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abstract

Continuing increases in life expectancy beyond previously-held limits have brought to the
fore the critical importance of mortality forecasting. Significant developments in mortality
forecasting since 1980 are reviewed under three broad approaches: expectation, extrapolation
and explanation. Expectation is not generally a good basis for mortality forecasting, as it is
subjective; expert expectations are invariably conservative. Explanation is restricted to certain
causes of death with known determinants. Decomposition by cause of death poses problems
associated with the lack of independence among causes and data difficulties. Most developments
have been in extrapolative forecasting, and make use of statistical methods rather than models
developed primarily for age-specific graduation. Methods using two-factor models (age-period or
age-cohort) have been most successful. The two-factor Lee^Carter method, and, in particular,
its variants, have been successful in terms of accuracy, while recent advances have improved the
estimation of forecast uncertainty. Regression-based (GLM) methods have been less successful,
due to nonlinearities in time. Three-factor methods are more recent; the Lee^Carter age-period-
cohort model appears promising. Specialised software has been developed and made available.
Research needs include further comparative evaluations of methods in terms of the accuracy of
the point forecast and its uncertainty, encompassing a wide range of mortality situations.
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". Introduction

Mortality modelling has a very long history. Numerous models have been
proposed since Gompertz published his law of mortality in 1825. Mortality
forecasting is a more recent endeavour. Only two decades ago, the methods
in use were relatively simple and involved a fair degree of subjective
judgement; for a review see Pollard (1987). It is only in the last 15 years or so
that more sophisticated methods have been developed and applied. These
have not, on the whole, made use of models developed principally for age-
specific graduation. Instead, actuaries and demographers have made
increasing use of standard statistical methods. The introduction of stochastic
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methods has the major advantage of producing a forecast probability
distribution rather than a deterministic point forecast.

Most methods of mortality forecasting are extrapolative; they make use
of the regularity typically found in both age patterns and trends over time.
This approach includes the traditional and relatively simple extrapolation of
aggregate measures, such as life expectancy, as well as the newer and more
complex methods, such as the Lee^Carter method. A second approach
(explanation) makes use of structural or epidemiological models of mortality
from certain causes of death, where the key exogenous variables are known
and can be measured; the classic example is the dependence of lung cancer on
tobacco smoking. In a third approach (expectation), forecasts are based on
the subjective opinions of experts involving varying degrees of formality.

This paper reviews the main methodological developments in mortality
modelling and forecasting since 1980. It includes developments in each of the
three approaches. The review updates and elaborates previous reviews of
mortality forecasting. These include Keyfitz (1982), Pollard (1987), Murphy
(1990), Tuljapurkar & Boe (1998), Pitacco (2004) and Wong-Fupuy &
Haberman (2004); see also the collections of Tabeau et al. (2001a), Bengtsson &
Keilman (2003) and Keilman (2005). The paper draws on, and updates, the
wider-ranging review of demographic forecasting by Booth (2006), adding a
more in-depth focus on mortality modelling and forecasting methods,
particularly extrapolative methods, for an actuarial readership. Although some
applications are mentioned, the focus of the paper is methodological. The
paper concentrates on methods used with good quality data, as available in
developed countries, with only brief mention of methods more suitable for the
poorer data environment of the developing world.

The paper is organised as follows. Section 2 discusses the considerations
involved in mortality forecasting, including many of the decisions and the
judgements which must be made. Section 3 provides an overview of the three
broad approaches to forecasting. Sections 4 to 6 discuss, in greater detail,
the most important methods in mortality forecasting, organised according to
the models employed: this includes the most successful parameterisation
functions (Section 4), the Lee^Carter method and its variants and extensions
(Section 5), and regression-based methods within the GLM framework
(Section 6). Section 7 addresses cohort models, while Section 8 discusses the
role of decomposition by cause of death in forecasting overall mortality.
Section 9 focuses on senescent mortality. Section 10 addresses the estimation
of uncertainty in mortality forecasts. Finally, Section 11 draws conclusions
and suggests further research.

Æ. Forecasting Considerations

Many judgemental decisions are involved in forecasting mortality. In fact,
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judgement is required at almost every stage (Alders & De Beer, 2005). One
of the most fundamental considerations is the measure to be forecast, which
may depend on the purpose of the forecast and data availability. In most
cases, sex-specific mortality rates (or probabilities) are of primary interest,
along with derived life tables. When only life expectancy is forecast, more
often the case in developing countries, an appropriate model life table can be
used to provide age-specific detail. Where forecast numbers of deaths are of
interest, they are best derived from forecast mortality rates through
population forecasting (see Booth, 2006).

Mortality measures may refer to overall mortality or be decomposed by
cause of death (see Section 8). In addition, the level of disaggregation, for
example by spatial or socio-economic factors, should be considered. Whether
disaggregated rates are stable or changing, changes in aggregate rates are
attributable to changes in population composition arising from subgroup
heterogeneity. Subgroups with higher growth rates come to dominate,
resulting in increased average growth rates; similarly, a subcohort with high
mortality rates will diminish in relative size, giving rise to declining average
rates (Vaupel & Yashin, 1985). However, in the context of recurrent events
among interacting subgroups, the selection effects of heterogeneity are less
clear (Rogers, 1992). Unrecognised heterogeneity from insufficient disag-
gregation may limit the use of extrapolation or lead to large forecast errors.

Mortality forecasting will generally involve the specification of an
underlying model of the data and a model for forecasting. These models,
referred to throughout this paper as the underlying model and the forecasting
model respectively, may be distinct or integrated into a single framework.
Three variables or factors, namely age, period (or time) and cohort, are
usually employed to classify the underlying model as zero, one, two or three-
factor (Tabeau, 2001), and this classification is used here to structure the
discussion. Zero-factor models are simply an aggregate measure or an age-
specific rate (where each age is treated independently); in this case, there is
no specified underlying model. One-factor models treat mortality rates
(period or cohort) as a function of age, permitting advantage to be taken of
their regularity across age and, in forecasting, of the stability of age patterns
over time. Two-factor models usually take age and period into account;
most recent methods of mortality forecasting employ such models.
Alternatively, age and cohort may be modelled (see Section 7; the discussion
of models in Sections 4 to 6 is essentially in terms of period data). Three-
factor (or APC) models express rates as a function of age, period and cohort
(see Section 7).

A major problem for age-specific forecasting is high dimensionality,1

1 Dimensionality refers to the total number of data ‘cells’ which are modelled, equal to the
product of the numbers of categories for the factors classifying the data.
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especially when single years of age are used. Models are widely used to reduce
the dimensionality problem by representing the data more parsimoniously.
Parsimonious models avoid over-parameterisation (correlated parameters)
and associated complications for forecasting. Parametric or non-parametric
models can be used. Parametric models include parameterisation functions
such as the laws of mortality, and models within the generalised linear
modelling (GLM) framework. Splines are increasingly used in dimensionality
reduction, their flexibility ensuring a good fit. Non-parametric methods are
also used: principal components approaches address the dimensionality
problem by extracting age patterns from the data, while relational models
replace the age scale by an empirically-derived exogenous standard.

An important criterion in selection of the underlying model is parameter
interpretability. For forecasting, it is generally advantageous if the
underlying model parameters have easily-understood interpretations, such as
the modal age at death or the speed at which mortality rates change.
Meaningful interpretation assists in assessing the validity of the trend in the
parameter and its continuation into the future. Where ease of interpretation
is not the case, it may be possible to reparameterise the function in more
meaningful terms (e.g. Carrie' re, 1992), though it is noted that repara-
meterisation has not been widely used in mortality modelling.

Transformation of the data is widely employed to assist modelling. The
use of logarithms of rates is common in mortality modelling, one advantage
in forecasting being that rates are necessarily positive. Mortality reduction
(or improvement) factors,2 traditionally used by actuaries, offer the same
advantage. Brass (1971) used the logit transformation:

logitð1ÿ sxÞ ¼
1
2 ln

1ÿ sx

sx

� �
where sx is the probability of surviving from birth to exact age x, to achieve
approximate linearity in relating observed to standard age patterns.
Heligman & Pollard (1980) experimented with various measures. Wilmoth
(1990) used a transform based on age-specific probabilities of death qx, which
approximates log hazard rates:

fx ¼ log
qx

1ÿ 1
2 qx

� �
� log mxþ12

:

Other useful transformations, or link functions, are considered by Renshaw

2 The n-year mortality reduction factor is the ratio of the age-speci¢c death rate at times tþ n
and t.
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& Haberman (2000). In an innovative approach, de Jong & Marshall (2007)
adopt the Wang transform zx ¼ Fÿ1ðsxÞ, where F denotes the cumulative
normal distribution (Wang, 2000).
Closely related to selection of the underlying model is determination of

the forecasting approach (extrapolation, explanation or expectation) and the
specific forecasting method. The choice may depend on several criteria,
including data availability, the purpose of the forecast and the forecast
horizon. For long-term forecasting, extrapolative time series methods are
generally used, requiring lengthy series of data. The forecast accuracy of a
method is also an important consideration. A distinction should be made
between model fit and forecast accuracy, as in-sample errors are not
necessarily a good guide to forecast errors. For long-term forecasting, in
particular, the choice between models cannot reliably be based on historical
goodness of fit. Ideally, out-of-sample or ex-post forecast errors should be
examined using historical data. Two related considerations are the choice of
measure used in the measurement of forecast accuracy and the specification
of an appropriate loss function (Ahlburg, 1995; Booth et al., 2006; Pedroza,
2006).
User acceptability has also been raised as a criterion in method selection

(e.g. Long, 1995). An argument sometimes posed by official statisticians is
that users are ill-equipped to understand output from more complex
methods, notably those producing probabilistic prediction intervals. This
may partly explain the reluctance of official statistical agencies to choose
statistical methods over expert-opinion-based scenarios in forecasting
mortality for population projection purposes. It should be noted that the
ability of users to understand the concept of prediction intervals has not, to
our knowledge, been formally tested.

