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On the Deterministic CRB for DOA Estimation in
Unknown Noise Fields Using Sparse Sensor Arrays

Martin Kleinsteuber and Abd-Krim Seghouane, Member, IEEE

Abstract—The Cramér–Rao bound (CRB) plays an important role in di-
rection of arrival (DOA) estimation because it is always used as a bench-
mark for comparison of the different proposed estimation algorithms. In
this correspondence, using well-known techniques of global analysis and
differential geometry, four necessary conditions for the maximum of the
log-likelihood function are derived, two of which seem to be new. The CRB
is derived for the general class of sensor arrays composed of multiple ar-
bitrary widely separated subarrays in a concise way via a coordinate free
form of the Fisher Information. The result derived in [1] is confirmed.

Index Terms—Cramér–Rao bound (CRB), differential geometry, direc-
tion of arrival (DOA) estimation, maximum likelihood.

I. INTRODUCTION

The maximum likelihood technique is a widely used tool for direc-
tions of arrival (DOA) estimation. Many log-likelihood functions and
estimation algorithms have been proposed in the literature depending
on the structure of the noise covariance matrix which make them sensi-
tive to the assumed noise model. In most practical situations, the noise
model is unknown and to effectively handle unknown noise environ-
ments several methods have been proposed. The most recent one con-
sists of spacing the array geometry in certain ways. In this correspon-
dence, the general case of sensor arrays composed of multiple arbitrary
widely separated subarrays [1] is considered. In such arrays, intersub-
array spacings are substantially larger than the signal wavelength and
the noise covariance matrix of the whole array is block-diagonal.

The classical way for deriving the maximum likelihood estimate of
the DOA is by setting the derivative of the log-likelihood function with
respect to the DOA parameters to zero and solving the formed equa-
tion set. Note, that two different types of data models are used in appli-
cations for DOA estimation. The so-called conditional model, where
the signal is supposed to be nonrandom, and the unconditional model,
where the signal is assumed to be random [2]. Since the results derived
in this correspondence are extensions of previous results derived in [1],
we exclusively focus on the first case—the conditional model and the
corresponding likelihood function.

To assess the performance of these derived maximum likelihood es-
timators, the Cramér–Rao bound (CRB) plays an important role be-
cause it is always used as a benchmark for comparison. The derivation
of closed-form expressions for the CRB for the general unknown noise
model have been approached in [3]–[5] and obtained for the uniform
and nonuniform white noise case in [6] and [7]. An extension of the

Manuscript received December 3, 2006; revised June 18, 2007. The associate
editor coordinating the review of this manuscript and approving it for publi-
cation was Dr. Andreas Jakobsson. This work was performed at NICTA, Can-
berra Research Laboratory. National ICT Australia is funded by the Australian
Department of Communications, Information Technology and the Arts and the
Australian Research Council through Backing Australia’s Ability and the ICT
Center of Excellence Program.

M. Kleinsteuber was with National ICT Australia Limited, Canberra Re-
search Laboratory, Canberra ACT 2601, Australia. He is now with Mathema-
tisches Institut, 97074 Wurzburg, Germany (e-mail: kleinsteuber@mathematik.
uni-wuerzburg.de).

A.-K. Seghouane is with the National ICT Australia, Canberra Research Lab-
oratory, Canberra ACT 2601, Australia, and also with the Research School of
Information Sciences and Engineering (RSISE), Australian National University,
Canberra, ACT 0200, Australia (e-mail: Abd-krim.seghouane@nicta.com.au).

Digital Object Identifier 10.1109/TSP.2007.907832

1053-587X/$25.00 © 2008 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008 861

work provided in [6] was used in [8] to derive a closed-form expres-
sion for the CRB in the most general case of an arbitrary unknown noise
field.

In this correspondence, we consider the general class of sensor arrays
composed of multiple arbitrary widely separated subarrays [1]. Using
well-known techniques of global analysis and differential geometry,
the derivative and the Hessian form of the log-likelihood function are
computed. The latter one is used to derive a coordinate free form of
the Fisher information. In contrast to earlier approaches, this allows us
to directly compute the CRB of linear transformations for the DOA.
Choosing a standard basis yields the results obtained in [1].

The rest of this correspondence is organized as follows. Some basics
in differential geometry are provided in Section II. Necessary condi-
tions for the existence of the maximum likelihood are derived in Sec-
tion III. In Section IV, the general closed-form expression for the CRB
is derived and the relation with the particular case of [1] is discussed.
A conclusion is given in Section V.

