Contribution of Mountain Glacier Melting to Sea-Level Changes: Recent Past and Future

Gisela Estermann

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

May 2008

Declaration

The work presented in this thesis was carried out while I was a full-time student at the Research School of Earth Sciences, at the Australian National University, between December 2004 and May 2008. The research described here is my own to the best of my knowledge and believe, except where mentioned in the text. No part of this thesis has been submitted to any other university or similar institution.

> Gisela Estermann May, 2008

ii

Acknowledgements

First of all I would like to thank my supervisor Kurt Lambeck for giving me the opportunity to come to RSES for a research year in the first instance and soon after for offering me to write a Ph.D thesis. I greatly appreciate the time donated to this project by Herb McQueen. His comments on my thesis drafts have been very valuable. Also, I would like to thank my other advisors John Church and Paul Tregoning, in particular for giving me opportunities to attend national and international conferences and present my research there. I greatly appreciate Tony Purcell for introducing me to the complex sea-level program. I extend thanks to Harald Schuh who first initiated the possibility for me to come here to RSES. Johnathan Gregory, Siobhan O'Farrell, and Felix Landerer provided data sets I used to perform my analyses. I thank Guillaume Ramillien for broadening my perspective in subjects that are related to my project. I greatly appreciated sharing an office with Andrea, Ryan, and John. Frances has done a great job in proof reading all my chapters during the past few months. Dan, Simon, Kath, and David also gave valuable comments on some of the chapters.

My special thanks goes to all RSES students who made Canberra a new home for me due to their patient companionship during my study. The many laughs and good times at the student field trips, lunches and coffee breaks encouraged and supported me enormously. In particular Nicole who became a great friend right from the beginning. Though, I feel just as close to Courts, Sparky, Tans, Jill, Soph, and Kat, and not to forget the "boys" at RSES, in particular Marco, Duck, Tailby, Woody, Geordie, and a very special thank you to Joe. Him I owe much for supporting me and cheering me up so many times during the past few months. I also greatly appreciate that I found housemates I liked living with, in particular Kath, Ian, and Josh. Spending time with Thomasina, Tom, Tim, and Jaya with salsa dancing and training for performances was a great balance to working on this project. Finally I would like to express my thanks to my parents and my brothers with their families who I miss very much here. Being not easy for parents having their child so far away, I always felt that they believed in me. I dedicate this thesis to these people whom I love very much.

Abstract

Observations of sea-level changes in the 20^{th} century show a rise of 1 to 2 mm year⁻¹. with accelerating rates in recent decades (IPCC, 2001, 2007b). Contributions to these changes include thermal expansion, recent melting of ice masses (Antarctica, Greenland, and mountain glaciers), and changes in terrestrial water storage. To quantify the contribution from recent mountain deglaciation, a global numerical model based on climate parameters is developed, incorporating seasonal variations in ice volume of 100 glaciated regions. The estimated melt-water from mountain glaciers contributed between 0.25 and 0.43 mm year⁻¹ to global sea-level rise over the period 1961-1990, and between 0.47 and 0.58 mm year⁻¹ over 1991-2000. This is consistent with directly observed ice-volume changes. Thus, confident predictions for future changes can be made using the same numerical model. It is predicted that mountain glaciers will contribute ~ 1.5 mm year⁻¹ on average over the remainder of this century. As well as the volumetric effect of the melt-water, local sea level is affected by the deflection of the crust and gooid in response to the change in surface load. Relative sea-level is predicted to rise on most of the worlds coastlines, but at sites located close to the melting glaciers sea-level is predicted to fall at a rate that reaches several times the average value, and estimates of geodetic signals are therefore strongly dependent on the region under investigation. The distinctive geographical pattern of the changes due to mountain deglaciation is dependent on a number of other factors which have also been addressed in this study. These include both the total and regional ice-volume loss of glaciers, the spatial representation of the glaciated areas, and the Earth models used. As the predicted geodetic signals at sites located close to large-scale glacier systems are of a magnitude that can be observed with geodetic techniques, these methods can provide additional constraints on the ice-volume loss of mountain glaciers.

