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Abstract

Although kernel measures of independence have been widely applied in machine
learning (notably in kernel ICA), there is as yet no method to determine whether
they have detected statistically significant dependence. We provide a novel test of
the independence hypothesis for one particular kernel independence measure, the
Hilbert-Schmidt independence criterion (HSIC). The resulting test costs O(m2),
wherem is the sample size. We demonstrate that this test outperforms established
contingency table and functional correlation-based tests, and that this advantage
is greater for multivariate data. Finally, we show the HSIC test also applies to
text (and to structured data more generally), for which no other independence test
presently exists.

1 Introduction

Kernel independencemeasures have been widely applied in recent machine learning literature, most
commonly in independent component analysis (ICA) [2, 11], but also in fitting graphical models [1]
and in feature selection [22]. One reason for their success is that these criteria have a zero expected
value if and only if the associated random variables are independent, when the kernels are universal
(in the sense of [23]). There is presently no way to tell whether the empirical estimates of these
dependence measures indicate a statistically significant dependence, however. In other words, we
are interested in the threshold an empirical kernel dependence estimate must exceed, before we can
dismiss with high probability the hypothesis that the underlying variables are independent.

Statistical tests of independence have been associated with a broad variety of dependence measures.
Classical tests such as Spearman’s ρ and Kendall’s τ are widely applied, however they are not
guaranteed to detect all modes of dependence between the random variables. Contingency table-
based methods, and in particular the power-divergence family of test statistics [17], are the best
known general purpose tests of independence, but are limited to relatively low dimensions, since they
require a partitioning of the space in which each random variable resides. Characteristic function-
based tests [6, 13] have also been proposed, which are more general than kernel density-based tests
[19], although to our knowledge they have been used only to compare univariate random variables.

In this paper we present three main results: first, and most importantly, we show how to test whether
statistically significant dependence is detected by a particular kernel independence measure, the
Hilbert Schmidt independence criterion (HSIC, from [9]). That is, we provide a fast (O(m2) for
sample size m) and accurate means of obtaining a threshold which HSIC will only exceed with
small probability, when the underlying variables are independent. Second, we show the distribution
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of our empirical test statistic in the large sample limit can be straightforwardly parameterised in
terms of kernels on the data. Third, we apply our test to structured data (in this case, by establishing
the statistical dependence between a text and its translation). To our knowledge, ours is the first
independence test for structured data.

We begin our presentation in Section 2, with a short overview of cross-covariance operators be-
tween RKHSs and their Hilbert-Schmidt norms: the latter are used to define the Hilbert Schmidt
Independence Criterion (HSIC). In Section 3, we describe how to determine whether the depen-
dence returned via HSIC is statistically significant, by proposing a hypothesis test with HSIC as its
statistic. In particular, we show that this test can be parameterised using a combination of covariance
operator norms and norms of mean elements of the random variables in feature space. Finally, in
Section 4, we give our experimental results, both for testing dependence between random vectors
(which could be used for instance to verify convergence in independent subspace analysis [25]),
and for testing dependence between text and its translation. Software to implement the test may be
downloaded from http : //www.kyb.mpg.de/bs/people/arthur/indep.htm

2 Definitions and description of HSIC

Our problem setting is as follows:

Problem 1 Let Pxy be a Borel probability measure defined on a domain X × Y, and let Px and
Py be the respective marginal distributions on X and Y. Given an i.i.d sample Z := (X, Y ) =
{(x1, y1), . . . , (xm, ym)} of size m drawn independently and identically distributed according to
Pxy , does Pxy factorise as PxPy (equivalently, we may write x ⊥⊥ y)?

We begin with a description of our kernel dependence criterion, leaving to the following section the
question of whether this dependence is significant. This presentation is largely a review of material
from [9, 11, 22], the main difference being that we establish links to the characteristic function-based
independence criteria in [6, 13]. Let F be an RKHS, with the continuous feature mapping φ(x) ∈ F
from each x ∈ X, such that the inner product between the features is given by the kernel function
k(x, x′) := 〈φ(x),φ(x′)〉. Likewise, let G be a second RKHS on Y with kernel l(·, ·) and feature
map ψ(y). Following [7], the cross-covariance operator Cxy : G → F is defined such that for all
f ∈ F and g ∈ G,

〈f, Cxyg〉
F

= Exy ([f(x) − Ex(f(x))] [g(y) − Ey(g(y))]) .

