Appendix A

Data set of Zuo and Oerlemans (1997a)

Table A.1 lists details of 100 glaciated regions adopted from Zuo and Oerlemans (1997a) and used in this thesis. In particular, latitude and longitude of the centred locations, the areas (in km²), and the annual precipitation rates (in m w.e. year⁻¹) are given.

glaci	ated region	lat	long	area	prec
1	Ellesmere	80	-80	80,000	0.22
2	Axel Heiberg	79	-92	11,700	0.22
3	Devon Island	75	-82	16,200	0.225
4	N-Baffin Island	72	-78	18,500	0.312
5	S-Baffin Island	67	-66	18,500	0.5
6	Bylot Island	73	-78	5,000	0.22
7	Brooks Range	68	-150	722	0.375
8	Alaska Range	63	-151	13,900	0.875
9	Talkeetna Mts.	62	-149	800	0.875
10	Kilbuck Mts.	61	-160	230	0.75
11	Aleutian Island	54	-166	960	1.5
12	Alaska Peninsula	57	-157	1,250	1.25
13	Seward Peninsula	60	-149	100	3
14	Kenai Mts.	60	-150	4,600	1.25
15	Wrangell Mts.	62	-143	8,300	1.25
16	Chuhach Mts.	61	-145	21,600	1.75

glaci	ated region	lat	long	area	prec
17	St. Elias Mts.	61	-141	11,800	1.5
18	Coast Mts.	59	-134	10,500	2.5
19	Stikine River	57	-131	$5,\!070$	1.5
20	Yukon Territory	61	-140	10,000	1.5
21	Selwyn Mts.	62.5	-128	600	0.75
22	Rocky Mts.	58	-125	300	0.75
23	Coast Mts.	51	-125	13,500	2.5
24	Olympic Mts.	48	-123	46	4
25	N-Cascades	48.3	-121	266	2.5
26	Mt. Rainer / Adams	46	-122	63	4
27	Rocky Mts.	52	-118	3,000	1
28	Selkirk Mts.	51	-117	1,000	1.5
29	Rocky Mts.	44	-109	74	0.562
30	Sierra Nevada	37	-118	51	1
31	Mexico	19	-97	4	2.5
32	Mexico	19	-98.5	4	1.25
33	Mexico	19	-100	3	1.75
34	S.Nev de Merida	8.5	-71	3	1.5
35	Nev. del Huila	3	-76	19	1.5
36	Nev. del Ruzy / Tolima	4.7	-75.4	24	3
37	Nev. del Cocuy	6.5	-72.3	39	1.25
38	S. Nev de Santa Marta	10.8	-73.6	19	4
39	Ecuador	-0.8	-78.2	111	3.5
40	N. Cordilleras	-10	-77	873	1.5
41	N. Cordilleras	-12	-75.5	258	1
42	S. Cordilleras	-15	-73	649	0.813
43	Cordilleras Oriental	-15.6	-68	51	1.12
44	Andes, 30-16S	-23	-67.5	2,800	0.375
45	Chili	-34	-70	743	1.5
46	Mendoza / San Juan	-33	-70	$1,\!170$	1.5
47	Neuquen	-37	-70	156	3.5
48	Chili	-43	-72	$3,\!570$	3
49	N. Patagonia	-47	-73.5	5,720	2
50	S. Patagonia	-50	-73.5	16,900	2
51	Tierra del Fuego	-54.5	-70.5	2,700	2
52	S. Atlantic Islands	-57	-35	4,100	1

glaci	ated region	lat	long	area	prec
53	Vatnajokull	65.5	-17	8,300	4
54	Langjokull	65	-20	953	4
55	Hofsjokull	65.5	-19	925	2.5
56	Myrdalsjokull	63.5	-19	600	4
57	Drangajokull	66	-22	160	2.5
58	Svalbard	79	18	36,600	0.375
59	Franz Josef Land	81	57	13,700	0.312
60	Novaya Zemlya	75	57	23,600	0.5
61	Severnaya Zemlya	79	98	18,300	0.25
62	N. Scandinavia	67.5	17	1,080	2.5
63	S. Norway	61.7	7.4	$1,\!630$	4
64	Alps	46	7.5	2,910	2
65	Pyrenees	42.5	0	12	2
66	Bol'shoy Kavkaz	42.5	44	1,340	1.5
67	Turkey	38	43.5	24	1.25
68	Iran	38	46.5	20	0.75
69	Severnity Ural	66	61	800	1
70	Ili + Chu	43	77.5	2,300	1
71	Syrdar'ya / Amudar'ya	38	71	10,700	1
72	Tarim Ba	42	77.5	320	0.75
73	Pakistan/India	36	76	40,000	1.75
74	Nanga Parbat	35.3	74.6	301	1.25
75	Chitral	36.4	72.4	$1,\!350$	2
76	Himalaya / Nepal	28	87	12,700	0.75
77	Bhutan	28	90	1,340	0.75
78	Niangtingtanggula	30	89	7,540	1
79	Qilian Shan	39	99	2,380	0.75
80	Altai Shan	47	91	293	0.375
81	Kunlun Shan	36	87	11,600	0.25
82	Tyan Shan	42	80	9,550	1
83	Tanggula Shan	33	91	2,080	0.75
84	Hengduan Shan	28	99	1,460	1
85	Gangdisi Shan	31	82	2,190	0.625
86	Dzungarsky Alatau	45	80	910	1
87	Qiangtang Plateau	34	87	3,190	0.25
88	Orulgan	68	128	18	0.625

glaci	ated region	lat	long	area	prec
89	Cherskogo	65	145	372	0.875
90	Koryakskoye Khrebet	62.5	171	260	1.25
91	Suntar Khayata	62.5	141	202	1
92	Kodar	57.5	117	19	0.75
93	Kamtchatka	57.5	160	874	0.5
94	Mt. Kenya	-0.2	37.3	1	1.75
95	Mt. Kilimandjaro	-3.1	37.3	5	1.37
96	Ruwenzori	0.4	30	5	1.37
97	Irian Jaya	-4	137	7	3.75
98	New Zealand	-43.4	170	1,000	1.87
99	Kerguelen Island	-49	69	450	1.07
100	Heard Island	-53	73.5	450	1.72

Table A.1: Details on 100 glaciated regions adopted from Zuo and Oerlemans (1997a).

Appendix B

Supporting material for Chapter 2

Topographic maps of Alaska and Svalbard

Figures B.1 and B.2 show topographic maps of Alaska and Svalbard overlaid with the area-extents of glaciated regions of the digitised data set.

Figure B.1: Extent of glaciers in Alaska plotted on top of a topographic map.

Figure B.2: Extent of glaciers on the Svalbard archipelago plotted on top of a topographic map.

Location of glaciated region and precipitation data

Table B.1 lists the centred location of 100 glaciated region and the nearest available precipitation grid point. The precipitation data set is taken from the Climate Research Unit (CRU) and is given on a 2.5° latitude by 3.75° longitude resolution.

	gl. re	egion	pree	c. grid	dist						
gl	lat	long	lat	long	[km]						
1	80	-80	80	-86.25	121	51	-54.5	-70.5	-55	-67.5	200
2	79	-92	80	-86.25	161	52	-57	-35	-60	-45	669
3	75	-82	75	-93.75	338	53	65.5	-17	65	-18.75	99
4	72	-78	70	-82.5	276	54	65	-20	65	-18.75	59
5	67	-66	65	-67.5	233	55	65.5	-19	65	-18.75	57
6	73	-78	70	-82.5	369	56	63.5	-19	62.5	-18.75	112
7	68	-150	67.5	-150	56	57	66	-22	65	-22.5	114
8	63	-151	62.5	-150	75	58	79	18	77.5	15	180
9	62	-149	62.5	-150	76	59	81	57	80	78.75	412
10	61	-160	60	-161.25	131	60	75	57	80	78.75	755
11	54	-166	55	-161.25	326	61	79	98	80	78.75	404
12	57	-157	57.5	-157.5	63	62	67.5	17	67.5	18.75	75
13	60	-149	60	-150	56	63	61.7	7.4	62.5	7.5	89
14	60	-150	60	-150	0	64	46	7.5	45	7.5	111
15	62	-143	62.5	-142.5	61	65	42.5	0	42.5	0	0
16	61	-145	60	-146.25	131	66	42.5	44	42.5	45	82
17	61	-141	60	-138.75	166	67	38	43.5	37.5	45	143
18	59	-134	60	-135	125	68	38	46.5	37.5	45	143
19	57	-131	57.5	-131.25	58	69	66	61	65	60	120
20	61	-140	60	-138.75	131	70	43	77.5	42.5	78.75	116
21	62.5	-128	65	-127.5	279	71	38	71	37.5	71.25	59.8
22	58	-125	60	-123.75	234	72	42	77.5	42.5	78.75	116.9
23	51	-125	50	-123.75	142	73	36	76	35	75	143.4
24	48	-123	47.5	-123.75	79	74	35.3	74.6	35	75	49.3
25	48.3	-121	47.5	-120	116	75	36.4	72.4	37.5	71.25	159.4
26	46	-122	45	-123.75	176	76	28	87	27.5	90	300.4
27	52	-118	52.5	-116.25	132	77	28	90	27.5	90	55.6
28	51	-117	50	-116.25	123	78	30	89	30	90	96.3
29	44	-109	45	-108.75	113	79	39	99	40	97.5	170.1
30	37	-118	37.5	-116.25	165	80	47	91	47.5	90	93.7
31	19	-97	20	-97.5	123	81	30	81	37.5	86.25	179.7
32	19	-98.5	20	-97.5	153	82	42	80	42.5	78.75	116.9
33	19	-100	20	-101.25	112	83	33	91	30	90	340.8
34	8.0	-(1	1.5	-(1.25	110	04	20	99	27.0	91.0	101.1
30		-70	2.0	-75	124 55	86	45	80	45	78 75	08.3
30	4.1	-70.4	75	-70	- 00 - 161	87	40 94	80	40 97 5	10.10 96.95	205.0
30	10.0	-12.3	10	-71.20	101 979	89	54 68	128	67.5	00.20 193.75	187.3
30	10.0	-73.0	10	78 75	108	80	65	145	65	146.25	58.8
10	-0.8	-77	-10	-75	210	90	62.5	171	62.5	172.5	77 1
40	-10	-75.5	-12.5	-75	78	01	62.5	1/1	62.5	1/2.0	77.1
42	-15	-73	-12.0	-75	215	92	57.5	117	57.5	12.0	179.2
43	-15.6	-68	-15	-67.5	86	93	57.5	160	57.5	161 25	74 7
44	-23	-67.5	-20	-67.5	334	94	-0.2	37.3	0	37.5	31.4
45	-34	-70	-35	-71.25	160	95	-3.1	37.3	-2.5	37.5	70.3
46	-33	-70	-32.5	-71.25	129	96	0.4	30	0	30	44.5
47	-37	-70	-37.5	-71.25	124	97	-4	137	-7.5	138.75	434.7
48	-43	-72	-42.5	-71.25	83	98	-43.4	170	-45	168.75	203.9
49	-47	-73.5	-47.5	-71.25	179	99	-49	69	-50	71.25	196.9
50	-50	-73.5	-50	-71.25	161	100	-53	73.5	-50	71.25	368.1

Table B.1: Comparison of locations between glaciated regions and available precipitation data from the CRU. The last column lists the approximate distance in kilometre between the two locations.