Once the choice of method has been made, parameters are estimated.
Parameter estimates may be derived solely from the data or, alternatively, a
Bayesian approach may be used in which priors3 are formally incorporated.
In the mortality forecasting context, Bayesian approaches have been used to
impose smoothness (Czado et al., 2005; Girosi & King, 2006), to allow for
pooling of information across countries (Girosi & King, 2006), to improve
the estimation of forecast uncertainty (Pedroza, 2006) and to allow for
missing observations (Pedroza, 2006). Bayesian methods require the detailed
specification of priors, which may not be straightforward.

â. Approaches to Forecasting

The three general approaches to mortality forecasting mentioned above

3 A prior, or prior distribution, summarises what is known about a variable in the absence of
observations.
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are described in broad terms in this section. The most commonly used
methods are described in greater detail in Sections 4 to 6. In practice, the
distinctions between these approaches are not always clear-cut.

3.1 Expectation
Expectations have often been used in mortality forecasting in the form of

expert opinion: an assumed forecast or scenario is specified, often
accompanied by alternative high and low scenarios (see Section 10). Most
official statistical agencies have given precedence to this approach (Waldron,
2005), though several are now adopting the extrapolative approach.
Actuaries have also relied heavily on expectation in the past, but are now
moving towards more sophisticated extrapolative methods (Continuous
Mortality Investigation Bureau, 2002, 2004, 2005, 2006, 2007).
Traditionally, a commonly-used method has been targeting of life

expectancy where a value is assumed for a future date with a specified path
(Pollard, 1987; Olshansky, 1988). More detailed expectations have also been
used. The United States Social Security Trustees use judgement to adjust
trends in cause- and age-specific death rates: to reflect a reasonable path of
future mortality improvement (Waldron, 2005, p17); the resulting life
expectancy forecasts are widely regarded as too low (Lee, 2000; Tuljapurkar
et al., 2000; Bongaarts, 2006). The U.S. Census Bureau assumes convergence
to long-term target life tables, with Lee^Carter life expectancy forecasts (see
Section 5) used as benchmarks and expert opinion used to set the relative
speed of mortality decline by age (Hollmann et al., 2000).

Targeting has also traditionally been applied to age-specific mortality
reduction factors. The Continuous Mortality Investigation Bureau (CMIB)
of the United Kingdom Institute of Actuaries and Faculty of Actuaries has
projected the proportion of lives of exact age x who die before attaining exact
age xþ 1, qx, from year zero by multiplying by the t-year reduction factor
RFðx; tÞ, where:

RFðx; tÞ ¼ aðxÞ þ ½1ÿ aðxÞ� � ½1ÿ fnðxÞ�
t=n

and aðxÞ and fnðxÞ represent, respectively, the ultimate reduction factor and
the proportion of the total decline ð1ÿ aðxÞÞ assumed to occur in n years. The
approach embodies an exponential decline in mortality over time to the
asymptotic value aðxÞ, and uses expert opinion to set the targets aðxÞ and
fnðxÞ. The ‘80’ and ‘92’ Series life tables (Continuous Mortality Investigation
Bureau, 1990, 1999) are based on this method with different parameter
values. A similar approach is used by the U.S. Society of Actuaries, but with
no limiting reduction factor (equivalent to aðxÞ ¼ 0). Wong-Fupuy &
Haberman (2004) provide further details of U.K. and U.S. applications in life
insurance and pensions. The U.K. Government Actuary’s Department has
used age-specific target reduction factors with exponential convergence and a
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cohort approach applied to certain generations (Government Actuary’s
Department, 2001, 2006). Denton et al. (2005) used targeting to define 15
scenarios combining five target life tables with varying maximum ages at
death and three patterns of change.

The advantage of expert opinion is the incorporation of demographic,
epidemiological and other relevant knowledge, at least in a qualitative
way. The disadvantage is its subjectivity and potential for bias. The
conservativeness of expert opinion with respect to mortality decline is
widespread, in that experts have generally been unwilling to envisage the
long-term continuation of trends, often based on beliefs about limits to life
expectancy. In the U.S.A., expert opinion has been found to systematically
forecast smaller declines than both extrapolative methods and what
actually occurred (Alho & Spencer, 1990; Lee & Miller, 2001; Waldron,
2005). U.K. projections have also underestimated mortality improvements
(Shaw, 1994; Murphy, 1995; Continuous Mortality Investigation Bureau,
2004). In Australia, the use of reduced post-short-term rates of mortality
decline has repeatedly resulted in the underestimation of life expectancy in
the longer term.

It has, in fact, been found that expert opinion is subject to ‘assumption
drag’, where expectations tend to lag rather than lead actual experience
(Ahlburg & Vaupel, 1990). One way to reduce this bias and to draw on wider
expertise is to average the opinions of several experts using Delphi
forecasting methods (e.g. Lutz & Scherbov, 1998). Bias may persist because
of ‘expert flocking’, resulting from the common information base and a
desire to conform (Alho, 2005); greater emphasis has recently been placed
on expert argument (rather than opinion) to increase the diversity of
expectations (Lutz et al., 1999, 2004).

Expert expectations refer to population-level behaviour based on
historical data and research and are suited to long-term forecasting. For very
short-term forecasting, individual expectations might be considered; such an
approach has been used in fertility forecasting, though with limited success
(see Booth, 2006). The expectations of individuals about their own health
status have been shown to be a good predictor of death (Idler & Benyamini,
1997), and personal estimates of the probability of survival to a certain age
have been shown to be consistent with life table estimates (Hauser & Willis,
2005). While this approach is clearly limited, the individual heterogeneity in
expectations may provide useful information for modelling and probabilistic
forecasting.

3.2 Extrapolation
As already noted, extrapolation is the basis of most mortality forecasting

methods. Extrapolative methods assume that future trends will essentially be
a continuation of the past. In mortality forecasting, this is usually a
reasonable assumption because of historical regularities. However, exceptions
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do occur: examples include temporary increases in young adult male
mortality due to deaths from AIDS, recent fluctuations in Russian mortality
and the period of stagnation in Australian mortality in the 1960s. This
discussion of extrapolative methods progresses from simple linear
extrapolation to methods based on two-factor (age-period) models. Age-cohort
and three-factor (APC) models used in extrapolative forecasting are discussed
in Section 7.

Among the simplest methods is the linear continuation of the trend in life
expectancy. As White (2002) has shown, historical trends suggest that such a
method can be expected to be accurate. Despite this, a continuing linear
trend has rarely been forecast beyond the short-term future (as discussed in
Section 3.1). The independent linear extrapolation of the logarithms of
age-specific rates, equivalent to assuming constant age-specific mortality
reduction factors, has often been applied (Pollard, 1987). Reduction
factors, or fractions of reduction factors, may be directly extrapolated
(Goss et al., 1998); Denton et al. (2005) used log-linear extrapolation.
Golulapati et al. (1984) forecast Australian cohort mortality by linear
extrapolation of Brass logit transforms (see also Pollard, 1987). Non-linear
extrapolation may be used by assuming an appropriate functional form, such
as the logistic.

Time series methods (Box et al., 1994) are commonly used in extrapolative
forecasting. Time series models have the advantage of being stochastic,
enabling the calculation of the probabilistic prediction interval for the
forecast value. In the case of a zero-factor underlying model, such as a time
series of life expectancy or an age-specific rate, the series itself is modelled
and forecast. For one and two-factor models, the time series are the fitted
parameters of the underlying model, for example the eight parameters of the
Heligman^Pollard model or the single time parameter of the Lee^Carter
model. In mortality forecasting, univariate ARIMA modelling has
commonly been used. For multiple parameters, the simultaneous forecasting
of parameters taking interdependencies into account is the ideal; this is
achieved by multivariate ARIMA modelling. Though developed for short-
term forecasting, time series methods have increasingly been used for long-
term mortality forecasting. Alho & Spencer (2005, p242) recommend that the
data series should always be longer than the forecast horizon, and
preferably two to three times as long.

Time series forecasts based on zero-factor underlying models are
relatively uncommon. Denton et al. (2005) forecast aggregate mortality in
this way. Bell (1997) applied a simple random walk with drift model
separately to the logarithms of each age-specific rate, and found that
forecast accuracy was at least as good as more complex methods such as
Lee^Carter. A major disadvantage of such an approach is that the
independent forecasting of mortality at each age may lead to implausible
age patterns, especially in the long term. To address this problem, Denton
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et al. (2005) forecast first differences of age-specific log death rates as a
system of cross-correlated time series models; estimation was achieved
using an iterated form of the seemingly unrelated regression estimator
(SURE).

