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Abstract— A significant feature of fuzzy signatures is its
applicability for complex and sparse data. To create Poly-
morphic Fuzzy Signatures (PFS) for sparse data, sparse input
sub-spaces (ISSs) should be considered. Finding the optimal
ISSs manually is not a simple task as it is time consuming;
moreover, some knowledge about the dataset is necessary.
Fuzzy C-Means (FCM) clustering employed with a trapezoidal
approximation method is needed to find ISSs automatically.
Furthermore, dealing with sparse data, we should be mindful
about choosing a reliable trapezoidal approximation method.
This facilitates the optimal ISS creation for the data. In our
experiment, two trapezoidal approximation methods were used
to find optimal ISSs. The results demonstrate that our version
of trapezoidal approximation for creating ISSs result in an
PFS with lower mean square error compared to the original
trapezoidal approximation method.

Index Terms— Fuzzy Signatures, Polymorphic Fuzzy Sig-
natures, WRAO, Fuzzy C-Means, Input subspace clustering,
Trapezoidal Approximation

I. INTRODUCTION

In the real world, we often receive data from sources that
are sparse and hierarchical. Polymorphic Fuzzy Signatures
(PFS) is a set of hierarchically structured recursive vectors.
Each vector component may represents the next level of the
hierarchical structure or it can be a leaf node [13]. PFS is
inherently sparse [13] and the concept derived from the idea
Fuzzy Signatures, which is developed to model complexly
structured data [11]. It employees a set of hierarchically
organized aggregation functions to find the final degree of
match [22], [23], [13]. As an advantage, PFS is applicable
for comparing the degree of similarity or dissimilarity of two
slightly different objects. However, these two objects should
have the same PFS skeleton. Additionally, PFS is capable of
dealing with missing input data [22], [23], [16]. Mendis et.
al. introduced generalized Weighted Relevance Aggregation
Operator (WRAO) for PFS [17]. WRAO allows for the
learning of both aggregation function and weighted relevance
at the same time for one node in the PFS structure. Therefore,
WRAO simplifies the learning of PFS models from data.
Mendis et. al. demonstrated a successful way to extract
WRAO for PFS [17], [18] based on the Levenberg-Marquardt
(LM) optimization method [12]. Experiments presented by
Mendis et. al. confirmed that the LM method can learn both
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aggregations and weighted relevancies PFS [18]. In all the
studies related to PFS that are mentioned here, the process of
creating Input Sub-Spaces (ISSs) was performed manually.
PFS has been successfully applied to decision making and
classification problems Computational Intelligence [15], [14],
[26].

In this paper, instead of generating the ISSs manually
[22], [23], [17], [18], [19], we utilized a novel automatic
approach to find fuzzy ISSs for PFS. This is a significant
improvement in generating PFS, because it facilitates the
creation of PFS for datasets with an unknown nature. This
approach is based on fuzzy c-means (FCM) clustering [3] and
a modified version of trapezoidal approximation method [21].
In this approach, we have introduce a novel version of Tikk’s
trapezoidal approximation method for sparse data [21]. We
applied Tikk’s and our trapezoidal approximation methods
for the high salary selection problem [5]. The high salary
selection Problem was discussed in [5]. In this problem the
aim is to find the degree of relevance of having a high salary
with contacts, age, and work experience of an employee.
Finally, we have compared the trapezoidal approximation
methods for this problem.

II. POLYMORPHIC FUZZY SIGNATURES

PFS can represent, compare and classify objects with com-
plex hierarchical structures and interdependent features. Its
hierarchical organization represents the structural complexity
of a problem. PFS can be employed to approximate the global
preference relation of a decision problem.

A. Vector Valued Fuzzy Sets
The PFS concept is a generalization of the Vector Valued

Fuzzy Sets (VVFS) concept. The early work of Kóczy
introduced the Vector Valued Fuzzy Sets concept [10] . The
VVFS is a distinctive form of an L-fuzzy set, and can be
denoted in the following form:

µA : X → [0, 1]n . (1)

Where A is a fuzzy set and L = [0, 1]n is in (1) and
thus VVFS is L-fuzzy. The qualitative meaning of an
object is represented by the quantities of the VVFS. The
notation of the vector valued fuzzy set A is written as
A = (x, µA) and the membership function µA can be
defined as, µA : X → [0, 1]n, where x ∈ X .

B. Polymorphic Fuzzy Signatures Structure
The fuzzy signatures concept provides a solution for the

rule explosion problem in fuzzy logic because it is hierar-
chically structured and sparse. Fuzzy signatures definition is
as follows [11], [13]:
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Definition 1: Fuzzy signatures is a VVFS, where each
vector component is another VVFS (branch) or an atomic
value (leaf), and denoted by,

µA : X → [ai]
k
i=1

(
≡

k∏
i=1

ai

)
. (2)

where ai =
{

[aij ]ki

j=1 ; if branch
[0, 1] ; if leaf

and Π describes the Cartesian product.