Average annual mean precipitation of three sources

Table B.2 lists average annual precipitation rates of 100 glaciated regions from three sources:

$P_{Z\&O}$	data from Zuo and Oerlemans (1997a)
$\mathbf{P}_{CRUaver}$	calculated from data of the Climate Research Unit (CRU)
\mathbf{P}_{OFaver}	calculated from the data sets provided by Siobhan O'Farrell

For the calculation of the average of the 100 glaciated regions (last row in Table B.2) using $P_{CRUaver}$ and P_{OFaver} , annual precipitation rates smaller than 0.22 m year⁻¹ are set to that number (see page 36 for details on this parameter setting).

gl	$P_{Z\&O}$	$\mathbf{P}_{CRUaver}$	\mathbf{P}_{OFaver}	gl	$\mathbf{P}_{Z\&O}$	$\mathbf{P}_{CRUaver}$	PoFaver
1	0.22	$0.085 \pm 0.028 <$	$0.259 \pm 0.045 +$	51	2	0.693 ± 0.146	1.662 ± 0.131
2	0.22	$0.085 \pm 0.028 <$	$0.251 \pm 0.042 +$	52	1	$0.593 {\pm} 0.259$	$1.147 \pm 0.070 +$
3	0.225	$0.176 \pm 0.039 <$	$0.226 \pm 0.0.35 +$	53	4	0.610 ± 0.112	0.951 ± 0.094
4	0.312	$0.261 {\pm} 0.064$	$0.425 \pm 0.058 +$	54	4	$0.610 {\pm} 0.112$	0.907 ± 0.105
5	0.5	$0.514 \pm 0.119 +$	$0.582 \pm 0.093 +$	55	2.5	0.610 ± 0.112	0.899 ± 0.100
6	0.22	$0.261 \pm 0.064 +$	$0.260 \pm 0.040 +$	56	4	1.843 ± 0.263	0.915 ± 0.100
7	0.375	$0.426 \pm 0.103 +$	$0.698 \pm 0.074 +$	57	2.5	$0.999 {\pm} 0.168$	1.075 ± 0.115
8	0.875	$0.691 {\pm} 0.117$	$1.652 \pm 0.185 +$	58	0.375	$0.459 \pm 0.154 +$	$0.461 \pm 0.066 +$
9	0.875	$0.691 {\pm} 0.117$	$1.976 \pm 0.225 +$	59	0.312	$0.273 {\pm} 0.096$	$0.322 \pm 0.050 +$
10	0.75	$0.541 {\pm} 0.165$	$1.076 \pm 0.113 +$	60	0.5	$0.273 {\pm} 0.096$	$0.376 {\pm} 0.070$
11	1.5	1.153 ± 0.235	$1.368 {\pm} 0.105$	61	0.25	$0.273 \pm 0.096 +$	$0.296 \pm 0.047 +$
12	1.25	$0.653 {\pm} 0.117$	1.214 ± 0.112	62	2.5	$0.638 {\pm} 0.082$	$0.756 {\pm} 0.093$
13	3	$0.685 {\pm} 0.114$	$1.755 {\pm} 0.217$	63	4	$1.442 {\pm} 0.257$	0.964 ± 0.114
14	1.25	0.685 ± 0.114	$1.631 \pm 0.191 +$	64	2	1.222 ± 0.214	$1.639 {\pm} 0.202$
15	1.25	$0.306 {\pm} 0.056$	$1.791 \pm 0.176 +$	65	2	$0.788 {\pm} 0.149$	0.646 ± 0.135
16	1.75	$3.435 \pm 1.007 +$	$2.024 \pm 0.247 +$	66	1.5	$0.983 {\pm} 0.118$	1.114 ± 0.170
17	1.5	$4.628 \pm 0.926 +$	$2.368 \pm 0.261 +$	67	1.25	$0.486 {\pm} 0.076$	0.628 ± 0.145
18	2.5	$0.347 {\pm} 0.058$	$2.345 {\pm} 0.274$	68	0.75	$0.486 {\pm} 0.076$	0.437 ± 0.117
19	1.5	$1.574 \pm 0.182 +$	$2.580 \pm 0.313 +$	69	1	0.623 ± 0.117	$0.816 {\pm} 0.096$
20	1.5	$4.628 \pm 0.926 +$	$2.368 \pm 0.261 +$	70	1	$0.478 {\pm} 0.086$	0.688 ± 0.123
21	0.75	$0.386 {\pm} 0.081$	$0.718 {\pm} 0.078$	71	1	$0.369 {\pm} 0.097$	$0.786 {\pm} 0.165$
22	0.75	$0.543 {\pm} 0.092$	$1.276 \pm 0.121 +$	72	0.75	$0.478 {\pm} 0.086$	$0.816 \pm 0.121 +$
23	2.5	1.423 ± 0.198	$2.478 {\pm} 0.345$	73	1.75	$0.860 {\pm} 0.182$	0.895 ± 0.136
24	4	2.284 ± 0.334	$1.798 {\pm} 0.253$	74	1.25	0.860 ± 0.182	0.834 ± 0.259
25	2.5	0.833 ± 0.133	1.826 ± 0.270	75	2	$0.369 {\pm} 0.097$	1.027 ± 0.213
26	4	2.016 ± 0.331	$1.530 {\pm} 0.242$	76	0.75	$3.409 \pm 0.469 +$	$1.806 \pm 0.207 +$
27	1	$0.540 {\pm} 0.069$	$1.294 \pm 0.121 +$	77	0.75	$3.409 \pm 0.469 +$	$1.322 \pm 0.140 +$
28	1.5	0.761 ± 0.110	$0.880 {\pm} 0.095$	78	1	0.551 ± 0.104	0.570 ± 0.110
29	0.562	0.421 ± 0.073	$0.947 \pm 0.116 +$	79	0.75	$0.089 \pm 0.030 <$	0.728 ± 0.074
30	1	$0.173 \pm 0.053 <$	0.565 ± 0.225	80	0.375	$0.155 \pm 0.039 <$	$0.470 \pm 0.069 +$
31	2.5	2.408 ± 0.325	1.354 ± 0.287	81	0.25	$0.027 \pm 0.017 <$	$1.163 \pm 0.138 +$
32	1.25	$2.408 \pm 0.325 +$	$1.996 \pm 0.270 +$	82	1	0.478 ± 0.086	0.577 ± 0.151
33	1.75	1.003 ± 0.142	$1.996 \pm 0.270 +$	83	0.75	0.551 ± 0.104	0.145±0.059<
34	1.5	$1.818 \pm 0.260 +$	$1.575 \pm 0.317 +$	84	1	0.816 ± 0.114	$2.053 \pm 0.184 +$
35	1.5	$2.025 \pm 0.338 +$	$5.586 \pm 0.470 +$	85	0.625	$1.646 \pm 0.358 +$	$1.415 \pm 0.274 +$
36	3	1.020 ± 0.173	$4.520 \pm 0.596 +$	86	1	0.391 ± 0.082	0.350 ± 0.077
37	1.25	$1.818 \pm 0.260 +$	$2.216 \pm 0.289 +$	87	0.25	$0.027 \pm 0.017 <$	$0.290 \pm 0.063 +$
38	4	1.276 ± 0.209	$0.200 \pm 0.171 <$	88	0.625	0.356 ± 0.061	0.557 ± 0.077
39	3.5	1.529 ± 0.373	$6.851 \pm 0.369 +$	89	0.875	0.312 ± 0.075	0.697 ± 0.075
40	1.5	$3.931 \pm 0.792 +$	$2.713 \pm 0.403 +$	90	1.25	0.404 ± 0.093	0.891 ± 0.124
41	1	0.885 ± 0.160	$2.090 \pm 0.385 +$	91		0.259 ± 0.066	0.794 ± 0.125
42	0.813	$0.006 \pm 0.006 <$	0.316 ± 0.193	92	0.75	0.429 ± 0.076	$0.970\pm0.110+$
43	1.12	$2.561 \pm 0.574 +$	$2.467 \pm 0.241 +$	93	0.5	$0.757 \pm 0.136 +$	$0.763 \pm 0.110 +$
44	0.375	$0.515 \pm 0.154 +$	$0.457 \pm 0.259 +$	94	1.75	1.315 ± 0.266	0.489 ± 0.202
45	1.5	1.204 ± 0.308	0.435 ± 0.119	95	1.37	1.032 ± 0.216	0.469 ± 0.220
46	1.5	0.498 ± 0.218	0.297 ± 0.103	96	1.37	$1.380\pm0.164+$	$2.447 \pm 0.252 +$
41	<u>ა</u> .ე	1.011 ± 0.001	0.480 ± 0.109	97	3.75 1.97	1.013 ± 0.417 1.001 ± 0.197	$3.622 \pm 0.804 +$
48	<u>ა</u>	0.910 ± 0.171	1.200 ± 0.127	98	1.87	1.091 ± 0.187	1.201 ± 0.138
49	2	0.441 ± 0.126	1.470 ± 0.127	99	1.07	0.992 ± 0.319	$1.049\pm0.090+$
90	2	0.210±0.001<	1.240±0.100	100	1.12	1.00	1.410±0.000

Table B.2: Comparison of average annual mean precipitation and standard deviation (calculated from Equation 2.12) of 100 glaciated regions between the data sets of $P_{Z\&O}$, $P_{CRUaver}$, and P_{OFaver} . The unit is meters year⁻¹ of water. Red numbers indicate calculated $P_{CRUaver}$ or P_{OFaver} that lie within 25% of the $P_{Z\&O}$ value. Calculated $P_{CRUaver}$ or P_{OFaver} that are greater than those of $P_{Z\&O}$ are indicated with a '+' symbol. The symbol '<' indicates that the calculated average annual precipitation is less than 0.22 m year⁻¹ but has to be set to that number for any following calculations.

Trends of precipitation data sets

Table B.3 lists linear trends in precipitation of 100 glaciated regions calculated from the data set of the Climate Research Unit, **CRU**. The time periods vary for each region, not covering time before 1900 or after 1998 at all.

Trends in precipitation of 53 glaciated regions are **positive**. Of these:

35 trends are significant at a 1σ level

23 trends are significant at a 2σ level

4 trends are significant at a 3σ level

Trends in precipitation of 47 glaciated regions are **negative**. Of these:

23 trends are significant at a 1σ level

11 trends are significant at a 2σ level

5 trends are significant at a 3σ level

Table B.4 lists precipitation trends of 100 glaciated regions calculated from the data set of Siobhan **O'Farrell**. Data for the time period 1871-2000 is available and is given on a 1.875° longitude by $\sim 1.86^{\circ}$ latitude grid.