The cross-covariance operator itself can then be written

Cxy := Exy[(φ(x) − µx) ⊗ (ψ(y) − µy)], (1)

where µx := Exφ(x), µy := Eyφ(y), and ⊗ is the tensor product [9, Eq. 6]: this is a generalisation
of the cross-covariance matrix between random vectors. When F and G are universal reproducing
kernel Hilbert spaces (that is, dense in the space of bounded continuous functions [23]) on the
compact domainsX and Y, then the largest singular value of this operator, ‖Cxy‖, is zero if and only
if x ⊥⊥ y [11, Theorem 6]: the operator therefore induces an independence criterion, and can be used
to solve Problem 1. The maximum singular value gives a criterion similar to that originally proposed
in [18], but with more restrictive function classes (rather than functions of bounded variance). Rather
than the maximum singular value, we may use the squared Hilbert-Schmidt norm (the sum of the
squared singular values), which has a population expression

HSIC(Pxy, F, G) = Exx′yy′ [k(x, x′)l(y, y′)] + Exx′[k(x, x′)]Eyy′ [l(y, y′)]

− 2Exy [Ex′ [k(x, x′)]Ey′ [l(y, y′)]] (2)

(assuming the expectations exist), where x′ denotes an independent copy of x [9, Lemma 1]: we
call this the Hilbert-Schmidt independence criterion (HSIC).

We now address the problem of estimating HSIC(Pxy, F, G) on the basis of the sample Z . An
unbiased estimator of (2) is a sum of three U-statistics [21, 22],

HSIC(Z) =
1

(m)2

∑

(i,j)∈im
2

kij lij +
1

(m)4

∑

(i,j,q,r)∈im
4

kij lqr − 2
1

(m)3

∑

(i,j,q)∈im
3

kij liq, (3)
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where (m)n := m!
(m−n)! , the index set i

m
r denotes the set all r-tuples drawnwithout replacement from

the set {1, . . . , m}, kij := k(xi, xj), and lij := l(yi, yj). For the purpose of testing independence,
however, we will find it easier to use an alternative, biased empirical estimate [9, Definition 2],
obtained by replacing the U-statistics with V-statistics1

HSICb(Z) =
1

m2

m
∑

i,j

kij lij +
1

m4

m
∑

i,j,q,r

kij lqr − 2
1

m3

m
∑

i,j,q

kij liq =
1

m2
trace(KHLH), (4)

where the summation indices now denote all r-tuples drawn with replacement from {1, . . . , m} (r
being the number of indices below the sum),K is them×mmatrix with entries kij ,H = I− 1

m11$,
and 1 is an m × 1 vector of ones (the cost of computing this statistic is O(m2)). When a Gaussian
kernel kij := exp

(

−σ−2 ‖xi − xj‖
2
)

is used (or a kernel deriving from [6, Eq. 4.10]), the latter
statistic is equivalent to the characteristic function-based statistic [6, Eq. 4.11] and the T 2n statistic
of [13, p. 54]: details are reproduced in [10] for comparison. Our setting allows for more general
kernels, however, such as kernels on strings (as in our experiments in Section 4) and graphs (see
[20] for further details of kernels on structures): this is not possible under the characteristic function
framework, which is restricted to Euclidean spaces (Rd in the case of [6, 13]). As pointed out in [6,
Section 5], the statistic in (4) can also be linked to the original quadratic test of Rosenblatt [19] given
an appropriate kernel choice; the main differences being that characteristic function-based tests (and
RKHS-based tests) are not restricted to using kernel densities, nor should they reduce their kernel
width with increasing sample size. Another related test described in [4] is based on the functional
canonical correlation between F and G, rather than the covariance: in this sense the test statistic
resembles those in [2]. The approach in [4] differs with both the present work and [2], however,
in that the function spaces F and G are represented by finite sets of basis functions (specifically
B-spline kernels) when computing the empirical test statistic.

