we describe how the trust service ontology
helps in services trust management. Finally, Section IV
concludes the paper and points to future directions.

II. TRUST SERVICE ONTOLOGY

The trust service ontology we propose focuses on
reputation-based trust in Service Web. We use a travel
scenario throughout the paper to illustrate the concepts in
the proposed trust service ontology. The ontology is based
on the notion of community. Consider a travel scenario

with three communities: airline, hotel and taxi. Trust for
an airline DomesticQantas will be evaluated within
the airline community. A service or a provider may be
registered with more than one community. For example, the
Qantas airways may be registered to both Domestic
and International airline communities. It would maintain
separate trust levels in the separate communities. Trust level
attained in one community can be transferred to another
community as a form of trust bootstrapping in the new
community. However, trust is separately maintained in all
the communities a service/provider is registered with. Thus,
communities form a kind of differentiation of trust context.
Services in the three communities: airline, hotel and taxi can
be composed to form travel composite (package) services
that belong to the travel community. Throughout this paper,
we use Alice and Bob as two registered consumers of the
travel community who travel frequently for business and
leisure.

314

A. Basic Concepts

Figure 1 shows the visualization of the proposed Trust
Service Ontology in Web Service Modelling Language
(WSML) [16]. The ontology has three basic concepts -
trust, trust service and operation. Other concepts in the
ontology are based on these basic concepts.

Trust: The proposed trust service ontology considers
trust to be reputation-based. It is evaluated based on
feedback ratings provided by service consumers. The
concept of Trust is defined as a tuple:
Trust[Trustee,Trustor,TimeStamp,TrustValue,

EvaluationCriteria,Confidence,EvaluationPeriod,

NumOfInteractions]

Trustee is a service/provider to which the Trust refers.
Trustor is the entity whose level of trust on the trustee is
captured by the Trust. TimeStamp is the time when the trust
value was generated. TrustValue is the actual trust value
such as “7” (numerical) or “very trustworthy” (fuzzy).
EvaluationCriteria is the criteria based on which trust is
evaluated (i.e., the QoS parameters for trust evaluation).
Confidence is the level of confidence on the trust evaluation.
EvaluationPeriod is the duration of history considered in
the trust evaluation. NumOfInteractions specifies the size of
history (i.e., the number of past interactions) considered in
the trust evaluation.

Inclusion of information such as TimeStamp, Evaluation-
Criteria, NumOfInteractions, and EvaluationPeriod provides
context to Trust such that two Trust instances for the same
service/provider may be compared directly based on these
properties. For example, two instances of Trust referring
to the same service DomesticQantas have different
TimeStamp values. This implies that one of the instances
is more recent than the other and therefore more indicative
of the current trustworthiness of that service. Figure 2
shows the WSML representation of an instance of Trust for
DomesticQantas, an airline service.

instance TrustInstance1 memberOf Trust
hasTrustee hasValue DomesticQantas
hasTrustor hasValue Airline
hasTimeStamp hasValue “2009-01-25-12:40”
hasTrustValue hasValue “0.8”
hasEvaluationCriteria hasValue price, security, reliability, performance
hasConfidence hasValue “0.8”
isBasedOnEvaluationPeriod hasValue “1-02-23”
isBasedOnNumOfInteractions hasValue “136”

Figure 2. An instance of Trust in WSML

Trust Service: A TrustService is a Web service that provides
various trust functionalities such as trust bootstrapping,
trust evaluation, trust update, trust composition and trust
propagation. TrustService can be of several types based on
the type of functionality provided by the service. Each of
these are defined as a subconcept of TrustService. At the
abstract level, a Trust Service is defined by the tuple:

TrustService[ServiceID,ServiceProvider,

QoSParameterTuple,Input,Operation,Output]

ServiceProvider is the provider of the TrustService. QoSPa-
rameterTuple defines a list of QoS parameter tuples consist-
ing of pairs of QoS parameter and advertised QoS value for
that parameter. Input is the input to the TrustService. Oper-
ation defines the operations/functionalities provided by the
TrustService. Output defines the output of the TrustService.