II. PRELIMINARIES ON DIFFERENTIAL GEOMETRY

We recall some basic facts and definitions on global analysis (cf.
[9] and [10]). Let M be a smooth manifold of dimension n. A curve
through x 2 M is a smooth map


 : I �!M

where I � is an open interval containing 0 and 
(0) = x. Let U be
a neighborhood of x and let � : U �! n be a chart. Then

� � 
 : I �! �(U) � n

is differentiable. Two curves 
1 and 
2 through x 2 M are said to be
equivalent if (�� 
1)0(0) = (� � 
2)

0(0) holds for some and therefore
any chart �. This defines an equivalence relation on the set of all curves
through x. A tangent vector at x is then an equivalence class � := [
]
of a curve 
 and the tangent space TxM is the set of all tangent vectors.
It can be shown to be an n-dimensional real vector space.

A trivial example of a manifold is an open subset U of n together
with the identity mapping as the chart. In this case, the tangent space
at any point of U can be identified with n.

Now let M;N be manifolds and let f : M �! N be smooth. If 

is a curve through x 2M , then f �
 is a curve through f(x) 2 N and
equivalent curves through x are mapped to equivalent curves through
f(x). We can therefore define the derivative of f at x 2 M as the
linear map

Df(x) : TxM �! Tf(x)N

given by Df(x)[
] = [f � 
] for all tangent vectors [
] 2 TxM . If
f : M �! is a smooth real valued function, we identify Ty( ) =
for all y 2 and define a critical point of f as a point x 2 M such
that Df(x)� = 0 for all � 2 TxM . The Hessian of f at a critical point
x then is the symmetric bilinear form

Hf(x) : TxM � TxM �!

(�1; �2) 7�!
1

2
(Hf(x)(�1 + �2; �1 + �2)

�Hf (x)(�1; �1)�Hf(x)(�2; �2)) (1)

where Hf (x)([
]; [
]) := (f � 
)00(0): It can be shown that this defi-
nition is independent of the choice of the representative 
 only if 
(0)

is a critical point of f . The Hessian is therefore only well defined at
critical points of f . A critical point is nondegenerate if its Hessian is
nondegenerate. If x is a local maximum (minimum), then Hf (x) is
negative (positive) semidefinite. On the other hand, if Hf (x) is nega-
tive (positive) definite, then x is a local maximum (minimum).

III. LOG-LIKELIHOOD FUNCTION

Let an array of n sensors having unknown gains and phases receive
signals from m (m < n) narrowband far-field sources with unknown
DOAs f�1; . . . ; �mg. The n�1 array snapshot vectors can be modeled
as [1]

y(t) = �(�)A(�)x(t) + v(t) t = 1; . . . ; N (2)

where � = [�1; . . . ; �m]> is them�1 vector of signal DOAs,A(�) =
[a(�1); . . . ; a(�m)] is then�m source direction matrix, a(�) is then�
1 steering vector,x(t) = [x1(t); . . . ; xm(t)]> is them�1 vector of the
source waveforms, v(t) = [v1(t); . . . ; vm(t)]> is the n � 1 vector of
sensor noise, �(
) is a diagonal matrix containing the unknown com-
plex-valued sensor responses, i.e., �(�) = diagf�1; . . . ; �ng; ( � )

>

denotes transpose and N is the number of statistically independent
snapshots. In this case, the array model can be rewritten as [1], [11]

Y = �(�)A(�)X + V = �AX + V (3)

where Y = [y(1); . . . ; y(N)]; X = [x(1); . . . ; x(N)]; V =
[v(1); . . . ; v(N)] are the n�N array data matrix, the m�N source
waveform matrix, and the n�N sensor noise matrix, respectively.

In this correspondence, we consider the case of sparse arrays
composed of q arbitrary subarrays whose intersubarray displacements
are substantially larger than the signal wavelength. As a result, sensor
noises can be assumed to be statistically independent between different
subarrays. This leads to a noise covariance matrix, say Q, that has a
block form. The size of each block, say ni, corresponds to the numbers
of sensors in the corresponding subarray (n = q

i=1 ni). In other
words, Q 2 Q with

Q :=

Q1

. . .

Qq

jQi 2
n �n

; Qi > 0

=: bdiag(Q1; . . . ; Qq) = Efv(t)v(t)yg (4)

where we write shortly Qi > 0 for the positive definite noise covari-
ance matrix of the ith subarrayQi, bdiagfg denotes the block-diagonal
matrix operator, ( � )y denotes conjugate transpose, and Efg is the sta-
tistical expectation. Note, that Q is open in the set of Hermitian block-
diagonal matrices of appropriate blocksize and therefore a manifold
whose tangentspace at each point can be identified with

TQQ = fbdiag(H1; . . . ; Hq);Hi 2
n �n

; H
y
i = Hig: (5)

Taking into account the special structure of the (n�m) source direction
matrix, it varies over the set

A :=

1 � � � 1

z1 � � � zm
...

