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This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed

interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles.

Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers

and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns.

A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion

is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering

and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including

reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D

auto-regressive model further improves scattering resolution and correctly differentiates between

strongly and weakly correlated residual errors. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4789930]

PACS number(s): 43.30.Hw, 43.30.Pc, 43.60.Pt, 43.30.Ma [ZHM] Pages: 1347–1357

I. INTRODUCTION

Ocean acoustic reverberation modeling and sonar

performance predictions in shallow water require estimates

of scattering parameters defining seafloor roughness. Direct

measurement of roughness parameters (e.g., stereoscopic

photography or laser imaging) is time consuming and expen-

sive. Hence, the estimation of in situ seabed roughness from

remote acoustic measurements is a problem of practical

interest but has received little attention to date. This paper

develops a trans-dimensional (trans-D) Bayesian inversion

approach to estimate seabed scattering parameters and a

layered geoacoustic model, as well as data error parameters,

from multi-frequency acoustic scattering and/or reflection

data. The approach is applied in simulations based on exist-

ing measurement techniques to evaluate the ability of the

two data types, inverted separately and jointly, to resolve the

seabed parameters.

Simulations represent an important initial step in devel-

oping effective measurement/inversion approaches in that

the true model is known and may be used to evaluate param-

eter estimates and uncertainties. Further, error processes can

be controlled such that the physics of the acoustic measure-

ments can be examined within specific assumptions (such as

lateral homogeneity), without potential complicating factors

which may arise in specific experiments. Realistic simula-

tions presented here are based on a geoacoustic test bed

located on the Malta Plateau in the Straits of Sicily. In

particular, the true geoacoustic profile contains layering at a

variety of scales, including fine scales below the resolution

of the acoustic data. A flat basement layer (limestone) which

supports shear waves is included. Errors include correlations,

with both variance and covariance varying with frequency

and, for reflection data, with angle.

Bayesian inversion estimates model parameters and

uncertainties by quantifying the information content of data

and prior, and has been applied widely to geoacoustic inverse

problems.1–7 Bayesian inversion is based on formulating the

posterior probability density (PPD) which combines both

data information, expressed in terms of a likelihood function,

and prior information.1,8–11 Joint inversion of independent

data sets (e.g., scattering and reflection data) is accommo-

dated naturally by formulating a joint likelihood function

as the product of the individual likelihoods. An appropriate

model parameterization (e.g., number of seabed layers

resolved by the data) is generally not known in practice; this

is addressed here by trans-D inversion12,13 which provides

an effective automated approach to Bayesian model selec-

tion2,14–17 that has been applied to several problems in

geophysics18–21 and geoacoustics.22,23 Trans-D inversion

samples a set of models (which may vary in dimension)

according to the support by the data and prior. In particular,

partition modeling and the reversible jump Markov chain

Monte Carlo (rjMCMC) algorithm are applied here for trans-

D sampling over the number of seabed layers.22 Including

elastic (shear) parameters in the basement makes this layer

distinct from the overlying (fluid) sediment layers. Treating

layers with different numbers or types of parameters has not

been considered previously in trans-D inversion, and requires

a novel formulation of the partition prior, which is developed

here. Frequency-dependent residual error statistics, including

variance and first-order auto-regressive [AR(1)] parameters

to model covariance23,24 of unevenly spaced data, are also

sampled (marginalized) in the inversion. The AR(1) coeffi-

cients are estimated by trans-D inversion providing an
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efficient data-driven process to include AR(1) parameters at

frequencies where they are required (typically low frequen-

cies) but to omit them where not required to avoid over- or

under-parameterizing the error model. The combination of

trans-D sampling and hierarchical error modeling provides a

rigorous and general inversion approach.

Seabed acoustic scattering data are dependent on both

the two-dimensional (2D) seafloor roughness and seabed

reflectivity, which is itself dependent on the sub-bottom

geoacoustic profile. Since little quantitative work on scatter-

ing inversion has been reported, it is of interest to examine

to what extent realistic scattering data can resolve roughness

parameters and geoacoustic profiles, with resolution charac-

terized here in terms of marginal probability distributions.

Possible improvements in parameter resolution in joint scat-

tering/reflection inversion over scattering-only inversion are

also of interest. Joint inversion with trans-D error modeling

is shown to improve the resolution of scattering parameters,

even though the reflection data provide no scattering

information, by reducing the uncertainty of geoacoustic

parameters.