Specific types of TrustServices have specific definitions
for the Input, Operation and Output attributes. All other
attributes remain the same. Figure 3 shows the WSML
representation of the abstract concept TrustService.

concept TrustService
nonFunctionalProperties

description hasValue ”concept of trust service”
endNonFunctionalProperties
hasServiceID ofType string
hasServiceProvider ofType ServiceProvider
hasQoSParameterTuple ofType QoSParameterTuple
hasInput ofType Data
hasOperation ofType Operation
hasOutput ofType Data

Figure 3. WSML definition of the concept TrustService

Operation: An Operation specifies the particular location
and functionality of a service. A service may have one or
more operations. An Operation is defined by the tuple:
TrustService[OperationName,SoapLocation,SoapAction]

where all attributes are self descriptive. Figure 4 shows
the WSML representation of an instance of the concept
Operation.

instance AirlineBootstrapOp memberOf Operation
hasOperationName hasValue “AirlineBootstrapOperation”
hasSoapLocation hasValue
“http://152.83.70.208:8080/axis2/services/TravelTrustManagementService”
hasSoapAction hasValue “urn:TrustBootstrap”

Figure 4. An instance of Operation in WSML

B. Types of Services Trust

We have identified several types of services trust based
on the purpose of trust evaluation. All of these trust types
are sub-concepts of Trust. Figure 5 shows the different
types of trust.

Figure 5. Types of services trust

315

Bootstrapped Trust: A new service/provider in a
community needs to be assigned a nominal trust value
to ensure that newcomers are not unfairly disadvantaged
[17]. We define such initial trust as BootstrappedTrust. For
example, a new flight service DomesticVirginBlue
is registered in the airline community. Since this service
is new, its trust cannot be calculated from interaction
history. Therefore, this service will be assigned a nominal
BootstrappedTrust. As DomesticVirginBlue gets
invoked and evaluated by consumers, its BootstrappedTrust
will be updated to reflect its trustworthiness. When
DomesticVirginBlue gets registered in another
community, its current trust in the airline community
will be used to bootstrap its trust in the new community.
BootstrappedTrust is defined by the tuple:
BootstrappedTrust[Trustee,Trustor,TimeStamp,

BootstrappedTrustValue]

Trustor is the community within which the Trustee’s Trust is
initialized, i.e., in the above example, the airline community.

Global Trust: In a community based environment, when
trust evaluation is based on the collective perception of
the whole community, such trust is termed as GlobalTrust.
Everyone in the community has the same level of trust
for a particular trustee (service/provider). The concept of
community based trust (i.e., GlobalTrust) is defined by the
tuple:
GlobalTrust[Trustee,Trustor,TimeStamp,

GlobalTrustValue,EvaluationCriteria,Confidence,

EvaluationPeriod,NumOfInteractions]

Trustor is the community within which Glob-
alTrust is evaluated. In the above example, as
DomesticVirginBlue gets invoked and evaluated
by its consumers, its BootstrappedTrust will be updated
to become its GlobalTrust. All feedback received by
DomesticVirginBlue will be incorporated to obtain
its GlobalTrust.

Personalised Trust: When trust evaluation incorporates
the trustor’s preferences with respect to various quality
parameters, such trust is termed as PersonalisedTrust.
When trust is personalised, the trust evaluation for the
same trustee may be different depending on who the trustor
is. Furthermore, trustor identification may be used to
weigh the personalised trust values supplied by the trustor.
PersonalisedTrust is defined by the following tuple:
PersonalisedTrust[Trustee,Trustor,TimeStamp,

PersonalisedTrustValue,EvaluationCriteria,Confidence,

EvaluationPeriod,NumOfInteractions,QoSPreferences]

Trustor is the consumer whose preferences have
been considered in the personalised trust evaluation.
QoSPreferences defines the preferences of the trustor
with value pairs of QoSParameter and corresponding
importance of that parameter to the user specified by

Weight. In our example, for airline services, Alice considers
on time departure of flights to be more important than
price whereas Bob prefers flights to be cheap regardless
of their punctuality. Given these differences, for the
same flight service DomesticVirginBlue, Alice’s
PersonalisedTrust would be different from Bob’s.