Among the one-factor models4 used in mortality forecasting are
parameterisation functions (discussed in Section 4) and the Brass relational
model (Brass, 1971, 1974) which was developed for estimation purposes in
data-poor contexts, but can be used more widely. The two-parameter
relational model expresses the logit transformation of the observed survival
function as a linear function of the logit of an empirical standard schedule. It
is thus a special case of graduation by reference to a standard table
(Benjamin & Pollard, 1980). Fitting to annual data yields time series of the
two parameters may be forecast using time series methods. Keyfitz (1991)
applied the method to Canadian data with limited success (see also Pollard,
1987). Extensions of the model include Zaba (1979) and Ewbank et al. (1983)
who developed separate four-parameter models to increase flexibility at the
youngest and oldest ages; see also Zaba & Paes (1995). Congdon (1993) fitted
the Zaba model to mortality for Greater London in 1971 to 1990, obtaining
relatively clear trends for three of the four parameters, and forecast all
parameters using univariate ARIMA models.

A two-factor model used in mortality forecasting is the Lee^Carter model
(Lee & Carter, 1992). This type of model can be estimated using principal
components, whereby matrix decomposition identifies independent mortality
components or age patterns and their importance over time. In forecasting,
the estimated age parameters are assumed fixed and time series methods are
used to extrapolate the time-varying parameters. The Lee^Carter method
and related approaches are discussed in detail in Section 5. In a similar
approach, the panel data model of Babel et al. (2008) expresses the logarithm
of the mortality reduction factor as the sum of stochastically independent
age and time effects; time series methods are used to model the time effect
while the age effect is assumed fixed.

An alternative two-factor model is the bivariate (age and time) regression
model within the GLM framework. The essential difference between GLM
and Lee^Carter models is that in GLM time is an explicit covariate while in
Lee^Carter time is a factor represented by the series. Forecasting in the
GLM approach is achieved simply by using appropriate time values. The
GLM approach is discussed in Section 6.

Dynamic parameterisation functions constitute a special two-factor case
within the GLM framework. Such models adopt an initial static base

4 Spline models involve many parameters without demographic interpretation, making them
largely unsuitable for forecasting in the one-factor context.
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parameterisation function of the age pattern (see Section 4), thereby reducing
the number of parameters to be estimated, and replace each parameter by a
function of time. For example, in the dynamic parameterisation model of
Tabeau et al. (2001b), the parameters of the modified Heligman^Pollard model
are linear or non-linear functions of time. The exact trend functions are
determined when fitting the model. In some cases, similar models of overall
mortality fit almost equally well, but their forecasts differ considerably; much
depends on the assumptions made in extrapolating the trend functions
especially in highly non-linear parameterisation functions (Tabeau et al.,
2001).

3.3 Explanation
Explanatory methods of mortality forecasting are based on structural or

causal epidemiological models of certain causes of death involving disease
processes and known risk factors. Thus use is made of valuable medical
knowledge and information on behavioural and environmental change
(Gutterman & Vanderhoof, 1998). The main advantage of the explanatory
approach is that feedback mechanisms and limiting factors can be taken into
account.

In practice, the explanatory approach to forecasting has yet to be fully
developed. The relationships between risk factors and mortality are
imperfectly understood, making their use in forecasting less than reliable.
The main use of existing epidemiological models is in the simulation of the
effect on morbidity and mortality of policy changes affecting the risk factors,
rather than in forecasting per se.

Many of the models used in explanatory forecasting are regression-based
and therefore fit within the GLM framework.5 They differ from regression-
based extrapolative models in that they incorporate explanatory variables or
risk factors, which are either lagged or forecast. When structural models are
based exclusively on exogenous lagged risk factors, forecast horizons are
limited to the shortest lag time. While extrapolation of the risk factors
extends the forecast horizon, they may be no less difficult to forecast than
mortality directly. Thus explanatory methods are generally limited to short-
term forecasting.

In some cases, an explanatory model is used in conjunction with
expectation (Section 3.1) in the specification of future scenarios, for example,
the use of assumed future smoking patterns in a lung cancer model
(Alderson & Ashwood, 1985). The explanatory models developed under the

5 Dynamic multistate or macrosimulation models also fall under the explanatory approach. These
take population structure into account to forecast numbers of events, and may employ as input
either static or forecast rates, the latter being obtained by a separate model. For examples, see
Van Den Berg Jeths et al. (2001) and Van Genugten et al. (2001).
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WHO Global Burden of Disease Study have also been used in scenario
forecasting (e.g. Murray & Lopez, 1997).

Structural models involving multivariate autoregression have been used to
relate lifestyle and other risk factors to functional status and mortality at
older ages (Manton et al., 1991; Manton et al., 1992). This approach
achieved some improvement in the short term over methods involving
traditional time series and expert opinion. In the longer term, however,
forecasting potential is limited by the short time series of risk factors, the
large number of parameters and the presence of non-linear interactions.

Girosi & King (2006) extend the use of structural models in mortality
forecasting to developing countries, using Bayesian methods. Linear age-
period regression models are used to relate cause-of-death-specific mortality
to known covariates. The covariates may differ by age, and may be lagged,
observed, exogenous variables or forecasts of reliable longer time series.
Known similarities among (sub)populations and smoothness over both age
and time are incorporated as priors, based on empirical evidence or informed
judgement.

It should be noted that decomposition of overall mortality by cause of
death does not constitute explanation, although decomposition permits
explanatory models to be used. Decomposition by cause of death is discussed
in relation to forecasting overall mortality in Section 8.

ª. Parameterisation Functions

Parameterisation functions, also known as laws of mortality, are one-
factor models which seek to parsimoniously represent the age pattern of
mortality. The Heligman^Pollard model is a well-known example. Though
parameterisation functions have been widely applied in mortality graduation
(Forfar et al., 1988), their use in mortality forecasting is more limited. An
advantage of parameterisation functions for forecasting is the smoothness of
forecast rates across age. Bell (1997) noted familiarity and interpretability
as additional advantages of this approach. In most applications, these models
have been treated as deterministic.

Forecasting with parameterisation functions involves repeated fitting to
annual data, thereby obtaining a time series of each model parameter. These
parameter series are forecast by time series methods. Ideally, multivariate
time series methods are used to take account of any interdependencies among
parameters. In practice, erratic parameter time series and interdependencies
(over-parameterisation) present serious difficulties for forecasting and limit
forecast horizons: forecast age patterns may be implausible, and, if
interdependencies are not taken into account, forecast prediction intervals
will be inaccurate. The magnitude of the approximation error is also a
disadvantage (Bell, 1997).
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4.1 Heligman^Pollard Model
Among the many parameterisation functions which have been proposed

(for a comprehensive list see Tabeau et al., 2002; see also Forfar, 2004), the
Heligman^Pollard model (Heligman & Pollard, 1980) is among the most
well known. The eight-parameter model has three terms capturing the age
pattern of mortality in childhood, young adulthood (the accident hump) and
senescence, respectively:

qx

px

¼ AðxþBÞC þ D exp½ÿEðln xÿ ln FÞ
2
� þ GHx

where px ¼ 1ÿ qx, and A to H are the eight parameters. Each term takes
positive values only at relevant ages, and the whole function is estimated in
one step. The model has been found to fit well to a range of populations
(Mode & Busby, 1982; Hartmann, 1987; Kostaki, 1988; Rogers & Gard,
1991).

However, only Forfar & Smith (1987) have found the Heligman^Pollard
model useful for forecasting. One reason for this might be found in the high
correlations between parameters, particularly for male mortality (e.g.
Hartmann, 1987); these correlations also compromise parameter inter-
pretability. Difficulties have also been encountered in determining the best
base period for projecting the parameters when using simple methods
(Pollard, 1987; Keyfitz, 1991). Using univariate time series models for the
eight parameter series obtained from fitting to U.S. data for 1900 to 1975,
McNown & Rogers (1989) forecast mortality for 1976 to 1985 with only
‘reasonable accuracy’ (McNown & Rogers, 1992, p413).

4.2 Multiexponential Model
The multiexponential model was first developed for modelling migration.

Rogers & Planck (1983) applied the four-term nine-parameter version to
mortality. The model comprises a constant, exponentially declining child
mortality, a double exponential accident hump (the Coale & McNeil (1972)
function) and Gompertzian senescent mortality:

mx ¼ a0 þ a1 expðÿa1xÞ þ a2 expfÿa2ðxÿ mÞ ÿ exp½ÿlðxÿ mÞ�g þ a3 expðÿa3xÞ

where: mx is the central mortality rate at age x; a0, a1, a2 and a3 are scale or
level parameters; and a1, a2, a3, m and l define the mortality profile.

Rogers & Little (1994) found slightly poorer fits than the Heligman^
Pollard model. Like Heligman^Pollard, the multiexponential is of limited use
in forecasting. McNown, Rogers & Little (1995) found interdependencies
among parameters; in forecasting, five parameters were fixed and four
were modelled by three univariate ARIMA processes and a bivariate
autoregressive model. McNown & Rogers (1992) forecast total and five
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cause-specific mortalities by fixing six parameters and modelling only the
level parameters, a1, a2 and a3, by univariate ARIMA models, giving
reasonably accurate forecasts for the following decade.