II. FORWARD MODELS AND DATA

Two forward models are used here to compute mono-

static scattering and spherical-wave reflection data, and are

applied to a seabed model consisting of a layered half-space

as shown in Fig. 1. The top (zeroth) layer is seawater and is

assumed to be homogeneous and isotropic with known prop-

erties. The seabed is a series of j flat homogeneous layers,

terminated by a homogeneous semi-infinite basement (j þ 1

layers with j interfaces in all). Layer properties include inter-

face depth z (the lower boundary of a layer), sound velocity

c, density q, and attenuation a. As there are j þ 1 layers and

only j interfaces, the jth layer does not have an associated

interface depth; the depth of the interface between the jth
layer and the basement is denoted zb and considered an at-

tribute of the basement (an important distinction, addressed

in Sec. IV). In addition, the basement is assumed to be elas-

tic with a shear-wave velocity cs and attenuation as. The

only difference between the seabed model for scattering and

reflection is that the water-sediment interface is assumed to

be rough for scattering and planar for reflection.

The parameterization and forward models for calculat-

ing simulated data are consistent with measurements which

have been made at the Malta plateau.25,26 The geoacoustic

parameters of the true model are chosen to represent sand

layers over a limestone basement. The layering structure of

the true geoacoustic model, shown in Fig. 2, is more compli-

cated than the data can resolve (�100 layers) to allow a

meaningful evaluation of the trans-D procedure (Fig. 2 also

includes the optimal profile for an inversion discussed later).

The true shear-wave velocity and attenuation of the base-

ment are cs¼ 2200 m/s and as¼ 0.1 dB/m/kHz.

In addition to the geoacoustic model it is also necessary

to define the residual-error distribution for both scattering

and reflection data. The data residuals are assumed to be

multivariate Gaussian distributed (as observed for measured

reflection-coefficient data5,22,27). Residuals at different fre-

quencies are assumed to be independent; however, residuals

at the same frequency are not assumed independent over

angle.

A. Scattering kernel

The scattering kernel28 considered here defines the

mono-static acoustic backscatter (as a function of angle h
and frequency f ) from a single rough interface between two

fluid layers (water and first sediment layer) over a layered

medium and is given by

r0ðh; f Þ ¼ k4
0j1þRðh; f Þj4

4
Wð2KÞ

� 1� k1

k0

� �2 q0

q1

þ 1� q0

q1

� ������
� cos2hþ q0

q1

sin2h

� �
1�Rðh; f Þ
1þRðh; f Þ

� �2
�����
2

; (1)

where k0 and k1 are the wavenumbers in the water and first

sediment layers, and R is the plane-wave reflection coeffi-

cient for the jþ 1 layer seabed, which is evaluated recur-

sively and accounts for the elastic basement.29 In Eq. (1) W

FIG. 1. Schematic diagram of the seabed model. Parameters are defined in

the text.

FIG. 2. (Color online) True geoacoustic profile (solid line) and MAP model

profile (dotted line) for trans-D auto-regressive inversion (sound velocities

shown at two scales).
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defines the 2D spatial-roughness power spectrum of the

water-sediment interface given by

WðKÞ ¼ w2ðjKj2 þ K2
0Þ
�c=2; (2)

where c, w2, and K0 are known as the spectral exponent,

spectral strength, and spectral cutoff, respectively, and K is

the transverse component of the wave vector with magnitude

|K| ¼ k0 cos h. Backscatter is considered in decibels

rðh; f Þ ¼ 10 log10r
0ðh; f Þ ðdBÞ: (3)

The scattering errors are assumed to be correlated such

that the correlation is non-negative and decreases exponen-

tially with angular separation. To avoid the computational

expense of repeatedly taking inverses and determinants of

the covariance matrix in the inversion (see Sec. III), the

residual correlation structure is modeled using a first-order

AR(1) process23,24,30 given by

ri ¼ aDhi
s ri�1 þ ei; (4)

where the ri’s are the residuals (indexed over angle), as is the

AR(1) coefficient, Dhi ¼ hi� hi�1, and ei are the total resid-

uals, which are identical independently-distributed (IID)

Gaussian random variables with zero mean and standard

deviation Ss [frequency subscripts in Eq. (4) are omitted for

simplicity].

For the simulated data (Fig. 3), the true scattering

parameter values are selected to be consistent with measure-

ments:31 c¼ 3.15, w2¼ 0.002, and K0¼ 1.5 1/m. Simulated

backscatter data are generated at frequencies of 600 to

3600 Hz and angles of 6� to 19� (the angular range is limited

to reduce the effects of sub-surface scatterers). Data errors

are Gaussian at each frequency and the AR(1) parameters

decrease with frequency (as often observed) such that only

errors at 600 and 900 Hz are significantly correlated. The

standard deviations and AR(1) parameters of the true model

are listed in Table I.