Direct Trust: The concept of trust based on direct
past interactions between the trustor and trustee is defined
as DirectTrust. Direct trust is a type of PersonalisedTrust.
The concept of DirectTrust is defined by the tuple:
PersonalisedTrust[Trustee,Trustor,TimeStamp,

DirectTrustValue,EvaluationCriteria,Confidence,

EvaluationPeriod,NumOfDirectInteractions]

For DirectTrust, trustor preferences for various QoS
parameters do not need to be specified. Trust evaluation is
based on direct past evaluations, and therefore, trustor
preferences are implicit in the evaluations. In our
example, Alice’s DirectTrust on DomesticVirginBlue
is computed based only on her past evaluations of
DomesticVirginBlue.

Composite Trust: The concept of trust for a composite
service, i.e., CompositeTrust, is based on the trust for the
component services. Various algorithms may be used to
determine the composite trust value from the atomic trust
values of the component services and may depend on the
type of composition (i.e., vertical, horizontal or mixed)
[18]. The concept of composite trust is defined by the
following tuple:
CompositeTrust[Trustee,TimeStamp,CompositeTrustValue]

CompositeTrust is typically used to facilitate selection
among different service compositions providing the
same functionality. Therefore, typically, CompositeTrust
would be single use, i.e., used for comparisons
and then discarded. For composite services that
are likely to be used/invoked by many consumers,
CompositeTrust is stored and will be regarded as the
GlobalTrust for the composite service. In this respect,
CompositeTrust can be considered as BootstrappedTrust
for composite services. In our scenario, consider a
new composite service WeekendGetawayPackage
consisting of existing services DomesticQantas,
HolidayInn and SilverTopTaxi is available
in the travel community. When Alice is considering
weekend package options, the system will compute the
CompositeTrust for WeekendGetawayPackage based
on the trust for DomesticQantas, HolidayInn and
SilverTopTaxi. Since WeekendGetawayPackage
is available all through summer, its CompositeTrust will be
considered to be its BootstrappedTrust and stored. From
this point onwards, consumers may evaluate the composite
service WeekendGetawayPackage just like an atomic
service. Ratings provided for WeekendGetawayPackage

316

will be used to update its GlobalTrust.

Propagated Trust: The concept of trust for the component
services propagated from the trust score assigned to the
composite service is termed as PropagatedTrust. Similar
to CompositeTrust, PropagatedTrust also depends on the
type of service composition, namely, horizontal, vertical or
hybrid. The concept of PropagatedTrust is defined by the
tuple:
PropagatedTrust[Trustee,TimeStamp,

PropagatedTrustValue,TypeOfPropagation]

TypeOfPropagation specifies whether the propagation is
vertical, horizontal or hybrid, consistent with the type of
service composition. In the above example, ratings assigned
to the composite service WeekendGetawayPackage are
propagated to the component services DomesticQantas,
HolidayInn and SilverTopTaxi to obtain their
PropagatedTrust. The PropagatedTrust for each component
service is then used to update the corresponding GlobalTrust.

C. Trust Bootstrapping

Evaluating the trustworthiness for newly deployed Web
services (newcomers) is a major issue in semantic service-
oriented environments because historical information is not
available regarding newcomer behaviours. When a service
or a provider first joins a community, it is necessary to
bootstrap their trust, i.e., assign them an initial trust value. If
the newcomer is assigned the lowest default trust value, they
may be overlooked over other services. If the newcomer is
assigned a high initial trust value, then services/providers
have the motivation to discard their identities and start
fresh if their trust level falls below a certain threshold.
Therefore, the trust management system should not only
promote newcomers in the community, but also encourage
existing members to keep their reputation/trust profiles.