Trends in precipitation of 66 glaciated regions are **positive**. Of these:

37 trends are significant at a 1σ level

15 trends are significant at a 2σ level

2 trends are significant at a 3σ level

Trends in precipitation of 34 glaciated regions are **negative**. Of these:

10 trends are significant at a 1σ level

4 trends are significant at a 2σ level

1 trend is significant at a 3σ level

gl	trend	gl	trend	gl	trend
1	0.649 ± 0.257	35	-1.149 ± 1.378	69	1.030 ± 0.406
2	0.649 ± 0.257	36	-0.254 ± 0.680	70	0.131 ± 0.308
3	0.697 ± 0.375	37	-0.832 ± 0.985	71	0.823 ± 0.337
4	-0.234 ± 0.701	38	-0.357 ± 0.794	72	0.131 ± 0.308
5	0.731 ± 1.166	39	-1.789 ± 1.563	73	0.477 ± 0.671
6	-0.234 ± 0.701	40	19.526 ± 8.232	74	0.477 ± 0.671
7	-0.139 ± 0.383	41	-0.065 ± 2.055	75	0.823 ± 0.337
8	-0.230 ± 0.425	42	-0.098 ± 0.082	76	-3.555 ± 1.672
9	-0.230 ± 0.425	43	-4.982 ± 2.031	77	-3.555 ± 1.672
10	-1.726 ± 0.822	44	-0.210 ± 0.545	78	-0.328 ± 0.378
11	1.970 ± 1.445	45	-2.516 ± 1.059	79	0.007 ± 0.218
12	-1.409 ± 0.497	46	-2.074 ± 0.743	80	0.050 ± 0.139
13	-0.019 ± 0.434	47	-2.611 ± 1.141	81	0.450 ± 0.183
14	-0.019 ± 0.434	48	-0.771 ± 0.600	82	0.131 ± 0.308
15	0.011 ± 0.210	49	1.298 ± 0.466	83	-0.328 ± 0.378
16	-11.788 ± 3.461	50	-0.346 ± 0.338	84	-0.490 ± 0.413
17	1.951 ± 3.269	51	-0.650 ± 0.560	85	-0.845 ± 1.282
18	-0.624 ± 0.195	52	3.720 ± 1.248	86	0.349 ± 0.288
19	-1.554 ± 0.622	53	0.420 ± 0.394	87	0.450 ± 0.183
20	1.951 ± 3.269	54	0.420 ± 0.394	88	0.233 ± 0.243
21	-0.066 ± 0.362	55	0.420 ± 0.394	89	0.568 ± 0.267
22	0.722 ± 0.316	56	3.740 ± 0.850	90	1.193 ± 0.441
23	1.125 ± 0.690	57	0.538 ± 0.590	91	0.670 ± 0.338
24	1.091 ± 1.213	58	4.036 ± 0.938	92	0.709 ± 0.259
25	0.803 ± 0.464	59	0.334 ± 1.346	93	0.992 ± 0.675
26	0.138 ± 1.173	60	0.334 ± 1.346	94	1.223 ± 0.960
27	0.558 ± 0.236	61	0.334 ± 1.346	95	-1.013 ± 0.782
28	1.223 ± 0.367	62	1.120 ± 0.268	96	1.260 ± 0.583
29	0.565 ± 0.252	63	2.025 ± 0.886	97	-1.986 ± 1.507
	0.324 ± 0.185	64	-0.318 ± 0.757	98	-2.084 ± 0.674
	-1.599 ± 1.262	65	-0.180 ± 0.528	99	-15.554 ± 4.119
32	-1.599 ± 1.262	66	-0.114 ± 0.416	100	$ -15.554 \pm 4.119 $
33	0.442 ± 0.554	67	-0.088 ± 0.268		
34	$ -0.832 \pm 0.985 $	68	-0.088 ± 0.268		

Table B.3: Trends and standard deviations (calculated from Equation 2.12) of precipitation at glaciated regions for the period 1900-1998 (or available years) in mm year⁻². The data is taken from the Climate Research Unit (CRU).

gl	trend	gl	trend	gl	trend
1	0.177 ± 0.103	35	-0.979 ± 1.100	69	0.471 ± 0.226
2	0.056 ± 0.099	36	0.563 ± 1.398	70	-0.213 ± 0.296
3	0.173 ± 0.083	37	0.199 ± 0.672	71	0.133 ± 0.428
4	0.287 ± 0.136	38	-0.323 ± 0.405	72	-0.404 ± 0.297
5	0.246 ± 0.214	39	-1.384 ± 0.864	73	0.282 ± 0.328
6	0.192 ± 0.095	40	0.337 ± 0.933	74	0.739 ± 0.600
7	0.261 ± 0.173	41	0.552 ± 0.909	75	0.406 ± 0.534
8	0.471 ± 0.443	42	-0.075 ± 0.449	76	-0.014 ± 0.485
9	0.612 ± 0.534	43	1.706 ± 0.559	77	-0.269 ± 0.335
10	0.182 ± 0.263	44	0.361 ± 0.609	78	-0.180 ± 0.255
11	0.653 ± 0.237	45	-0.678 ± 0.277	79	0.152 ± 0.173
12	0.563 ± 0.255	46	-0.437 ± 0.238	80	0.203 ± 0.162
13	0.853 ± 0.518	47	-0.781 ± 0.255	81	0.978 ± 0.339
14	0.637 ± 0.457	48	-0.722 ± 0.297	82	-0.083 ± 0.364
15	0.580 ± 0.416	49	-0.398 ± 0.293	83	0.121 ± 0.136
16	0.925 ± 0.590	50	-0.025 ± 0.251	84	0.555 ± 0.436
17	1.274 ± 0.616	51	0.255 ± 0.300	85	0.610 ± 0.629
18	1.928 ± 0.641	52	0.395 ± 0.160	86	-0.254 ± 0.179
19	1.344 ± 0.734	53	0.342 ± 0.216	87	0.216 ± 0.149
20	1.274 ± 0.616	54	0.644 ± 0.248	88	0.171 ± 0.183
21	0.143 ± 0.184	55	0.255 ± 0.233	89	0.192 ± 0.183
22	-0.252 ± 0.287	56	0.531 ± 0.237	90	-0.017 ± 0.287
23	0.665 ± 0.858	57	0.213 ± 0.265	91	-0.132 ± 0.290
24	0.504 ± 0.632	58	0.077 ± 0.157	92	-0.075 ± 0.267
25	0.466 ± 0.674	59	0.145 ± 0.115	93	0.607 ± 0.247
26	-0.067 ± 0.598	60	0.314 ± 0.163	94	-0.071 ± 0.466
27	0.043 ± 0.291	61	0.063 ± 0.107	95	-0.092 ± 0.509
28	-0.169 ± 0.222	62	0.388 ± 0.212	96	-0.451 ± 0.583
29	-0.099 ± 0.266	63	0.294 ± 0.268	97	0.626 ± 2.033
30	-0.035 ± 0.528	64	-0.053 ± 0.473	98	0.459 ± 0.319
31	-0.718 ± 0.667	65	0.124 ± 0.321	99	0.210 ± 0.228
32	0.394 ± 0.623	66	-0.884 ± 0.388	100	0.173 ± 0.202
33	0.394 ± 0.623	67	-0.170 ± 0.335		
34	-0.544 ± 0.737	68	-0.054 ± 0.272		

Table B.4: Trends and standard deviations (calculated from Equation 2.12) of modelled precipitation at glaciated regions for the period 1871-2000 in mm year⁻². The data is provided by Siobhan O'Farrell.

Correlation between observed and modelled temperature

Tables B.5 and B.6 show correlation coefficients between modelled (provided by Gregory or O'Farrell) and observed temperature series at a few glaciated regions. The observed temperature data set is taken from the NASA web page (http://www.giss.nasa.gov/data/update/gistemp/station_data). The temperature for each glaciated region is taken from the grid which is located closest to the centre of the glaciated region.

	$\mathbf{g}^{]}$	laciated region	station - observed	corr. coeff	dist	yrs
	7	Due des Demes	1 Umiat	-0.28	177	10
	(Brooks Range	3 Allakaket	0.07	194	64
ska	10	Alasla Darianala	1 King Salmon	0.04	190	71
	12	Alaska Peninsula	2 Iliamna FAA Airport	0.10	334	47
ka	15	Wrangell Mts.	1 Yakataga Airport	0.43	213	15
las	17	St. Elias Mts.	1 Yakataga Airport	0.57	129	15
A			1 Graham Inlet	-0.53	68	16
	18	Coast Mts.	4 Haines	0.09	83	63
			7 Gustavus	0.57	119	16
	20	Vukon Territory	1 Yakataga Airport	0.59	169	15
	20		2 Burwash, Yukon	0.08	86	23
	0.0	Coost Mts	1 Mosley Creek	-0.52	67	10
NA S	20	Coast Mits.	2 Tatlayoko Lake	0.05	88	61
Ω	25	N. Cagaadag	1 Stehekin	0.03	25	82
	20	N. Cascades	2 Winthrop	0.01	63	87
	20	Poelar Mta	1 Buffalo Bill Dam	-0.05	25	89
	29	nocky Mits.	3 Red Lodge	0.11	134	97
m.	10	N D / ·	1 Puerto Aysen	-0.02	188	27
ch. An	49	N. Patagonia	2 Balmaceda	0.22	184	26
	51	Tionna dal Europa	1 Punta Arenas	-0.15	168	109
Š	51	rierra del ruego	2 Rio Gallegos	0.31	332	60
	53	Vatnajokull	1 Akureyri	0.14	55	115
ic	55	Hofsjokull	1 Akureyri	0.14	47	115
rct	58	Svalbard	1 Svalbard	-0.19	105	19
	50	Franz Josef Land	1 Gmo Im	0.02	48	39
	0.5		2 Ostrov Vize	0.15	409	46
	62	N. Scandinavia	2 Tromo	-0.18	237	76
e	63	S Norway	2 Dombas Norway	0.08	95	95
do	05	S. NOI way	5 Hellisoy Fyr	0.14	176	75
Eul	64	Alpa	1 Basel	-0.08	178	100
	04	Alps	6 Saentis	0.16	192	114
	65	Pyrenees	2 Pic Du Midi France	0.28	45	36
	71	Syrdar'ya Amudar'ya	2 Dir	0.12	244	10
	76	Himalaya / Nepal	4 Darjeeling	0.10	163	97
sia	00	Alta: Cham	1 Bulgan	0.52	110	21
¥.	00	Altai Shan	4 Hovd	0.00	120	46
	01	Hongduan Char	1 Deqen	0.18	56	37
	04	nenguuan Snan	2 Daocheng	0.24	176	34
ZV	98	New Zealand	1 Christchurch	0.20	202	92

Table B.5: Correlation coefficients between time series of T_G and observed temperature at a few glaciated regions. The column "dist" gives the approximate distance in kilometre between the location of the glaciated regions and the site with available temperature observations. The last column lists the number of years of temperature observation.