B. Spherical-wave reflection coefficient

Reflection-coefficient data are modeled here using a

spherical-wave reflection model to accommodate significant

penetration depths.32 Spherical-wave reflection coefficients

C� for an arbitrary N-layer half-space are computed as a

superposition of plane waves (the Sommerfeld integral)33

C�ðh; f Þ ¼
ik0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

expðik0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

Þ

�
ðp=2�i1

0

J0ðk0x cos h0Þexpðik0z sin h0Þ

� Rðh0; f Þ cos h0 dh0: (5)

In Eq. (5) x and z are the horizontal offset (range) and verti-

cal offset, respectively, and J0 is the zeroth-order Bessel

function. The integral is computed numerically using Simp-

son’s rule.34 The complex exponential and Bessel function

are environment independent, and are pre-computed for an

array of argument values.

The covariance structure of the reflection data is similar

to that of the scattering data

ri ¼ aDhi
r ri�1 þ ei; (6)

where the ri’s are the reflection residuals and ar is the AR(1)

parameter. However, in this case the ei’s are not IID in

that their assigned standard deviations change at an angle

FIG. 3. (Color online) Simulated noisy scattering (left) and reflection-coefficient (right) data (�) and marginal predicted data from joint trans-D auto-regressive

inversion (shading). Solid lines indicate noise-free simulated data.
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hC¼ 50� (approximately the critical angle), since errors

commonly change structure at the critical angle. Thus, if hi

< hC, a low-angle standard deviation SL
r is used, otherwise a

high-angle value SH
r is used. The data are third-octave band

averages from 630 to 4000 Hz with an angular range of 20�

to 85� (non-uniformly spaced as obtained in practical meas-

urements26). Errors are Gaussian and correlations decrease

with frequency (Table I, Fig. 3)

III. BAYESIAN INVERSION

This section provides a brief overview of Bayesian

inference as applied to trans-D geoacoustic inversion; for a

more complete description of the approach, see Refs. 18, 19,

21, and 22. In Bayesian inversion, model parameters are con-

sidered random variables with distributions that evolve, with

the addition of data, from the prior distribution to the PPD.

Let d be the vector of N observed data (comprising the scat-

tering and/or reflection measurements at multiple frequen-

cies and angles) and let J be a countable set (indexed by j)
specifying the choice of parameterization (e.g., number

of seabed sediment layers), with a set of parameter values

denoted mj (comprising all unknown roughness, geoacoustic,

and error parameters).

Using Bayes’ rule the trans-D PPD can be written as12

Pðj;mjjdÞ ¼
pðmjÞLðmjÞ

Z

¼ PðjÞPðmjjjÞPðdjj;mjÞP
j02J

Ð
Pðj0ÞPðm0j0 jj0Þdm0j0Pðdjj0;m0j0 Þdm0j0

;

(7)

where p(mj) ¼ P(j)P(mj|j) is the prior distribution of j and

mj, L (mj) ¼ P (d|j,mj) is the likelihood of the parameter

vector [P(d|j,mj) interpreted as a function of mj for a fixed

d], and Z is the total evidence of the ensemble of models.

Here the data residuals are assumed to be Gaussian distrib-

uted, leading to the likelihood function

LðmjÞ ¼
1

ð2pÞN=2jCdj1=2
exp � 1

2
½d� dðmjÞ � dðaÞ�>

�

� C�1
d ½d� dðmjÞ � dðaÞ�

�
; (8)

where Cd is a diagonal covariance matrix with ith diagonal

element equal to the variance of the ith total residual [ei

from Eqs. (4) and (6) for scattering and reflection data,

respectively].24 In Eq. (8) the vector d(mj) represents the

data predicted by the forward models [Eqs. (3) and (5) for

scattering and reflection data, respectively] for parameters

mj. The vector d(a) represents the AR(1) process; i.e., for a

given data type and frequency di(a) ¼ aDhi ri�1 (mj), where

r(mj) ¼ d 2 d(mj).

The trans-D PPD is sampled using the rjMCMC algo-

rithm, which creates a Markov chain that converges to the

PPD.9 Let mj be the current Markov chain state and Q(m0j0
|mj) be the proposal distribution by which a new state m0j0 is

generated. The proposed model can represent a perturbation of

the parameters of mj or a change (jump) in dimension of mj,

i.e., j0 6¼ j. The proposed state m0j0 is accepted with probability

A ¼ min 1;
pðm0j0 ÞLðm0j0 ÞQðmjjm0j0 Þ
pðmjÞLðmjÞQðm0j0 jmjÞ

jJj
" #

; (9)

where J is the Jacobian of the diffeomorphism between the

parameter spaces associated with mj and m0j0. For the com-

mon case of fixed-dimensional (fixed-D) inversion with uni-

form prior and symmetric proposal, Eq. (9) simplifies to the

likelihood ratio

A ¼ min 1;
Lðm0j0 Þ
LðmjÞ

� �
: (10)

IV. PRIOR INFORMATION

In denoting the parameterization of a model as mj,

the subscript indicates that the number of parameters of the

model depends on j, the number of sediment layers. The

model vector is a list of parameter vectors, mj ¼ (j, zj, b, R,

vj, Ss, Sr, as, ar), where zj represents the sediment partition; b

represents the basement parameters cb, ab, cs, as, and qb; R
represents the scattering parameters c, w2, and K0; vj contains

the three vectors of sediment parameters cj, qj, and aj; Ss and

Sr ¼ (SL
r , SH

r ) contain the standard deviations for scattering

and reflection-coefficient data, respectively; and as and ar con-

tain the AR(1) parameters for scattering and reflection data.