The concept of trust bootstrapping refers to initializa-
tion of trust for a newcomer in the community. Trust
bootstrapping can be performed using several algorithms
such as direct inference and community based bootstrapping
[17]. Regardless of the algorithms used, our service trust
ontology captures trust bootstrapping as a TrustBootstrap
service, a subconcept of TrustService. The TrustBootstrap
service bootstraps/initializes the trust of a new trustee in
the community. Since TrustBootstrap is a subconcept of
TrustService, it has all the attributes of TrustService and is
defined by the tuple:
TrustBootstrap[ServiceID,ServiceProvider,

QoSParameterTuple,BootstrapInput,

BootstrapOperation,BootstrapOutput]

BootstrapInput defines the input data required for the Trust-
Bootstrap service consisting of TrusteeID and CommunityID
indicating the service/provider whose trust is to be ini-
tialized within a particular community. BootstrapOperation
defines the bootstrap operations/functionalities offered by

the service such as community based trust bootstrapping [17]
and endorsement (a form of bootstrapping). BootstrapOutput
defines the output of the TrustBootstrap service, i.e., Boot-
strappedTrust. Figure 6 shows the WSML representation of
the TrustBootstrap service.

instance TrustBootstrapServ1 memberOf TrustService
hasServiceID hasValue “WS2005”
hasServiceProvider hasValue TravelTrustManagementServiceProvider
hasQoSParameterTuple hasValue QoSPrice
hasQoSParameterTuple hasValue QoSRT
hasBootstrapInput hasValue BootstrapInput1
hasBootstrapOperation hasValue BootstrapOp1
hasBootstrapOutput hasValue BootstrapOutput1

concept BootstrapInput1 memberOf Data
concept BootstrapOutput1 memberOf BootstrappedTrust

instance QoSPrice memberOf QoSParameterTuple
hasQoSParameter hasValue Price
hasQoSValue hasValue “$6”

instance QoSRT memberOf QoSParameterTuple
hasQoSParameter hasValue ResponseTime
hasQoSValue hasValue ”30secs”

instance Price memberOf QoSParameter
instance ResponseTime memberOf QoSParameter

Figure 6. An instance of TrustBootstrap service in WSML

D. Trust Composition and Propagation in Composite Ser-
vices

Trust composition and propagation are the major trust
concepts that are specific to the services domain. Complex
services can be composed from atomic services to fulfil
user queries. Therefore, the trust for the composite service
needs to be evaluated from the trust on the component
services.

Trust Composition: The TrustCompose service composes
the trust value of a composite service from the trust values
of the component services. This feature is useful for
comparison of trust for candidate service compositions.
TrustCompose is a subconcept of TrustService and is
defined by the tuple:
TrustCompose[ServiceID,ServiceProvider,

QoSParameterTuple,ComposeInput,

ComposeOperation,ComposeOutput]

ComposeInput defines the input data required for
the TrustCompose service consisting of TrusteeID,
NumOfComponentServices, ComponentServiceIDs and
CompositionWeights. ComposeOperation defines the
trust composition operations/functionalities offered by
the service. ComposeOutput defines the output of the
TrustCompose service, i.e., CompositeTrust. In the context
of trust composition, CompositionWeights is significant as it
specifies the importance of each component service in the
service composition. This information is obtained from the
domain ontology. In our travel scenario, for travel package

317

services consisting of airline, hotel and taxi services, airline
service may have higher importance, and hence higher
weights in the composition, compared to other services.
This information would be obtained from the travel domain
ontology which would capture historical information on
relative importance of a component service in a service
composition.

Trust Propagation: Similar to trust composition, trust
propagation is another significant feature of services trust.
The TrustPropagate service, a subconcept of TrustService,
decomposes and propagates the trust value assigned to a
composite service to its component services. It is defined
by the tuple:
TrustPropagate[ServiceID,ServiceProvider,

QoSParameterTuple,PropagateInput,

PropagateOperation,PropagateOutput]

PropagateInput defines the input to the service
consisting of CompositeServiceID, AssignedTrustValue,
NumOfComponentServices, ComponentServiceIDs and
CompositionWeights. AssignedTrustValue specifies the
trust value provided by the consumer to the composite
service, i.e., the trust value to be propagated to
the component services. For example, Alice assigns
a rating 8 to the WeekendGetawayPackage.
This rating would be propagated to the component
services DomesticQantas, HolidayInn and
SilverTopTaxi by a TrustPropagate service
implementing an algorithm such as [19].

