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Abstract—We review the fundamentals of light control in non-
linear periodic photonic lattices. In particular, we demonstrate
their ability to control the modulational instability and pattern
formation in a nonlinear dissipative feedback system.

I. PHOTONIC LATTICES
Periodic photonic structures exhibit spatial variations of

their refractive index on a wavelength scale. Due to the light
scattering from this periodic refractive index modulation, the
dispersion properties of optical fields are strongly modified.
This enables the engineering of the structural properties,
facilitating observation of novel effects on manipulation of
light refraction and diffraction. An important consequence
of the strong Bragg scattering inside the structure is the
appearance of photonic bandgaps: forbidden zones of fre-
quencies or propagation constants at which light propagation
is inhibited. The presence of photonic bandgaps influences
significantly the interaction of light with the material at high
intensity. New types of nonlinear localisation appear when the
nonlinear change of the refractive index shifts the propagation
constant inside the photonic bandgap, allowing for novel type
of nonlinear switching and formation of gap solitons [1].

Various different platforms for study of nonlinear effects in
periodic structures have been utilized, however most of them
require the use of high-power lasers and are not suitable for
fast prototyping. Recently, the platform of optically induced
lattices in photorefractive (PR) crystals [2] has gain large
attention due to the possibility for dynamic tuning of lattice
periodicity, depth, and geometry, as well as low power re-
quirements. In this platform, several broad beams are sent into
a PR crystal, forming an interference pattern [Fig. 1(a)] that
induces a periodic refractive index modulation in transverse x-
direction. The light with nonzero transverse wavevectors will
then scatter from this induced lattice leading to formation of
a bandgap structure, see Fig. 1(b). The use of this platform
has pioneered the demonstration of a number of fundamental
nonlinear effects, including excitation of gap solitons, and
nonlinear surface waves [3].

Despite the intensive experimental research that followed
from the concept of photonic lattices, all existing experiments
are performed in conservative systems (waveguide array geom-
etry) without a feedback or gain. Therefore, a natural question

Fig. 1. (a) Optical induction of a 1D photonic lattice in a photorefractive
crystal (PRC). (b) Typical Bloch-wave dispersion of 1D lattices.

arises: Can the concept of photonic lattices be generalised
for studies of dissipative nonlinear periodic systems with a
feedback? Here we demonstrate experimentally this generic
concept and apply it for control of the modulational instability
of cavity modes and patterns.

II. PHOTONIC LATTICE IN A CAVITY

In a dissipative system, the unique interplay between non-
linearity, dispersion, gain, loss, and feedback results in a
large number of unstable pattern modes. Due to the feedback
however, only few of these modes normally grow, leading to
cavity modulational instability (MI). The control of the cavity
MI forms an important problem in optics and various different
techniques based on spatial filtering have been suggested.

The implementation of photonic lattices inside the cavity
has also been explored theoretically and has been shown to
lead to novel nonlinear phenomena, including discrete cavity
MI [4] and discrete cavity solitons [5]. Despite the large
theoretical interest however, an experimental demonstration of
the interplay between periodic photonic lattices and optical
patterns in a feedback system is still lacking.

Here, we present an experimental study of the control of
MI in a feedback nonlinear system by a one-dimensional (1D)
photonic lattice. We combine two concepts: a photorefractive
two-wave mixing in a single-mirror configuration [6] and an
optically induced lattice [2], and study how the strength and
periodicity of the lattice influence the conditions for MI, and
correspondingly the pattern formation.