4.3 Other Models
Several parameterisations have been shown to provide a better fit to the

age distribution of mortality than either the Heligman^Pollard or
multiexponential models, but, to our knowledge, have not been employed in
forecasting. Such models are included here, as gains in forecast accuracy
might be obtained by their adoption.

Carrie' re (1992) proposed a three-term model with eight interpretable
parameters:

sx ¼ c1 exp ÿ
x

m1

� �m1
s1

( )
þ c2 1ÿ exp ÿ

x

m2

� �ÿm2
s2

( )" #
þ c3 exp eÿ

m3
s3 ÿ e

xÿm3
s3

n o
where: sx is the probability of surviving to exact age x; x > 0; c1 is the
probability of dying from ‘childhood causes’; c2 is the probability of dying
from ‘teenage causes’, c3 ¼ 1ÿ c1 ÿ c2 is the probability of dying from
‘adult causes’; and m1, m2, m3, s1, s2 and s3 are location and dispersion
parameters.

This model gave a better fit to U.S. mortality than the Heligman^Pollard
model. Though similar to Heligman^Pollard, the Carrie' re model has several
important advantages. The parameters have a clearer interpretation, and the
location and scale parameters provide insightful information. The use of a
mixture of survival functions is equivalent to a multiple-decrement life table;
and the generalised framework can accommodate extra terms and other
functions. Carrie' re (1992) found that for U.S. female mortality a four-term
model with eleven parameters gave significant improvements over a reduced
eight-parameter model. The flexibility of this model has potential advantages
in forecasting.

Siler (1983) proposed a five-parameter model which was found to fit
better than either the Heligman^Pollard or Mode-Busby eight-parameter
models (Gage & Mode, 1993); only the ten-parameter Mode-Jacobsen (1984)
model provided a better fit. The Siler model has three independent terms
describing mortality during ‘immaturity’, adulthood and senescence. The
survivorship probabilities are multiplicative:

sx ¼ exp ÿ
a1

b1

� �
½1ÿ expðÿb1xÞ�

� �
� expðÿa2xÞ � exp

a3

b3

� �
½1ÿ expðb3xÞ�

where sx is the probability of surviving to exact age x; x > 0, and a1, a2, a3,
b1 and b3 are location and dispersion parameters. Siler successfully fitted the
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model to historic data largely for the period before the emergence of the
accident hump and with widely varying life spans.

Hannerz (1999; 2001a) also proposed a five-parameter model which fitted
recent Swedish female mortality better than models including a term for the
accident hump. The female model is:

1ÿ sx ¼ expðGxÞ

where sx is the probability of surviving to exact age x; x > 0, and

Gx ¼ a0 ÿ
a1

x
þ

a2

2
x2 þ

a3

c
½expðcxÞ�

where Gx is an empirically derived representation of the logit transform of
ð1ÿ sxÞ; a0 is a level parameter and a1, a2 and a3 are profile parameters. For
males, the persistence of the accident hump necessitated an additional term
involving three parameters to capture excess mortality at young adult ages
(Hannerz, 2001b). The male model is:

1ÿ sx ¼ a
expðG1

xÞ

1þ expðG1
xÞ
þ ð1ÿ aÞ

expðG2
xÞ

1þ expðG2
xÞ

where a is a scale parameter and

G1
x ¼ a0 ÿ

a1

x
þ

a2

2
x2 þ

a3

c
½expðcxÞ�

G2
x ¼ a4 ÿ

a5

x
þ

a2

2
x2 þ

a3

c
½expðcxÞ�

where a4 is a level parameter and a5 is a profile parameter.
Hannerz (2001c) combined the features of relational models with these

parameterisation functions and model life tables in a regression model. The
advantage of this approach is that there is no need to choose between these
methods; rather, use is made of the features of all three.

ä. Lee^Carter Variants and Extensions

The principal components approach to mortality forecasting came to
prominence through the work of Lee & Carter (1992), although it had been
applied earlier (e.g. Bell & Monsell, 1991). In contrast to parametric
approaches which specify the functional form of the age pattern of mortality
in advance, principal components approaches estimate the age pattern from
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the data. Forecasting is by extrapolation of the time-related parameters
using time series methods.

Lee^Carter is now the dominant method of mortality forecasting. Lee^
Carter or its variants have been applied to populations in the G7 countries
(Tuljapurkar et al., 2000), Australia (Booth & Tickle, 2003, 2004), Japan
(Wilmoth, 1996) and Sweden (Lundstrom & Qvist, 2004) among others, and
Lee^Carter benchmarks are used by the U.S. Census Bureau for its long-term
forecasts of life expectancy (Hollmann et al., 2000).

The underlying two-factor Lee^Carter model is:

ln mx;t ¼ ax þ bxkt þ ex;t

where: mx;t is the central mortality rate at age x in year t; ax is average (over
time) log-mortality at age x; bx measures the response at age x to change in
the overall level of mortality over time; kt represents the overall level of
mortality in year t; and ex;t is the residual.
Unique estimates of bx and kt are derived using singular value

decomposition (SVD) with the constraints that the estimated bx sum to one
and the estimated kt sum to zero. Lee & Carter incorporated an adjustment
to the estimated kt so that fitted deaths match observed total deaths in each
year; this gives greater weight to ages at which deaths are high thereby partly
counterbalancing modelling on the logarithmic scale (Lee, 1992). The
adjusted estimated kt is modelled and forecast using Box^Jenkins time series
methods. In almost all applications, including the original study of U.S. data
(Lee & Carter, 1992), the random walk with drift has been found to be
applicable:

kt ¼ ktÿ1 þ dþ et

where d is the drift parameter and et is an error term. Forecast mortality
rates are derived using estimated ax and bx (which are assumed invariant over
time) and forecast kt.

Two variants on the original Lee^Carter method have been developed.
Lee & Miller (2001) proposed three modifications: the fitting period was
restricted to the latter half of the twentieth century to reduce structural
shifts; adjustment of kt was by matching life expectancy; and ‘jump-off error’
was eliminated by forecasting forward from observed (rather than fitted)
rates. The Lee^Miller variant has now been widely adopted as the standard
Lee^Carter method. Booth et al. (2002) modified the method after finding
historical departures from linearity in the Australian mortality decline; their
method determines an optimum fitting period based on the assumption of
a linear recent trend, and adjusts kt by fitting to the age distribution of
deaths (a conditional maximum likelihood procedure). A twenty-population
evaluation of the forecasting accuracy of the original method and these two
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variants over a 15-year forecast period found that the Lee^Miller and
Booth^Maindonald^Smith variants produced roughly equal improvements
over Lee^Carter (Booth et al., 2005).

The Lee^Carter model can be extended to include higher order terms (the
p-term model is shown) thereby allowing for greater flexibility in forecasting
change:

ln mx;t ¼ ax þ b1
xk

1
t þ b2

xk
2
t þ � � � þ bp

xk
p
t þ ex;t:

Higher order terms were modelled by Booth et al. (2001, 2002) and modelled
and forecast using univariate ARIMA processes by Renshaw & Haberman
(2003a). The extended form has close similarities to the principal components
approach used by Bell & Monsell (1991). Bell (1997) discusses the
similarities and differences in detail and, for short-term U.S. forecasts,
demonstrates the greater accuracy (after adjusting for jump-off error) of
Lee^Carter over both Heligman^Pollard and principal components using all
components.

The Lee^Carter method has a number of advantages, among them
simplicity. The underlying model has been shown to represent a large
proportion of the variability in mortality rates in developed countries
(Tuljapurkar et al., 2000). Parameters are easily interpretable and a simple
random walk with drift forecast has generally been appropriate for the single
extrapolated parameter. The method involves minimal subjective judgement
and produces stochastic forecasts with probabilistic prediction intervals.

Improvements to the Lee^Carter estimation basis have been proposed.
Wilmoth (1993) presented a weighted least squares Lee^Carter solution. He
also developed a maximum likelihood estimation solution based on the
assumption of a Poisson distribution of deaths; this Poisson log-bilinear
model has subsequently been implemented by others (e.g. Brouhns et al.,
2002; Czado et al., 2005; Koissi et al., 2006). Koissi & Shapiro (2006)
implemented a fuzzy formulation of Lee^Carter to address violations of the
Lee^Carter assumption of constant error variance across age. Wolf (2004)
developed a Lee^Carter variant applied to first differences in log-mortality
rates which integrates estimation of the Lee^Carter and time series models.
Li & Chan (2005) proposed an outlier-adjusted Lee^Carter model which
strengthens the estimation basis when the mortality index time series contains
outliers from exogenous events.

A shortcoming of Lee^Carter is that it assumes that the ratio of the rates
of mortality change at different ages remains constant over time (i.e.
invariant bx), whereas evidence of substantial age-time interaction has been
found. Booth et al. (2002) partially address this problem by choosing a fitting
period which optimally satisfies the model assumptions; see also Carter &
Prskawetz (2001).