E. Trust Evaluation and Update

We have identified different types of trust evaluations for
different types of trust. Trust evaluations are subconcepts
of TrustService.

Direct Trust Evaluation: The DirectTrustEvaluate
service evaluates the DirectTrust for a given trustee
(service/provider) from a given trustor’s perspective. It is
defined by the following tuple:
DirectTrustEvaluate[ServiceID,ServiceProvider,

QoSParameterTuple,DirectEvaluateInput,

DirectEvaluateOperation,DirectEvaluateOutput]

DirectEvaluateInput consists of TrusteeID, TrustorID
and EvaluationPeriod. DirectEvaluateOutput specifies the
output of the DirectTrustEvaluate service, i.e., DirectTrust.

Personalised Trust Evaluation: The PersonalisedTrustE-
valuate service evaluates the PersonalisedTrust for a given
service/provider(trustee) from a given trustor’s point of
view. It is defined by the tuple:
PersonalisedTrustEvaluate[ServiceID,ServiceProvider,

QoSParameterTuple,PersonalisedEvaluateInput,

PersonalisedEvaluateOperation,

PersonalisedEvaluateOutput]

PersonalisedEvaluateInput consists of TrusteeID, TrustorID,
EvaluationPeriod and QoSPreferences. QoSPreferences
specify the preferences of the trustor for the personalised
trust evaluation.

Global Trust Evaluation: The GlobalTrustEvaluate
service evaluates the GlobalTrust for a given trustee
(service/provider) and is defined by the tuple:
GlobalTrustEvaluate[ServiceID,ServiceProvider,

QoSParameterTuple,GlobalEvaluateInput,

GlobalEvaluateOperation,GlobalEvaluateOutput]

GlobaltEvaluateInput consists of TrusteeID, TrustorID and
EvaluationPeriod. The Trustor in this case is the community
within which the GlobalTrust is evaluated.

Trust Update : Evaluated trust values whether they
be GlobalTrust or PersonalisedTrust or DirectTrust need to
be updated periodically to keep them current. The concept
of TrustUpdate, a subconcept of TrustService captures this
functionality. It is defined by the tuple:
TrustUpdate[ServiceID,ServiceProvider,

QoSParameterTuple,UpdateInput,

UpdateOperation,UpdateOutput] UpdateInput consists of
TrusteeID and UpdateTarget. UpdateTarget specifies which
trust instances are to be updated, i.e., whether instances of
GlobalTrust or PersonalisedTrust or DirectTrust or all trust
instances are to be updated.

III. ONTOLOGICAL SUPPORT FOR TRUST MANAGEMENT

Based on the proposed trust service ontology, a trust
management framework for the Service Web has been
implemented in the context of Web Service Management
System (WSMS) [20]. The framework is implemented and
deployed as a trust management service. The trust manage-
ment service can be used independently as well as integrated
as a component of WSMS. In the following, we discuss the
implementation architecture and explain trust management
using our proposed trust service ontology in the case of a
travel scenario described in Section II.

Figure 7 shows the implementation architecture of the
proposed ontology-based trust management framework. The
trust management framework is responsible for managing
trust of atomic services as well as composite services.
The current implementation has three trust services that
provide various trust functionalities, three Web services
to support trust management and several Web portals for
invoking those services. The Web Services are developed
using Java and deployed on Apache Tomcat/5.5.27. using
the Apache Axis2 Web service version 1.4.1. The Web
services and their access stubs were created using the
Axis2 eclipse plug-ins, Axis2 Service Archiver and Axis2
Code Generator. Next, we describe the components of the
framework and demonstrate how the trust service ontology
is used in trust management.

318

Figure 7. An implementation architecture

Ontology Manager: The ontology manager includes
a community manager, an ontology base and an ontology
query interface. The community manager uses ontology
to organize services into different types of communities.
Services providing a similar type of service belong to
the same community. For example, all airline services
belong to an airline community. They also belong to
the travel community as the concept airline is a
sub-concept of the concept travel. Similarly, all travel
package services belong to the travel community. The
community manager also maintains raters and ratings.
The raters are the consumers who are willing to share
their experiences with others, and the ratings are the
feedback given by the consumers against a service’s QoWS
parameters. The community manager provides appropriate
interfaces to the other components of the trust management
service. Additionally, it provides Web portals for supporting
a variety of functionalities such as rater registration,
consumer feedback and service management (e.g., addition
of new service or QoWS parameter for a service).