A. Experimental setup
Our experimental setup consists of two intrinsic parts. The

part indicated by the solid line in Fig. 2, called a “pattern
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Fig. 2. Experimental setup. L - lenses, PBS - polarising beam splitter, SF -
spatial filter, Lat - 1D grating, λ/2 - half-wave plate, M - mirror, VM - virtual
mirror, PC - BaTiO3 PR crystal. Inset: typical near-field pattern. Right: Far-
field patterns: (a) hexagonal pattern without lattice, (b) linear diffraction on
the lattice, (c) co-existence between nonlinear pattern and linear diffraction
for kL ! 2.2kP . Dashed lines denote the position of the lattice bandgap.

beam”, represents a standard PR two-wave mixing experi-
ment [6] with a tunable single feedback. The crystalline c-axis
of the undoped BaTiO3 crystal points towards the feedback
mirror, but is rotated by roughly 25◦ with respect to the pattern
beam. At a fixed mirror-crystal distance, a hexagonal pattern
is formed above a threshold intensity ITH of the pattern beam.
A typical near-field intensity distribution IP is shown in the
inset of Fig. 2(top). The lattice forming beam is polarized
orthogonally to the pattern beam and is shown with a dotted
line in Fig. 2. It is created by a diffraction of a Gaussian beam
onto a 1D grating. The ±1st diffraction orders are selected and
recombined inside the PR crystal by a 4f system. The patterns
are being identified by monitoring their far-field distribution.

Figure 2(a) shows a typical far-field hexagonal pattern
formed in the absence of the lattice above a threshold power
for pattern formation (20 mW). The lattice strength, on the
other hand, is tested by temporarily removing the feedback
mirror and monitoring the pattern beam diffraction on the
lattice in the far-field. As seen in Fig. 2(b), this diffraction
gives rise to the two outer spots along the diagonal (obtained
at 45◦ lattice orientation), while the central spot corresponds to
the zero-order diffraction. The arrows in Fig. 2(a,b) represent
the transverse wavevectors of the hexagonal pattern (kP) and
the lattice (kL). The dashed lines in Fig. 2 correspond to the
edges of the first Brillouin zone of the lattice, situated at kL/2.

Next, we investigate the effect of the relative magnitude and
orientation of kL on the formation of patterns in the system.
In the experiments, we create the periodic lattice and then we
launch the pattern beam into the medium.

B. Control of MI in dissipative feedback systems
First we set the lattice periodicity such that kL ! 2.2kP,
hence all the wavevectors of the instability modes fall within
the first Brillouin zone of the lattice [Fig. 2(c)]. In this case,
the nonlinear hexagonal pattern co-exists with the 1D lattice
diffraction. Note that in this case the optical power of the
pattern beam (! 30 mW) is larger, because the presence of
the lattice in the PR crystal tends to increase the hexagonal
pattern threshold.

Fig. 3. (a,b) Bandgap inhibition of instability modes for for kL !
√

3kP
and two different lattice intensities. IP > ITH.

An important condition for bandgap control of the patterns
is realised when the periodicity of the lattice is such that
kL =

√
3kP. In this case, the propagation constant hexagonal

instability modes are situated exactly inside the bandgap region
of the lattice, as seen in Fig. 3(a) for comparable pattern
and lattice beams intensities. By increasing the lattice beam
intensity, IL = 5IP [seen by the two brighter outer spots in
Fig. 3(b)], the MI can be suppressed in the bandgap region
[Fig. 3(b)] due to the fact that the lattice bandgap prohibits the
growth (from noise) of instability modes with corresponding
propagation constants. Qualitatively similar effect occurs if
two spots of the hexagons overlap the bandgap area for
kL!2kP, again leading to symmetry breaking of the induced
patterns. It is important to note that the output differs drasti-
cally, when the lattice beam is sent through the crystal after
the formation of the pattern. In this case, the established high
intensity instability modes shift the lattice bandgap such that
the propagation constant of the modes lies outside the bandgap
region and suppression of the instability is no longer possible.

III. CONCLUSIONS
In conclusion, we have demonstrated the versatility of

photonic lattices for manipulation of light in conservative and
dissipative systems. In particular, we have shown the control of
modulational instability and pattern formation by a photonic
lattice in a dissipative feedback system. We have identified
three important discrete cavity MI control mechanisms: band-
gap inhibition of instability modes; seeding of instability
patterns by the lattice periodicity; and lattice-induced pattern
reorientation. We believe, that our results open new ways
for control of the structure of laser modes by embedded
photonic crystals. Furthermore, we explore the possibilities
for excitation of discrete cavity solitons in such systems.
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