In the concept of Fuzzy Signatures, each incoming data
point will become a Fuzzy Signature. PFS is an optimized
approach to the initial idea of fuzzy signatures and one PFS
can represents a set of individual data points. This has been
achieved by replacing atomic leaf nodes in fuzzy signature
structure (see definition 1) by fuzzy sets and using special-
ized aggregation functions such as WRAO [13]. Therefore,
PFS concept is capable of solving complex problems in a
effective way. In this paper, we discussed the concept of PFS
as a practical approach that organizes and aggregates data
hierarchically. Because of the hierarchal structure of PFS it
is computationally more efficient.

III. AUTOMATIC ISSS FINDING

As mentioned before, we employed FCM for automatic
ISSs finding. There are two main issues that need to be
considered when creating the ISSs. One issue is finding the
optimal number of sub-spaces in ISSs for each input, and
other is finding the boundaries between each individual sub-
space of ISSs.

A. Optimal number of sub-sapces

For each dataset, there are a number of inputs. Each input
can be divided into several sub-spaces. The set of sub-spaces
that are created by analyzing an individual input’s data,
are that input’s sub-spaces which is called input sub-spaces
(ISSs) in this text. For example in HSS problem, we can
have three age groups that are the age sub-spaces. In our
approach we employed FCM to define individual sub-spaces
for each input; therefore, each individual sub-space (ISS) is
equivalent to a fuzzy-cluster and each ISSs is equivalent to
a set of clusters for an input. One of the issues with defining
ISSs, is the optimal number of sub-spaces. Considering the
equivalency of sub-spaces and clusters in our approach this
can be addressed as a cluster validity problem. There are a
variety of surveys on cluster validity in the literature [9],
[8], [7], [27], [6]. Halkidi et. al. introduced two groups
of cluster validity measures [6]. External cluster validity
measures focus on the labels of the data in the dataset and
validates the clusters. These measures of useful for the cases
where there exists knowledge about the data [7]. Internal
cluster validity measures focus on internal statistical features
of the clusters for their validation. In this study, we employed
two of traditional measures from the internal measures for
FCM that demonstrated by Sugeno et. al and Fukuyama et. al
in [20] and [4]. Compactness and separation are two internal

criteria proposed for evaluation of clustering. These criteria
can also be used for selection of an optimal clustering scheme
[2]:

1. Compactness: the members of each cluster should be
as close to each other as possible. A common measure
of compactness is the variance, which should be mini-
mized.

2. Separation: the clusters themselves should be widely
spaced.

There are three common approaches to measure the distance
between two different clusters:
(i) Single linkage: Measures the distance between the clos-

est members of the clusters.
(ii) Complete linkage: Measures the distance between the

most distant members.
(iii) Comparison of centroids: Measures the distance be-

tween the centres of the clusters.
As mentioned before, two traditional internal cluster validity
measures presented in [20], [4] employed in our experimental
results (IV). These measure are as follows:

FSm =
N∑

i=1

nc∑
j=1

um
ij

(
‖xi − vj‖2 − ‖vj − v‖2

)
. (3)

Where,
N : number of data to be clustered;
nc : number of clusters (nc ≥ 2);
xi : i′th data;
vj : center of j′th cluster;
v : averageofallclustercenters;
‖‖ : norm;
uij : grade of i′th data belonging to j′th cluster;
m : adjustable weight (usually between 1.5 and 3)

SCm =
N∑

i=1

nc∑
j=1

um
ij

(
‖xi − vj‖2 − ‖vj − x‖2

)
(4)

Where,
N : number of data to be clustered;
nc : number of clusters (nc ≥ 2);
xi : i′th data;
vj : center of j′th cluster;
x : averageofdatax1, x2, ..., xn;
‖‖ : norm;
uij : grade of i′th data belonging to j′th cluster;
m : adjustable weight (usually between 1.5 and 3)

Equations 3 [20] and 4 [4] consider both compactness and
separation cluster validity criteria. The compactness part of
the equations that is ‖xi− vj‖2 is the same. The SC separa-
tion term is based on the mean distance of datasets with the
clusters that can be considered linkage based (‖vj − x‖2).
The FS separation term is based on comparison of centroids
(‖vj − v‖2).