The ontology base consists of two ontologies - a service
ontology and a trust service ontology. The service ontology
stores the ontology definitions of services within a specific
domain (in our case, the “travel” domain). The trust service
ontology base stores the ontology definitions of services trust
and trust services. The trust service ontology also models
the relationships between different types of trust and the
dependencies between different trust functionalities. A node
in the trust service ontology defines a type of function-
ality offered by a service. Some examples of such nodes
are TrustBootstrapping, TrustComposition and
TrustEvaluation. Each node in the ontology is as-
sociated with a list of services that provide the defined
functionality. This association enables functionality-based

service discovery by first locating the corresponding node in
the ontology, then locating the Web services that subscribe
to the node.

The ontology query interface supports two types of
queries in the ontology base: functionality query and Web
service query. The functionality query is to locate a node
in the ontology and retrieve related information such as
its relationship with other nodes. The Web service query
is to find a list of Web services that provide a specific
functionality, identified by a certain node in the ontology.
The corresponding concrete Web services can be retrieved
by checking whether they subscribe to a node.

Trust Manager: The trust manager includes a trust
query interface and a trust query processor. The trust query
interface provides a query interface to the users of the trust
management service. The current implementation supports
two types of interfaces: Web service and Web portal. The
Web service interface is used by other Web services to
query trust of a service (or services). For example, a service
orchestrator in WSMS may call the trust service to inquire
the trust value of a particular service using the Web service
interface. The Web portal interface is designed to be used
by an end user (or customer). This enables the trust service
to be used independently and directly by the customer.

The trust query processor interacts with the ontology
manager to process a given trust query. For example, the trust
query processor receives a trust query for an airline service
DomesticQantas. With the help of the ontology man-
ager, it identifies that DomesticQantas is a new service
in the airline community, therefore, no trust information
exists for DomesticQantas. Then it uses the ontology
manager to identify and invoke a suitable TrustBootstrap
service which will evaluate the BootstrappedTrust for the
DomesticQantas service and store it in the trust service
ontology. As the DomesticQantas service gets invoked
and evaluated by consumers in the community, its Boot-
strappedTrust will be updated to become its GlobalTrust.
The trust query processor will invoke appropriate services
to manage this.

In another case, the trust query processor
receives a trust query for a composite service,
WeekendGetawayPackage consisting of the
services DomesticQantas, HolidayInn and
SilverTopTaxi. With the help of the ontology
manager, the trust manager will identify that the
WeekendGetawayPackage is a new composite
service, and therefore, will find and invoke a suitable
TrustCompose service to compute CompositeTrust
for the WeekendGetawayPackage service based
on the trust for the component services. Since the
WeekendGetawayPackage service is available all
through summer, its CompositeTrust value will be stored as
its BootstrappedTrust and updated as it gets invoked and

319

evaluated by consumers.
Each time the composite service

WeekendGetawayPackage receives a rating from
the consumer, the provided rating will be propagated to
the component services, namely, DomesticQantas,
HolidayInn and SilverTopTaxi services. The trust
query processor, again with the help of the ontology
manager, identifies and invokes a TrustPropagate service
for this propagation of trust. The obtained PropagatedTrust
for each component service (e.g., DomesticQantas)
is then used to update its corresponding GlobalTrust.
Therefore, after each invocation of TrustPropagate service,
a TrustUpdate service will need to be invoked. The trust
query processor obtains this dependency information from
the trust service ontology.

IV. CONCLUSION

We have presented a trust service ontology for the Service
Web. The key feature of the proposed ontology is that it cap-
tures the whole life-cycle of services trust, from initialization
of trust with bootstrapping to all phases relevant to services
trust such as composition and propagation in composed
services. In addition, our trust service ontology incorporates
all standard concepts in trust such as trust evaluation and
update. We classify trust based on the purpose of trust
evaluation. Our trust service ontology not only considers
services trust but also trust as a service. As a result, we
identify and formalize different types of trust services and
their relationships. We have implemented a trust manage-
ment framework that utilises our proposed trust service
ontology. We presented a case study of a travel scenario to
illustrate how our trust service ontology helps in developing
and deploying efficient and scalable trust management in
semantic service-oriented environments.