	gl	aciated region	station - observed	corr. coeff	dist	yrs
	-	DID	1 Umiat	-0.46	177	10
	(Brooks Kange	3 Allakaket	0.13	194	64
	10	All Dil-	1 King Salmon	0.01	190	71
	12	Alaska Peninsula	2 Iliamna FAA Airport	0.02	334	47
ka	15	Wrangell Mts.	1 Yakataga Airport	-0.01	213	15
las	17	St. Elias Mts.	1 Yakataga Airport	0.02	129	15
A			1 Graham Inlet	0.18	68	16
	18	Coast Mts.	4 Haines	0.14	83	63
			7 Gustavus	0.07	119	16
	20	Vukon Territory	1 Yakataga Airport	0.02	169	15
	20	rukon rennory	2 Burwash, Yukon	0.14	86	23
	99	Coost Mts	1 Mosley Creek	0.08	67	10
V	23	Coast Mits.	2 Tatlayoko Lake	-0.19	88	61
DS D	95	N. Casaadaa	1 Stehekin	0.15	25	82
	20	N. Cascades	2 Winthrop	-0.05	63	87
	20	Deeler Mta	1 Buffalo Bill Dam	0.06	25	89
	29	ROCKY MILS.	3 Red Lodge	0.09	134	97
m.	40	ND	1 Puerto Aysen	0.03	188	27
th. An	49	N. Fatagoma	2 Balmaceda	-0.14	184	26
	51	Tionna dal Fuora	1 Punta Arenas	-0.22	168	109
Ś	51	rierra del ruego	2 Rio Gallegos	0.06	332	60
	53	Vatnajokull	1 Akureyri	-0.17	55	115
ic	55	Hofsjokull	1 Akureyri	-0.24	47	115
rct	58	Svalbard	1 Svalbard	-0.42	105	19
A	50	Franz Josef Land	1 Gmo Im	0.14	48	39
	05	Tranz Josef Land	2 Ostrov Vize	0.09	409	46
	62	N. Scandinavia	2 Tromo	0.05	237	76
e	62	S. Normon	2 Dombas Norway	0.04	95	95
do	05	5. Norway	5 Hellisoy Fyr	0.04	176	75
Em	64	Alpa	1 Basel	0.11	178	100
	04	Alps	6 Saentis	0.26	192	114
	65	Pyrenees	2 Pic Du Midi France	-0.17	45	36
	71	Syrdar'ya Amudar'ya	2 Dir	-0.08	244	10
	76	Himalaya / Nepal	4 Darjeeling	-0.03	163	97
sia	20	A 14 - : C1	1 Bulgan	-0.01	110	21
A£	80	Antai Shan	4 Hovd	0.14	120	46
	Q /	Hongduan Shan	1 Deqen	0.13	56	37
	04	menguuan Shan	2 Daocheng	0.26	176	34
ZZ	98	New Zealand	1 Christchurch	0.15	202	92

Table B.6: Correlation coefficients between time series of T_{OF} and observed temperature at a few glaciated regions. The column "dist" gives the approximate distance in kilometre between the location of the glaciated regions and the site with available temperature observations. The last column lists the number of years of temperature observation.

Linear trends in temperature over the period 1871-1990

Table B.7 lists linear trends in temperature of 100 glaciated regions over the period 1871-1990 using T_G and T_{OF} .

Temperature trends based on the **Gregory** data set:

Trends in temperature of 97 glaciated regions are **positive**. Of those:

92 trends are significant at a 1σ level

58 trends are significant at a 2σ level

33 trends are significant at a 3σ level

Trends in temperature of 3 glaciated regions are **negative**: Of those: 1 trend is significant at a 1σ level.

Temperature trends based on the **O'Farrell** data set:

Trends in temperature of 99 glaciated regions are **positive**. Of those:

90 trends are significant at a 1σ level

83 trends are significant at a 2σ level

64 trends are significant at a 3σ level

The trend in temperature of 1 glaciated regions is **negative**.

gl	Gregory	O'Farrell	gl	Gregory	O'Farrell
1	0.0008 ± 0.0028	0.0088 ± 0.0025	51	0.0033 ± 0.0006	0.0044 ± 0.0006
2	0.0080 ± 0.0040	0.0091 ± 0.0022	52	0.0024 ± 0.0011	0.0021 ± 0.0009
3	0.0031 ± 0.0029	0.0097 ± 0.0027	53	0.0087 ± 0.0043	0.0041 ± 0.0036
4	0.0032 ± 0.0027	0.0100 ± 0.0027	54	0.0087 ± 0.0043	-0.0005 ± 0.0035
5	-0.0017 ± 0.0033	0.0064 ± 0.0033	55	0.0087 ± 0.0043	0.0028 ± 0.0039
6	0.0032 ± 0.0027	0.0088 ± 0.0032	56	-0.0003 ± 0.0014	0.0008 ± 0.0032
7	0.0105 ± 0.0025	0.0073 ± 0.0034	57	0.0002 ± 0.0021	0.0018 ± 0.0044
8	0.0041 ± 0.0023	0.0071 ± 0.0038	58	0.0316 ± 0.0087	0.0136 ± 0.0046
9	0.0041 ± 0.0023	0.0066 ± 0.0033	59	0.0196 ± 0.0045	0.0120 ± 0.0033
10	0.0103 ± 0.0048	0.0033 ± 0.0038	60	0.0144 ± 0.0034	0.0093 ± 0.0037
11	0.0063 ± 0.0026	0.0011 ± 0.0013	61	0.0050 ± 0.0027	0.0145 ± 0.0028
12	0.0051 ± 0.0031	0.0024 ± 0.0017	62	0.0076 ± 0.0028	0.0060 ± 0.0036
13	0.0044 ± 0.0041	0.0058 ± 0.0030	63	0.0046 ± 0.0037	0.0050 ± 0.0025
14	0.0044 ± 0.0041	0.0054 ± 0.0030	64	0.0045 ± 0.0027	0.0064 ± 0.0016
15	0.0043 ± 0.0022	0.0068 ± 0.0029	65	-0.0029 ± 0.0015	0.0073 ± 0.0016
16	0.0046 ± 0.0045	0.0067 ± 0.0030	66	0.0029 ± 0.0023	0.0057 ± 0.0020
17	0.0041 ± 0.0034	0.0066 ± 0.0028	67	0.0050 ± 0.0019	0.0047 ± 0.0016
18	0.0038 ± 0.0024	0.0068 ± 0.0027	68	0.0050 ± 0.0019	0.0036 ± 0.0017
19	0.0059 ± 0.0022	0.0059 ± 0.0023	69	0.0049 ± 0.0032	0.0072 ± 0.0036
20	0.0039 ± 0.0026	0.0066 ± 0.0028	70	0.0026 ± 0.0015	0.0084 ± 0.0018
21	0.0051 ± 0.0021	0.0077 ± 0.0024	71	0.0038 ± 0.0019	0.0099 ± 0.0019
22	0.0051 ± 0.0022	0.0070 ± 0.0022	72	0.0026 ± 0.0015	0.0096 ± 0.0016
23	0.0012 ± 0.0015	0.0061 ± 0.0019	73	0.0047 ± 0.0016	0.0091 ± 0.0015
24	0.0022 ± 0.0015	0.0054 ± 0.0015	74	0.0047 ± 0.0016	0.0076 ± 0.0020
25	0.0032 ± 0.0022	0.0061 ± 0.0016	75	0.0038 ± 0.0019	0.0100 ± 0.0023
26	0.0018 ± 0.0014	0.0060 ± 0.0015	76	0.0039 ± 0.0012	0.0098 ± 0.0025
27	0.0026 ± 0.0016	0.0083 ± 0.0017	77	0.0013 ± 0.0010	0.0112 ± 0.0024
28	0.0016 ± 0.0014	0.0081 ± 0.0016	78	0.0026 ± 0.0024	0.0099 ± 0.0027
29	0.0032 ± 0.0021	0.0087 ± 0.0015	79	0.0064 ± 0.0016	0.0067 ± 0.0012
30	0.0020 ± 0.0022	0.0076 ± 0.0018	80	0.0039 ± 0.0022	0.0063 ± 0.0019
31	0.0038 ± 0.0019	0.0092 ± 0.0017	81	0.0049 ± 0.0018	0.0083 ± 0.0012
32	0.0038 ± 0.0019	0.0085 ± 0.0015	82	0.0026 ± 0.0015	0.0083 ± 0.0017
33	0.0065 ± 0.0014	0.0085 ± 0.0015	83	0.0025 ± 0.0012	0.0089 ± 0.0016
34	0.0063 ± 0.0015	0.0098 ± 0.0021	84	0.0002 ± 0.0009	0.0057 ± 0.0012
35	0.0063 ± 0.0012	0.0068 ± 0.0016	85	0.0023 ± 0.0018	0.0077 ± 0.0021
36	0.0056 ± 0.0012	0.0075 ± 0.0016	86	0.0040 ± 0.0022	0.0070 ± 0.0019
37	0.0063 ± 0.0015	0.0089 ± 0.0019	87	0.0049 ± 0.0018	0.0076 ± 0.0018
38	0.0076 ± 0.0023	0.0084 ± 0.0018	88	0.0097 ± 0.0020	0.0019 ± 0.0020
39	0.0057 ± 0.0013	0.0067 ± 0.0014	89	0.0071 ± 0.0022	0.0005 ± 0.0019
40	0.0050 ± 0.0034	0.0083 ± 0.0021	90	0.0090 ± 0.0030	0.0028 ± 0.0023
41	0.0058 ± 0.0012	0.0009 ± 0.0018	91	0.0000 ± 0.0023	0.0003 ± 0.0020
42	0.0008 ± 0.0012 0.0047 ± 0.0012	0.0087 ± 0.0021	94	0.0075 ± 0.0020	0.0037 ± 0.0018
40 77	0.0047 ± 0.0012 0.0050 ± 0.0016	0.0070 ± 0.0018	90	0.0040 ± 0.0028 0.0067 ± 0.0015	0.0010 ± 0.0024 0.0081 ± 0.0014
44	0.0039 ± 0.0010 0.0032 ± 0.0012	0.0087 ± 0.0021 0.0070 ± 0.0011	94	0.0007 ± 0.0015 0.0070 ± 0.0015	0.0081 ± 0.0014 0.0070 ± 0.0013
40 16	0.0052 ± 0.0012 0.0054 ± 0.0012	0.0019 ± 0.0011	06	0.0070 ± 0.0010	0.0019 ± 0.0013 0.0086 \pm 0.0013
40 17	0.0034 ± 0.0012 0.0035 ± 0.0012	0.0003 ± 0.0011 0.0085 ± 0.0011	90	0.0003 ± 0.0008 0.0056 ± 0.0008	0.0000 ± 0.0012 0.0060 ± 0.0007
19 18	0.0035 ± 0.0013 0.0041 ± 0.0011	0.0005 ± 0.0011 0.0065 ± 0.0012	08	0.0050 ± 0.0000 0.0051 ± 0.0013	0.0003 ± 0.0007 0.0031 ± 0.0007
<u>40</u>	0.0041 ± 0.0011 0.0034 ± 0.0007	0.0000 ± 0.0012	00	0.0051 ± 0.0013 0.0053 ± 0.0013	0.0031 ± 0.0009 0.0072 ± 0.0009
50	0.0032 ± 0.0007	0.0057 ± 0.0009	100	0.0065 ± 0.0009 0.0065 ± 0.0009	0.0072 ± 0.0001 0.0079 ± 0.0008

Table B.7: Linear trends and standard deviations (from Equation 2.12) in annual temperature of 100 glaciated regions in K year⁻¹ for the period 1871-1990 using T_G and T_{OF} .

