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2. THEORY

2.1 Introduction

The purpose of this chapter is to examine the conventional
relaxation rate models of diatomic relaxation behind a shock
or along a nozzle. The validity of these models is tested by
developing a more detailed microscopic description of the
diatomic relaxatlon processes. Simultaneously, the theoretical
questions outlined in section 1.3 are to be examined.

A "ladder climbing" model of diatomic relaxation, using
the vibrational Master equation, is given 1in section 2.2.
This model is then applied to the pure N2 experiments of
Hurle et al. (1964) using the first-moment solution in
section 2.3 (see also Kewley 1973). In section 2.4 the full
solution of the Master equation is found by numerical integration
using the algorithm of Gear (1971) (see also Kewley 1975).

Using the results of the '"ladder climbing"” model, the
conventional rate solutions are presented in section 2.6.
These solutions are used in the anaiysis of experiments in
Chapter 3. The computer programs of Garr, Marrone, Joss and
Williams (1966) and Lordi, Mates and Moselle (1966) are used
for flows behind normal shocks and for nozzle expansions,

respectively. A computer program to solve for nonequilibrium

flow over a wedge was written for this thesis (Kewley 1974).

2.2 Diatomic Relaxation Model

The diatomic molecule is considered to be an anharmonic
Morse Oscillator (MO) with disscciation and recombination
occurring at the uppermost vibrational level. Rotation and
translation are assumed to be in equilibrium and the above—.

ground electronic states are neglected. One—-quantum tran-

sitions between the vibrational levels are allowed to occur;
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these occur by vibration to tramslation energy exchange
(V-T) and vibration to vibration energy exchange (V-V)
between molecules. Radlative transitions, which occur for
heteronuclear diatoms such as €O (Caledonia and Centre 1971),
are not considered. Using these assumptions, the Master
equation for the vibrational levels is constructed. This
model of diatomic relaxation is of the "ladder climbing" type
because dissociation is considered to be the result of an
upward flux of molecules "climbing" the vibrational levels
until dissociation occurs at the top level.

Previous theoretical models of diatomlc relaxation can be
divided intec the phenomenological (Marrone and Treanor 1963
and Reinhardt 1969), the modified phase-space (Keck and Carrier
1965, Shui, Appleton and Keck 1970 and 1971, and Shui and
Appleton 1971), the Monte-Carlo {(Jones and Rosenfeld 1973) and
the "ladder climbing"™ (Benson and Fueno 1962, Bray and Pratt
1967, Rich and Rehm 1967, Bray 1968 and 1970a, McElwain and
Pritchard 1970 and 1971, Dove and Jones 1971 and 1972, Kiefer
1972 and 1974, Hsu and McMillen 1972, Labib, McElwain and
Pritchard 1972, Wengle 1973 and Kamaratos and Pritchard 1973)
types. The phenomenological model is primarily designed for
vibration-dissociation coupling behind a shock wave and con-
tains adjustable constants. It is a simple model but is not
very suitable as a microscepic description of the relaxation
processes. The phase-space theory, modified by incorporating
the correction due to a steady-state nonequilibrium distrxibution
in the vibrational populations of the molecules, provides an
excellent model for recombination and dissociation of diatomic
molecules in an inert heat bath. However this theory is not

suitable for unsteady vibrational populations and 1s much more
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complex for an undiluted diatomic gas. Similarly the Monte-
Carlo theory is complex and resfricted to steady-state diatomic
dissociation. Of the models listed here, the "ladder climbing"
type appears to be the most convenient because it is not
restricted to steady-state dissociation or recombination and

also provides a model for vibration-dissociation coupling.