B. Trapezoidal Approximation

Trapezoidal approximation was employed to create mem-
bership functions (MF) for the ISSs (clusters) automatically.
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There are two algorithms that used grades of belonging in
FCM for creating trapezoidal membership functions. The first
work was presented by Yasukawa and Sugeno in [20]. It
creates a convex hull over each of the clusters’ degree of
belonging values, and considers the best trapezoid which fits
this convex hull as the MF for a sub-space.
The second algorithm was presented by Tikk, Biro, Gedeon
and Kóczy [21]. In this algorithm the first step is to create
a convex hull. After creating the convex hull, only the
points that are located in corners of it will be used for the
consequent steps of the algorithm. The next step is to select
the point with highest degree of belonging to the current
cluster (sub-space). By using this point, the algorithm divides
the points into two groups and then creates the left and
right slopes of the trapezoidal MF. More details of Tikk’s
trapezoidal approximation method can be found in [21] pages
598-599. After implementation of the second trapezoidal
approximation, we came across an issue in the algorithm.
To illustrate the issue we created a sample case in figure 1.
In this figure, data points of a sample sub-space and their
degree of belonging is presented. There are three data points
with the highest value of 0.9 in the ISS. In figure 3 part
(a) the convex hull that fit the data is drawn. Because the
convex hull is polygonal and is defined by its corners, the
middle point which is the optimal point for dividing the ISS
to left and right slope is missing. Depend on implementation
settings, Tikk et. al.’s trapezoidal algorithm will picked up
either the first highest data point (figure 3 part (b))or the last
one (figure 3 part (d)). In either of these cases the resulting
membership function is not optimal for this ISSs. Selecting
the first point as the maximum point to divide the points
into left and right slopes, the resulting membership function
in Tikk’s trapezoidal algorithm is as it is shown in figure 3
part (c). For the other case the resulting membership function
is illustrated in figure 3 part (e). For any other example which
there exist several highest points and two of them are far from
the center of the sub-space this problem will occur. In order
to solve this problem we modified the first part of Tikk’s
trapezoidal algorithm. Instead of using the highest point on
the convex hull to divide the ISS data into two slopes, we
used center of gravity of data points. In our method:

1. The center of gravity of data points are calculated (figure
4 part (a))

2. Data points divide into two slopes
3. Tikk’s algorithm is applied for each of the slope data

(figure 4 parts (b) and (c)).
4. Finally the left and right slopes are merged to create the

final trapezoidal MF (figure 4 parts (d)).

The issue of ISS data and their degree of belonging presented
in figure 1 occures for sparse datasets. The reason is that for
sparse datasets, the degree of belonging to each ISS is either
high, close to one, or low, close to zero. As a result the
possibility of having multiple equal highest values increases.
In order to demonstrate the benefits of this modified version,
we used 7 high salary selection problem [5] datasets with
different levels of sparseness. Gedeon et. al. used dense fuzzy

Fig. 1. A sample sub-space of ISS

Fig. 2. Structure of fuzzy signature for high salary selection problem

rule based system with 27 rules to model the salary problem.
We used the same set of rules to generate the sparse datasets
with different levels of spareness. For example, to create the
first dataset in figures 6 and 7, we used only 15 randomly
selected rules among 27 rules. The structure of the high
salary selection PFS that is created by the automatic ISSs
creation is presented in figure 2.
In this experiment, we considered only sparse datasets with
middle range spareness (ie. from 15 -21) as datasets become
too simple to approximate when only few rules were used to
generate sparse data and if more rules were used to generate
the data, the datasets were not as sparse. Experimental
results in section IV, show that the modified trapezoidal
approximation gave lower MSE for the middle range of
sparse datasets, which are sparse as well as complex.

IV. MAIN RESULTS

There are two steps for creating ISS (clusters) for input
data.
(i) Determining the optimal number of ISS for each input:

FS (equation 3) and SC (equation 4) have been used.
(ii) Creating MFs based on degree of belonging for each

ISS: Tikk’s trapezoidal approximation and Center of
Gravity (CoG) based trapezoidal approximation have
been used.

As a result of employing these methods, we find four
different ISS for salary fuzzy signatures. There are two
Mean Square Errors (MSE) for test and train datasets for
each of these four PFSs. We compared Tikk’s trapezoidal
approximation and CoG based trapezoidal approximation
MSEs within these groups for both test and training datasets.
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TABLE I
FS CLUSTER VALIDITY MSE FOR TRAINING DATA: CASES WHERE

MODIFIED METHOD HAS HIGHER MSE VALUE THAN THE ORIGINAL

METHOD IN TABLES ARE PRESENTED BY ITALIC STYLE

Rules No. CoG Tikk’s
15 0.1630 0.1703
16 0.1585 0.1743
17 0.0847 0.0884
18 0.0527 0.0542
19 0.1338 0.1342
20 0.0939 0.1110
21 0.0494 0.0387