Linear trends in temperature over the period 1871-1895

Table B.8 lists linear trends in temperature of 100 glaciated regions over the period 1871-1895 using T_G and T_{OF} .

Temperature trends based on the **Gregory** data set:

Trends in temperature of 41 glaciated regions are **positive**. Of those:

21 trends are significant at a 1σ level

5 trends are significant at a 2σ level

1 trend is significant at a 3σ level

Trends in temperature of 59 glaciated regions are **negative**. Of those:

30 trends are significant at a 1σ level

3 trends are significant at a 2σ level

0 trends are significant at a 3σ level

Temperature trends based on the **O'Farrell** data set:

Trends in temperature of 82 glaciated regions are **positive**. Of those:

31 trends are significant at a 1σ level

15 trends are significant at a 2σ level

5 trends are significant at a 3σ level

Trends in temperature of 18 glaciated regions are **negative**. Of those:

2 trends are significant at a 1σ level

0 trends are significant at a 2σ level

0 trends are significant at a 3σ level

\mathbf{gl}	Gregory	O'Farrell	gl	Gregory	O'Farrell
1	-0.0158 ± 0.0348	-0.0051 ± 0.0294	51	0.0139 ± 0.0061	0.0022 ± 0.0055
2	-0.0316 ± 0.0447	0.0107 ± 0.0247	52	-0.0219 ± 0.0115	0.0053 ± 0.0084
3	-0.0250 ± 0.0389	0.0299 ± 0.0310	53	0.0585 ± 0.0568	0.1867 ± 0.0271
4	-0.0307 ± 0.0298	0.0276 ± 0.0330	54	0.0585 ± 0.0568	0.1747 ± 0.0259
5	-0.0755 ± 0.0382	0.0558 ± 0.0351	55	0.0585 ± 0.0568	0.2290 ± 0.0322
6	-0.0307 ± 0.0298	0.1088 ± 0.0345	56	-0.0119 ± 0.0153	0.1569 ± 0.0235
7	-0.0289 ± 0.0303	0.0166 ± 0.0338	57	-0.0106 ± 0.0251	0.2588 ± 0.0365
8	-0.0312 ± 0.0213	0.0169 ± 0.0334	58	0.1606 ± 0.0935	0.0763 ± 0.0507
9	-0.0312 ± 0.0213	0.0135 ± 0.0295	59	0.0704 ± 0.0472	0.0825 ± 0.0326
10	-0.0692 ± 0.0468	-0.0011 ± 0.0274	60	0.0827 ± 0.0394	0.0976 ± 0.0341
11	-0.0414 ± 0.0269	0.0046 ± 0.0111	61	-0.0157 ± 0.0277	0.0593 ± 0.0294
12	-0.0635 ± 0.0294	0.0033 ± 0.0133	62	0.1078 ± 0.0333	0.0789 ± 0.0395
13	-0.0592 ± 0.0365	0.0106 ± 0.0259	63	0.1166 ± 0.0458	0.0551 ± 0.0240
14	-0.0592 ± 0.0365	0.0086 ± 0.0254	64	-0.0113 ± 0.0269	0.0380 ± 0.0149
15	-0.0369 ± 0.0205	0.0118 ± 0.0268	65	-0.0097 ± 0.0145	0.0343 ± 0.0145
16	-0.0567 ± 0.0417	0.0128 ± 0.0268	66	-0.0325 ± 0.0289	-0.0194 ± 0.0263
17	-0.0428 ± 0.0292	0.0084 ± 0.0235	67	-0.0248 ± 0.0253	-0.0153 ± 0.0200
18	-0.0249 ± 0.0211	0.0165 ± 0.0236	68	-0.0248 ± 0.0253	0.0063 ± 0.0191
19	-0.0210 ± 0.0199	0.0238 ± 0.0194	69	0.0759 ± 0.0430	0.0522 ± 0.0326
20	-0.0300 ± 0.0226	0.0084 ± 0.0235	70	-0.0166 ± 0.0183	0.0274 ± 0.0180
21	-0.0405 ± 0.0208	0.0215 ± 0.0237	71	-0.0080 ± 0.0228	0.0132 ± 0.0224
22	-0.0257 ± 0.0207	0.0311 ± 0.0236	72	-0.0166 ± 0.0183	0.0318 ± 0.0165
23	-0.0191 ± 0.0141	0.0137 ± 0.0175	73	0.0100 ± 0.0180	0.0172 ± 0.0152
24	-0.0058 ± 0.0166	0.0025 ± 0.0156	74	0.0100 ± 0.0180	0.0039 ± 0.0214
25	-0.0138 ± 0.0236	0.0017 ± 0.0176	75	-0.0080 ± 0.0228	0.0200 ± 0.0373
26	-0.0025 ± 0.0180	0.0035 ± 0.0161	76	0.0126 ± 0.0102	0.0110 ± 0.0173
27	-0.0237 ± 0.0157	-0.0002 ± 0.0173	77	0.0079 ± 0.0086	0.0137 ± 0.0187
28	-0.0128 ± 0.0138	-0.0004 ± 0.0168	78	-0.0449 ± 0.0282	0.0150 ± 0.0191
29	-0.0091 ± 0.0243	-0.0013 ± 0.0153	79	0.0118 ± 0.0171	0.0137 ± 0.0129
30	-0.0364 ± 0.0302	-0.0168 ± 0.0142	80	-0.0500 ± 0.0258	0.0158 ± 0.0245
31	-0.0207 ± 0.0206	-0.0178 ± 0.0152	81	0.0036 ± 0.0194	0.0121 ± 0.0123
32	-0.0207 ± 0.0206	0.0060 ± 0.0130	82	-0.0166 ± 0.0183	0.0445 ± 0.0146
33	-0.0157 ± 0.0141	0.0060 ± 0.0130	83	-0.0117 ± 0.0154	0.0109 ± 0.0145
34	0.0029 ± 0.0164	0.0027 ± 0.0154	84	0.0000 ± 0.0099	0.0054 ± 0.0115
35	0.0072 ± 0.0154	0.0042 ± 0.0103	85	-0.0104 ± 0.0204	0.0017 ± 0.0222
30	0.0001 ± 0.0101	0.0118 ± 0.0108	80	-0.0224 ± 0.0230	0.0132 ± 0.0109
এ । ১০	0.0029 ± 0.0104 0.0160 \pm 0.0247	0.0100 ± 0.0135 0.0020 ± 0.0000	01	0.0030 ± 0.0194	0.0154 ± 0.0180 0.0050 ± 0.0221
00 20	0.0109 ± 0.0247 0.0068 \pm 0.0161	-0.0050 ± 0.0099 0.0062 ± 0.0002	00	0.0339 ± 0.0223 0.0246 ± 0.0100	$\begin{array}{c} 0.0030 \pm 0.0221 \\ 0.0025 \pm 0.0215 \end{array}$
39 40	0.0008 ± 0.0101 0.0530 ± 0.0378	0.0003 ± 0.0092 0.0121 ± 0.0147	09	0.0340 ± 0.0190 0.0036 ± 0.0200	0.0025 ± 0.0215 0.0364 ± 0.0256
40	0.0050 ± 0.00154 0.0057 ± 0.0154	0.0121 ± 0.0147 0.0187 ± 0.0134	01	0.0030 ± 0.0290 0.0344 ± 0.0205	0.0304 ± 0.0230 0.0152 ± 0.0242
41	0.0037 ± 0.0134 0.0040 ± 0.0168	0.0107 ± 0.0104 0.0105 ± 0.0161	02	0.0344 ± 0.0203 0.0412 ± 0.0253	0.0102 ± 0.0242 0.0300 ± 0.0224
44	0.0049 ± 0.0103 0.0030 ± 0.0156	-0.0017 ± 0.0101	03	0.0412 ± 0.0200 0.0160 ± 0.0260	0.0300 ± 0.0224 0.0433 ± 0.0210
40	0.0039 ± 0.0130 0.0147 ± 0.0172	-0.0017 ± 0.0150 0.0148 ± 0.0150	90	0.0109 ± 0.0200 0.0286 ± 0.0177	-0.0433 ± 0.0210 -0.0093 ± 0.0116
45	-0.0031 ± 0.0172	-0.0003 ± 0.0109	95	0.0200 ± 0.0177 0.0498 ± 0.0108	0.0013 ± 0.0110
46	0.0129 ± 0.0122	-0.0000 ± 0.0110	96	0.0100 ± 0.0100 0.0029 ± 0.0110	0.0010 ± 0.0111 0.0057 ± 0.0094
47	-0.0086 ± 0.0121	-0.0046 ± 0.0104	97	-0.0001 ± 0.0010	0.0043 ± 0.0053
48	-0.0035 ± 0.0141	-0.0134 + 0.0140	98	-0.0386 ± 0.0140	-0.0025 ± 0.0073
49	0.0087 ± 0.0067	-0.0032 ± 0.0100	99	-0.0164 ± 0.0068	0.0136 ± 0.0056
50	0.0102 ± 0.0063	0.0017 ± 0.0096	100	-0.0084 ± 0.0098	0.0151 ± 0.0066

Table B.8: Linear trends and standard deviations (from Equation 2.12) in annual temperature of 100 glaciated regions in K year⁻¹ for the reference period 1871-1895 using T_G and T_{OF} .

Appendix C

Supporting material for Chapter 3

Compiling mass balance observations into primary systems of Dyurgerov and Meier (2005)

Figures C.1 and C.2 show two examples of the method used by Dyurgerov and Meier (2005) to compile glacier observations into primary systems. The second last column shows the annual scaled ice-volume loss calculated in this thesis (scalingmethod is illustrated with arrows in Figure C.1). The last column lists the numbers published by Dyurgerov and Meier (2005). Whereas Figure C.1 shows a successful reproduction, Figure C.2 shows an example where it was not possible to reconstruct the time series.