2.2.1 The Vibrational Master Equation

The vibrational Master equation used here is similar to
the one given by Dove and Jones (1971) and Wengle (1973) in
that the dissociated molecules are represented by a psuedo-
level. The model for the molecules is the anharmonic Morse

Oscillator with vibrational energy levels given by

B, = B o((v#a) - s(vH?) v = 0,1, w1 (2.2-1)
where Em+l is the pseudo level, § is the anharmonicity
constant and El0 is the vibrational energy involved in the
1 + 0 transition. The energy difference between levels is
thus

Ev+1 - Ev = E10(1-26(v+1)). (2.2-2)

Rotation and translation are assumed to be in equilibrium
even though for H2 there appear to be doubts about this
assumption (Dove et al. 1973, Kamaratos and Pritchard 1973
and Pritchard 1973). Also, for convenience, only one-quantum
transitions are considered, as in Dove and Jones (1971) and
by Kiefer (1972), even though Wengle (1973) has shown that
multi~quantum transitions can be important for 02,
particularly for the calculation of induction times.

Using these assumptions, the Master equation for the

vibrational levels can be written in the form given by Bray

(1968 and 1970a) and Labib, McElwain and Pritchard (1972).
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In a mass element m', of initial density Py initial total

number density NTO’ atom number density N

number density N

A’ inert atom

I ‘and molecule number density NA s, the

time rates of change of the levels are,

deXv 3 3
- = I (B P ) - I (B P )X
NTOdt g=1 s vtl,v' "v+l g=1 S vyvtl' Ty
3 3
+ I (B P X - I P X
s=1( s v-l,v) v-1 s=l( 8 v,v-l) v
m m
i-1,1 i,i-1
+ z2 { & (Qv+l,v i l)Xv+l E (Qv,v+1 Xi)xv
i=1 i=1
m m
i,i-1 i-1,1 .
+ £ QU7 X)X .- ® Q) .” yx_}
=1 v 1,vii’“v-1 j=1 VoV 1 "1-1""y
v = 0,1,...,111-1 (2.2"3)
deXm 3 2 3
= L (B P X N - L (B P X
NTOdt s=1( ] d,m) o+l " TO s=l( s m,d) m
3 3
+ I B P - I (B P X
s=l( 5 m-l,m) n-1 s=l( s m,m—l) m
m m
i,i-1 _ i-1,1
+ 22{ E (Qm—l,mxi)xm-l .Z (Qtn,m-lxi--l)X }
i=1 i=1
vV_dXx 3 3
X “m+l 2
= L (B P X - I (B P X N v
NTOdt s=l( 5 m,d) n 3=1( 5 d,m) m+l TOI x’
where s = ZS Ns/NT and s=1,2,3 corresponds to inert atoms,
molecules and atoms, Vx = po/px and Xv = Nv/NTO' For the heat

bath solutions Equations 2.2-3, 4 and 5 are integrated with

is

The dissociation rate equation for the reaction

kd
A2+M+2A+M
_ Tay kN, PR = N, et (2.2-6)
dt d"T A A TO d¢t ¢

2
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and so kd can be calculated from the numerical solutions.
The vibrationmal relaxation rate equation is the Landau-

Teller egquation,

dev ev(T)-ev .
it = - (2.2-7)
v
m
where ev = NTO iEl(Ei—Eo)X:l is the vibrational energy and

ev(T) is the equilibrium vibrational energy at the translational
temperature T. The equilibrium vibrational level populations

iv at T are found by

(2.2-8)

iv = N, exp(-E_/kT) /(N

r0%vip (1))

where (T) is the vibrational partition function and kR

Qvib

is Boltzmann's constant. Thus T, can be found using Eq.2.2-7.
Therefore the relaxation rate parameters, kd and Tv, can be

found once a set of transition probabilities is given.

2.2.2 Transition Probabilities

The probabilities are required for V-V and V-T
transitions. Qi;i:i = (v+1)i Q(4i,v,T) 1is the probability of
V-V energy exchange between two molecules on collision while
Pv;l,v # (v+1)P(v,T) 1is the probability of V-T energy exchange
between two molecules or one molecule and atom on collision.
The Harmonic Oscillator gives Q(i,v,T) = Qgé and P(v,T) = P10
but here the analytic forms for the MO given by Bray (1968),
which are Keck and Carrier's (1965) modification of the SSH

theory (Herzfeld and Litovitz 1959), are used.