vi

Contents

D	Declaration				
A	ckno	wledge	ements		iii
A	bstra	ct			\mathbf{v}
1	Intr	oduct	ion		1
	1.1	Thesis	s structur	e	9
2	Met	thods	for estin	nating glacier mass balance	13
	2.1	Obser	vations of	glacier mass balance	16
	2.2	Nume	rical metl	nods	20
		2.2.1	Micro-cl	imate of mountain glaciers	26
	2.3	Globa	l data set	s	30
		2.3.1	Area of	glaciated regions	30
			2.3.1.1	Glaciated regions in Alaska and bordering Canada	32
			2.3.1.2	Glaciated regions in Svalbard	33
			2.3.1.3	Glaciers at the periphery of the Antarctic and	
				Greenland ice sheets	34
		2.3.2	Mass ba	lance sensitivity	35
		2.3.3	Precipit	ation data	40
		2.3.4	Tempera	ature data	46
			2.3.4.1	Large scale temperature variations $\ldots \ldots \ldots$	47
			2.3.4.2	Regional temperature variations	51
			2.3.4.3	Correlation with observed temperature data $\ . \ . \ .$	53
			2.3.4.4	Temperature anomalies	54
		2.3.5	Glacier	imbalance and climate state	58
			2.3.5.1	Large scale temperature variations within the	
				reference period	59

			2.3.5.2	Individual temperature variations of 100 glaciated	
				regions within the reference period	59
			2.3.5.3	Regional temperature variations within the refer-	
				ence period	61
	2.4	Summ	ary		63
3	Ice-	volume	e change	s of mountain glaciers	65
	3.1	Numer	rical estim	nates of recent ice-volume changes	69
		3.1.1	Ice-volur	ne changes of 100 glaciated regions based on $\mathrm{T}_{G}\mathrm{P}_{Z\&O}$	70
		3.1.2	Ice-volur	ne changes of 100 glaciated regions based on	
			$T_{G}P_{CRU}$	T_{aver} and $T_G P_{CRUseries}$	74
		3.1.3	Ice-volur	ne changes of 100 glaciated regions based on $T_{OF}P_{Z\&O}$	75
		3.1.4	Ice-volur	ne changes of 100 glaciated regions based on	
			T _{of} P _{of}	aver and $T_{OF}P_{OFseries}$	77
		3.1.5	Ice-volur	ne changes of 100 glaciated regions based on a	
			regionall	y variable Θ	78
		3.1.6	Compari	son of numerical results	79
	3.2 Observational estimates of recent ice-volume changes				
		3.2.1	Global ic	e-volume changes compiled by Dyurgerov and Meier	
			(2005) .		84
			3.2.1.1	Observed ice-volume changes of 100 glaciated regions	92
		3.2.2	GGGME	BAL: Worldwide annual mass-balance records for	
			small gla	ciers	94
		3.2.3	Global e	stimates of ice-volume changes	98
		3.2.4	Regional	estimates of ice-volume changes	100
			3.2.4.1	Estimates of ice-volume changes in Alaska	101
			3.2.4.2	Estimates of ice-volume changes in Svalbard	105
	3.3	Summ	ary and c	onclusions	107
4	The	Earth	's respo	nse to loading and the effect on sea-level	109
	4.1	Earth	rheology		110
	4.2	Viscoe	lastic Ear	th under surface loads	112
		4.2.1	Earth m	odels	114
	4.3	Sea-lev	vel respon	se to glacial unloading \ldots \ldots \ldots \ldots \ldots	118
		4.3.1 Sea-level changes due to mountain deglaciation: a case study			
		of Svalbard			126
			4.3.1.1	Contributors to relative sea-level changes	126
			4.3.1.2	Dependence on Earth models	131