...
zn�1
1 . . . zn�1

m

j zi 2 ; jzij = 1 (6)
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which is diffeomorphic to the m-torus via the obvious mapping

� : (z1; . . . ; zm) 7!

1 . . . 1

z1 . . . zm
...

...
zn�11 . . . zn�1m

and hence a smooth and compact manifold. Note that the set of structure
matrix variation of the source direction matrix (6) also covers the n
sensors nonuniform linear array. Indeed, by definition, an n-element
nonuniform linear array can be viewed as a subarray of the n�-element
uniform linear array. For the corresponding n�-element uniform linear
array, the source direction matrix is of Vandermonde structure [12].

In the following, the tangent space is derived according to Section II.
To this end, let A = �(a1; . . . ; am) 2 A and let 
 be a curve through
A given by


 : I ! A; t 7! �(a1 exp(it�1); . . . ; am exp(it�m)) (7)

where � := (�1; . . . ; �m) 2 m and i :=
p�1. Differentiating with

respect to t and setting t = 0 yields the tangent space

TAA = fiA� n�
>
; � 2 mg (8)

where � denotes the matrix Hadamard product and the vector

n := (0; 1; . . . ; n� 1)> 2 n
:

Similarly, the normalized diagonal matrix � that contains the unknown
sensor responses varies over

T := fdiag(z1; . . . ; zn) j zi 2 ; jzij = 1g (9)

which is diffeomorphic to the n-torus with tangent space

T�T = fi�D jD 2 n�nis diagonalg (10)

at � 2 T . Let the array data matrix Y 2 n�N be given. The condi-
tional log-likelihood function (LL-function) is given by [11]

f :Q� T �A� m�N !
(Q;�; A;X) 7!�N log detQ�tr[(Y��AX)yQ�1(Y��AX)]:

(11)

For convenience, we further shortly write

G := Y � �AX:

The derivatives of f with respect to Q will be denoted by DQf and
similar the notation D�f;DAf and DXf is used. In what follows,
<(z) represents the real part of z.

Lemma 1: The partial derivatives of the LL-function are given by

DQf : TQQ ! ; H 7! tr[Q�1GGyQ�1H] �Ntr[Q�1H]

(12)

D�f : T�T ! ; � 7! 2<tr[GyQ�1�AX] (13)

DAf : TAA ! ;  7! 2<tr[GyQ�1� X] (14)

DXf : m�N ! ; S 7! 2<tr[GyQ�1�AS]: (15)

Proof: Equations (13)–(15) follow straightforwardly by the
product rule since the second term of the LL-function is the squared
norm of G with respect to the real inner product <tr[Gy1Q�1G2]
with G1; G2 2 n�N . Since they all are derived in a very similar
way, we restrict ourself to deduce (14). Let 
 be given as in (7) with
 := _
(0) 2 TAA. Then

DAf(�) =
d

dt
j t=0f(Q;�; 
(t);X)

= �<tr[(��_
(0)X)yQ�1(Y� �
(0)X)]

�<tr[(Y � �
(0)X)yQ�1(��_
(0)X)]
= 2<tr[GyQ�1� X]: (16)

For (12), note that log detQ = tr logQ, implying

DQ(logdetQ)(H) = tr[DQ(logQ)(H)] = tr[Q�1H]

and differentiating QQ�1 = I on both sides yields

DQQ(H) �Q�1 +Q �DQ(Q�1)(H) = 0

and hence DQ(Q�1)(H) = �Q�1HQ�1.
From the above Lemma, we immediately have the following the-

orem, where part 1) and 4) have already been derived in a different
way in [8]. These results have been used in [1] to derive an algorithm
that iteratively estimates the DOA.

Theorem 1: Let p denote the orthogonal projection from the set of
Hermitian n� n-matrices onto TQQ with respect to the inner product
tr[Q1Q2]. Necessary conditions for a critical point (Q0;�0; A0; X0)
of the LL-function are:

1) p(G0G
y
0) = NQ0;

2) the diagonal entries of �0A0X0G
y
0Q

�1
0 are real;

3) the vector (A>0 �X0G
y
0Q

�1
0 �0) � n has real entries;

4) Ay0�
y
0Q

�1
0 �0A0X0 = A

y
0�
y
0Q

�1
0 Y , which simplifies if and only

if A has full rank into

X0 = A
y
0�
y
0Q

�1
0 �0A0

�1

A
y
0�
y
0Q

�1
0 Y:

Note, that sinceA is a Vandermonde matrix, it has full rank if and only
if the entries zi are pairwise distinct.

