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The most common and simple example of a latent variable
model is that of factor analysis [1] which has been widely
used in many disciplines such as biology, social sciences,
economics and engineering. In this model, f (., W) is a lin
ear function of x

conditional independence is the key one in the factor analy
sis model. In the tenninology of factor analysis, this model
is called exploratory factor analysis model.
Building a factor analysis model for the observation vec
tors requires the estimation of W, \lJ and tt for which no
closed fonn analytic solution exists. Direct ML estima
tion has been widely used for fitting factor analysis mod
els. A variety of iterative algorithms to perfonn ML esti
mation have been proposed in the literature [2], however,
they present several practical problems [3]. ML estimation
of factor analysis can be conceptualized as ML estimation
in a multivariate nonnal model with missing data. In this
case, the easiest algorithm to implement ML estimation and
the most stable in the sense ofmonotonically increasing the
likelihood, is the EM algorithm [4]. EM for ML factor anal
ysis was described in [5]. Despite its reliable monotone con
vergence, the convergence rate of EM can be impractically
slow in factor analysis models [6]. To obtain ML estimates
more efficiently in factor analysis models the ECME algo
rithm [7] was proposed in [8][9].
The EM algorithm for ML estimation is one of the most
widely used parameter estimation procedures from incom
plete data. In [10], the EM algorithm was described in geo
metric tenns. The framework used in [10] for studying the
EM algorithm is referred to as being information geometric
because it is based on a geometric property of the infonna
tion divergence, which is treated as a distance measure be
tween probability distributions. Under this infonnation ge
ometric framework, the EM algorithm can be viewed as an
alternating minimization procedure of the Kullback-Leibler
(KL) [11] between a parameter family and a desired family
ofprobability distributions [12][13]..
Based on this similarity between infonnation geometric al
ternating projections and the EM algorithm, ML estimation
for fitting factor analysis models is approached as a double
minimization of the KL divergence between two probabil
ity distributions in this paper. Using the Gaussian assump-

(1)y=Wx+tt+€·

Conventionally, the latent variables also known as the fac
tors are defined to be independent and Gaussian with unit
variance, so x rv N (0, Iq). The noise is also Gaussian
such that € rv N (0, \lJ), with \lJ diagonal and the p x q pa
rameter matrix W contains the factor loadings. Generally,
q < p such that the latent variables or factors identifies the
common characteristics among the observed data. The pa
rameter tt pennits the observations to have nonzero mean.
With this fonnulation, the observation vectors are also nor
mal N(tt, WWT + \lJ). Note that given the factors x, the
observation variables are independent. This assumption of

Alternating minimization of the infonnation divergence is
used to derive an effective algorithm for maximum likeli
hood (ML) factor analysis. The proposed algorithm is de
rived as an iterative alternating projections procedure on a
model family ofprobability distributions defined on the fac
tor analysis model and a desired family of probability dis
tributions constrained to be concentrated on the observed
data. The algorithm presents the advantage ofbeing simple
to implement and stable to converge. A simulation example
that illustrates the effectiveness of the proposed algorithm
for ML factor analysis is presented.
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3. INFORMATION GEOMETRIC APPROACH TO
ML FACTOR ANALYSIS

Minimizing l(()IY) with respect Wand wis equivalent to
minimizing

(6)

argminKL(p(y, x) " q(y, x; ()Ck)))
pEP

q(xIY; ()Ck))p(y).

12 {logl~1 +tr(~-IS) -logISI- n}

KL(N(O, S) " N(O, ~)), (5)

l(()IY)

pCk+l) (y, x)

which represents the KL divergence between two Gaussian
distributions with zero means. Therefore, fitting factor anal
ysis models based on ML estimation is equivalent to search
ing for a best approximation model according to the crite
rion which consists in minimizing the KL divergence be
tween the observations generating distribution and the para
metric approximation distribution. This KL divergence min
imization takes into account only distributions characteriz
ing the observed incomplete data. To minimize the KL di
vergence between probability distributions that describe the
complete data, the view of the EM algorithm as an alter
nating minimization procedure using information geometric
framework can be adopted.
In this paper, the ML factor analysis problem is approached
using an information geometric framework [15]. More specif
ically, ML estimation is posed as a double projection onto
two sets of probability distributions or as a double mini
mization ofthe KL divergence between two probability dis
tributions.