		рі	rimary sy	/stem no	. 6		sum	sum	scaled	D&M
	L. Aktru	M. Aktru	Pr. Aktru	No. 125	Stager	Sofiyskiy Gl	area	dV	1750	
1961										
1962		-0.00115					2.88	-0.00115	-0.70	-0.70
1963		-0.00098					2.88	-0.00098	-0.60	-0.60
1964		-0.00081					2.88	-0.00081	-0.49	-0.49
1965		-0.00161					2.88	-0.00161	-0.98	-0.98
1966		-0.00109					2.88	-0.00109	-0.67	-0.67
1967		0.00084					2.88	0.00084	0.51	0.51
1968		-0.00006					2.88	-0.00006	-0.04	-0.04
1969		0.00084					2.88	0.00084	0.51	0.51
1970		0.00035					2.88	0.00035	0.21	0.21
1971		0.00072					2.88	0.00072	0.44	0.44
1972		0.00020					2.88	0.00020	0.12	0.12
1973		0.00029					19.93	0.00029	0.03	0.03
1974		-0.00423					2.88	-0.00423	-2.57	-2.57
1975		0.00115					2.88	0.00115	0.70	0.70
1976		0.00196					2.878	0.00196	1.19	1.19
1977	0.00150	0.00141		0.00007	0.00018		10.296	0.00317	0.54	0.54
1978	-0.00231	-0.00118		-0.00017			10.044	-0.00367	-0.64	-0.64
1979	-0.00394	-0.00167		-0.00072			10.042	-0.00632	-1.10	-1.10
1980	-0.00013	0.00032	0.00097	-0.00011			13.91	0.00105	0.13	0.13
1981	-0.00200	-0.00089	-0.00128	-0.00001			13.889	-0.00418	-0 53	-0.53
1982	-0.00256	-0.00189	-0.00120	-0.00028			13.878	-0.00593	-0.75	-0.75
1983	0.00206	0.00043	0.00128	0.00014			13.867	.00391	0.49	0.22
1984	0.00200	0.00089	0.00128	0.00025			13.856	0.00442	0.56	0.56
1985	0.00094	0.00069	0.00113	0.00018			13.845	0.00293	0.37	0.37
1986	0.00037	0.00011	0.00071	0.00010			14.714	0.00130	0.16	0.16
1987	0.00125	0.00049	0.00109	0.00015		1.000	14.693	0.00298	0.35	0.35
1988	0.00229	0.00135	0.00137	0.00013		0.00421	31.182	0.00935	0.52	0.52
1989	0.00016	0.00063	0.00074	0.00008		0.00084	30.621	0.00244	0.14	0.14
1990	0.00030	0.00035	0.00027	0.00011			13.33	0.00103	0.14	0.14
1991	-0.00249	0.00147		-0.00032			9.43	-0.00133	-0.25	-0.25
1992	-0.00100	0.00046		-0.00002			9.43	-0.00055	-0.10	-0.10
1993	0.00159	0.00093		0.00008			9.43	0.00260	0.48	0.48
1994	-0.00187	-0.00041		-0.00016			9.43	-0.00244	-0.45	-0.45
1995	0.00012	0.00049		0.00004			9.43	0.00065	0.12	0.12
1996	-0.00101	-0.00035		-0.00009			9.43	-0.00146	-0.27	-0.27
1997	-0.00089	-0.00014		-0.00013			9.43	-0.00116	-0.21	-0.21
1998	-0.00666	-0.00336		-0.00074		-0.01933	26.24	-0.03009	-2.01	-2.01
1999	-0.00083	-0.00030		-0.00007			9.43	-0.00120	-0.22	-0.22
2000	-0.00173	-0.00057		-0.00014			9.43	-0.00244	-0.45	-0.45
2001	-0.00143	-0.00052		-0.00011			9.43	-0.00205	-0.38	-0.38
2002	-0.00220	-0.00112		-0.00022			9.43	-0.00354	-0.66	-0.66
2003	-0.00238	-0.00101		-0.00024			9.43	-0.00363	-0.67	-0.67
aver									-0.17	-0.17

Figure C.1: Example of compiling observations on six glaciers into the primary system no. 6. Data for individual glaciers, the total and scaled values and the data of Dyurgerov and Meier (2005) are given in $\text{km}^3 \text{ year}^{-1}$ w.e. and the area is given in km^2 .

	pri	imary sys	stem no.	35			scaled	D&M
1	Tats	Lemon	Taku	Menden-	sum	sum		
		Creek		hall	area	dV	10500	
1961		-0.00281	0.32208		682.728	0.31927	4.91	3.49
1962		-0.00809	0.26169		682.728	0.25360	3.90	1.53
1963		0.00199	0.38247		682.728	0.38446	5.91	4.93
1964		0.01220	0.75823		682.728	0.77043	11.85	3.93
1965		0.00094	0.53009		682.728	0.53103	8.17	5.93
1966		-0.00575	0.05368		682.728	0.04793	0.74	11.85
1967		-0.00704	0.16775		682.728	0.160/1	2.47	8.19
1968		-0.00258	0.30866		682.728	0.30608	4./1	0.76
1969		0.00246	0.78507		682.728	0.78753	12.11	2.50
1970		-0.00106	0.50996		682.728	0.50890	7.83	4./3
19/1		-0.00469	0.42273		682.728	0.41804	0.43	12.14
1972		-0.00762	0.28182		682.728	0.2/420	4.22	7.85
1973		-0.00610	0.34892		692.720	0.34282	5.27	0.40
1974		-0.00434	0.50910		692.728	0.38484	5.92	4.25
1975		0.00340	0.57035		692.720	0.5/3/3	0.02	5.51
1077		-0.00293	0.44200		692.720	0.43993	0.77	0.95
1977		-0.00303	0.31337		682 728	0.309/4	3.05	6.80
1979		-0.00739	0.20001		682 728	0.19005	1 33	4 70
1980		-0.00317	0.36234		682 728	0.000000	5.52	3.00
1981		-0.00950	0.08052		682 728	0.07102	1.09	1 36
1982		-0.00504	0.10065		682 728	0.09561	1.05	5 55
1983		-0.01900	-0.28182		682.728	-0.30082	-4.63	1.12
1984		-0.00293	0.42944		682.728	0.42651	6.56	1.49
1985		0.00387	0.93940		682.728	0.94327	14.51	-4.59
1986		-0.00598	0.80520		682.728	0.79922	12.29	6.59
1987		-0.00985			11.728	-0.00985	-8.82	14.54
1988		0.00129			11.728	0.00129	1.16	12.35
1989	-0.00496	-0.01454			39.618	-0.01951	-5.17	1.62
1990		-0.01302			11.728	-0.01302	-11.66	9.76
1991		-0.00446			11.728	-0.00446	-3.99	-1.80
1992		-0.00774			11.728	-0.00774	-6.93	-0.69
1993		-0.01149			11.728	-0.01149	-10.29	5.56
1994		-0.00891			11.728	-0.00891	-7.98	3.17
1995		-0.01536			11.728	-0.01536	-13.76	0.43
1996		-0.01853			11.728	-0.01853	-16.59	2.31
1997		-0.02123		0.100.10	11./28	-0.02123	-19.01	-2.40
1998		-0.01/12		-0.18240	131./28	-0.19952	-31.29	-4./1
1999				0.00000	120	0.00000	0.00	-6.68
2000				0.09840	120	0.09840	8.61	-5.1/
2001								-1.09
2002								-1.00
2003						-		1.09
aver							0.51	3.71

Figure C.2: Example of compiling observations on four glaciers into the primary system no. 35. Data for individual glaciers, the total and scaled values and the data of Dyurgerov and Meier (2005) are given in $\rm km^3 \ year^{-1}$ w.e. and the area is given in $\rm km^2$.

Upscaling method from primary to regional systems of Dyurgerov and Meier (2005)

Figures C.3 and C.4 illustrate the method used by Dyurgerov and Meier (2005) to compile data of the primary systems to produce data for the regional systems. From the annual ice-volume changes of the primary systems, the change for the regional system is calculated by upscaling by the area difference between the available primary areas and the total area of the regional system (this is illustrated with the arrows in Figure C.3).

regional		1	Europe)				scaled	D&M
		÷ –	P	jia	ά				
	bs	an	elai	rer	s				
	AI	Sc na	IC	Ą	SU				
primary	1	2	3	4	5	sum	sum		
area	2345	2942	11260	11	1432	area	dV	17286	
1961	-0.46	-2.14			0.55	6719	-2.05	-5.27	-4.78
1962	-1.04	4.35			-0.89	6719	2.42	6.23	5.20
1963	-0.42	-2.24	\sim \sim		-1.20	6719	-3.86	-9.93	-9.43
1964	-2.92	1.24		\mathbf{N}	0.63	6719	-1.05	-2.70	-4.20
1965	2.62	0.98		\smallsetminus	-0.03	6719	3.57	9.18	9.90
1966	1.45	-2.65			-0.75	6719	-1.95	-5.02	-3.85
1967	0.58	4.24			0.09	6719	4.91	12.63	11.91
1968	1.07	0.77			0.64	6719	2.40	6.38	6.45
1969	0.55	-4.24			-1.03	6/19	-4/12	-12.14	-10.93
1970	-0.13	-1.93			-0.44	6/19	-2.50	-6.43	-6.01
1971	-1.56	1.96			0.15	6/19	0.55	1.41	0.39
1972	-0.16	-0.48			-1.34	6719	-1.98	-5.09	-4.79
1973	-1.50	4.33			-0.87	6719	1.96	5.04	3.80
1974	1.06	1.50			-0.97	6719	0.61	1.5/	1.44
1975	1.00	2.07			-1.15	6719	2.58	0.04	0.92
1970	2.00	-1.62			-0.06	6719	1.91	4.91	3.71
1079	2.99	-0.05			-0.00	6719	1.50	5.54	4.50
1978	0.14	1 / 1			-0.04	6710	2.50	2.04	7.03
1979	2.63	-3 12			-0.04	6719	-1 09	-2.80	-0.80
1981	2.05	1.66			-0.00	6719	2 76	7 10	7.60
1982	0.03	-0.53			0.12	6719	-0.38	-0.98	-1.10
1983	-0.08	3.05			-1.45	6719	1.52	3.91	3 47
1984	1 41	1.27			0.39	6719	3.07	7.90	7.99
1985	0.10	-2.14			-0.33	6719	-2.37	-6.10	-5.56
1986	-0.77	-0.44			-0.86	6719	-2.07	-5.33	-5.29
1987	-0.31	2.36			1.23	6719	3.28	8.44	7.63
1988	-1.03	-3.56			0.44	6719	-4.15	-10.68	-10.36
1989	-0.74	6.59	9.14		0.02	17979	15.01	14.43	13.85
1990	-2.41	3.22	-1.78		0.25	17979	-0.72	-0.69	-1.14
1991	-1.87	0.44	-12.32		-0.24	17979	-13.99	-13.45	-13.41
1992	-1.83	4.17	14.17	0.00	0.02	17990	16.53	15.88	15.07
1993	-0.11	3.46	12.48	0.00	0.89	17990	16.72	16.07	15.54
1994	-1.43	0.69	2.63	0.00	-0.87	17990	1.02	0.98	0.69
1995	-1.76	2.52	-2.56	-0.01	0.00	17990	-1.81	-1.74	-1.99
1996	-1.17	-0.84	-4.50	0.00	-0.13	17990	-6.64	-6.38	-6.34
1997	-0.76	-0.11	-13.09	0.01	0.30	17990	-13.65	-13.12	-12.79
1998	-3.34	1.20	-8.64	-0.01	-1.83	17990	-12.62	-12.13	-12.19
1999	-1.24	-0.21	-5.27	-0.01	-1.02	17990	-7.75	-7.45	-7.49
2000	-1.72	3.32	-12.02	-0.01	-1.56	17990	-11.99	-11.52	-11.99
2001	0.15	-3.40	-4.78	0.00	-1.00	17990	-9.03	-8.68	-9.02
2002	-1.77	-3.22	-2.73	-0.01	0.47	17990	-7.26	-6.98	-7.25
2003	-6.57	-4.26	-8.54	-0.01	0.30	17990	-19.08	-18.33	-19.08
years	43	43	15	12	43			43	43
aver	-0.43	0.52	-2.52	0.00	-0.29			-0.71	-0.75