3 Test description
We now describe a statistical test of independence for two random variables, based on the test
statistic HSICb(Z). We begin with a more formal introduction to the framework and terminology
of statistical hypothesis testing. Given the i.i.d. sample Z defined earlier, the statistical test, T(Z) :
(X × Y)m *→ {0, 1} is used to distinguish between the null hypothesis H0 : Pxy = PxPy and
the alternative hypothesisH1 : Pxy += PxPy . This is achieved by comparing the test statistic, in
our case HSICb(Z), with a particular threshold: if the threshold is exceeded, then the test rejects
the null hypothesis (bearing in mind that a zero population HSIC indicates Pxy = PxPy). The
acceptance region of the test is thus defined as any real number below the threshold. Since the test
is based on a finite sample, it is possible that an incorrect answer will be returned: the Type I error
is defined as the probability of rejecting H0 based on the observed sample, despite x and y being
independent. Conversely, the Type II error is the probability of accepting Pxy = PxPy when the
underlying variables are dependent. The level α of a test is an upper bound on the Type I error, and
is a design parameter of the test, used to set the test threshold. A consistent test achieves a level α,
and a Type II error of zero, in the large sample limit.

How, then, do we set the threshold of the test given α? The approach we adopt here is to derive
the asymptotic distribution of the empirical estimateHSICb(Z) of HSIC(Pxy, F, G) underH0. We
then use the 1−α quantile of this distribution as the test threshold.2 Our presentation in this section
is therefore divided into two parts. First, we obtain the distribution ofHSICb(Z) under bothH0 and
H1; the latter distribution is also needed to ensure consistency of the test. We shall see, however, that
the null distribution has a complex form, and cannot be evaluated directly. Thus, in the second part
of this section, we describe ways to accurately approximate the 1 − α quantile of this distribution.

Asymptotic distribution ofHSICb(Z) We now describe the distribution of the test statistic in (4)
The first theorem holds underH1.

1The U- and V-statistics differ in that the latter allow indices of different sums to be equal.
2An alternative would be to use a large deviation bound, as provided for instance by [9] based on Hoeffding’s

inequality. It has been reported in [8], however, that such bounds are generally too loose for hypothesis testing.
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Theorem 1 Let

hijqr =
1

4!

(i,j,q,r)
∑

(t,u,v,w)

ktultu + ktulvw − 2ktultv, (5)

where the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from
(i, j, q, r), and assume E

(

h2
)

< ∞. Under H1, HSICb(Z) converges in distribution as m → ∞
to a Gaussian according to

m
1

2 (HSICb(Z) − HSIC(Pxy, F, G))
D
→ N

(

0,σ2
u

)

. (6)

The variance is σ2
u = 16

(

Ei

(

Ej,q,rhijqr

)2
− HSIC(Pxy, F, G)

)

, where Ej,q,r := Ezj ,zq,zr
.

Proof We first rewrite (4) as a single V-statistic,

HSICb(Z) =
1

m4

m
∑

i,j,q,r

hijqr , (7)

where we note that hijqr defined in (5) does not change with permutation of its indices. The associ-
ated U-statisticHSICs(Z) converges in distribution as (6) with variance σ2

u [21, Theorem 5.5.1(A)]:
see [22]. Since the difference betweenHSICb(Z) andHSICs(Z) drops as 1/m (see [9], or Theorem
3 below), HSICb(Z) converges asymptotically to the same distribution.

The second theorem applies underH0

Theorem 2 Under H0, the U-statistic HSICs(Z) corresponding to the V-statistic in (7) is degen-
erate, meaning Eihijqr = 0. In this case, HSICb(Z) converges in distribution according to [21,
Section 5.5.2]

mHSICb(Z)
D
→

∞
∑

l=1

λlz
2
l , (8)

where zl ∼ N(0, 1) i.i.d., and λl are the solutions to the eigenvalue problem

λlψl(zj) =

∫

hijqrψl(zi)dFi,q,r ,

where the integral is over the distribution of variables zi, zq, and zr.

Proof This follows from the discussion of [21, Section 5.5.2], making appropriate allowance for
the fact that we are dealing with a V-statistic (which is why the terms in (8) are not centred: in the
case of a U-statistic, the sum would be over terms λl(z2

l − 1)).

Approximating the 1 − α quantile of the null distribution A hypothesis test using HSICb(Z)
could be derived from Theorem 2 above by computing the (1−α)th quantile of the distribution (8),
where consistency of the test (that is, the convergence to zero of the Type II error for m → ∞) is
guaranteed by the decay asm−1 of the variance of HSICb(Z) underH1. The distribution underH0

is complex, however: the question then becomes how to accurately approximate its quantiles.