Lee^Carter forecast rates lack across-age smoothness and become
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increasingly jagged over time (Girosi & King, 2006), which is non-
intuitive and may be problematic in practical applications. Czado et al.
(2005) used the Poisson log-bilinear model together with Bayesian estimation
to impose smoothness. Hyndman & Ullah (2007) developed an approach
based on the functional data paradigm in which data are smoothed across
age prior to modelling using penalised regression splines. The method also
models higher order terms and strengthens the estimation basis to allow for
outliers.

Other recent advances make use of state space models (Harvey, 1989),
which can be viewed as a framework for jointly modelling time series and
cross-sectional data. An advantage of such integrated models is that the
statistical and diagnostic properties of the entire estimation and forecasting
process are well known and understood compared with those of Lee^Carter
and other methods which use a staged estimation approach. De Jong &
Tickle (2006) tailor the state space framework to build in across-age
smoothness using b-splines. Compared with Lee^Carter, the method employs
fewer parameters due to the use of splines to reduce dimensionality,
produces smooth forecast rates and offers the advantages of integrated
estimation and forecasting.

Evaluations indicate that these newer methods perform at least as well as
Lee^Carter variants in terms of forecast accuracy while also offering, to
varying degrees, advantages in across-age smoothness, parsimony, integrated
and robust estimation and generalisability. A twenty-population study of
forecast accuracy found that the Hyndman-Ullah and de Jong-Tickle
approaches gave lower average errors in forecast log mortality than the Lee^
Miller and Booth-Maindonald-Smith variants, though not significantly so.
All four approaches gave significantly lower average errors in forecast log
mortality than the original Lee^Carter method (Booth et al., 2006).
De Jong & Marshall (2007) have proposed a new method which combines

state space models and the Wang transform, which has been widely used in
pricing insurance and financial risk (Wang, 2000). The approach is analogous
to Lee^Carter, but makes use of a transformation which allows the
assumption to be made that the mortality index affects all ages equally
(equivalent to constant bx in the Lee^Carter model), giving a simpler basis
for forecasting. Pedroza (2006) used the state space framework and Bayesian
estimation, as well as developing an extension to allow for differential
across-age variability.
Renshaw & Haberman (2006) extended the Lee^Carter model to

incorporate cohort effects (see Section 7).

å. Generalised Linear Modelling

Renshaw (1991) observed that many of the one-factor parameterisation
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functions are special cases within the GLM framework. Placing such models
in the GLM context provides a unified framework and facilitates
generalisations such as the extension of the models to include period (time)
for forecasting. The dynamic parameterisation model (discussed in Section
3.2) is an example.

Renshaw et al. (1996) proposed a two-factor model based on an over-
dispersed Poisson distribution of deaths and comprising a Gompertz-
Makeham graduation term in combination with a multiplicative age-specific
trend adjustment term:

log mx;t ¼ b0 þ
Xs

j¼1

bjL jðx
0Þ þ

Xr

i¼1

ait
0i þ

Xr

i¼1

Xs

j¼1

gi jL jðx
0Þt0i

where: mx;t is the force of mortality at age x in year t, ai; bj and gi j are
unknown parameters; L jðx

0
Þ denote Legendre polynomials of degree j; and x0

and t0 are x and t rescaled over the interval ½ÿ1; 1�. They found that the
model provided an adequate fit to mortality for U.K. male assured lives aged
22 to 89 and of duration five and over. Sithole et al. (2000) used the same
modelling structure to forecast U.K. annuitant and pensioner mortality with
qualified success; the optimum fitted model parameters did not necessarily
generate plausible forecasts, for which lower-order polynomials were
required.

Other researchers have also found that two- or higher-degree polynomials
in time are required to attain a satisfactory fit, but lead to implausible
forecasts. Heathcote & Higgins (2001a, 2001b) modelled the log-odds of
lexis-parallelogram mortality at ages 40+ by a two-factor regression
involving time, a quadratic in age, an age-time interaction and up to 24
additional predictors, but na|« ve extrapolation gave implausible divergence by
sex, necessitating the use of subjectively-adjusted coefficients. In such cases,
it may be possible to use linear splines for subperiods, but this solution is
restricted to short-term forecasting because turning points cannot be
identified (De Beer, 1989).

Renshaw & Haberman (2000) used GLM to model mortality reduction
factors, and identified the conditions under which the underlying structure of
their model is the same as that of the Lee^Carter model. They developed a
GLM-based approach which parallels the Lee^Carter method, including
matching observed and expected total deaths (Renshaw & Haberman,
2003b), and adapted the Lee^Carter method for use in forecasting mortality
reduction factors (Renshaw & Haberman, 2003c). Renshaw & Haberman
(2003a) extended the Lee^Carter model to include the second SVD term to
allow for ‘age-specific enhancement’, and compared its forecast with
similarly-enhanced GLM and Poisson log-bilinear forecasts.

In an alternative approach using the GLM framework, Currie et al.
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(2004) employed p-splines (penalised b-splines) to impose smoothness on the
age-period surface of the force of mortality. The forecast rates are estimated
simultaneously with the fitting of the mortality surface, and are ‘well-
behaved’ due to the penalty attached to lack of smoothness. CMIB (2005,
2006) further discuss the features of the method. Application to U.K. male
assured lives generated forecast rates that declined more slowly than in the
comparable Lee^Carter forecast (Currie et al., 2004).

æ. Cohort Models

The one and two-factor models discussed in Sections 4 to 6 may be
applied to cohort data to produce models of mortality over the life course.
These models and three-factor age-period-cohort (APC) models are discussed
in this section.

In the case of one and two-factor models, the cohort approach has the
advantage of being free of ‘tempo’ distortions caused by changes in timing;
when mean age at death is increasing (that is, when mortality is declining),
the period life expectancy measure overestimates life expectancy (Bongaarts
& Feeney, 2002). In theory, therefore, cohort models provide a better basis
for forecasting than period models. In practice, however, various factors
have limited their use.

The main disadvantage of all cohort models is that they involve heavy
data demands; if the entire age range is of interest, data covering a century or
so provide only one complete cohort and a much longer series of annual
data is required for forecasting. Where data are available, as in some
European countries, models of the entire age range will be limited in that
they depend on the (inappropriate) experience of cohorts born in the
nineteenth century (e.g. Tabeau et al., 2001b). These problems of data
availability and applicability are reduced when only part of the age range is
of interest.

Incomplete cohort data, i.e. data which are truncated at the current age
of the cohort, may be used in forecasting if the form of the model can be
specified in advance. One-factor parameterisation functions and relational
models may be fitted to incomplete cohort data to provide an estimate of the
cohort’s experience beyond the age of truncation; because age and time are
equivalent for a cohort, the estimate is also a forecast. This approach is used
in the modelling of mortality at the oldest ages (see Section 9). Similarly,
two-factor age-cohort models may, in theory, be used with partially
incomplete cohort data, the additional factor enabling advantage to be taken
of complete observations for older cohorts in estimating the complete
experience of younger cohorts. However, incomplete data lead to statistical
problems in modelling and to practical problems for forecasting (Brass, 1974;
Bell, 1997).
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Given the limitations of cohort data, it may be preferable to make
adjustments to period forecasts to obtain cohort values. Pollard (1998)
proposed a simple adjustment to period life expectancy based on
Gompertzian mortality and a constant rate of change over age and time.
Tempo distortions in period life expectancy should also be taken into
account; Bongaarts & Feeney (2006) proposed an adjustment for such
distortions, with implications for forecasting. A refinement would be to
adopt the lexis parallelogram approach of Heathcote & Higgins (2001a) in
defining period rates. Other aggregate measures of mortality (Bongaarts &
Feeney, 2003; Guillot, 2003; Sanderson & Scherbov, 2005) may be
considered.

A true cohort forecast was achieved by CMIB (2006) using the p-spline
regression method (Currie et al., 2004; see Section 6) to smooth age-cohort
data (where the penalty is applied over age and year of birth) at ages 20+. A
comparable age-period forecast was also made. Out-of-sample testing
suggested that the method ‘would have worked well in recent years’ (CMIB,
2006, p38).
Three-factor APC models encompass cohort as the third factor. However,

distinguishing between age, period and cohort effects is problematic because
of the identification problem; any one factor is linearly dependent on the
remaining two (see Tabeau, 2001). The solution to this problem is to use
three-way classification (also known as doubly-classified data or non-
overlapping cohorts) in data collection so that deaths can be allocated to
lexis parallelograms, in which case the dependence does not exist (Willekens
& Baydar, 1986). Alternatively, constraints can be imposed on the model
parameters (see also Van Hoorn & De Beer, 2001). To overcome the
identification problem in the absence of three-way classified data, Wilmoth
(1990) developed a two-factor descriptive model involving additive age and
period effects and several multiplicative interaction terms, to which a
diagonal term representing the average cohort effect can also be added.

The APC model has been usefully applied in describing the past, but has
been considered less useful in forecasting. In a review of APC models,
Tabeau (2001) concluded that mortality forecasting based on APC models is
not feasible because of the difficulty in assuming future period effects
(although age and cohort effects can be assumed to be fixed), and that only in
forecasts of specific diseases would sufficient epidemiological knowledge be
available.

