Holistic Inversion
of
Airborne Electromagnetic Data

Ross Colin Brodie

A thesis submitted for the degree of
Doctor of Philosophy
of
The Australian National University

May 2010
Declaration

This thesis is the result of research undertaken while I was a student in the Research School of Earth Sciences at the Australian National University. Except as otherwise stated in the text, the work described is original and my own. The thesis has never been submitted to another university or similar institution.

Ross Colin Brodie

4 May 2010
Acknowledgements

Malcolm Sambridge has been a truly excellent supervisor to me throughout my studies at the Research School of Earth Sciences. Malcolm’s mastery of all-things-inversion was inspiring. Most important to me was his ability to teach— to explain with clarity. Malcolm was always a pleasure to work with, he always provided me with the right balance between freedom and focus, and provided a great amount of support when I had to juggle competing workloads. Let us make sure that our collaborations do continue.

I thank my employer, Geoscience Australia, for its support in providing the sponsorship to undertake this research. It has been a marvellous opportunity and I have truly appreciated it. Special thanks go to Barry Drummond for instigating the whole thing. I am glad you nudged me out of my comfort zone and gave me the encouragement to undertake a PhD.

I would like to show my gratitude toward some colleagues who were important leading up to this research. When I first began working in the field of airborne electromagnetics, but really did not yet know a great deal about the subject, Andy Green was of great practical assistance an of immense educational value to me. It was from a collaborative project with Andy that the work in this thesis all began really. Thanks to James Reid who set me off on a path toward quantitative modelling by suppling me with Guptasarma and Singh’s Hankel transform coefficients. Although these are now a distant memory, it was a formative early step. I have always enjoyed and learned from the many collaborations and discussions with Richard Lane. Since he arrived at Geoscience Australia, Richard has been a great mentor and has taught me so much about airborne electromagnetics that one simply does not learn from the literature. Other important scientific mentors at Geoscience Australia, from whom I have learnt so much about airborne geophysics over the years, have been Brian Minty, Peter Milligan,
Murray Richardson and formerly Ian Hone. Extra thanks go to Brian, who diligently proofread the bulk of this thesis.

Also deserving acknowledgement are, my mother Helen, my late father John, and all of my eight siblings, who have always been of great support. They provided the educational opportunities and right family environment for achievement—something that should not be underestimated. Gabrielle Sheen has been a wonderfully close personal friend to me throughout the entirety of these studies. Gabrielle’s support and encouragement is truly appreciated.

I thank the South Australian Salinity Mapping and Management Support Project, which was jointly funded by the Australian and South Australian Governments under the National Action Plan for Salinity and Water Quality, for permission to use and publish the Riverland dataset in this research. I also thank the Bureau of Rural Sciences, an agency of the Department of Agriculture, Fisheries and Forestry, for permission to use and publish parts of the Lower Macquarie dataset.
Abstract

A holistic method for simultaneously calibrating, processing, and inverting frequency-domain airborne electromagnetic data has been developed. A spline-based, 3D, layered conductivity model covering a complete survey area is recovered through inversion of an entire raw airborne data set and available independent geoelectric and interface-depth data. The holistic inversion formulation includes a mathematical model to account for systematic calibration errors such as incorrect gain, phase and zero-level. By taking these elements into account in the inversion, the need to pre-process the airborne data prior to inversion is eliminated.

Conventional processing schemes involve the sequential application of a number of calibration corrections, with data from each frequency being treated separately. This is followed by inversion of each multi-frequency airborne sample in isolation from other samples. By simultaneously considering all of the available information in a holistic inversion, the inter-frequency and spatial coherency characteristics of the data are able to be exploited. The formulation ensures that the conductivity and calibration models are optimal with respect to the airborne data and prior information. Introduction of inter-frequency inconsistency and multistage error propagation stemming from the sequential nature of conventional processing schemes is also avoided.

It is confirmed that accurate conductivity and calibration parameter values are recovered from holistic inversion of synthetic data sets. It is also demonstrated that the results from holistic inversion of raw survey data are superior to the output of conventional 1D inversion of final processed contractor delivered data. In addition to the technical benefits, it is expected that holistic inversion will reduce costs by avoiding the expensive calibration→processing→recalibration paradigm. Furthermore, savings may
also be made because specific high altitude zero-level observations, needed for conventional processing, may not be required.

The same philosophy is also applied to the inversion of time-domain data acquired by fixed-wing towed-bird systems. A spline-based, 2D, layered conductivity model covering a complete survey line is recovered along with a calibrations model. In this instance, the calibration model is a spline based representation of three unmeasured elements of the system geometry. By inverting the less processed total field data, the procedure is able to prevent incorrect assumptions made in conventional primary field removal from being propagated into the inversion stage. Furthermore, by inverting a complete line of data at once the along-line spatial coherency of the geology and the geometry variations is exploited.

Using real survey data, it was demonstrated that all components of the data could be simultaneously and satisfactorily fitted and that the resulting conductivity model was consistent with independent prior information. This was an improvement over the conventional approach, in which the data could not be satisfactorily fitted, nor was the conductivity model consistent with prior information. It was further established that by using the holistic inversion spline parameterization, the resulting conductivity model was more continuous and interpretable than if the conventional style discrete parameterization was used.

If adopted, the holistic approach, could reduce survey costs, reduce data processing turnaround times, and improve the quantitative information that can be extracted from data, and hence, increase the value of airborne electromagnetics for mineral exploration and environmental mapping applications.
Table of Contents

Declaration ... ii
Acknowledgements .. iii
Abstract .. v
Table of Contents ... vii
Table of Appendices .. viii

Chapter 1 Introduction .. 1
 1.1 Outline .. 1
 1.2 The airborne electromagnetic method .. 2
 1.3 Motivation for the research .. 23
 1.4 The holistic inversion framework ... 37
 1.5 Outline of the thesis ... 40

Chapter 2 Layered-earth forward modelling .. 42
 2.1 Outline ... 42
 2.2 Coordinate system ... 44
 2.3 Orientation of transmitter loop and receiver coils ... 45
 2.4 Geoelectric properties of the layered-earth ... 47
 2.5 Magnetic field expressions for an infinitesimal dipole source .. 47
 2.6 Building of the complete system response ... 57
 2.7 Analytic partial derivatives ... 61

Chapter 3 Frequency-domain holistic inversion .. 63
 3.1 Outline ... 63
 3.2 Conductivity model .. 68
 3.3 Calibration model .. 76
 3.4 Observed data ... 84
 3.5 Forward modelling and partial derivative calculations ... 88
 3.6 Inversion scheme .. 100

Chapter 4 Frequency-domain applications .. 120
 4.1 Outline ... 120
 4.2 The Riverland survey .. 122
 4.3 Inversion of synthetic data .. 135
 4.4 Few-layer inversion .. 146
 4.5 Multi-layer inversion ... 174
 4.6 Conclusion .. 198

Chapter 5 Time-domain holistic inversion .. 200
 5.1 Outline ... 200
 5.2 Conductivity model .. 204
 5.3 Calibration model .. 206
Table of Appendices

Appendix A Roll, pitch and yaw ... 289
Appendix B Layered-earth model partial derivatives 291
B.1 Primary field tensor partial derivatives .. 291
B.2 Secondary field tensor partial derivatives 292
B.3 Hankel transform integral partial derivatives 295
B.4 Complex reflection coefficient partial derivatives 297
Appendix C Uniform bicubic B-splines ... 300