The information geometric principle [10] is applied to ML
factor analysis to derive an efficient iterative algorithm for
which convergence properties can be derived [15].
To derive an estimator of(), the appropriate sets ofprobabil
ity distributions P and Q have to be introduced first. From
the factor analysis model (1), each member q(y, X; ()) of Q
is a Gaussian distribution N (a, ~), where

a = [ ~ ] E R(p+q)Xl and

Do = [ W~/ \II ~] E R(p+q) X !p+q) • (7)

The members p(y, x) ofthe set ofgenerating distributions P
are also Gaussian with marginal distributionp(y) = N(J-L,~)

for which yand S are consistent estimators ofthe mean and
the covariance matrix respectively.
Having q(y, x; ()Ck)) obtained from the previous iteration,
the first step of the algorithm consists in constructing the
approximation of the complete data distribution

1 n 1 n
y = - LYi and S = - L(Y - y)(y - y)T.

n i-I n i=l

The ML estimator of J-L is the sample mean y, and hence
() = (~ w) can be estimated by minimizing

Yi = WXi + J-L + Ci, i = 1, ... , n (2)

Let Y be the n x p observed data matrix corresponding to
n p-dimensional i.i.d observed data vectors. Constructing
a factor analysis model for the observation consists in ap
proximating yi' i = 1, ... , n using the model

where ~ = w+ WWT ,

As described above in the Introduction, different iterative al
gorithms have been introduced to generate estimators ofW
and W. However, these algorithms present the inconvenient
of having a convergence none guaranteed. Indeed, these it
erative algorithms do not define an EM algorithm. Then,
they do not necessarily enjoy the general convergence prop
erties ofEM algorithms [14] which are more adapted to this
kind of estimation problem as it is a missing data problem
since the observations alone are incomplete for estimating
().

tion on the factors closed form solutions for these alternative
projections are developed. It is not attempted in this paper
to provide a complete comparison with the array ofcompet
ing algorithms for ML factor analysis. The emphasis is to
give a new insight from an information geometric point of
view to the ML factor analysis problem and its relationship
to the ML estimation using EM algorithm. Moreover, the
derived closed form solutions for the double minimization
are very simple to implement and stable to converge.

l(OIY) = ~ {logl~1 + tr(~-lS)} . (4)

2. PROBLEM FORMULATION

where J-L is a p-dimensional mean vector, W is the p x q
factor loading matrix, Xi is the unobservable variable vec
tor consisting of q < P factors that follows a N(O, Iq ) and
the noise vectors Ci, i = 1, ... , n are i.i.d N(O, w) where
W = diag("pb ... ,,,pp) is a diagonal matrix. In the termi
nology of factor analysis, the vector ("pI, ... ,"pp) is called
vector ofuniquenesses.
ML estimation has been popular for fitting factor analy
sis models, it is obtained by minimizing the negative log
likelihood

l(W, \II,JLIY) ~ {logl~1 +tr(~-lS)

+ (y - J-L)T~-l(y - J-L)} (3)
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However, since only an estimate p(y) = N (y, S) ofp(y) is
available the approximation of the complete data distribu
tion is given by

p(k+l) (y, x) = q(xIY; O(k))p(y). (8)

with

tr(Ll;~10) tr(W;~1Wll) - 2tr(W;~1Wk+lW!2)