Figure C.3: Example of upscaling ice-volume changes of primary systems used by Dyurgerov and Meier (2005) to derive that of a regional system. Annual volume changes of the primary systems no. 1 to 5 are the basis for calculating annual ice-volume changes of the regional system no. 1. Data for primary systems, the total and scaled values and the data of Dyurgerov and Meier (2005) are given in km³ year⁻¹ w.e. and the area is given in km².

regional		2	W. USA	+ Canad	la				scaled	D&M
	ies	÷	1	-st	S.	da da				
	Coa	bra	E ک	de Ca	SCK!	err				
	R0 +	do do	D id	S. S.	Σ. X	Si N				
primary	36	37	38	39	40	41	sum	sum		
area	38604	56	46	266	76	56	area	dV	39194	
1961	-13.81		0.02	-0.29	-0.13		38992	-14.21	-14.28	-14.32
1962	-2.28		0.01	0.05	-0.14		38992	-2.36	-2.3/	-2.16
1963	-26.83		-0.03	-0.35	-0.20		38992	-27.41	-27.55	-27.54
1964	-2.91		0.03	0.32	-0.04		38992	-2.60	-2.61	-2.25
1965	-19.31		-0.03	-0.02	0.01		38992	-19.35	-19.45	-19.40
1966	-55.25		0.02	-0.25	-0.10	0.07	30992	-55.54	-55.85	-55.02
1967	-11.05		0.02	-0.25	-0.01	0.07	20040	-11.22	-11.20	-11.20
1968	-3.43		0.00	-0.20	-0.08	0.04	30040	-3.05	-5.07	-5.07
1970	11 99		-0.02	-0.03	0.01	0.04	38997	11 77	11.83	11.62
1971	-10.30		0.02	0.16	0.05		38992	-10.00	-10.05	-9.96
1972	31.76		0.02	0.39	-0.05		38992	32.12	32.29	32.36
1973	-20.46		-0.01	-0.28	0.02		38992	-20.73	-20.84	-20.88
1974	-24.59		0.09	0.23	0.02		38992	-24.25	-24.38	-23.99
1975	-30.87		0.03	-0.02	0.02		38992	-30.84	-31.00	-30.86
1976	-13.10		0.07	0.23	-0.01		38992	-12.81	-12.88	-12.53
1977	-15.14		-0.06	-0.35	-0.09		38992	-15.64	-15.72	-15.91
1978	-30.95		0.02	-0.10	-0.03		38992	-31.06	-31.22	-31.10
1979	-11.19		-0.05	-0.42	-0.13		38992	-11.79	-11.85	-12.08
1980	7.43		-0.07	-0.29	-0.07		38992	7.00	7.04	6.74
1981	-40.41		-0.06	-0.22	-0.02		38992	-40.71	-40.92	-40.95
1982	-27.15	0.00	0.03	0.02	-0.06		39048	-27.16	-27.26	-27.04
1983	-24.06	0.00	0.06	-0.21	-0.03		39048	-24.24	-24.33	-24.34
1984	-20.93	-0.01	0.02	0.08	0.02		39048	-20.82	-20.90	-20.73
1985	-33.60		0.02	-0.14	-0.02		38992	-33.74	-33.91	-33.83
1986	-32.79		-0.04	-0.08	0.01		38992	-32.90	-33.07	-33.01
1987	-47.92		-0.04	-0.31	-0.08		38992	-48.35	-48.60	-48.56
1988	-46.36		0.01	-0.11	-0.11		38992	-46.57	-46.81	-46.55
1989	-57.52		-0.03	-0.10	0.01		38992	-57.64	-57.94	-57.76
1990	-56.20		-0.05	-0.14	-0.09		38992	-56.48	-56.77	-56.56
1991	-31.51		-0.04	0.06	-0.11		38992	-31.60	-31.76	-31.46
1992	2.43		-0.05	-0.45	-0.01		38992	22.90	1.93	1.38
1993	-32.50		-0.00	-0.24	-0.07		38002	-92.00	-90 75	-80 51
1995	-0.57		0.00	-0.07	-0.07		38992	-0.70	-0.70	-0 70
1996	4 48		-0.04	0.05	-0.04		38992	4.45	4 47	4.87
1997	-27.92		-0.02	0.15	0.00		38992	-27.79	-27.93	-27.68
1998	31.08		-0.05	-0.43	-0.07		38992	30.53	30.69	30.17
1999	5.02		0.05	0.41	-0.06		38992	5.42	5.45	5.89
2000	24.11			0.07	-0.05		38946	24.13	24.28	24.28
2001	-33.49			-0.43	-0.17		38946	-34.09	-34.31	-34.30
2002	-20.69			0.06	-0.25		38946	-20.88	-21.01	-21.02
2003	-50.95			-0.40	-0.11		38946	-51.46	-51.79	-51.78
years	43	3	39	43	43	3			43	43
aver	-19.52	0.00	-0.01	-0.10	-0.05	0.02			-19.78	-19.72

Figure C.4: Example of upscaling ice-volume changes of primary systems used by Dyurgerov and Meier (2005) to derive that of a reglional system. Annual volume changes of the primary systems no. 36 to 41 are the basis for calculating annual ice-volume changes of the regional system no. 2. Data for primary systems, the total and scaled values and the data of Dyurgerov and Meier (2005) are given in km³ year⁻¹ w.e. and the area is given in km².

Ice-volume changes of 100 glaciated regions

Table C.1 lists predicted ice-volume changes of 100 glaciated regions over the period 1871-1990, using various combinations of temperature and precipitation data sets, in particular $T_G P_{Z\&O}$, $T_G P_{CRUseries}$, $T_{OF} P_{Z\&O}$, and $T_{OF} P_{OFseries}$. The parameter Θ is set globally to 0.15 K except for one case where regionally variable Θ s are used.

Table C.2 lists ice-volume changes adopted from Dyurgerov and Meier (2005) applied on 100 glaciated regions of Zuo and Oerlemans (1997a), denoted D&M compilation in this thesis.

,		T_G		\mathbf{T}_{OF}	
gl	$\mathbf{P}_{Z\&O}$	$ \stackrel{\sim}{\mathbf{P}}_{CRUseries}$	$\mathbf{P}_{Z\&O}$	$\mathbf{P}_{OFseries}$	$\mathbf{P}_{OFseries} \Theta_{var}$
1	-1.634	-7.234	-1.536	-2.228	-5.080
2	-0.193	-0.310	-0.379	-0.465	-0.861
3	-0.649	-0.744	-0.387	-0.445	-0.957
4	-0.915	-0.849	-0.896	-1.287	-2.203
5	-0.107	-0.091	-0.884	-1.238	-2.372
6	-0.201	-0.229	-0.079	-0.120	-0.301
7	-0.068	-0.077	-0.014	-0.020	-0.022
8	-2.132	-1.837	0.277	0.317	0.242
9	-0.123	-0.106	0.001	-0.010	-0.015
10	-0.038	-0.029	0.010	0.014	0.014
11	-0.122	-0.101	-0.036	-0.034	-0.039
12	-0.143	-0.089	0.009	0.003	-0.002
13	-0.290	-0.132	-0.005	-0.020	-0.025
14	-0.834	-0.609	0.010	-0.022	-0.046
15	-1.540	-0.680	-0.343	-0.564	-0.612
16	-3.595	-5.277	-1.300	-1.675	-1.810
17	-2.253	-4.336	-0.795	-1.262	-1.344
18	-2.373	-0.771	-1.110	-1.061	-1.134
19	-1.226	-1.263	-0.478	-0.687	-0.724
20	-2.360	-4.341	-0.673	-1.070	-1.139
21	-0.067	-0.044	-0.034	-0.035	-0.037
22	-0.030	-0.024	-0.021	-0.034	-0.035
23	-1.759	-1.144	-4.725	-4.551	-2.613
24	-0.013	-0.009	-0.020	-0.013	-0.008
25	-0.107	-0.060	-0.109	-0.090	-0.059
26	-0.019	-0.013	-0.031	-0.018	-0.011
27	-0.359	-0.240	-0.785	-0.904	-0.627
28	-0.151	-0.101	-0.347	-0.251	-0.180
29	-0.001	-0.001	-0.013	-0.018	-0.012
30	-0.003	-0.001	-0.010	-0.006	-0.003
31	-0.001	-0.001	-0.002	-0.001	-0.001
32	-0.000	-0.001	-0.001	-0.001	-0.001
33	-0.001	-0.000	-0.001	-0.001	-0.001
34	-0.001	-0.001	-0.001	-0.001	-0.001
35	-0.005	-0.006	-0.004	-0.010	-0.010
36	-0.008	-0.004	-0.009	-0.011	-0.011
37	-0.008	-0.010	-0.008	-0.011	-0.011
38	-0.012	-0.006	-0.009	-0.001	0.000
39	-0.042	-0.023	-0.042	-0.067	-0.067
40	-0.261	-0.367	-0.191	-0.262	-0.262

