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Abstract

Observations of sea-level changes in the 20th century show a rise of 1 to 2 mm year−1,

with accelerating rates in recent decades (IPCC, 2001, 2007b). Contributions to

these changes include thermal expansion, recent melting of ice masses (Antarctica,

Greenland, and mountain glaciers), and changes in terrestrial water storage. To

quantify the contribution from recent mountain deglaciation, a global numerical

model based on climate parameters is developed, incorporating seasonal variations

in ice volume of 100 glaciated regions. The estimated melt-water from mountain

glaciers contributed between 0.25 and 0.43 mm year−1 to global sea-level rise over

the period 1961-1990, and between 0.47 and 0.58 mm year−1 over 1991-2000. This

is consistent with directly observed ice-volume changes. Thus, confident predictions

for future changes can be made using the same numerical model. It is predicted that

mountain glaciers will contribute ∼1.5 mm year−1 on average over the remainder

of this century. As well as the volumetric effect of the melt-water, local sea level is

affected by the deflection of the crust and geoid in response to the change in surface

load. Relative sea-level is predicted to rise on most of the worlds coastlines, but

at sites located close to the melting glaciers sea-level is predicted to fall at a rate

that reaches several times the average value, and estimates of geodetic signals

are therefore strongly dependent on the region under investigation. The distinctive

geographical pattern of the changes due to mountain deglaciation is dependent on a

number of other factors which have also been addressed in this study. These include

both the total and regional ice-volume loss of glaciers, the spatial representation

of the glaciated areas, and the Earth models used. As the predicted geodetic

signals at sites located close to large-scale glacier systems are of a magnitude that

can be observed with geodetic techniques, these methods can provide additional

constraints on the ice-volume loss of mountain glaciers.
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