The prior distribution P(mj) can be written as a hierarch-

ical distribution P(mj)¼P(zj|j, b)P(vj|j)P(R)P(b)P(j)P(Ss)

�P(Sr)P(as)P(ar). The independent distributions are assumed

to be uniform over some interval of width D* ¼ *U � *L

(* represents an arbitrary parameter); the upper and lower pa-

rameter limits used here are given in Table II. The conditional

prior distribution for the physical parameters of the sediment

layers is thus P(vj|j) ¼ (DcDaDq)�j when the parameters are

within the prior bound and zero otherwise. A collection of

laboratory and in situ measurements35,36 is used to create joint

priors for q and c for both the sediment and basement layers,

as shown in Fig. 4.

The interpretation of the conditional prior distribution

for the partition P(zj|j, b) is more complicated and requires a

novel formulation developed here. Let z0j ¼ zj/zb, then P(z0j |j,
b) is assumed to be a Dirichlet distribution, P(z0j|j, b)

¼ Dir(z0j|p1,p2,…, pj), where p1,…, pj are the Dirichlet pa-

rameters. The Dirichlet distribution is a generalization of the

binomial distribution that describes the probability of the

TABLE I. True residual error parameters for scattering (top) and reflection

(bottom) data.

Frequency (Hz) 600 900 1200 1800 2400 3600

Ss (dB) 1.5 1.5 1.5 2.5 1.5 1.5

as 0.6 0.5 0.3 0.2 0.1 0

Frequency (Hz) 630 800 1000 1600 2500 4000

SL
r 0.1 0.1 0.1 0.1 0.05 0.05

SH
r 0.03 0.03 0.05 0.03 0.03 0.03

ar 0.7 0.6 0.5 0.2 0.1 0
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partition of one unit into j parts.8 The distribution P(zj|j, b) is

found by making a variable transform of z0j to zj. In addition,

it is assumed that all possible partitions are equally probable,

which is equivalent to assuming that all Dirichlet parameters

are unity. Thus P(zj|j, b) ¼ (j � 1)!z
�ðj�1Þ
b .

In other partition inversion work9,19,20,22 an alternative

method of describing the prior, referred to as the “grid trick,”

is used. The grid trick assumes a discrete set of possible par-

tition locations corresponding to an underlying grid, such

that P(zl|l) ¼ (l!(G � l)!)/G!, where G is the number of grid

points and l is the number of layers (because the interface

depth of the basement is interpreted differently in the two

methods the definition of the number of layers is also differ-

ent, l ¼ j � 1). It is then found that the number of grid points

cancels out in the acceptance probability, Eq. (9), and conse-

quently an explicit value for G is not required. However the

grid trick cannot be used here since the elastic basement is

distinct from overlying fluid layers. The Dirichlet prior

developed above precludes the need for a fictitious grid, and

even if the maximum depth of the partition is known, it has

the advantage that it allows for the prior (and consequently

the posterior) probability of a model to be evaluated explic-

itly (not normally possible with the grid trick). This is advan-

tageous in application which require selecting a “best” (i.e.,

most-probable) model.

V. SAMPLING SCHEME

In trans-D inversion, the proposal distribution Q
randomly selects between three types of moves at each step:

Perturb, QP; birth, QB; and death, QD. If QP is selected, all

parameters in the model are updated. If QB is selected, an

interface is proposed at a random depth, and the geoacoustic

parameters of the proposed layer are defined by perturbing

the previous values at that depth. Finally, if QD is selected, a

randomly-chosen sediment layer is removed. The acceptance

probability, Eq. (9), can thus be rewritten as

A ¼ min 1;
pðm0j0 Þ
pðmjÞ

Lðm0j0 Þ
LðmjÞ

�

�
QPðmjjm0j0 Þ þ QBðmjjm0j0 Þ þ QDðmjjm0j0 Þ
QPðm0j0 jmjÞ þ QBðm0j0 jmjÞ þ QDðm0j0 jmjÞ