TABLE II
FS CLUSTER VALIDITY MSE FOR TESTING DATA

Rules No. CoG Tikk’s
15 0.1633 0.1706
16 0.1588 0.1753
17 0.0848 0.0886
18 0.0527 0.0542
19 0.1341 0.1345
20 0.0942 0.1112
21 0.0494 0.0388

MSE for testing and training sparse datasets implies that
for all the datasets in training and testing results, the MSE
of our method is lower except for few datasets with lower
sparseness (figures 6 and 7). For FS cluster validity measure,
it occurred for the dataset that was generated by 21 rules for
both test and train datasets (tables I and II). For SC cluster
validity measure, it occurred for two training datasets that
was generated by 19 and 20 rules (table III) and for one test
dataset generated by 19 rules (table IV).
The reason is, Tikk’s resulting MFs are broader than our
method (figures 3 parts (c) and (e)) for cases like figure 1.
In all these datasets there are data missing due to sparseness
of the dataset. Hence, broader MF can sometimes help
creating a PFS with lower MSE where there is data missing
between two sub-space that look like figure 1. A sample of
this case is demonstrated in figure 5. Tikk et. al.’s algorithm
gives two possible set of MFs based on its implementation
setting (figure 5 part (b) and (c)). Getting lower MSE due
to missing data can not be considered as Tikk’s algorithm
advantage. Because as overall results imply it is not a
common case; furthermore, the algorithm is not aware of
the missing points.
In order to handle the missing data in training set, one of
the possible category of techniques is fuzzy interpolation
techniques [1], [25], [24].

Number of the times our CoG trapezoidal approximation
method gives lower MSE than Tikk’s trapezoidal approxi-
mation method for FS and SC cluster validity measures is
presented in table V. Overlay, in this set of experiments our
method gave lower MSE 82% of the time (table V values
average).

(a) data points convex hull

(b) Tikk’s left and right slopes: First highest point
is considered as the highest point

(c) Tikk’s possible trapezoidal MF 1: First highest
point is considered as the highest point

(d) Tikk’s left and right slopes: Second highest
point is considered as the highest point

(e) Tikk’s possible trapezoidal MF 2: Second high-
est point is considered as the highest point

Fig. 3. Tikk’s trapezoidal approximation result for sample ISS

TABLE III
SC CLUSTER VALIDITY MSE FOR TRAINING DATA

Rules No. CoG Tikk’s
15 0.1520 0.1528
16 0.1632 0.1651
17 0.0729 0.0832
18 0.0384 0.0422
19 0.1404 0.1387
20 0.1091 0.1089
21 0.0368 0.0388
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(a) Center of gravity of ISS data

(b) Left slope of ISS trapezoid

(c) Right slope of ISS trapezoid

(d) Final trapezoid for ISS data

Fig. 4. Input dataset for a sample ISS

TABLE IV
SC CLUSTER VALIDITY MSE FOR TESTING DATA

Rules No. CoG Tikk’s
15 0.1523 0.1531
16 0.1635 0.1655
17 0.0730 0.0834
18 0.0385 0.0424
19 0.1408 0.1390
20 0.1093 0.1094
21 0.0369 0.0389

TABLE V
COG AND TIKK COMPARISON FOR SC AND FS

FS SC
Test 86% 86%
Train 71% 86%

(a) Sample of ISS with missing points between
two of its sub-spaces

(b) Tikk’s algorithm resulting MFs in first highest
point selection setting

(c) Tikk’s algorithm resulting MFs in last highest
point selection setting

(d) Our CoG based algorithm resulting MFs

Fig. 5. Missing data points sample

(a) Train data MSE

(b) Test data MSE

Fig. 6. FS measure data MSE; X-axis data is labeled in accordance with
number of rules that are used to create the dataset
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(a) Train data MSE

(b) Test data MSE

Fig. 7. SC measure data MSE; X-axis data is labeled in accordance with
number of rules that are used to create the dataset

V. CONCLUSION

A modified ISS finding has been presented which is based
on CoG. By employing this method for fuzzy signatures,
generating fuzzy signatures for sparse data is much simpler
and more efficient than the manual approach.
In our experimental results we presented the MSE of PFS
created by Tikk’s and our CoG based trapezoidal approxi-
mation methods. This has been done for two cluster validity
measures, SC and FS. For both cluster validity measures,
overall results of training and testing data imply that our
modified CoG based method has lower MSE than Tikk’s
method.
Future research, could include, employing parameter identi-
fication algorithm for ISS optimization [20] . This new PFS
development approach employs not only fuzzy signatures
weights and aggregations adjustments, but also ISS adjust-
ments. This could lead to generation of a PFS with lower
MSE.
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