P(v,T) = P(T) Fy, ) )/ (1-8(v+1))

i-1,1

v+1’v)/((l-6(v+l))(1-61))}

Q(i,v,T) = {Q(T) F(y
for 1 < v+l

= { } exp((E, +E,_,-E,~E )/RT)
for 1 > v+l

(2.2-9)
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where F i1s the adiabaticity factor, whose arguments are

1/
Yy4l,v (%)3/2(9'/T)2(1—26(v+1n

i-1,1i
yv+1,v

The empirical fit of Keck and Carrier (1965) for F is

= 25(h /200 /) * w11, (2.2-10)

F(y) = ={3 - exp(-2y/3)}exp(-2y/3). (2.2-11)

o=

These analytic forms are convenient because the probabilities
have to be continually re-evaluated as the temperature changes
behind the normal shock and along the nozzle. The transition
probability functions given here have also been used by

Rich (1971) for an electrical €O laser and McKenzie (1972)

for the gas dynamic CO-N2 laser,
Through the relation,
o' = 0.8153 W o2 L7 (2.2-12)

where W is the reduced molecular weight, the probability
calculations depend upon knowing the interaction potential
parameter, L, for the exponential potential

U= U_ exp(-r/L).

-

The value of L 1is very important for g priori transition
probabilities but it is difficult to say what value it should
take for the varidus collision partners, For example,
consider HZ in a heat bath of Ar which was examined by
Dove and Jones (1971 and 1972), Shui and Appleton (1971) and
Kiefer (1972) who use a value of L of 0.25, 0.347 and

0.247 X, respectively. Dove and Jones (1972) chose L to
give agreement between an a priori calculation of Pio and
the experimental value from Kiefer and Lutz (1966b). Kiefer
(1972) deduced a value for L from the experimental

temperature dependence of T, Alternatively, Shui and

Appleton's (1971) value of L is deduced from an empirical
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formula given 1n Shui, Appleton and Keck (1970), using beam
gscattering measurements for confirmation. The sensitivity
of recombination rate coefficients to L 1is shown in Shui
and Appleton (1971) who incidentally get good agreement with
experiment with their value of L. Whenever possible, the
value of L wused in the modified phase-space methods (see
also Shui, Appleton and Keck 1971 for a list) is used.
Values are also to be found in Benson and Berend (1966).

To ensure that Ty has the right magnitude compared to

experiments the value of P(1,T) = P is found from

10
experiments using

Plo = 1/(z NT Tv(l—exp(-ﬁv/T))), (2.2-13)

where Z = 402(wkT/2u)%. ¢ is the hard sphere collision
diameter (Hirschfelder, Curtiss and Bird 1954 and Dorrance 1962)
and u 1s the reduced mass.

The wvalue of Qgé is calculated from the theory of Rapp
and Englander-Golden (1964) and Rapp (1965) given by Fisher and
Kummler (1968) and Kiefer (1972): -

01 _ 2 2 -
Q4 g 610 T 0.04/wA 6, L (2.2-14)

where WA is the molecular weight of the atom A and q 1is

a factor employed in the calculations here to vary the
magnitude., The normal value of Qgé is found with gq equal
to one. A comparison with experiment is given by Rapp (1965).

1-1,1 _
With Pv+l,v and Qv+1,v known and Pm,d Pm,m+l (as

in Dove and Jones 1971), the reverse probabilities are found

by "detailed balancing":

Pv,v+l = Pv+l,v exP(-(Ev+l_Ev)/kT)
i,i-1 _ _i-1,1

Qv,v+1 - Qv+l,v exp(_(Ev-ﬂ,ﬂ’:i—l_Ev“Ei)/kT)
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Py w= Po g €XPC-E /BT 4/ (K(T)Q,, (T))  (2.2-15)

A list of the necessary data obtained from Kiefer (1972),
Shui and Appleton (1971), Hirschfelder et al. (1954) and