REFERENCES

[1] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying
and Managing Web services: Issues, Solutions, and Direc-
tions,” VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008.

[2] M. Tian, A. Gramm, H. Ritter, and J. Schiller, “Efficient
selection and monitoring of qos-aware web services with the
ws-qos framework,” in WI’04 proceedings, Washington, DC,
USA, 2004, pp. 152–158.

[3] W. Zhao and V. Varadharajan, “Trust Management for Web
Services,” in ICWS’08 proceedings, Washington, DC, USA,,
2008, pp. 818–821.

[4] E. M. Maximilien and M. P. Singh, “ Conceptual Model of
Web Services Reputation ,” ACM SIGMOD Record, vol. 31,
no. 4, pp. 36–41, 2002.

[5] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, and P. Thi-
ran, “Reputation of communities of web services - prelimi-
nary investigation.” in AINA’08 Workshop proceedings, 2008,
pp. 1603–1608.

[6] E. Chang, T. S. Dillon, and F. Hussain, Trust and Reputation
for Service-Oriented Environments: Technologies For Build-
ing Business Intelligence And Consumer Confidence., 2006.

[7] W. Conner, A. Iyengar, and T. Mikalsen, “A Trust Man-
agement Framework for Service-Oriented Environments,” in
WWW’09 Proceedings, 2009, pp. 891–900.

[8] S. Ruohomaa and L. Kutvonen, “Trust management survey,”
in iTrust’05 Proceedings, 2005, pp. 77–92.

[9] J. Huang and M. S. Fox, “An Ontology of Trust - Formal
Semantics and Transitivity,” in ICEC’06 proceedings, August
2006, pp. 259–270.

[10] S. Galizia, “WSTO: A Classification-Based Ontology for
Managing Trust in Semantic Web Services,” in ESWC’06
proceedings, 2006, pp. 697–711.

[11] E. Chang, T. S. Dillon, and F. Hussain, “Trust Ontologies for
E-Service Environments,” International Journal of Intelligent
Systems, vol. 22, pp. 519–545, 2007.

[12] M. Zhu and Z. Jin, “Trust Analysis of Web Services based
on a Trust Ontology,” in KSEM’07 proceedings, November
2007, pp. 642–648.

[13] M. Taherian, R. Jalili, and M. Amini, “PTO: A Trust On-
tology for Pervasive Environments,” in AINA’08 Workshop
proceedings, 2008, pp. 301–306.

[14] Q. Zhang, F. Miao, Z. Yuan, Q. Zhang, and Z. Fan, “Con-
struction of a Dynamic Trust Ontology Model,” in CIS’08
proceedings, 2008, pp. 394–398.

[15] L. Viljanen, Trust, Privacy and Security in Digital Business,
2005, vol. 3592/2005, ch. Towards an Ontology of Trust, pp.
175–184.

[16] “The Web Service Modeling Language (WSML),” 2008, http:
//www.wsmo.org/wsml/wsml-syntax.

[17] Z. Malik and A. Bouguettaya, “Reputation Bootstrapping for
Trust Establishment among Web Services,” IEEE Internet
Computing, vol. 13, no. 1, pp. 40–47, 2009.

[18] B. Medjahed and A. Bouguettaya, “A multilevel compos-
ability model for semantic web services,” IEEE Trans. on
Knowledge and Data Engineering, vol. 17, no. 7, pp. 954–
968, 2005.

[19] S. Nepal, Z. Malik, and A. Bouguettaya, “Reputation Prop-
agation in Composite Services,” in ICWS’09 proceedings,
2009.

[20] X. Zhou, S. Chen, A. Bouguettaya, and K. Xu, “Supporting
bioinformatic experiments with a service query engine,” in
SERVICES’09 Proceedings, 2009, pp. 717–723.

320

