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ABSTRACT

Alternating minimization of the information divergence is
used to derive an effective algorithm for maximum likeli-
hood (ML) factor analysis. The proposed algorithm is de-
rived as an iterative alternating projections procedure on a
model family of probability distributions defined on the fac-
tor analysis model and a desired family of probability dis-
tributions constrained to be concentrated on the observed
data. The algorithm presents the advantage of being simple
to implement and stable to converge. A simulation example
that illustrates the effectiveness of the proposed algorithm
for ML factor analysis is presented.

1. INTRODUCTION

The most common and simple example of a latent variable
model is that of factor analysis [1] which has been widely
used in many disciplines such as biology, social sciences,
economics and engineering. In this model, f(., W) is a lin-
ear function of x

y=Wx+pu+e. )

Conventionally, the latent variables also known as the fac-
tors are defined to be independent and Gaussian with unit
variance, so X ~ N(0,I;). The noise is also Gaussian
such that ¢ ~ N(0, ¥), with ¥ diagonal and the p x ¢ pa-
rameter matrix W contains the factor loadings. Generally,
g < p such that the latent variables or factors identifies the
common characteristics among the observed data. The pa-
rameter 4 permits the observations to have nonzero mean.
With this formulation, the observation vectors are also nor-
mal N(u, WWT + ¥). Note that given the factors x, the
observation variables are independent. This assumption of
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conditional independence is the key one in the factor analy-
sis model. In the terminology of factor analysis, this model
is called exploratory factor analysis model.

Building a factor analysis model for the observation vec-
tors requires the estimation of W, ¥ and u for which no
closed form analytic solution exists. Direct ML estima-
tion has been widely used for fitting factor analysis mod-
els. A variety of iterative algorithms to perform ML esti-
mation have been proposed in the literature [2], however,
they present several practical problems [3]. ML estimation
of factor analysis can be conceptualized as ML estimation
in a multivariate normal model with missing data. In this
case, the easiest algorithm to implement ML estimation and
the most stable in the sense of monotonically increasing the
likelihood, is the EM algorithm [4]. EM for ML factor anal-
ysis was described in [5]. Despite its reliable monotone con-
vergence, the convergence rate of EM can be impractically
slow in factor analysis models [6]. To obtain ML estimates
more efficiently in factor analysis models the ECME algo-
rithm [7] was proposed in [8][9].

The EM algorithm for ML estimation is one of the most
widely used parameter estimation procedures from incom-
plete data. In [10], the EM algorithm was described in geo-
metric terms. The framework used in [10] for studying the
EM algorithm is referred to as being information geometric
because it is based on a geometric property of the informa-
tion divergence, which is treated as a distance measure be-
tween probability distributions. Under this information ge-
ometric framework, the EM algorithm can be viewed as an
alternating minimization procedure of the Kullback-Leibler
(KL) [11] between a parameter family and a desired family
of probability distributions [12][13]..

Based on this similarity between information geometric al-
ternating projections and the EM algorithm, ML estimation
for fitting factor analysis models is approached as a double
minimization of the KL divergence between two probabil-
ity distributions in this paper. Using the Gaussian assump-
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tion on the factors closed form solutions for these alternative
projections are developed. It is not attempted in this paper
to provide a complete comparison with the array of compet-
ing algorithms for ML factor analysis. The emphasis is to
give a new insight from an information geometric point of
view to the ML factor analysis problem and its relationship
to the ML estimation using EM algorithm. Moreover, the
derived closed form solutions for the double minimization
are very simple to implement and stable to converge.

2. PROBLEM FORMULATION

Let Y be the n x p observed data matrix corresponding to
n p-dimensional i.i.d observed data vectors. Constructing
a factor analysis model for the observation consists in ap-
proximating y;, ¢ = 1, ..., n using the model

Y: =Wxi+ll'+€i7 i= 15“'7" (2)

where p is a p-dimensional mean vector, W is the p x ¢
factor loading matrix, x; is the unobservable variable vec-
tor consisting of ¢ < p factors that follows a N (0, I;) and
the noise vectors €;, ¢ = 1,...,n are i.i.d N(0,¥) where
¥ = diag(¢1,...,¥p) is a diagonal matrix. In the termi-
nology of factor analysis, the vector (i1, ...,p) is called
vector of uniquenesses.

ML estimation has been popular for fitting factor analy-
sis models, it is obtained by minimizing the negative log-
likelihood

(W, ¥,ulY) = Z{logZ|+u(Z™S)
+ F-w' -} O
where L =¥ + WWT,

<l

1< 1<
= — . = — —V —_T
—n;_lyl and S nE Y-Yu-9) .

i=1

The ML estimator of u is the sample mean y, and hence
0 = (W, ¥) can be estimated by minimizing

161Y) = 7 {loglZ| + u(=7'5)} . @

As described above in the Introduction, different iterative al-
gorithms have been introduced to generate estimators of W
and ¥. However, these algorithms present the inconvenient
of having a convergence none guaranteed. Indeed, these it-
erative algorithms do not define an EM algorithm. Then,
they do not necessarily enjoy the general convergence prop-
erties of EM algorithms [14] which are more adapted to this
kind of estimation problem as it is a missing data problem
since the observations alone are incomplete for estimating
0.