#
: (11)

Consider first the perturbation step. Here all parameters are

updated sequentially using a symmetric proposal distribution

so the proposal ratio is unity. Since the prior distribution of

interface depths for any mj is not uniform, even given j, the

priors do not generally cancel, and the prior ratio must be

evaluated. The prior ratio for a perturbation move is

pðm0j0 Þ
pðmjÞ

� �
P

¼ zb

z0b

� �ðj�1Þ
; (12)

and the acceptance probability for a perturbation step can be

written as

AP ¼ min 1;
zb

z0b

� �ðj�1Þ Lðm0jÞ
LðmjÞ

" #
: (13)

Both the prior and proposal ratios for the birth step do not can-

cel and must be evaluated. The prior ratio for the birth step is

pðm0j0 Þ
pðmjÞ

� �
B

¼ Hc

DcDaDq
j

zb

� �
; (14)

where Hc is the product of the uniform priors for q and c di-

vided by the total area of their joint prior. The proposal ratio

for the birth step is

QDðmjjm0j0Þ
QBðm0j0 jmjÞ

 !
B

¼ zb

j
Qnðv0jvÞ; (15)

where v0 and v are vectors of geoacoustic parameters for the

new layer and the previous values at the depth of the pro-

posed interface, and here Qn is a multi-variate Gaussian dis-

tribution centered at v. The acceptance probability for the

birth step is

AB ¼ min 1;
Hc

DcDaDq
1

Qnðv0jvÞ
Lðm0j0 Þ
LðmjÞ

� �
: (16)

The acceptance probability of the death step can be found in

a similar way to be

AD ¼ min 1;
ðDcDaDqÞ

Hc
Qnðv0jvÞ

Lðm0j0Þ
LðmjÞ

� �
: (17)

In addition to inverting for the geoacoustic parameters

trans-dimensionally the same framework can be applied to

TABLE II. Lower and upper prior bounds (LB and UB) for basement, sedi-

ment, and scattering parameters.

Basement Sediment

Parameter LB UB Parameter LB UB

zb (m) 0 10 c (m/s) 1450 2100

qb (g/cm3) 1.20 3.00 a (dB/m/kHz) 0 1

cb (m/s) 1500 6000 q (g/cm3) 1.20 2.25

ab (dB/m/kHz) 0 1 Scattering

cs (m/s) 0 cb/
ffiffiffi
2
p

Parameter LB UB

as (dB/m/kHz) 0 1 c 2 4

w2 10�5 10

K0 (1/m) 10�5 32

FIG. 4. (Color online) Joint prior bounds for c and q for (a) sediments and

(b) basement. Empirical (Refs. 35 and 36) data are plotted as circles. The

gray rectangle in (b) shows the extent of the sediment prior in the basement.
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the AR(1) parameters such that the parameters can be added

or removed to avoid over- or under-parameterizing the error

model. There are again three moves: Birth, death, and pertur-

bation, with acceptance probabilities (aB, aD, and aP) and

proposal distributions (qB, qD, and qP), respectively. To

describe the trans-D AR(1) procedure, consider a case with

only one AR(1) parameter and a fixed number of other

model parameters. The model subscript is taken to refer to

the status of the AR(1) parameter with m0 representing a

model without the AR(1) and m1 representing a model with

the AR(1) parameter. A model without the AR(1) parameter

always proposes a birth and the new value is sampled from

the prior distribution, qB ¼ p(m01|m0) ¼ Da�1. Conversely, a

model with the AR(1) parameter randomly proposes a death

or perturbation move: qD ¼ p(m00|m1) ¼ 0.5 and qP ¼ 0.5

~qPðm01jm1Þ; where ~qP is a Gaussian proposal distribution

centered at the current AR(1) value. Using these definitions

the acceptance probability for birth, death, and perturbation

moves, respectively, are

aB ¼ min 1;
1

2

Lðm01Þ
Lðm0Þ

� �
; (18)

aD ¼ min 1; 2
Lðm00Þ
Lðm1Þ

� �
; (19)

aP ¼ min 1;
Lðm01Þ
Lðm1Þ

� �
: (20)

The convergence of rjMCMC algorithms can be slow.

To improve mixing (speed of convergence), population

methods can be used. These are based on drawing samples

from the product of multiple distributions, at least one of

which is the PPD.23,37 Markov chains are allowed not only

to wander within a given distribution but also to interchange

(swap) with chains in other distributions.

The choice of additional distributions used here is

PTðmjÞ ¼
pðmjÞLðmjÞ1=TP

j02J
Ð
Mpðm0j0ÞLðm0j0 Þ

1=Tdm0j0
; (21)

where T is known as the sampling temperature. Population-

based sampling using this collection of distributions is called

parallel tempering.38,39 Equation (21) can be interpreted as

the standard PPD with the likelihood raised to the power 1/T.
If T > 1 the significance of the data relative to the prior is

diminished; if T < 1 the significance of the data is exagger-

ated. Models selected from distributions with T > 1 tend to

under-fit the data and have j values lower than those for mod-

els sampled from the PPD; models sampled from distributions

with T < 1 tend to over-fit the data and have higher j values.