One approach, taken by [6], is to use a Monte Carlo resampling technique: the ordering of the Y
sample is permuted repeatedly while that of X is kept fixed, and the 1 − α quantile is obtained
from the resulting distribution of HSICb values. This can be very expensive, however. A second
approach, suggested in [13, p. 34], is to approximate the null distribution as a two-parameter Gamma
distribution [12, p. 343, p. 359]: this is one of the more straightforward approximations of an infinite
sum of χ2 variables (see [12, Chapter 18.8] for further ways to approximate such distributions; in
particular, we wish to avoid using moments of order greater than two, since these can become
expensive to compute). Specifically, we make the approximation

mHSICb(Z) ∼
xα−1e−x/β

βαΓ(α)
where α =

(E(HSICb(Z)))2

var(HSICb(Z))
, β =

mvar(HSICb(Z))

E(HSICb(Z))
. (9)
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Figure 1: mHSICb cumulative distribution
function (Emp) under H0 for m = 200,
obtained empirically using 5000 indepen-
dent draws ofmHSICb. The two-parameter
Gamma distribution (Gamma) is fit using
α = 1.17 and β = 8.3 × 10−4 in (9), with
mean and variance computed via Theorems
3 and 4.
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An illustration of the cumulative distribution function
(CDF) obtained via the Gamma approximation is given
in Figure 1, along with an empirical CDF obtained by
repeated draws of HSICb. We note the Gamma approxi-
mation is quite accurate, especially in areas of high prob-
ability (which we use to compute the test quantile). The
accuracy of this approximation will be further evaluated
experimentally in Section 4.

To obtain the Gamma distribution from our observa-
tions, we need empirical estimates forE(HSICb(Z)) and
var(HSICb(Z)) under the null hypothesis. Expressions
for these quantities are given in [13, pp. 26-27], however
these are in terms of the joint and marginal characteris-
tic functions, and not in our more general kernel setting
(see also [14, p. 313]). In the following two theorems,
we provide much simpler expressions for both quantities,
in terms of norms of mean elements µx and µy , and the
covariance operators

Cxx := Ex[(φ(x) − µx) ⊗ (φ(x) − µx)]

and Cyy , in feature space. The main advantage of our new expressions is that they are computed
entirely in terms of kernels, which makes possible the application of the test to any domains on
which kernels can be defined, and not only Rd.

Theorem 3 Under H0,

E(HSICb(Z)) =
1

m
TrCxxTrCyy =

1

m

(

1 + ‖µx‖
2 ‖µy‖

2 − ‖µx‖
2 − ‖µy‖

2
)

, (10)

where the second equality assumes kii = lii = 1. An empirical estimate of this statistic is obtained
by replacing the norms above with ̂‖µx‖

2 = (m)−1
2

∑

(i,j)∈im
2

kij , bearing in mind that this results
in a (generally negligible) bias ofO(m−1) in the estimate of ‖µx‖

2 ‖µy‖
2.

Theorem 4 Under H0,

var(HSICb(Z)) =
2(m − 4)(m − 5)

(m)4
‖Cxx‖

2
HS ‖Cyy‖

2
HS + O(m−3).

Denoting by . the entrywise matrix product, A·2 the entrywise matrix power, and B =
((HKH) . (HLH))·2, an empirical estimate with negligible bias may be found by replacing the
product of covariance operator norms with 1$ (B − diag(B)) 1: this is slightly more efficient than
taking the product of the empirical operator norms (although the scaling with m is unchanged).

Proofs of both theoremsmay be found in [10], where we also comparewith the original characteristic
function-based expressions in [13]. We remark that these parameters, like the original test statistic
in (4), may be computed in O(m2).

4 Experiments
General tests of statistical independence are most useful for data having complex interactions that
simple correlation does not detect. We investigate two cases where this situation arises: first, we
test vectors in Rd which have a dependence relation but no correlation, as occurs in independent
subspace analysis; and second, we study the statistical dependence between a text and its translation.

Independence of subspaces One area where independence tests have been applied is in deter-
mining the convergence of algorithms for independent component analysis (ICA), which involves
separating random variables that have been linearly mixed, using only their mutual independence.
ICA generally entails optimisation over a non-convex function (including when HSIC is itself the
optimisation criterion [9]), and is susceptible to local minima, hence the need for these tests (in fact,
for classical approaches to ICA, the global minimum of the optimisation might not correspond to
independence for certain source distributions). Contingency table-based tests have been applied [15]
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in this context, while the test of [13] has been used in [14] for verifying ICA outcomes when the
data are stationary random processes (through using a subset of samples with a sufficiently large
delay between them). Contingency table-based tests may be less useful in the case of independent
subspace analysis (ISA, see e.g. [25] and its bibliography), where higher dimensional independent
random vectors are to be separated. Thus, characteristic function-based tests [6, 13] and kernel
independence measures might work better for this problem.