Minimizing [(8|Y") with respect W and ¥ is equivalent to
minimizing

% {10g]S| + tr(15) - log|| — n}
KL(N(0,5) || N(0,%)), ®

18]Y)

which represents the KL divergence between two Gaussian
distributions with zero means. Therefore, fitting factor anal-
ysis models based on ML estimation is equivalent to search-
ing for a best approximation model according to the crite-
rion which consists in minimizing the KL divergence be-
tween the observations generating distribution and the para-
metric approximation distribution. This KL divergence min-
imization takes into account only distributions characteriz-
ing the observed incomplete data. To minimize the KL di-
vergence between probability distributions that describe the
complete data, the view of the EM algorithm as an alter-
nating minimization procedure using information geometric
framework can be adopted.

In this paper, the ML factor analysis problem is approached
using an information geometric framework [15]. More specif-
ically, ML estimation is posed as a double projection onto
two sets of probability distributions or as a double mini-
mization of the KL divergence between two probability dis-
tributions.

3. INFORMATION GEOMETRIC APPROACH TO
ML FACTOR ANALYSIS

The information geometric principle [10] is applied to ML
factor analysis to derive an efficient iterative algorithm for
which convergence properties can be derived [15].

To derive an estimator of 6, the appropriate sets of probabil-
ity distributions P and Q) have to be introduced first. From
the factor analysis model (1), each member ¢(y, x; 6) of Q
is a Gaussian distribution N(a, A), where

o= [ ’(; ] € RPra)x1  ang (6)

A [ WWT+¥ W
- wT I

The members p(y, x) of the set of generating distributions P
are also Gaussian with marginal distribution p(y) = N(u, %)
for which ¥ and S are consistent estimators of the mean and
the covariance matrix respectively.
Having g(y, x; 8®) obtained from the previous iteration,
the first step of the algorithm consists in constructing the
approximation of the complete data distribution

p*(y,x)

} € Rlprox(p+a) (7

argmin K L(p(y, x) || g(y, x;6%)))
pEP

a(xly; 6®)p(y).
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However, since only an estimate p(y) = N (¥, S) of p(y) is
available the approximation of the complete data distribu-
tion is given by

P (y, x) = g(xly; 6®)p(y). ®8)

Since P is a set of Gaussian distributions, this step is re-
sumed by finding the mean and covariance of p**1 (y, x) =
N(A, Q). From (6) and (7), we have

q(xlyv o(k)) = N(/“f|y7zf|y)

where
phy = I+WJU W) W T (y — )
o, = T+ W oW

and with simple mathematical manipulations detailed in the
Appendix, we obtain

y
A= 1= d 9
[EﬁyWJ‘I'kl(y—u)} an ©)
Q= w11 W12 (10)
w21 wa2 |’
where
w1 = S

wiz = SWWy +¥) Wy
wa = W (WiW( +0,)71S
wee = I-W{(WiW, + ) 'Wy

+ Wi (WiWy + )T IS(WeWy + 0k) 7 W,
Having generated p(*+1)(y, x) from the first I-projection,
the second partial minimization consists in generating the
ML estimation of the parameters §(*+1) using the updated

complete data distribution. This is equivalent to finding the
I-projection of p(*+1)(y, x) onto Q

a(y,x,00*V) = argmin KL(p**(y,%) | a(y, % 9)).
As described by (6) and (7) the members of () are Gaus-

sian distributions N (a, A) parameterized by 6 and p, if, for
simplicity, we denote by

_| M
it an
the mean and of p(*+1)(y, x) which is defined by (9), then
KLE**D(y,x) | q(y,x;6%+1))

KL(N(\Q),N(a, Akt1))
(A1 Q) +1n| Aggr | —In | Q]
(@=-N"A(a=N-(p+e  (12)

+

with

(A}, Q) tr( Uy} wir) — 20ty Waawia)

+ (T + Wy Vs Wit )wa2),

(@=NTAL (@A) = F-1)T (Ter1+ Wi Wiiy) " (F-1)

and

In| Ak | = —In| A, |
= ~In| ¥ |
[ I+ Wl;r+l‘I’I:-|1-1Wk+1
- WY Ve Vit Wi |
= ~In| ¥, |
Finding the ML estimate of 0;+1 and p is equivalent to the

minimization of (12) with respect to u, W41 and Wiy
which easily gives

n=y (13)
Wit1 = SO W, I} (14)
Uy = diag(S — Wina Wy 81 5). (15)

where &, = Uy, + W W, and Ty, = I — W] &' W +
W, ®;1S®; ' W;. Therefore, the iterative application of
(14) and (15) generates in the limit the ML estimates for
the factor analysis model parameters W and ¥. From (15)
and the fact that Uy ; > 0, the matrix Wy, W] @S is
strictly dominated by S in the sense of positive matrices.