More recently, Renshaw & Haberman (2006) have extended the Lee^
Carter model to produce the APC model:

lnmx;t ¼ ax þ b1
xkt þ b2

xitÿx þ zx;t

where: mx;t is the force of mortality at age x in year t; ax is the average of
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ln mx;t over time; b1
x and b2

x measure the response at age x to changes in kt

and itÿx respectively, kt represents the overall level of mortality in year t, itÿx

represents the overall level of mortality for the cohort born in year ðtÿ xÞ,
and zx;t is the residual. Fitted kt and itÿx parameters were forecast using
univariate time series models; a multivariate approach could also be used.
The model successfully captured all three main effects in U.K. mortality,
representing a significant improvement over age-period and age-cohort
models. Out-of-sample testing by CMIB (2007) showed that age-period Lee^
Carter forecasts quickly became outdated due, at least in part, to lack of
recognition of cohort effects captured by the APC model. It remains to test
fully the APC model, particularly its stability in response to changes in the
age-range or fitting period.

Though cohort effects are generally much smaller than period effects, for
some countries they are nevertheless clearly discernible. In the U.K., negative
cohort effects (i.e. lower mortality) have been identified at adult ages for
cohorts born during 1925 to 1945 (Willets, 2004; Willets et al., 2004) and at
65+ for earlier cohorts born after 1900 (Government Actuary’s Department,
2001). Since 1992, U.K. official projections (which are derived using targets)
have incorporated a cohort approach, originally for cohorts born before 1947
and extended in the most recent projections to cohorts born before 1960
(Government Actuary’s Department, 2001, 2006). The U.K. Actuarial
Profession has recently focused on models incorporating cohort, as outlined
above (Continuous Mortality Investigation Bureau, 2005, 2006, 2007).
Cohort effects have also been identified in U.S. data (McNown & Rogers,
1989; Lee & Carter, 1992), in French data (Wilmoth, 1990) and in Japanese
data (Willets, 2004), among others.

ð. Decomposition by Cause of Death

The forecasting of mortality by separate causes of death has been
advocated from a theoretical perspective as a means of gaining accuracy in
overall mortality forecasting (e.g. Crimmins, 1981), but subsequent
experience has often proved otherwise. McNown & Rogers (1992) found no
consistent discernible gain in accuracy from cause-of-death decomposition
using the multi-exponential model. Wilmoth (1995) demonstrated that, for
proportional rates of change models including Lee^Carter, mortality
forecasts based on the sum of cause-specific forecasts will always be higher
than those based on overall mortality because causes of death which are slow
to decline come to dominate in the long run. Using non-linear APC models
for ages 60 to 85+, Caselli (1996) found this to be true for females, but
reversed for males. Using non-linear age-period models, Tabeau et al.
(2001b) also found this difference between the sexes at ages 40, 60 and 80
for France, Italy and the Netherlands, but not for Norway. Alho (1991)
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discusses the conditions under which decomposition is disadvantageous
and those under which it gives similar results to overall mortality
forecasting.

In practice, limited value can generally be gained from decomposition by
cause of death. The reasons for this include the similarity of age patterns for
the main causes, the unreliability of cause-of-death reporting at older ages
where most deaths occur, and the fact that cause-reduction may have
minimal effect on overall mortality (Murphy, 1995). Model misspecification
and the presence of leading indicators (where changes in one cause
systematically precede changes in another cause) can also result in reduced
forecast accuracy from decomposition (Alho, 1991). Further, the assumption
that discrete diseases drive overall mortality is questionable, especially at
the older ages, and the appropriate means of combining correlated cause-
specific measures is unclear (Stoto & Durch, 1993). Additional limitations
arise because available time series of cause-specific data are often too short
for forecasting using ARIMA methods, and the parameters to be forecast are
often less stable for causes of death than for overall mortality (Wilmoth,
1995). Dimensionality is also increased by decomposition. Alho (1991), Stoto
& Durch (1993), Tuljapurkar (1998) and Wilmoth (2005) discuss these and
other relevant issues.

The restriction of cause-of-death decomposition to ages less than 90 (or
thereabouts), as recommended by Tabeau et al. (2001b) because of problems
in the identification of cause of death at older ages, is a major limitation of
the approach (most deaths occur at very old ages). At younger ages, these
authors advocate the selection of appropriate causes of death for different
age segments, and warn against forecasting the remainder (of a group of
causes) because of bias arising from misclassification of deaths by cause. In
other words, for long-term forecasting in particular, they do not advocate
decomposition as a means of forecasting overall mortality, recommending
rather that the remainder be forecast as the difference between overall and
leading cause-of-death forecasts.

Given these limitations, most official agencies and actuaries have not
employed decomposition by cause of death in mortality forecasting.6 The
U.K. Government Actuary’s Department (2001) recommended against
cause-of-death decomposition, while the CMIB (2004) stated that aggregate
forecasts are more suitable for its purposes. A notable exception is the U.S.
Social Security Administration (SSA)7 (Board of Trustees of the Federal
Old-Age and Survivors Insurance and Disability Insurance Trust Funds,
2004), but the SSA 1999 and 2003 Technical Panels on Assumptions and

6 However, analysis of past cause-of-death data often informs expert opinion in the speci¢cation
of target values and trajectories towards the target (see Section 3.1).
7 The age, sex and cause-speci¢c forecasts are based on expert opinion.
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Methods recommended against decomposition by cause of death (Waldron,
2005). In general, the perceived advantages of decomposition are outweighed
by the limitations involved.

One area where decomposition by cause of death has been used is
(partial) cause-elimination and cause-delay models (Manton et al., 1980;
Olshansky, 1987, 1988; e.g. Kunst et al., 2002; Le Bras, 2005). The basis of
such models may be expectation through targeting and informed opinion,
which has often lead to conservative forecasts of mortality decline, or
explanation through epidemiological models of certain causes.

Bongaarts (2006) forecast life expectancy by decomposing mortality into
three components: juvenile and, at ages 25+, background and senescent.
These do not correspond to standard causes of death; such data are not used.
Senescent mortality is further decomposed by attributability to smoking,
based on time-dependent average proportions in developed countries. The
main driver of the forecast is senescent mortality which is not attributable to
smoking; juvenile and background mortality are fairly stable and relatively
unimportant, while mortality due to smoking can be modelled. The approach
avoids many of the limitations inherent in cause-of-death decomposition,
while capturing trends in the main components of mortality.

æ. Senescent Mortality

As mortality declines, increasing importance is placed on the function
representing mortality at old ages, at which most deaths occur. The
Gompertz function has been widely employed to represent senescent
mortality (mortality due to ageing) (Pollard & Valkovics, 1992; Olshansky &
Carnes, 1997), but at the oldest ages it overestimates observed rates. This
bias can be addressed by embedding the Gompertz in a logistic function, thus
involving an asymptote; see Thatcher et al. (1998) and Thatcher (1999) for a
comparison of models.

Bongaarts (2005) employed a shifting logistic model in forecasting age-
specific mortality at ages 25+. The model is based on the one-factor
parameterisation:

mx ¼
aebx

1þ aebx
þ g

where mx is the force of mortality at age x, and a, b and g are parameters
representing, respectively, the level of Gompertzian mortality, the
exponential rate of increase in Gompertzian mortality with age and the level
of age-invariant background mortality. The first term represents the
senescent force of mortality. The slope parameter b has been shown to be
(nearly) constant over time, though its value varies among populations
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(Bongaarts, 2005). The shifting logistic makes use of this fixed slope, in
other words of the equivalence between senescent mortality decline over time
and a shift of the senescent force of mortality schedule to older ages. In
forecasting, the annual series of time-varying parameters a and g are
independently extrapolated, and a fixed b is assumed. In modelling senescent
mortality improvements by a fixed shift in the mortality schedule over age,
rather than a fixed pattern of decline in age-specific rates (as in Lee^Carter),
the age-pattern of mortality remains plausible even for longer-term
forecasts. A shifting logistic has been used in conjunction with the Lee^
Carter method in long-term U.N. forecasts (United Nations, 2004; Buettner
& Zlotnik, 2005).

In addition to modelling considerations, difficulties arise because data at
the oldest ages are often problematic (Kannisto, 1994; Kannisto et al., 1994;
Tuljapurkar & Boe, 1998). Where data are truncated, modelling of the oldest
ages is necessary. For this, existing model life tables are of limited use for
low-mortality populations, because the age range does not extend beyond 100
years (if that) and maximum life expectancies have been surpassed (for
example, 76.6 years for males and 80.0 for females in the Princeton life tables
(Coale & Guo, 1989)).

The Coale & Kisker (1990) method for extending observed or forecast
mortality to the oldest ages assumes that mortality rates increase at a linearly
decreasing rate up to some target age. In an examination of the fit of 11
functions at ages 80 to 110, Boleslawki & Tabeau (2001) found the Coale^
Kisker method to be superior when reliable data are available to at least
age 90, but they recommended polynomial extrapolation when reliable data
are available only to age 85. Buettner & Zlotnik (2005) found the logistic
model, which does not require specification of an upper limit, less restrictive
and therefore preferable to Coale^Kisker for very-long-term forecasts. An
alternative approach is the relational model developed by Himes et al. (1994),
which extends observed mortality to age 99 by means of a linear relational
model based on the logit transformation of mx from age 45; this method also
makes no assumption about the upper limit. The Coale & Guo (1989)
method, which does use a target, was supported by modelling by Renshaw &
Haberman (2003b).