+ tr((I + W,:r+l W;~1Wk+l)W22),

where

Since P is a set of Gaussian distributions, this step is re
sumed by finding the mean and covariance ofp(k+1) (y, x) =
N(A, 0). From (6) and (7), we have

q(xIY, O(k)) = N(J-t:ly' ~:IY)

J-t:,y (I + W,:rW;IWk)-IW,:r W;I(y - J-t)

~:IY (I + W,:rW; IWk)-1

and with simple mathematical manipulations detailed in the
Appendix, we obtain

Wll S

W12 S(WkW,:r + Wk)- IWk

W21 W,:r (Wk W,:r + Wk)-1 S

W22 I-W,:r(WkW,:r +Wk)-IWk

+ W,:r (WkW,:r + Wk)-IS(WkW,:r + Wk)- IWk

Having generated p(k+l) (y, x) from the first I-projection,
the second partial minimization consists in generating the
ML estimation of the parameters O(k+1) using the updated
complete data distribution. This is equivalent to finding the
I-projection ofp(k+l) (y, x) onto Q

q(y, x, O(k+l)) = arg~i:;KL(p(k+l)(y, x) II q(y, x; 0)).

-In I Ll;~1 I
-In I W;~1 I
I I + W,:r+l W;~1Wk+l

W,:r+l W;~1Wk+l W;~1Wk+l I

-In I W;~1 I .

In I Llk +1 I

4. CONVERGENCE ANALYSIS

KL(pCk+l)(y,X) II q(y,x;O(k+l)))

:::; KL(p(k+l)(y,X) II q(y,x;O(k)))

:::; KL(pCk)(y,x) II q(y,x;O(k))).

It is straightforward to establish that

Finding the ML estimate of Ok+l and J-t is equivalent to the
minimization of (12) with respect to J-t, Wk+l and Wk+l
which easily gives

J-t = Y (13)

Wk+l = Sq,;IWkr;1 (14)

Wk+l = diag(S - Wk+l W,:r q,;IS). (15)

where q,k = Wk + Wk W,:r and rk = I - W,:r q,; IWk +
W,:rq,;1 Sq,;1Wk. Therefore, the iterative application of
(14) and (15) generates in the limit the ML estimates for
the factor analysis model parameters W and W. From (15)
and the fact that Wk+l > 0, the matrix Wk+l W; q,;l S is
strictly dominated by S in the sense ofpositive matrices.

(a-A) T Ll;~1 (a-A) = (Y-J-t) T (Wk+l +Wk+lW,:r+l)-I(Y-J-t)

and

(9)

(10)

and

o = [Wll WI2],
W21 W22

[ y ]A = k T -1-
~XIYWk Wk (y - J-t)

where

As described by (6) and (7) the members of Q are Gaus
sian distributions N (a, Ll) parameterized by 0 and J-t, if, for
simplicity, we denote by

(11)

the mean and ofp(k+l) (y, x) which is defined by (9), then
K L(pCk+l) (y, x) II q(y, x; O(k+l)))

KL(N(A, 0), N(a, Llk+l))

tr(Ll;~1 0) + In I Llk+1 I -In I0 I
+ (a - A)TLl;~I(a - A) - (p+ q) (12)

Therefore, the sequence of parameters generated by the al
gorithm decreases the KL divergence between p(y, x) and
q(y, x; 0) and then increases the likelihood. Since
K L(p(y, x) II q(y, x; 9)) is bounded below by zero, it con
verges to a local minimum when k ~ 00.