The acceptance probability for a parallel tempering

swap move is37

AS ¼ min 1;
Lðm0j0Þ
LðmjÞ

� �ð1=T�1=T0Þ" #
: (22)

Equation (22) assumes that swapping partners are selected

such that the probability of one chain picking another chain

as its partner is the same as the reverse; if this condition is

met, any system for selecting partners is allowed. Inversions

in this paper were run in parallel on 31 groups each consist-

ing of 10 Markov chains. Only Markov chains within the

same group interact. Each group had one chain with T ¼ 1,

two chains with T < 1, and seven chains with T > 1. The T
values form a geometric progression Ti þ 1/Ti ¼ 1.175.

VI. INVERSION RESULTS

Three inversions of the simulated data are considered

here. The first uses only the scattering data, the second uses

both scattering and reflection data, and the third uses both

data sets with trans-D sampling of the AR(1) parameters.

These inversions are referred to as scattering-only, joint, and

joint trans-dimensional auto-regressive (TDAR), respec-

tively. In each case, approximately 2 000 000 samples were

collected at T¼ 1 and �400 000 samples from the start of the

chains were deleted (burn-in). The remaining samples were

chain thinned by a factor of 8 to reduce the autocorrelation.

A. PPD

The marginal posterior distributions of the scattering

parameters for the three inversions are shown in Fig. 5. The

marginals for the scattering-only inversion for c and K0 are

not well determined within their prior bounds; the data are

unable to differentiate c from the prior bound of 4 or K0

from 0. The joint inversion improves the resolution of c; the

marginal now has a clear mode centered near the true value.

However, the joint inversion appears to slightly degrade the

resolution of w2. The TDAR inversion further improves the

resolution of c. Table III gives the standard deviation about

the true solution for scattering parameters; the TDAR inver-

sion provides the highest accuracy for all parameters.

Figures 6 and 7 show the marginal profiles for geoacous-

tic parameters from scattering-only and TDAR inversions,

respectively (the joint-inversion profile is indistinguishable

FIG. 5. (Color online) Marginal posterior distributions of the scattering

parameters for top: Scattering-only inversion; middle: Joint inversion; bot-

tom: Joint TDAR inversion. Vertical lines indicate the true values.
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from the TDAR profile). For the scattering-only inversion,

the near-surface velocity and density values are well deter-

mined and there is an indication of the positive gradient over

the top�1 m. Below 3 -m depth the scattering data are unable

to resolve any structure. High attenuation is indicated to

0.5 m depth; below this there is essentially no information.

The joint inversions (Fig. 7) have much smaller poste-

rior uncertainty than the scattering-only inversion, particu-

larly at depth. The joint inversions resolve c and q for the

entire profile depth; a is resolved to the depth of the base-

ment (6 m). In particular, the joint inversions follow the gra-

dient in c from 0 to 0.9 m, and find the discontinuities at 3

and 6 m. Velocity uncertainties are small (relative to their

prior bounds). The density and attenuation profiles agree

well with the true model but have larger uncertainties than

the velocity profile. The joint inversions resolve the base-

ment interface depth but not the slight gradient in c from 5

to 6 m depth.

The marginal posterior distributions of the basement

parameters for the joint TDAR inversion are shown in Fig. 8

(scattering-only inversion results are not shown as parame-

ters are unresolved). The shear-wave velocity is well deter-

mined (marginal width �75 m/s) with significant probability

at the true value. The compressional-wave velocity is less

well determined (marginal width �800 m/s) but does also

have significant probability at the true value. Since high cb

and cs values are resolved, the data clearly identify the base-

ment as limestone rather than sediment. The better resolution

of cs than cb results from the smaller contrast between the

sediment sound velocity (cj) and cs than between cj and cb.

In cases where the ratio between cj and cs is greater than

between cj and cb, cb is observed to be better resolved than

cs.
11 An inversion that treated the basement as fluid, rather

than an elastic solid, strongly biased the compressional-wave

velocity and density estimates (not shown).

The results so far are presented in terms of posterior

marginal distributions; however, some applications may

require an estimate of the optimal model. Here the maximum

a posteriori (MAP) model is used. This also highlights the

significance of being able to explicitly evaluate the prior dis-

tribution as such an estimate is not possible otherwise. The

MAP geoacoustic profile for the TDAR inversion is given in

TABLE III. Standard deviation about true values for scattering parameters.

Inversion c w2 K0 (1/m)

Scattering-only 0.562 0.0139 1.278

Joint 0.465 0.0188 1.655

TDAR 0.342 0.0120 1.277

FIG. 6. (Color online) Marginal posterior geoacoustic profiles from

scattering-only inversion (sound velocities shown at two scales). Solid lines

indicate true profiles. Probability values are normalized independently for

each depth for display purposes.