In our experiments, we tested the independence of random vectors, as a way of verifying the so-
lutions of independent subspace analysis. We assumed for ease of presentation that our subspaces
have respective dimension dx = dy = d, but this is not required. The data were constructed as
follows. First, we generatedm samples of two univariate random variables, each drawn at random
from the ICA benchmark densities in [11, Table 3]: these include super-Gaussian, sub-Gaussian,
multimodal, and unimodal distributions. Second, we mixed these random variables using a rota-
tion matrix parameterised by an angle θ, varying from 0 to π/4 (a zero angle means the data are
independent, while dependence becomes easier to detect as the angle increases to π/4: see the two
plots in Figure 2, top left). Third, we appended d − 1 dimensional Gaussian noise of zero mean
and unit standard deviation to each of the mixtures. Finally, we multiplied each resulting vector
by an independent random d-dimensional orthogonal matrix, to obtain vectors dependent across all
observed dimensions. We emphasise that classical approaches (such as Spearman’s ρ or Kendall’s
τ ) are completely unable to find this dependence, since the variables are uncorrelated; nor can we
recover the subspace in which the variables are dependent using PCA, since this subspace has the
same second order properties as the noise. We investigated sample sizesm = 128, 512, 1024, 2048,
and d = 1, 2, 4.

We compared two different methods for computing the 1−α quantile of the HSIC null distribution:
repeated random permutation of the Y sample ordering as in [6] (HSICp), where we used 200 per-
mutations; and Gamma approximation (HSICg) as in [13], based on (9). We used a Gaussian kernel,
with kernel size set to the median distance between points in input space. We also compared with
two alternative tests, the first based on a discretisation of the variables, and the second on functional
canonical correlation. The discretisation based test was a power-divergence contingency table test
from [17] (PD), which consisted in partitioning the space, counting the number of samples falling
in each partition, and comparing this with the number of samples that would be expected under the
null hypothesis (the test we used, described in [15], is more refined than this short description would
suggest). Rather than a uniform space partitioning, we divided our space into roughly equiprobable
bins as in [15], using a Gessaman partition for higher dimensions [5, Figure 21.4] (Ku and Fine did
not specify a space partitioning strategy for higher dimensions, since they dealt only with univariate
random variables). All remaining parameters were set according to [15]. The functional correlation-
based test (fCorr) is described in [4]: the main differences with respect to our test are that it uses
the spectrum of the functional correlation operator, rather than the covariance operator; and that it
approximates the RKHSs F and G by finite sets of basis functions. Parameter settings were as in
[4, Table 1], with the second order B-spline kernel and a twofold dyadic partitioning. Note that
fCorr applies only in the univariate case. Results are plotted in Figure 2 (average over 500 repeti-
tions). The y-intercept on these plots corresponds to the acceptance rate of H0 at independence, or
1 − (Type I error), and should be close to the design parameter of 1 − α = 0.95. Elsewhere, the
plots indicate acceptance ofH0 where the underlying variables are dependent, i.e. the Type II error.

As expected, we observe that dependence becomes easier to detect as θ increases from 0 to π/4,
when m increases, and when d decreases. The PD and fCorr tests perform poorly at m = 128,
but approach the performance of HSIC-based tests for increasingm (although PD remains slightly
worse than HSIC at m = 512 and d = 1, while fCorr becomes slightly worse again than PD). PD
also scales very badly with d, and never rejects the null hypothesis when d = 4, even form = 2048.
Although HSIC-based tests are unreliable for small θ, they generally do well as θ approaches π/4
(besidesm = 128, d = 2). We also emphasise thatHSICp andHSICg perform identically, although
HSICp is far more costly (by a factor of around 100, given the number of permutations used).