Proof: We will drop the index “0” during the proof. At a critical
point (Q;�; A; X), all partial derivatives have to vanish.

1) For DQf � 0, this means that

tr[(Q�1GGyQ�1�NQ�1)H] = 0

for all H 2 TQQ, implying

p(Q�1GGyQ�1�NQ
�1) = 0:

Now taking into account the block structure ofQ�1, this is equiv-
alent to p(GGy)�NQ = 0 and 1) is shown.

2) Setting D�f � 0 and using the special structure of the tangent
space elements (10), one has

<tr[iAXGyQ�1D] = 0

for all real diagonal (n � n)-matrices D.
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3) Note, that for three matrices of appropriate size the identity

tr(A � B)C> = tr(A� C)B>

holds (cf. [9]). Hence, DAf � 0 yields

<tr[iXGyQ�1�(A� n�
>)] = 0

for all � 2 m, which is equivalent to

<tr[i(A> �XG
y
Q
�1�)n�>] = 0

for all � 2 m.
4) For DXf � 0, we have equivalently

A
y�yQ�1G = 0, A

y�yQ�1Y = A
y�yQ�1�AX:

Now let A have full rank and let x 2 m n f0g. Then, y :=
�Ax 6= 0 and by the positive definiteness of Q�1, we obtain
xyAy�yQ�1�Ax > 0. Therefore, Ay�yQ�1�A is positive def-
inite and hence invertible. If, on the other hand, A does not have
full rank, there exists x 2 m n f0g such that �Ax = 0 and in
this case, Ay�yQ�1�A has eigenvalue 0 and is not invertible

.

IV. CRAMÉR–RAO BOUND

To derive the CRB, the Hessian at the critical point p0 =
(Q0;�0; A0; X0) has to be computed. We shortly denote

DQQf(H1; H2) = DQ(DQf(p0)(H1))(H2)

and similar DQAf(H; ) = DQ(DAf(p0)( ))(H), and so on. Note
that the Hessian is symmetric, i.e., DQAf(H; ) = DAQf( ;H),
etc. Again, the index 0 for indicating the critical point is dropped in the
following. From (12)–(15), we derive

DQQf(H1;H2) = Ntr[Q�1H2Q
�1H1]

� tr[Q�1H2Q
�1GGyQ�1H1]

� tr[Q�1GGyQ�1H2Q
�1H1]: (17)

With �i = i�Di as in (10), i = 1; 2, one obtains

D��f(�1; �2) = D��f(D1;D2)

= �2<tr[(�D2AX)
yQ�1�D1AX]

� 2<tr[GyQ�1�D2D1AX]: (18)

For  i = iA � nx>i as in (8), i = 1; 2,

DAAf( 1;  2)

= DAAf(�1; �2)

= �2<tr � A� n�
>
2 X

y

Q�1� A � n�
>
1 X

� 2<tr GyQ�1� A� n�
>
2 � n�

>
1 X (19)

holds and

DXXf(S1; S2) = �2<tr[(�AS2)
yQ�1�AS1]: (20)

Moreover

DQ�f(H;D) = �2<tr[GyQ�1HQ�1i�DAX]; (21)

DQAf(H; �) = �2<tr[GyQ�1HQ�1i�(A� n�
>)X] (22)

DQXf(H;S) = �2<tr[GyQ�1HQ�1�AS] (23)

D�Af(D; �) = �2<tr[(�DAX)yQ�1�(A� n�
>)X]

� 2<tr[GyQ�1�D(A� n�
>)X] (24)

D�Xf(D;S) = 2<tr[i(�DAX)yQ�1�AS]

+ 2<tr[iGyQ�1�DAS] (25)

and, finally

DAXf(�; S) = 2<tr[i(�(A� n�
>)X)yQ�1�AS]

+2<tr[iGyQ�1�(A� n�
>)S]: (26)

In order to derive the Fisher information matrix, we have a look at the
expectation valueE[�] of the above terms (17)–(27). Using the fact that
at the maximum E[G] = 0 and E[GyG] = NQ immediately yields

E[DQQf(H1; H2)]

= �Ntr[Q�1H2Q
�1H1]

E[D��f(D1; D2)]

= �2<tr[(�D2AX)
yQ�1�D1AX]

E[DAAf(�1; �2)]