"ò. The Estimation of Uncertainty

While the point forecast of mortality is of primary interest, it is also
important to provide an indication of the likely range of future values.
Traditionally, this has been addressed through scenarios, whereby high and
low scenarios provide the range around the medium scenario (or forecast).
This subjective approach has several inadequacies (Lee & Tuljapurkar, 1994;
Booth, 2004), notably that it is not possible to specify the probability of the
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high-low range. More recent methods estimate the uncertainty of the
forecast so as to provide probabilistic prediction intervals.

Estimating the uncertainty of a point forecast of an age-specific mortality
rate or of life expectancy is a subject of ongoing research (e.g. Lutz &
Goldstein, 2004). Three broad approaches have been employed: model-based
ex-ante error estimation; expert-based ex-ante error estimation; and ex-post
error estimation. The estimate will vary depending on the method used and
on the extent to which the various sources of error are taken into account. In
addition, in estimating the uncertainty of measures which aggregate or
average individual forecast quantities, it is necessary to take account of
relevant correlations among individual forecast errors. These issues are
discussed in this section.

10.1 Sources of Error
There are many sources of error in forecasting demographic rates. Alho

(1990) classified error into four different, but related, sources: model
misspecification, parameter estimation, errors in informed judgement and
inherent random variation (see also Keilman, 1990). The first, model
misspecification, may occur with respect to the assumed underlying model of
the data (e.g. a parameterisation function) or the forecasting model (e.g. a
time series model) or both. The variances and covariances of parameter
estimates (the second source of error) are derived either by standard
estimation or by bootstrapping ö resampling from the original data to
create replicate datasets from which the variances and covariances can be
estimated. Regarding the third source, informed judgement in statistical
modelling refers to ‘prior’ beliefs about model parameters and the weight
given to them in forecasting (Alho, 1992); see also Alho (2005). With respect
to the last source, observed deaths have often been regarded as being
subject to Poisson variability (Brillinger, 1986), though this may understate
the true variance. GLM approaches often employ the over-dispersed Poisson
(Renshaw & Haberman, 2003b; Renshaw & Haberman, 2006), while Li et
al. (forthcoming) use the negative binomial to take account of individual
heterogeneity. In addition to this random variation, the data are subject to
non-random measurement error, including age mis-statement and omissions
(Stoto, 1988).

Ideally, all sources of error should be taken into account when presenting
prediction intervals for forecasts. Prediction intervals which omit one or
more sources of uncertainty will give a misleading impression of confidence
in the forecast. Estimates of uncertainty based only on time series parameter
uncertainty will be overly narrow, particularly when the model is highly
structured, such as Lee^Carter with a random walk with drift forecast.
Cairns (2000) notes that parameter uncertainty and errors due to model
misspecification are relatively neglected in actuarial science.
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10.2 Correlations among Forecast Errors
Three types of correlation among forecast errors may be relevant in

estimating uncertainty in mortality forecasting. These are temporal or serial
correlation, correlation across age, and correlation between subpopulations.
These correlations affect the extent to which (positive and negative) errors
cancel in averaging or aggregation; the stronger the positive correlation, the
lesser the degree of cancellation and the wider the prediction interval of the
aggregate measure (Lee, 1999). Correlations among errors are taken into
account in the forecast either analytically (Lee & Tuljapurkar, 2000) or, more
commonly, through simulation. When the latter is used, all sources of error
can be taken into account and appropriately combined.

It is to be expected that forecast, age-specific death rates are positively
correlated over time; Lee & Tuljapurkar (2000) noted very high auto-
correlation in rates of change. Life expectancy is similarly correlated. Time
series methods, which take autocorrelation into account by specifically
modelling the relationship between time-dependent parameters in successive
years, thus tend to produce wide prediction intervals. Time series approaches
permit the simulation of individual sample paths, which may then be used
as input in a more complex stochastic model which includes other sources of
error. Note that regression-based methods are generally not useful in
generating future sample paths.

Positive correlations across age arise from the regularity of modelled age
patterns, and because the conditions resulting in high or low annual mortality
rates often apply over the whole age range or a broad age group. High
positive correlations result in wider prediction intervals for measures which
aggregate or average across age, such as life expectancy. Alho (1998) found
correlations of about 0.95 between neighbouring ages for mortality rates. Lee
& Tuljapurkar (2000) and others have concluded that perfect correlation can
be assumed, resulting in some overestimation of the prediction interval.

In certain circumstances, it is necessary to take correlations among
subpopulations into account; for example, in combining subpopulation
mortality forecasts. Cross-national correlations cannot be ignored in
European forecasts (Alho et al., 2006). Cross-national correlations can be
handled by post-processing the forecast results (see Alho & Spencer, 2005,
p292). Positive correlations between the sexes also arise; the common
assumption of perfect correlation results in some overestimation of
population forecast uncertainty (Keilman et al., 2002).

10.3 Model-Based ex-ante Error Estimation
Statistical models provide a basis for estimating error from the different

sources.8 This section first discusses error estimation in relation to the two

8 Denton et al. (2005) also demonstrate a model-free non-parametric method based on bootstrap
procedures, and a partially parametric method based on the autoregressive bootstrap.
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main extrapolative methods: Lee^Carter and GLM. These models allow the
estimation of parameter uncertainty and random error, but do not cover
errors arising from model misspecification and informed judgement. These
additional sources of error can be specifically modelled in a more
comprehensive framework, as discussed below.

In Lee^Carter and related time series approaches, forecast uncertainty
arises from both the underlying and time series models. In estimating
uncertainty, Lee & Carter (1992) included only uncertainty in the extrapolation,
because this usually dominates in the long term. Booth et al. (2002)
additionally took error in the estimation of d into account; this increased
the standard error of a one-year forecast of by less than 2%, but of a
51-year forecast by 25% to 63% depending on the length of the fitting
period.

The accurate estimation of forecast intervals for Lee^Carter and related
methods has been the subject of recent research. Methods incorporating all
sources of parameter uncertainty have been developed in the context of the
Poisson log-bilinear model by Koissi et al. (2006) using residual (non-
parametric) bootstrapping, by Brouhns et al. (2005) using parametric
bootstrapping and by Li et al. (forthcoming) using parametric bootstrapping
together with a relaxation of the Lee^Carter structure to allow for
individual heterogeneity in each age-period cell. Koissi & Shapiro (2006)
used a fuzzy model formulation. Pedroza (2006) used a state space
framework combined with Bayesian estimation to produce forecast
prediction intervals that incorporate all sources of error.

When GLM approaches are employed, estimates are provided of the
variances and covariances of parameter estimates and, indirectly, the
inherent random variation. From these, the uncertainty of forecasts can be
derived, either analytically or by simulation, in the form of the distribution of
the forecast for each year. Percentiles can be used to determine prediction
intervals. These derived distributions can be used in more complex models
which include other sources of error. As autocorrelation is not specifically
modelled, individual sample paths are not generated.

A different model-based approach is to model forecast errors per se. Alho
& Spencer (1985) employed a parametric model of the main sources of error
to construct prediction intervals for short-term horizons: the model includes
model misspecification, informed judgement and parameter estimation.
Estimates of uncertainty based on historical na|« ve forecasts provide a
conservative baseline for the assessment of forecast errors. Alho (1998, 2003)
related errors produced by historical na|« ve forecasts for Finland to forecast
length, and used this to inform prediction intervals for new Finnish forecasts.
Where historical data are not available for a population, information on the
variance and autocorrelation of errors may be borrowed from another
suitable population. This approach is discussed in detail in Alho & Spencer
(2005).
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Cairns (2000) used the Bayesian paradigm to develop a coherent
approach to the estimation of all sources of uncertainty. Estimating
uncertainty due to model misspecification requires knowledge of the universe
of possible models and the numerical specification of the associated
probabilities; a more feasible approach is to use sensitivity testing to gauge
the impact of model choice on the final forecast (Continuous Mortality
Investigation Bureau, 2004).

10.4 Expert-Based ex-ante Error Estimation
When the target point forecast is based on the expectations of a group of

experts, uncertainty may be specified in the form of expert expectations
about target high and low bounds, corresponding to a particular probability
prediction interval. The averages for each bound are then assumed to
correspond to the specified prediction interval of a normal distribution (Lutz
et al., 1996b, 1997; Lutz & Scherbov, 1998), thereby providing an estimate
of the standard error. The method has been shown to be robust to changes in
both the probability and distributional form (Lutz & Scherbov, 1998; Lutz
et al., 1999). It has been questioned, however, whether experts consider the
bounds of annual point forecasts or of temporal averages and whether they
are able to specify values representing probability bounds with reasonable
accuracy (Lee, 1999, p187).