FIG. 7. (Color online) Marginal posterior geoacoustic profiles from joint

TDAR inversion (joint inversion results are essentially identical). Solid lines

indicate true profiles. Probability values are normalized independently for

each depth for display purposes.

FIG. 8. (Color online) Marginal posterior distributions of basement geoa-

coustic parameters from joint TDAR inversion. Vertical lines indicate true

values.
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Fig. 2; all seabed parameters are given in Table IV. The

MAP scattering parameters are close to their true values.

Figure 2 shows that the MAP seabed sound-speed profile

closely follows the true model, although with less structure

(fewer layers) than the true model. The MAP density and

attenuation profiles are generally good representations over

the sediment layers but differ more from the true model in

the basement (where the marginal probability profiles in

Fig. 7 indicates larger uncertainties). The MAP model has

interfaces very close to both of the large discontinuities in

the true profile.

B. Data-fit

The fit to the scattering data is shown in terms of mar-

ginal predicted data in Fig. 9 for the scattering-only inver-

sion and Fig. 3 for the TDAR inversion. These figures also

show the observed (noisy) data which were inverted and the

noise-free data. The agreement between predicted and noise-

free data is good. The introduction of the reflection data

reduces the variance of the predicted data about the noise-

free data at all frequencies. In addition, the TDAR inversion

further reduces the variance at high frequencies. These com-

parisons are, of course, not possible in practical cases when

the noise-free data are unknown. In such cases it is natural to

consider the data residuals.

The standardized total residuals (ê) are defined as the

total residuals divided by their standard deviations; i.e.,

êi ¼
ei

Si
¼ di � diðmjÞ � diðaÞ

Si
; (23)

where the data type and frequency subscripts are omitted for

clarity. The standardized total residuals for the scattering

and reflection data for the TDAR inversion are shown in

Fig. 10. The scattering residuals appear stationary, uncorre-

lated, and unbiased. The residuals for the reflection data also

appear homostochastic although there appears to be some

residual structure at 630 and 1000 Hz. This is not unexpected

as the true geoacoustic profile was selected so it could not be

fully resolved by the inversion. Such theory error (the true

model is not in the parameter space of the inversion) com-

monly results in correlated residuals.16,17,24

Figures 11 and 12 show the marginal distributions for

the residual standard deviation and AR(1) parameters from

the joint inversion. To evaluate whether residuals with sig-

nificant correlations were correctly identified by the joint

inversion, a location test is applied to all AR(1) parame-

ters.24 The true distributions of the posterior means of

the AR(1) parameters under the null hypotheses (H0: as ¼ ar

¼ 0) are not known analytically; however, they can be

approximated using Monte Carlo simulation. This simulation

consists of drawing sets of uncorrelated Gaussian random

variables and inverting for the AR(1) model [Eq. (4) or (6)].

The distribution (over many random draws) of the sampled

means is used as the null distribution. The location tests

quantifies evidence (in terms of a p value) against the null

hypothesis H0 that the AR(1) sample means are drawn from

the null distribution. The results of the location tests are

given in Table V. A p value >0.05 is interpreted as no sig-

nificant evidence against H0, i.e., no evidence the residuals

are serially correlated. A p value <0.05 is interpreted as sig-

nificant evidence against H0, indicating the residuals are cor-

related. The inversion procedure correctly identifies the

strongly correlated residuals (as, ar � 0.5) from the weakly

correlated ones (as, ar � 0.1). Moderately-correlated resid-

uals (0.2 � as, ar � 0.3) are not identified.

Generally, AR(1) parameters found to be insignificant

could be excluded to avoid over-parameterizing the error

model and the inversion repeated. However, this approach is

not entirely satisfactory as removing AR(1) parameters is

equivalent to fixing their value at zero, and there is insufficient

FIG. 9. (Color online) Simulated noisy scattering data (8) and marginal pre-

dicted data (shading) from scattering-only inversion. Solid lines indicate

noise-free simulated data.

TABLE IV. The scattering and geoacoustic parameter values of m̂ j, the

model with maximum posterior probability for the TDAR inversion.