viii

	4.4	Summ	ary and o	conclusions	133			
5	\mathbf{Pre}	dicted	geodeti	c signals from recent mountain deglaciation	135			
	5.1	distribution of predicted geodetic signals using the						
		numer	ical mode	el of mountain deglaciation	139			
		5.1.1	Predicte	ed geodetic signals from numerical modelling of				
			mountai	In deglaciation based on $T_G P_{Z\&O}$	140			
		5.1.2	Predicte	ed geodetic signals from numerical modelling of				
			mountai	n deglaciation based on $T_{OF}P_{OFseries}$	145			
	5.2	Region	Regional distribution of predicted geodetic signals using the					
		numer	ical mode	el of mountain deglaciation	149			
		5.2.1	Predicte	ed geodetic signals in Alaska from numerical				
			modellir	ng of ice-volume changes	149			
			5.2.1.1	Predicted geodetic signals in Alaska from numerical				
				modelling of mountain deglaciation based on $T_G P_{Z\&}$	₀ 151			
			5.2.1.2	Predicted geodetic signals in Alaska from numerical				
				modelling of mountain deglaciation based on				
				$T_{OF}P_{OFseries}$	158			
		5.2.2	Predicte	ed geodetic signals in Svalbard from numerical				
			modellir	ng of ice-volume changes	159			
			5.2.2.1	Predicted geodetic signals in Svalbard from numer-				
				ical modelling of mountain deglaciation based on				
				$T_G P_{Z\&O}$	160			
			5.2.2.2	Predicted geodetic signals in Svalbard from numer-				
				ical modelling of mountain deglaciation based on				
				$T_{OF}P_{OFseries}$	162			
	5.3	Summ	ary and o	conclusions	163			
0					105			
6	Pot	ential	geodetic	signals from other sources	165			
	6.1	Tector	c tonics \ldots c					
	6.2 Contributions from Greenland and Antarctica				rom Greenland and Antarctica	170		
		6.2.1	Greenla	nd ice sheet	172			
		6.2.2	Antarct	ic ice sheet	176			
	6.3	el response to past ice sheet deglaciation	179					
	6.3.1 The Last Glacial Maximum (LGM)				181			
			6.3.1.1	The LGM in Alaska & Svalbard and its effect on				
				geodetic signals	182			
		6.3.2	The Lit	tle Ice Age (LIA) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	191			

	6.4 Changes in terrestrial water storage					
	6.5	5 Thermal expansion of the ocean waters				
		6.5.1	Relative sea-level changes due to ocean bottom pressure			
			changes caused by thermal expansion	198		
	6.6	Summ	ary and conclusions	204		
7	Con	nparise	on of model predictions with observations	205		
	7.1	Comp	arison on a global scale	205		
		7.1.1	Predicted geodetic signals caused by observed ice-volume			
			changes	206		
	7.2	Comp	arison of geodetic signals in Alaska	210		
		7.2.1	Predicted geodetic signals in Alaska caused by observed ice-			
			volume changes	211		
		7.2.2	Geodetic signals from the study of Bölling et al. (2001)	214		
		7.2.3	Geodetic signals from the study of Arendt et al. (2002)	221		
			7.2.3.1 Recalibration of the numerical model of recent			
			mountain deglaciation in Alaska	222		
		7.2.4	Geodetic signals from the study of Larsen et al. (2004)	229		
		7.2.5	Geodetic signals from the study of Larsen et al. (2005)	238		
	7.3	Comp	arison of geodetic signals in Svalbard	242		
		7.3.1	Predicted geodetic signals in Svalbard caused by observed			
			ice-volume changes	242		
		7.3.2	Geodetic signals from the study of Hagedoorn and Wolf (2003)244		
	7.4	Summ	ary and conclusions	250		
8	Pro	jectior	ns into the future	253		
	8.1	Projec	ted ice-volume changes and geodetic signals by 2100	256		
		8.1.1	Global and regional comparisons	262		
	8.2	Summ	ary and conclusions	268		
9	Sun	nmary	and conclusions	269		
Bi	bliog	graphy		275		
$\mathbf{A}_{]}$	ppen	dices		301		
\mathbf{A}	A Data set of Zuo and Oerlemans (1997a)					
в	Sup	Supporting material for Chapter 2 3				

\mathbf{C}	Supporting material for Chapter 3	323
D	Supporting material for Chapter 5	335
\mathbf{E}	Supporting material for Chapter 6	337

CONTENTS