= �2<tr � A� n�
>
2 X

y

Q�1� A � n�
>
1 X

E[DXXf(S1; S2)]

= �2<tr[(�AS2)
yQ�1�AS1]

E[DQ�f(H;D)] = 0

E[DQAf(H; �)] = 0

E[DQXf(H;S)] = 0

E[D�Af(D; �)]

= �2<tr[(�DAX)yQ�1�(A� n�
>)X]

E[D�Xf(D;S)]

= 2<tr[i(�DAX)yQ�1�AS]

E[DAXf(�; S)]

= 2<tr[i(�(A� n�
>)X)yQ�1�AS]: (27)

Gathering the derived results yields the following theorem.
Theorem 2: The bilinear form corresponding to the Fisher informa-

tion is given by

F((H1;D1; �1; S1); (H2; D2; �2; S2))

= Ntr[Q�1H2Q
�1H1]

+ 2<tr[(�D2AX)
yQ�1�D1AX]

+ 2<tr � A � n�
>
2 X

y

Q�1� A� n�
>
1 X

+ 2<tr[(�AS2)
yQ�1�AS1]

+ 2<tr (�D1AX)
yQ�1� A � n�

>
2 X

+ 2<tr (�D2AX)
yQ�1� A� n�

>
1 X

� 2<tr[i(�D1AX)
yQ�1�AS2]

� 2<tr[i(�D2AX)
yQ�1�AS1]

� 2<tr i � A � n�
>
1 X

y

Q�1�AS2
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� 2<tr i � A� n�>2 X
y

Q�1�AS1 : (28)

Clearly, a matrix representation of F depends on the choice of
a basis B of the tangent space at the maximum, which is given by
TQQ� T�T � TAA�

m�N . Let BH ;BD;B�; and BS be basis of
TQQ; T�T ; TAA; and m�N , respectively. If B is chosen to be

B := (B�;BD;BS ;BH) (29)

then the matrix representation of F takes the form

FB =

F�� F�D F�S 0

F>�D FDD FDS 0

F>�S F>DS FSS 0

0 0 0 FHH

: (30)

The matrices Fij depend on the choice of the basis Bi and Bj for i; j 2
f�;D; S;Hg. Using the partitioned matrix inversion formula, the (m�
m) CRB-matrix for � is given by

C� = F�� � [F�D F�S ]
FDD FDS
F>DS FSS

F>�D
F>�S

�1

: (31)

Now denote by ei; fi; gi the standard basis vectors of m; n; N ,
respectively, i.e., having ith entry 1 and zeros elsewhere. By choosing
the basis

B� = iA0 � ne>i ; i = 1; . . . ;m

BD = i�0fif
>
i ; i = 1; . . . ; n

BS = eig
>
j ; ieig

>
j ; i = 1; . . . ; m; j = 1; . . . ; N (32)

equation (31) is equivalent to (89) in [1]. More generally, ifT 2 m�m

is a change of coordinates in TAA, i.e.,

~B� := iA0 � n (Te1)
>; . . . ; (Tem)> (33)

then the CRB-matrix with respect to this new basis is given by

~C� = T�1C�T
�>: (34)

Example: We illustrate the above by means of a simple example.

Let the source direction matrix A0 =
1 1

a1 a2
be given, where

a1 = ei� and a2 = ei� and �1; �2 are the directions of arrival. Differ-

entiating A0 with respect to �i yields (d=d�i)A0 = iA0 �
0

1
e>i �i,

which corresponds to the canonical basis B� in (32) that finally gives
the CRB C� for (�1; �2) as in [1]. Assume now that we are interested
in ~�1; ~�2 such that

T
~�1
~�2

=
�1
�2

(35)

for some invertible 2� 2 matrix T . Then

d

d~�i
A0 = iA0 �

0

1
(Tei)

> ~�i: (36)

Hence, choosing a basis

B~� = iA0 �
0

1
(Tei)

>; i = 1; 2 (37)

in (29) leads to the CRB C~� for (~�1; ~�2) for which C~� = T�1C�T
�>

holds, without explicitly computing T�1.

V. CONCLUSION

Using well-known techniques of global analysis and differential ge-
ometry, the determination of the derivatives of the maximum likelihood
function is easy and concise.

The Fisher information has been derived in terms of a coordinate
free bilinear form. Different choices of basis in the tangent space at
the maximum of the log likelihood function lead to different Fisher
information matrices and hence to different CRBs. The connections
between these CRBs have been explained in (34).

One of the benefits of the proposed approach is, that in order to derive
the CRB for ~�, satisfying T ~� = �, the matrix T�1 does not have to be
computed explicitly.
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