4. CONVERGENCE ANALYSIS

It is straightforward to establish that

) I gy, x;6%+1))

¥, X
< KLE*(y,x) || q(y,x;0%)))
< KL@p®(y,x) || q(y,x;6®)).

Therefore, the sequence of parameters generated by the al-
gorithm decreases the KL divergence between p(y, x) and
q(y, x; 6) and then increases the likelihood. Since
KL(p(y,x) || ¢(y,x;8)) is bounded below by zero, it con-
verges to a local minimum when k£ — oo.

Analysis of convergence of the proposed algorithm to a global
minimum is similar to that of the EM algorithm and is be-
yond the scope of this paper [14]. However, it can easily
be demonstrated that the convergence points for p(y, x) and
q(y, x;0)) are similar. Indeed, S and  are efficient estima-
tors of u and ¥, then,

K L(p(k+l)(

S—Y%¥ and y—pu when n— oo,
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and for ¥ = WWT + U the algorithm described by (14)
and (15) stops since 2 = A which corresponds to the in-
tersection of the two families of probability distributions P
and @ since A\ = «. Therefore,

KL(p®(y,x) | a(y,x;6%)) — 0.
nk — o0
5. SIMULATION RESULTS

To illustrate the performance of the proposed algorithm in
fitting factor analysis models to observed data, a set of arti-
ficial data were generated from model (1) with

U=diag[1 2 3 456 78 9 10],

n=[3333777777].
and W'=

13 1 15 23 18 12 15 0 0 0
0 0 0o 0 18 22 1 18 12 15
35 2 25 15 2 3 25 18 14 13

4 22 13 24 0 0 0 2 31 27

To examine the performance of this proposed algorithm,
factor analysis models with different number of factors ¢
were fitted to the same data sets which consists of n = 500
and n = 1000. To show how the algorithm performs in
these different settings, the Frobenius norm of the error in
estimating ¥ R

Err = || ¥y — ‘1/”%-

was used as a performance measure.

Figure 1(a) and (c) show the evolvement of the error Err as
a function of the number of iterations k, in estimating ¥ for
factor analysis models with ¢ = 1, ¢ = 2 and g = 3 respec-
tively and n = 500. Figure 2(a) and (c) show the same error
for n = 1000.

From these figures we observe that convergence of the al-
gorithm occurs after 20-100 iterations. Therefore, the pro-
posed algorithm appears to be an attractive algorithm for
ML factor analysis. The convergence results of figures 2
are better than the ones of figures 1, this is due to the larger
number of data used in the experiment used to generate fig-
ures 2. This result confirms the convergence results estab-
lished in the previous section. The relative performance of
the proposed algorithm to other existing algorithms was not
tackled here since it was not our objective to develop a com-
peting algorithm.

6. CONCLUSION

Under the information geometric framework as developed
in [10], an algorithm for ML factor analysis which is easy

to implement and stable to converge is proposed. Unlike the
EM approach to ML factor analysis, this framework allows
an intuitive understanding of the algorithm. The proposed
algorithm is developed by using a relaxation procedure, lift-
ing the original ML estimation problem from the minimiza-
tion in one probability density set to the minimization in
two probability density sets. In these two probability sets,
the ML factor analysis problem is formulated as an alternat-
ing minimization procedure of the KL divergence between
amodel family and a desired family of probability densities
leading in a natural way to an iterative alternating projec-
tions algorithm. Alternating minimization of the informa-
tion divergence is a powerful computational procedure for
ML estimation. The detailed presentation of its application
to ML factor analysis can be viewed as a simple illustration
of its use when searching for structure in multivariate data
with latent variables treated as missing data. The perfor-
mance of the proposed algorithm in a simulation example
of ML factor analysis was investigated. Simulation results
illustrating the convergence behavior were given.

Appendix

As in [16](page 91),the mean )\ and the covariance matrix
Q of p*+1)(y, x) can be obtained by deriving the first and
second order terms of

log p**V(y, x) = log g(x|y; 6%?) + log p(y)
which are obtained from the expression
1 T e -
- 30-9'S7 -9
1 _ T —
- (xR -w) =)
(x-S wie 6 - m).

After some manipulations, the second order can be written
as

HE

and the covariance matrix §2 given in (10) is obtained by
inverting the above precision matrix with the following in-
version result

e ] -[6 Al

STU+UIWREE WIeTt —0t W } ' [ y J

X
-Wl oy ™

where
E = (A-BD7'0)™!
F = —(A-BD'C)'BD™!
G = -D7'c(A-BD'0)!
H D'+ D 'C(A-BD7'C)'BD!
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and this identity involving matrix inverses
(P"'+B"R'B)B'"R™' = PBT(BPB" + R)™!

From [16](page 92), we have

S ST Wi,
sk WIwlS xk 4+ 3k WIwlsv W, sk

x|y x|y x|y x|y

N S~y + \I:;lwsziyw,j Ul
W

_ y
h [ Sh WO - ) ]

where corresponds to the mean A given in (9).
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Fig. 2. Evolvement of Err with the number of iterations k
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