In applications, the sample path for mortality is chosen on the basis of a
random number which determines the percentile of the target distribution;
assuming temporal linearity, this percentile defines the sample path, implying
perfect autocorrelation. The method is not suited to short-term forecasting
where variation may be greater than can be captured by the combined
assumptions of linearity and normality (Lutz et al., 1996b); Alders & De Beer
(1998, cited in De Beer & Alders, 1999, p4) show that this problem is also
not negligible in the longer term. The assumption of linearity and perfect
autocorrelation was later relaxed by the addition of a random term (Lutz et
al., 1999, 2001). Criticism that expert expectation is overconfident and
produces overly narrow prediction intervals, particularly when the recent
trend is unchanging (Keilman, 1990), contributed to a greater emphasis on
expert argument rather than opinion (Lutz et al., 2004). Lutz et al. (1996a)
argue that the expert-based approach is the only meaningful way to capture
future uncertainty.
Expert expectation has also been used by Alders & De Beer (2005) to

specify the uncertainty of a mortality forecast derived from a deterministic
model. Their approach, which is described as ‘argument-based forecasting’
(Alders & De Beer, 2005, p57), involved the use of judgement based on four
considerations: smoking trends by sex; possibilities for mortality decline at
young ages; ongoing rectangularisation of the survival curve; and the role of
medical advances.
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10.5 Ex-Post Error Estimation
The third approach to the estimation of uncertainty involves the use of

empirical errors in past forecasts to estimate the variability in future
forecasts. It is assumed that the future will not differ from the past and that
errors are normally distributed or can be modelled. Uncertainty over the
forecast period is derived from the overall estimate of the variance according
to the estimated (or assumed) degree of autocorrelation. The variance may
be specified for the last year of the forecast, for example as a target
prediction interval, and interpolation achieved for the intervening years by
assuming a random walk model. Alternatively extrapolative forecasts of
ex-post errors may be made (e.g. De Beer, 1997). Perfect correlation across
age is generally assumed.

Ex-post errors are used to derive prediction intervals for a separately-
derived (deterministic) forecast, with which they should be consistent (Van
Hoorn & De Beer, 2001). The approach is advantageous where a subjective
point forecast is preferred, for example because of recent structural change.
However, it should be noted that ex-post errors for periods of structural
change may not be relevant for future forecasts (De Beer & Alders, 1999).

Detailed studies of errors in official mortality forecasts have used
multivariate methods to separate out the effects of length of forecast horizon,
the difficulty of the particular period and the base year (Keilman, 1990; De
Beer, 1997; Keilman, 1997). Additional effects include the interaction
between difficulty and forecast method, the role of luck and the reasoning
behind the choice of method, and the causes of forecast error (for example,
model misspecification or an actual change in trend) (De Beer, 2000). Bias
towards older forecasts, because of longer error series, must also be taken
into account. Keilman (1990, 1997) found no clear evidence of improvement
over time in forecasting mortality rates.

"". Conclusions

The above discussion of methods has been organised into three
approaches: expectation, extrapolation and explanation. Most developments
have taken place in the extrapolative approach. Expectations are generally
not a good basis for mortality forecasting, either at the individual or
population level. Individual expectations are relevant only to the very-short-
term future and have limited applicability. At the population level, the
conservativeness of expert-opinion-based targets has been a persistent source
of inaccuracy, while the validity of forecasts and their uncertainty based on
the expectations of a group of experts has been shown to be open to question
and has yet to be fully evaluated.

Explanation has received relatively little attention: this approach is not
useful for overall mortality forecasting and demands decomposition by cause
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of death. Willekens (1990) noted that the explanatory approach is the ideal
and hence the eventual goal in the development of demographic forecasting.
In the case of mortality, this goal would appear to be distant. At present,
causal modelling is limited to the relatively few causes of death for which the
determinants are well understood; for example, lung cancer modelling is
based on lagged smoking prevalence rates.9 Even where determinants are well
understood and measurable, causal models are not widely used because of a
lack of sufficient data on the determinants, either for forecasting or for using
as lagged variables. Should well-defined explanatory models become
available for most or all causes of death, it would still not be possible to
forecast overall mortality simply as the sum of the independent forecasts;
rather, comorbidities and dependencies among causes would need to be taken
into account.10 The complexity of such models renders this approach
unlikely to fully inform forecasting for many decades to come. Furthermore,
the difficulty (at current levels of knowledge) in identifying cause of death
at the advanced (and increasing) ages at which most deaths occur severely
limits the usefulness of the explanatory approach, and indeed any approach
involving decomposition by cause of death.

Within the extrapolative approach, most recent developments have
focused on two and three-factor underlying models. Zero-factor models of
aggregate measures, notably life expectancy, provide no information about
changes in the age pattern, and the independent forecasting of age-specific
rates may produce irregular and implausible age patterns. The one-factor
parameterisation functions used in mortality graduation are also inadequate;
though they have the advantage of smoothness across age, they present
serious problems for forecasting, including parameter uninterpretability and
over-parameterisation, necessitating multivariate time series models to avoid
implausible trends and forecast age patterns. The one-factor shifting logistic
appears to avoid these problems.

Two-factor models incorporate time (equivalent to age in age-cohort
models) which, being fundamental to forecasting, is a major advantage.
Methods using principal components techniques have proved to be successful.
The Lee^Carter method, involving a single time-varying parameter, generally
produces plausible forecast trends and permits a changing age pattern of
mortality, though the fixed age pattern of change may lead to implausible
age patterns in the longer term. Recent related advances incorporate across-
age smoothness, improve estimation and offer possible enhancements in
forecast accuracy. GLM methods, including dynamic parameterisations,
have been less successful in forecasting because nonlinearities in time can

9 Even here, the accepted model has limited applicability: di¡erent patterns of change have been
found in Japan, for example (Continuous Mortality Investigation Bureau, 2004).
10 Alternatively, multistate models can be used, based on observed transition rates.
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lead to implausible forecast trends. The p-spline regression model appears to
have been successful in applications to date.

Three-factor models have the additional advantage of incorporating
cohort effects, but in practice often suffer from data unavailability and
difficulties in forecasting cohort trends. The Lee^Carter APC method
appears promising, but has yet to be comprehensively assessed. Ways of
incorporating cohort effects have been reviewed and tested by the U.K.
Actuarial Profession (Government Actuary’s Department, 2001; Continuous
Mortality Investigation Bureau, 2002, 2004, 2005, 2006, 2007) in response to
the observation of clear cohort patterns.

For any forecast, accuracy is a main goal. However, relatively little is
known about the performance of different forecasting methods. While
interest in the accuracy of forecasts has increased, the main focus has been
the ex-post estimation of the uncertainty of current forecasts rather than the
relative performance of a particular method. Findings that forecast accuracy
depends on the particular circumstances of the period or population
(Murphy, 1990; Keyfitz, 1991; Murphy, 1995; Keilman, 1997; Booth et al.,
2005) do not inform method choice. Existing comparative evaluations of
forecast accuracy (Booth et al., 2005; Booth et al., 2006) are limited to a
single forecast jump-off date, and more extensive evaluations are required.

The correct estimation of forecast uncertainty is also an important
goal. Statistical methods, including bootstrapping and simulation, have
been increasingly applied to incorporate different sources of forecast
error and to improve their estimation. The quantification of uncertainty
due to model misspecification remains a more difficult task and an
important area for future research. Actuarial applications have
highlighted the importance of allowing for all sources of uncertainty in
estimating life insurance and pension liabilities (e.g. Olivieri, 2001;
Pitacco, 2004).

Forecasting knowledge has been substantially increased in recent decades
through the high level of research activity and ensuing debates. This has been
assisted by improved access to high-quality data through the construction of
databases (e.g. the Human Mortality Database, http://www.mortality.org/)
and the development of specialised mortality forecasting software using R as
the common programming language. Hyndman, Booth, Tickle and
Maindonald have developed and made available an R software package
which includes modelling and forecasting using Lee^Carter and its
variants and Hyndman-Ullah (http://www.robjhyndman.com). The CMIB
has also developed illustrative software to fit the p-spline and Lee^Carter
models and to generate scenarios based on them; this is available as an Excel
add-in based on R programming (http://www.actuaries.org.uk/knowledge/
cmi/cmi ___ wp/tables ___ software). The potential for future progress in mortality
forecasting is significantly enhanced by the accessibility of these tools.

Substantial progress has been made since 1980 in developing new
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methods for forecasting mortality. A significant challenge ahead is to
evaluate these existing methods in a wide variety of settings through
comparative research, focussing on both the accuracy of the point forecast
and its uncertainty. It must be noted that research in mortality forecasting
has benefited from the relative stability of the mortality process and its rates
of change. An examination of the effects of instability on forecast
performance is thus necessary in order to completely evaluate the methods.

In conclusion, mortality forecasting has gained in importance in recent
decades at a time when life expectancy has increased with unexpected
rapidity and exceeded previously-held limits (Oeppen & Vaupel, 2002). Such
increases have provided the impetus for the improvement of mortality
forecasting methods. This challenge has been addressed by demographers,
statisticians and actuaries, if rather belatedly by official agencies and the
actuarial profession. In the face of continuing increases in life expectancy,
use of the best available methods is now imperative, particularly by actuaries
practising in the insurance and financial risk industry where the
ramifications of inaccurate forecasting are acute.
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