		\mathbf{T}_{C}		\mathbf{T}_{OF}	
gl	$\mathbf{P}_{Z\&O}$	$ \mathbf{P}_{CRUseries}$	$\mathbf{P}_{Z\&O}$	$\mathbf{P}_{OFseries}$	$\mathbf{P}_{OFseries} \Theta_{var}$
41	-0.052	-0.048	-0.038	-0.056	-0.056
42	-0.083	-0.036	-0.109	-0.037	-0.026
43	-0.051	-0.111	-0.090	-0.152	-0.152
44	-0.174	-0.225	-0.287	-0.202	-0.164
45	-0.538	-0.502	-0.219	-0.090	-0.059
46	-0.839	-0.569	-0.360	-0.118	-0.077
47	-0.137	-0.104	-0.088	-0.024	-0.017
48	-1.954	-1.239	-1.976	-1.113	-0.815
49	-1.945	-0.996	-1.674	-1.337	-0.789
50	-4.939	-2.038	-4.889	-3.462	-2.017
51	-0.764	-0.473	-0.665	-0.582	-0.302
52	-1.392	-1.129	-0.530	-0.589	-0.589
53	-4.251	-0.929	-5.594	-2.120	-4.290
54	-0.488	-0.107	-0.376	-0.141	-0.382
55	-0.329	-0.104	-0.404	-0.186	-0.419
56	-0.044	-0.022	-0.267	-0.103	-0.256
57	-0.015	-0.007	-0.063	-0.032	-0.078
58	-2.758	-3.449	-2.839	-4.148	-9.972
59	-0.636	-0.542	-0.631	-0.782	-2.489
60	-1.887	-1.012	-0.780	-0.845	-4.111
61	-0.359	-0.399	-0.713	-0.932	-3.084
62	-0.109	-0.017	-0.163	-0.062	-0.230
63	-0.191	-0.059	-0.593	-0.199	-0.500
64	-0.291	-0.211	-0.520	-0.438	-1.210
65	0.001	0.001	-0.004	-0.002	-0.003
66	-0.234	-0.186	-0.541	-0.419	-0.692
67	-0.006	-0.004	-0.006	-0.003	-0.006
68	-0.004	-0.003	-0.003	-0.002	-0.004
69	-0.099	-0.067	-0.052	-0.051	-0.183
70	-0.267	-0.141	-0.365	-0.262	-0.599
71	-0.748	-0.181	-2.801	-2.229	-2.858
72	-0.302	-0.203	-0.726	-0.731	-0.932
73	-8.563	-5.103	-11.529	-6.731	-9.307
74	-0.051	-0.038	-0.057	-0.034	-0.052
75	-0.196	-0.023	-0.606	-0.349	-0.444
76	-1.348	-4.143	-2.809	-4.819	-6.142
77	-0.123	-0.360	-0.263	-0.394	-0.507
78	-1.113	-0.646	-1.628	-1.073	-1.429
79	-0.320	-0.149	-0.351	-0.345	-0.478
80	-0.006	-0.003	-0.008	-0.008	-0.018

al		\mathbf{T}_{G}		\mathbf{T}_{OF}					
gı	$\mathbf{P}_{Z\&O}$	$\mathbf{P}_{CRUseries}$	$\mathbf{P}_{Z\&O}$	$\mathbf{P}_{OFseries}$	$\mathbf{P}_{OFseries} \Theta_{var}$				
81	-0.362	-0.405	-0.778	-2.485	-3.379				
82	-1.110	-0.585	-2.235	-1.252	-1.706				
83	-0.175	-0.137	-0.421	-0.188	-0.162				
84	-0.167	-0.147	-0.223	-0.354	-0.520				
85	-0.151	-0.397	-0.271	-0.499	-0.691				
86	-0.155	-0.075	-0.083	-0.023	-0.054				
87	-0.100	-0.111	-0.300	-0.299	-0.385				
88	-0.002	-0.001	-0.001	-0.001	-0.001				
89	-0.047	-0.026	-0.028	-0.022	-0.043				
90	-0.047	-0.024	0.003	0.001	-0.016				
91	-0.014	-0.004	-0.025	-0.021	-0.033				
92	-0.000	0.000	-0.001	-0.001	-0.003				
93	-0.026	-0.040	-0.055	-0.070	-0.120				
94	-0.000	-0.000	0.000	0.000	0.000				
95	-0.002	-0.001	-0.002	-0.001	-0.001				
96	-0.001	-0.001	-0.001	-0.001	-0.001				
97	-0.003	-0.002	-0.003	-0.003	-0.003				
98	-0.510	-0.395	-0.203	-0.156	-0.156				
99	-0.134	-0.130	-0.072	-0.095	-0.095				
100	-0.190	-0.144	-0.093	-0.082	-0.082				
total	-64.45	-59.36	-65.38	-58.91	-85.57				
	(0.178)	(0.164)	(0.181)	(0.163)	(0.236)				

Table C.1: Changes in ice-volume in km³ year⁻¹ w.e. of 100 glaciated regions over the period 1871-1990 using various combinations of temperature and precipitation data sets, i.e. $T_G P_{Z\&O}$, $T_G P_{CRUseries}$, $T_{OF} P_{Z\&O}$, and $T_{OF} P_{OFseries}$. The parameter Θ is set to 0.15 K except for the last column where regionally variable Θ s are applied. Total ice-volume changes, listed in the last row, are given in km³ year⁻¹ w.e. and in mm year⁻¹ of global sea-level change (in brackets).

gl	reg	area	dV	gl	reg	area	dV
1	3	80,000	-7.747	41	11	258	-0.027
2	3	11,700	-1.133	42	11	649	-0.068
3	3	16,200	-1.569	43	11	510	-0.053
4	3	18,500	-1.792	44	11	2,800	-0.293
5	3	18,500	-1.792	45	11	743	-0.078
6	3	5,000	-0.484	46	11	1,170	-0.122
7	7	722	-0.431	47	11	156	-0.016
8	7	13,900	-8.306	48	10	$3,\!570$	-3.032
9	7	800	-0.478	49	10	5,720	-4.858
10	7	230	-0.137	50	10	16,900	-14.352
11	7	960	-0.574	51	10	2,700	-2.293
12	7	1,250	-0.747	52	n/a	4,100	-0.802
13	7	1,000	-0.598	53	1	8,300	-0.360
14	7	4,600	-2.749	54	1	953	-0.041
15	7	8,300	-4.960	55	1	925	-0.040
16	7	21,600	-12.907	56	1	600	-0.026
17	7	11,800	-7.051	57	1	160	-0.007
18	7	10,500	-6.274	58	5	36,600	-6.050
19	7	5,070	-3.030	59	4	13,700	-0.608
20	7	10,000	-5.976	60	4	23,600	-1.047
21	2	600	-0.302	61	4	18,300	-0.812
22	2	300	-0.151	62	1	1,080	-0.047
23	2	13,500	-6.792	63	1	1,630	-0.071
24	2	46	-0.023	64	1	2,910	-0.126
25	2	266	-0.134	65	1	12	-0.001
26	2	63	-0.032	66	1	1,340	-0.058
27	2	3,000	-1.509	67	1	24	-0.001
28	2	1,000	-0.503	68	1	20	-0.001
29	2	74	-0.037	69	4	800	-0.036
30	2	51	-0.026	70	8	2,300	-0.609
31	n/a	4	-0.011	71	8	10,700	-2.831
32	n/a	4	-0.011	72	8	3,320	-0.878
33	n/a	3	-0.008	73	8	40,000	-10.584
34	2	3	-0.002	74	8	301	-0.080
35	2	19	-0.010	75	8	1,350	-0.357
36	2	24	-0.012	76	8	12,700	-3.360
37	2	39	-0.020	77	8	1,340	-0.355
38	2	19	-0.010	78	8	7,540	-1.995
39	2	111	-0.056	79	8	2,380	-0.630
40	11	873	-0.091	80	8	239	-0.063

gl	reg	area	dV
81	8	11,600	-3.069
82	8	9,550	-2.527
83	8	2,080	-0.550
84	8	1,460	-0.386
85	8	$2,\!190$	-0.579
86	8	910	-0.241
87	8	3,190	-0.844
88	9	18	-0.002
89	9	372	-0.046
90	9	260	-0.032
91	9	202	-0.025
92	9	19	-0.002
93	9	874	-0.108
94	n/a	1	-0.001
95	n/a	5	-0.003
96	n/a	5	-0.003
97	n/a	7	-0.003
98	n/a	1,000	-2.379
99	n/a	450	-0.088
100	n/a	450	-0.088
t	otal	527674	-146.5
			(0.405)

Table C.2: Changes in ice volume dV in km³ year⁻¹ w.e. of 100 glaciated regions (Zuo and Oerlemans, 1997a). The volume changes are based on those of the regional and primary (where first are not available) systems of Dyurgerov and Meier (2005). The column 'reg' gives the region of Dyurgerov and Meier (2005) used to derive the estimate for the region and where 'n/a' is listed no regional estimate value was available but instead the number of the primary system was used. Total ice-volume changes, listed in the last row, are given in km³ year⁻¹ w.e. and in mm year⁻¹ of global sea-level change (in brackets).

Appendix D

Supporting material for Chapter 5

Tables D.1	and	D.2 lis	st locations	of	existing	GPS	and	tide	gauge	stations	which
are reference	ed in	Chap	ter 5.								

site name	short	Latitude	Longitude
Fairbanks	fair	64.98	-147.50
Dunedin	ous2	-45.87	170.51
Ny Ålesund	nyal	78.93	11.87
Palmer	atw2	61.60	-149.13
Punta Arenas	parc	-53.13	-70.88
Resolute	reso	74.70	-94.89
Sheshan	shao	31.10	121.20
Sydney	sydn	-33.78	151.15
Tromsoe	tro1	69.66	18.94
Refrigerator Rock	frig	62.41	-143.01
Reykjavik	reyk	64.14	-21.96
Whitehorse	whit	60.75	-135.22

Table D.1: Latitudes and longitudes of GPS sites referenced in this thesis.

site name	Latitude	Longitude
Anchorage	61.23	-149.90
Barentsburg	78.07	14.25
Bartlett Cove	58.46	-135.88
Cordova	60.55	-145.77
Dunedin	-45.88	170.52
Juneau	58.30	-134.42
Kanmen	28.08	121.28
Ketchikan	55.33	-131.63
Langara Point	54.25	-133.03
Nikiski	60.68	-151.40
Ny Ålesund	78.93	11.93
Punta Arenas	-53.17	-70.90
Prince Rupert	54.32	-130.33
Queen Charlotte City	53.25	-132.07
Resolute	74.68	-94.88
$\mathbf{Reykjavik}$	64.15	-21.93
Sand Point	55.33	-160.50
Seldovia	59.43	-151.72
Seward	60.12	-149.43
Sitka	57.05	-135.33
Skagway	59.45	-135.32
St. Pauls habor	57.75	-152.48
Sydney	-33.85	151.23
Tromso	69.65	18.97
Yakutat	59.55	-139.73
Valdez	61.13	-146.37
Womens Bay	57.72	-152.52

Table D.2: Latitudes and longitudes of tide gauge sites referenced in this thesis.

Appendix E

Supporting material for Chapter 6

Ocean bottom pressure changes and corresponding second order relative sea-level changes

Plots in Figure E.1 show the ocean bottom pressure changes over selected 10-year periods (data provided by Felix Landerer). Note the changes in scale in 2000, 2050, and 2100.

Plots in Figure E.2 show the corresponding relative sea-level changes due to ocean bottom pressure changes caused by thermal expansion. Note the change in scale in 2080.

Figure E.1: Thermal expansion induced ocean bottom pressure changes of 10-year averages relative to an unperturbed ocean expressed in meters of mass load.

•

2080-2089

Figure E.2: Spatial distribution of relative sea-level changes relative to 1860-1869 in meter due to changes in ocean bottom pressure caused by thermal expansion of the A1B IPCC climate scenario.