Dependence and independence between text In this section, we demonstrate inde-
pendence testing on text. Our data are taken from the Canadian Hansard corpus
(http : //www.isi.edu/natural− language/download/hansard/). These consist of the of-
ficial records of the 36th Canadian parliament, in English and French. We used debate transcripts
on the three topics of Agriculture, Fisheries, and Immigration, due to the relatively large volume of
data in these categories. Our goal was to test whether there exists a statistical dependence between
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Figure 2: Top left plots: Example dataset for d = 1,m = 200, and rotation angles θ = π/8 (left) and θ = π/4
(right). In this case, both sources are mixtures of two Gaussians (source (g) in [11, Table 3]). We remark that
the random variables appear “more dependent” as the angle θ increases, although their correlation is always
zero. Remaining plots: Rate of acceptance of H0 for the PD, fCorr, HSICp, and HSICg tests. “Samp” is the
number m of samples, and “dim” is the dimension d of x and y.

English text and its French translation. Our dependent data consisted of a set of paragraph-long
(5 line) English extracts and their French translations. For our independent data, the English para-
graphs were matched to random French paragraphs on the same topic: for instance, an English
paragraph on fisheries would always be matched with a French paragraph on fisheries. This was
designed to prevent a simple vocabulary check from being used to tell when text was mismatched.
We also ignored lines shorter than five words long, since these were not always part of the text (e.g.
identification of the person speaking). We used the k-spectrum kernel of [16], computed according
to the method of [24]. We set k = 10 for both languages, where this was chosen by cross validating
on an SVM classifier for Fisheries vs National Defense, separately for each language (performance
was not especially sensitive to choice of k; k = 5 also worked well). We compared this kernel with
a simple kernel between bags of words [3, pp. 186–189]. Results are in Table 1.

Our results demonstrate the excellent performance of the HSICp test on this task: even for small
sample sizes, HSICp with a spectral kernel always achieves zero Type II error, and a Type I error
close to the design value (0.95). We further observe form = 10 that HSICp with the spectral kernel
always has better Type II error than the bag-of words kernel. This suggests that a kernel with a more
sophisticated encoding of text structure induces a more sensitive test, although for larger sample
sizes, the advantage vanishes. The HSICg test does less well on this data, always acceptingH0 for
m = 10, and returning a Type I error of zero, rather than the design value of 5%, whenm = 50. It
appears that this is due to a very low variance estimate returned by the Theorem 4 expression, which
could be caused by the high diagonal dominance of kernels on strings. Thus, while the test threshold
for HSICg at m = 50 still fell between the dependent and independent values of HSICb, this was
not the result of an accurate modelling of the null distribution. We would therefore recommend the
permutation approach for this problem. Finally, we also tried testing with 2-line extracts and 10-line
extracts, which yielded similar results.

5 Conclusion
We have introduced a test of whether significant statistical dependence is obtained by a kernel depen-
dence measure, the Hilbert-Schmidt independence criterion (HSIC). Our test costs O(m2) for sam-
ple size m. In our experiments, HSIC-based tests always outperformed the contingency table [17]
and functional correlation [4] approaches, for both univariate random variables and higher dimen-
sional vectors which were dependent but uncorrelated. We would therefore recommend HSIC-based
tests for checking the convergence of independent component analysis and independent subspace
analysis. Finally, our test also applies on structured domains, being able to detect the dependence
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Table 1: Independence tests for cross-language dependence detection. Topics are in the first column, where the
total number of 5-line extracts for each dataset is in parentheses. BOW(10) denotes a bag of words kernel and
m = 10 sample size, Spec(50) is a k-spectrum kernel with m = 50. The first entry in each cell is the null
acceptance rate of the test underH0 (i.e. 1− (Type I error); should be near 0.95); the second entry is the null
acceptance rate underH1 (the Type II error, small is better). Each entry is an average over 300 repetitions.

Topic BOW(10) Spec(10) BOW(50) Spec(50)
HSICg HSICp HSICg HSICp HSICg HSICp HSICg HSICp

Agriculture
(555)

1.00,
0.99

0.94,
0.18

1.00,
1.00

0.95,
0.00

1.00,
0.00

0.93,
0.00

1.00,
0.00

0.95,
0.00

Fisheries
(408)

1.00,
1.00

0.94,
0.20

1.00,
1.00

0.94,
0.00

1.00,
0.00

0.93,
0.00

1.00,
0.00

0.95,
0.00

Immigration
(289)

1.00,
1.00

0.96,
0.09

1.00,
1.00

0.91,
0.00

0.99,
0.00

0.94,
0.00

1.00,
0.00

0.95,
0.00

of passages of text and their translation.Another application along these lines might be in testing
dependence between data of completely different types, such as images and captions.
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