Analysis ofconvergence ofthe proposed algorithm to a global
minimum is similar to that of the EM algorithm and is be
yond the scope of this paper [14]. However, it can easily
be demonstrated that the convergence points for p(y, x) and
q(y, x; 0)) are similar. Indeed, Sand yare efficient estima
tors of J-t and ~, then,

S ~ ~ and Y~ J-t when n ~ 00,
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and for ~ = WWT + W the algorithm described by (14)
and (15) stops since n = ~ which corresponds to the in
tersection of the two families ofprobability distributions P
and Q since A = o. Therefore,

KL(p(k)(y,X) II q(y,x;O(k))) ~ o.
n,k ~ 00

5. SIMULATION RESULTS

To illustrate the perfonnance of the proposed algorithm in
fitting factor analysis models to observed data, a set of arti
ficial data were generated from model (1) with

w= diag [1 2 3 4 5 6 7 8 9 10],

J-t=[3 3 3 3777777].

and W'=

To examine the perfonnance of this proposed algorithm,
factor analysis models with different number of factors q
were fitted to the same data sets which consists of n = 500
and n = 1000. To show how the algorithm perfonns in
these different settings, the Frobenius nonn of the error in
estimating W

was used as a perfonnance measure.
Figure l(a) and (c) show the evolvement of the error Err as
a function of the number of iterations k, in estimating Wfor
factor analysis models with q = 1, q = 2 and q = 3 respec
tively and n = 500. Figure 2(a) and (c) show the same error
forn = 1000.
From these figures we observe that convergence of the al
gorithm occurs after 20-100 iterations. Therefore, the pro
posed algorithm appears to be an attractive algorithm for
ML factor analysis. The convergence results of figures 2
are better than the ones of figures 1, this is due to the larger
number ofdata used in the experiment used to generate fig
ures 2. This result confirms the convergence results estab
lished in the previous section. The relative perfonnance of
the proposed algorithm to other existing algorithms was not
tackled here since it was not our objective to develop a com
peting algorithm.

to implement and stable to converge is proposed. Unlike the
EM approach to ML factor analysis, this framework allows
an intuitive understanding of the algorithm. The proposed
algorithm is developed by using a relaxation procedure, lift
ing the original ML estimation problem from the minimiza
tion in one probability density set to the minimization in
two probability density sets. In these two probability sets,
the ML factor analysis problem is fonnulated as an alternat
ing minimization procedure of the KL divergence between
a model family and a desired family ofprobability densities
leading in a natural way to an iterative alternating projec
tions algorithm. Alternating minimization of the infonna
tion divergence is a powerful computational procedure for
ML estimation. The detailed presentation of its application
to ML factor analysis can be viewed as a simple illustration
of its use when searching for structure in multivariate data
with latent variables treated as missing data. The perfor
mance of the proposed algorithm in a simulation example
of ML factor analysis was investigated. Simulation results
illustrating the convergence behavior were given.

Appendix

As in [16](page 91),the mean A and the covariance matrix
n of p(k+l) (y, x) can be obtained by deriving the first and
second order tenns of

log p(k+l) (y, x) = log q(xIY; O(k)) + log p(y)

which are obtained from the expression

1 ( -)T 8-1 ( _)2 y-y y-y

~ (x - ~:IYW,:rW;l(y _ JL)) T (~:ly)-l

(x - ~:IYW,:rW;l(y - JL)) .

After some manipulations, the second order can be written
as

[y]T [8-1+W;;IWk~:lyW,:rW-l -W;;IWk ] [y]
x· -WT\lJ-l (~k )-1 . X

k k xly

and the covariance matrix n given in (10) is obtained by
inverting the above precision matrix with the following in
version result

where

6. CONCLUSION

Under the infonnation geometric framework as developed
in [10], an algorithm for ML factor analysis which is easy

E

F

G

H

(A - BD-I C)-1

-(A - BD-I C)-1BD- l

-D- I C(A - BD-I C)-1

D- l + D- I C(A - BD-I C)-1BD- l
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and this identity involving matrix inverses

From [16](page 92), we have

where corresponds to the mean Agiven in (9).
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Fig. 1. Evolvement of Err with the number of iterations k
for n = 500 and (a) q = 1, (b) q = 2 and (c) q = 3.

Fig. 2. Evolvement of Err with the number of iterations k
for n = 1000 and (a) q = 1, (b) q = 2 and (c) q = 3.
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