Sediment

z (m) c (m/s) q (g/cm3) a (dB/m/kHz)

0.124 1530 1.330 0.8002

0.355 1540 1.488 0.6573

0.764 1573 1.568 0.4793

3.048 1612 1.472 0.1473

1684 1.733 0.1026

Basement Scattering

zb (m) 5.984 c 3.126

cb (m/s) 3662 w2 0.0017

cs (m/s) 2209 K0 (1/m) 1.507

q (g/cm3) 2.165

ab (dB/m/kHz) 0.6218

as (dB/m/kHz) 0.0296
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evidence to make such a strong assumption. The TDAR

inversion samples AR(1) parameters according to their sup-

port by the data and scales well with the number of parame-

ters (unlike hypothesis tests). The uncertainty resulting from

including/excluding AR(1) parameters is accounted for in the

PPD. The TDAR inversion can also be used to evaluate the

necessity of the AR(1) parameters; Table VI gives the propor-

tion of samples with AR(1) parameters for both the scattering

and reflection data. The results of the TDAR inversion are

similar to the location tests and correctly differentiate the

strongly and weakly correlated residuals at the various

frequencies.

FIG. 10. (Color online) Marginal standardized total residuals, ê, from joint TDAR inversion of scattering data (left) and reflection-coefficient data (right).

FIG. 11. (Color online) Marginal posterior distributions of the scattering

data standard errors Ss for the joint inversion. Vertical lines indicate true

values.

FIG. 12. (Color online) Marginal posterior distributions of the scattering

data AR(1) parameters as for the joint inversion. Vertical lines indicate true

values.
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VII. SUMMARY AND CONCLUSIONS

The rigorous estimation of in situ seabed scattering

(roughness) parameters and their uncertainties from remote

acoustic measurements is a problem of practical interest which

has received little attention to date. This paper developed a

Bayesian inversion approach to examine resolving a power-

law representation of the 2D spatial roughness spectrum para-

meterized in terms of the spectral strength, exponent, and cut-

off. The primary measurement of interest is the backscatter

strength as a function of angle and frequency; however, since

the scattering kernel also depends on the geoacoustic profile,

the improvement in scattering spectral resolution from joint

inversion of (simulated) backscatter and spherical-wave reflec-

tion-coefficient data was also examined and quantified. Basing

initial inversion studies such as this on (realistic) simulations

allows comparisons of results with the true model and control

over error processes such that the information content of the

physics of the acoustic measurements can be quantified. It is,

of course, important to follow such studies with inversions of

measured data, which represents future work.

The simulations considered here are based on observed

scattering parameters and a realistic geoacoustic profile

consisting of a large number of sediment layers (�100 layers

over 6 m) with fine structure below the resolution limit of the

data. An elastic half-space with compressional and shear

properties representative of limestone comprised the base-

ment. The number of sediment layers is unknown in the

inversion and treated with a trans-D approach which samples

over differing numbers of layers according to their support

by the data and prior.

Realistic errors were added to the scattering and

(unevenly-spaced) reflection data, including variances which

changed with frequency (and near the critical angle for

reflection data) and serial correlations which decreased

with frequency such that only the low-frequency errors were

significantly correlated. The error statistics were treated as

unknown in the inversion and parameterized in terms of var-

iances and AR(1) parameters. Given that error correlations

were significant at only some frequencies, to avoid either

over- or under-parameterizing the error model in the inver-

sion, a new trans-D sampling approach was developed for

the AR(1) parameters.

To treat a geoacoustic profile in which the number of

parameters was not constant with depth (i.e., fluid sediment

layers over an elastic basement) required developing a new

trans-D partition prior distribution which is not based on a

fictitious grid (the standard approach). This enhanced formu-

lation also allows the explicit evaluation of the prior and

posterior probabilities (rather than just relative probabilities).

In addition, the prior used here includes empirical informa-

tion on the relationship between compressional-wave veloc-

ity and density in sediments and limestone. This decreases

the total volume of the parameter space without excluding

plausible models, which is important in trans-D inversion

where parsimony is based on the trade-off between data

misfit and prior volume.

Three cases were considered: Scattering-only inversion,

joint scattering and reflection inversion, and joint inversion

with the trans-D auto-regressive error model. The ability of

the inversions to resolve the model was evaluated using

marginal posterior probability distributions and profiles. The

resolution of the scattering parameters (particularly the spec-

tral exponent) and geoacoustic parameters were improved by

the introduction of the reflection data. The scattering-only

inversion showed some sensitivity to the near surface geoa-

coustics; however, resolution decreased dramatically with

depth. Both joint inversions resolved the geoacoustics at all

depths. In the basement, the high shear-wave velocity was

well resolved (better than compressional-wave velocity),

highlighting the importance of including elasticity in an

inversion when required by the data.

Auto-regressive models were found to effectively

account for residual correlation in the scattering-only and

joint inversion. However, including AR(1) parameters at

all frequencies over-parameterized the error model and

increased the variance of scattering parameters. The trans-D

AR(1) scheme (i.e., the TDAR inversion) mitigated the loss

of PPD resolution while accounting appropriately for the

residual correlation at all frequencies.

The results in this paper indicate significant potential for

Bayesian inversion of acoustic data to determine seabed

scattering properties and uncertainties, particularly for joint

inversion of scattering and reflection data.
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