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1 Originally, the Imbert–Fedorov effect was mistaken

energy flow in the evanescent waves generated under
a b s t r a c t

Here I argue that Liu and Li [B.-Y. Liu, C.-F. Li, Opt. Commun. 281 (2008) 3427] reproduce calculations of
the Imbert–Fedorov transverse shift previously made in a number of other works. However, it has
recently been shown that these results are not valid for standard uniformly polarized beams. The cor-
rected values of the Imbert–Fedorov shift were derived in papers [K.Y. Bliokh, Y.P. Bliokh, Phys. Rev. Lett.
96 (2006) 073903; Phys. Rev. E 75 (2007) 066609] and confirmed by recent measurements [O. Hosten, P.
Kwiat, Science 319 (2008) 787] with a great accuracy.

� 2009 Elsevier B.V. All rights reserved.
The Imbert–Fedorov effect [1,2] is a polarization-dependent
transverse shift of the center of gravity of a wave beam scattered
at a plane dielectric interface. Although the central wave vectors
of the incident and scattered (i.e., refracted and reflected) beams
lie in the same plane according to the Snell’s law, the centers of
gravity of the beams may be slightly shifted out of the plane of
incidence because of complex interference of partial plane waves
forming the confined beams.1 This tiny effect is of a fundamental
interest because of its relation to conservation of the angular
momentum and spin-Hall effect of light.

The direct method of calculation of the Imbert–Fedorov shift is a
Fourier representation of the incident beam which enables one to
apply Fresnel formulas to each partial plane wave in the beam
spectrum. This yields exact Fourier spectra of the scattered beams,
and their spatial shape can be retrieved analytically using the par-
axial approximation. Such a procedure has been realized in a num-
ber of papers [3–11] starting from the Schilling’s paper in 1965,
and essentially the same approach is used by Liu and Li [12].

The problem of scattering of a paraxial beam at a planar inter-
face between two dielectric media is described by the following
parameters: the wave number k, angle of the incidence h, and Fres-
nel reflection and transmission coefficients Rk,\ and Tk,\ of the cen-
tral plane wave in the beam. In the case of the total internal
reflection, the reflection coefficients are complex: Rk,\ = exp(
iuk,\), and induce the phase difference du = u\ � uk. The polariza-
ll rights reserved.
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ly explained by the transverse
total internal reflection [1,2].
tion of the incident beam can be characterized by the normalized
Jones vector of the central plane wave in the basis of p and s

modes: e ¼ ek
e?

� �
, e* � e = 1. Note that r ¼ 2Imðe�ke?Þ is the helicity

of the incident wave.
The Schilling’s formula for the transverse shift of the reflected

beam can be written as

Dðtot rÞ ¼ �2 cot h
k

Imðe�ke?Þð1þ cos duÞ þ Reðe�ke?Þ sin du
h i

; ð1Þ

in the case of the total internal reflection, and

DðrÞ ¼ �2 cot h
k

Imðe�ke?Þ 1þ RkR?
R2
k jekj

2 þ R2
?je?j

2

" #
; ð2Þ

in the case of partial reflection. Eqs. (1) and (2) have been obtained
(up to some arithmetic inaccuracies) in papers [3–7,10]. The corre-
sponding transverse shift of the transmitted beam under partial
reflection has been first obtained by Fedoseev in [6] and subse-
quently by other authors [7,9,10]:

DðtÞ ¼ �2 cot h
k

Imðe�ke?Þ 1� TkT? cos h0= cos h

T2
k jekj

2 þ T2
?je?j

2

" #
; ð3Þ

where h0 is the angle of propagation of the transmitted beam. It can
be readily seen that Eqs. (24) and (26) derived in [12] coincide with
Eqs. (1)–(3) previously obtained in [3–7,9,10].

Despite a number of independent calculations of the Imbert–
Fedorov shift leading to Eqs. (1)–(3), recent calculations made by
Bliokh and Bliokh [11] led to the Eq. (1) for the total-reflection case
but distinct results in the partial-reflection regime:
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As it was shown in [11], the reason of discrepancy between Eqs. (2),
(3) and (4), (5) is a high sensitivity of the Imbert–Fedorov effect to
details of the polarization structure of the incident beam. Indeed, the
effect is essentially connected with the finite spectral width of the
beam and one should carefully define polarizations of all the plane
waves composing the beam. All previous calculations [3–7,9,10]
and paper [12] are based on an assumption that all the partial plane
waves in the incident beam have the same polarization with respect
to the interface between media. However, this is not the case for
real beams uniformly polarized in the plane orthogonal to the cen-
tral wave vector. On the contrary, partial waves having the same
polarization in the beam coordinate frame have different polariza-
tions with respect to the medium interface [11]. This is because
each plane wave has its own plane of incidence with respect to
the interface. Moreover, as it is shown in [11], polarization model
used in [3–7,9,10,12] leads to the non-uniformly polarized beams
whose polarization structure depends on the angle of incidence h,
which is unsatisfactory from the physical point of view.

Eqs. (4) and (5) were recently verified by Hosten and Kwiat [13],
who came to the same conclusion as in [11], and confirmed the de-
tails of the beam polarization evolution experimentally with a
great accuracy. Their results are in a precise agreement with Eq.
(5) for the partial transmission of a wave beam. In addition, after
this comment have been submitted, a theoretical paper [14] ap-
peared which fully confirms results of [11,13] and Eq. (4).

Thus, contrary to the calculations of paper [12], which repro-
duce the known expressions (1)–(3) for the Imbert–Fedorov shift,
the transverse shifts of real uniformly polarized beams are de-
scribed by Eqs. (4) and (5) in the partial-reflection regime. It should
also be noted that references on previous experiments [2,15–17]
cannot be involved to discriminate between Eqs. (2), (3) and (4),
(5) since those experiments dealt with the total-reflection case
where both the approaches result in the same Eq. (1). Finally, it
is worth noting that the most general expression for the Imbert–
Fedorov shift which can be applied to beams with various polariza-
tion structures have been obtained in [8], while the relation of the
effect to the angular-momentum conservation was first revealed in
[7] and further discussed in [10,11].
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