Dorrance (1962) for studying H, in Ar follows. An

example of the vibrational transition probabilities for

H2 at 5000K and 1 atm is given in Figure 2.1

Elo/k = 6113K, 6§ = 0,0278, m = 15, Gd = 51960K,
10exp(lOOT—1/3)atm—sec, pT(HZ-Ar)
10

pt(H,-H,) = 3.9x 10"
= 4pt(H,-H,), pr(H,-H) = 6.43 x 10~ exp(SIT_1/3)atm-sec,

Q
L(H,-H,) = 0.338%, L(H,-Ar) = 0.3474, L(H,-H) = L(H,-H,),

0 o o
°(H2'H2) 2.934, d(szAr) = 3,.15A and o(Hz-H) = 2,65A,

2,3 First-Moment Solution

Iin this section the first-moment solution of the
vibrational Master equation, with no dissociation, is given
and used to investigate the sodium~line reversal experiments

of Hurle et al., (1964) in pure N The method of solution

2"
follows Bray (1968 and 1970a) in that the rate of change of
the vibratipnal "temperature" is a function of both the

V-T energy exchanges and the distortion of the vibrational
level distribution, by V-V energy exchanges, due to the
changing tramslational temperature,

The advantage of this type of solution, over the one
given in section 2.4, is that the calculation is quicker
than numerically integrating the Master equation which is
stiff (Treanor 1966 and McElwain and Pritchard 1971). A

system of differential equations is said to be stiff if the

eigenvalues are different by orders of magnitude.

2,3.1 Method

For a pure diatomic gas, with no dissociation cccurring,
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in a heat bath, the vibrational Master equations become

dX
v - — -
ZNTOdt Pv+l,va+l Pv,v+lxv + Pv-l,vxv—l Pv,v-lxv
m
i-1,1 i,i-1
+ iil(Qv+l,v i-1"v+1 Qv,v+l Xin)
m
i,l-l i-lsi -
+ iil(Qv—l,v Xin~l Qv,v-—l Xi—lxv) (2.3-1)
v = 0,1,...,111—1
dXx m
mo_ _ i,i-1 _ai-1,1
N gdt Po-1,0%m-1 7 FPo,p-1% T iil(qm—l,mxixm—l U, mo1¥i-1%p)
(2.3-2)

Using these equations, expressions for the vibrational level
populations are derived and used in conjunction with the
first-moment equation,

By summing up to a level k one cbtains

i-1,1 i,i-1

(Q X
1 ktl,k

dx
v" —
Tt~ Prwr,kfkrr P, ke %e T

—— V. X. X))
v=0 ZNTO i

1-1%%+1" % w2 X ¥y

n 1R
it g

(2.3-3)

i-1,1

K+l kZi-10 P

).

m
) 1,1-1
Xeer = X 2 Q1% + Py

)/( 2 (Q k+l k
1 H]

(2.3-4)
Following Gordiets, Osipov and Shelepin (1971) Equation 2.3-4
can be rewritten as

Xk+1 = Xk exp(6v26k/T)¢k exp(—ev/Y) (2.3-5)

(=]

where ¢k = {

Q(i,k,T)exp(-6_28(1-1)/T)ix°
1 v i

1
m

+ P(k,T)exp(-8 _(1-28)/T)}exp(8_/¥)/( ZlQ(i,k,T)i X;_q
i=

+ P(k,T)) and ¢0 = 1,

By recursion, the steady~state population is then given by
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n-1
Xn(ss) = hoexp[—n(GV/Y-(n—l)6v6/T)] ) ¢k (2.3-6)
k=o
where Y is the 1+0 wvibrational temperature. Thus the

steady-state solution of the vibrational level distribution
m

is found in terms of Xz, Y and Xo. z Xi = 1 determines

o}

2

1

0 . : : :
XO and Xi can be the previous Xi in an iteration procedure,

starting with ¢i = 1, or a good approximation of the final

Xi; Y 1is specified. Equation 2.3-6 has the same form as

Eq.(5) of Center and Caledonia (1972) and is actually more
specific as it has no unknown functions. With ¢i = 1, the
distribution is similar to that given by Treanor et al. (1968)

and for ¢i = exp(GVZG/Y) the distribution is the same,

Figure 2.2 shows the vibrational level distributions for pure

N, with Y = 3000K and T wvarying from 4000 to 800K (compare

with Fig. 3 of Bray 1968).
dX

v
If ¥ # 0 then

Xpp1 = Xy exp(0,26k/T)¢, exp(-6_/Y) + B, .,

(2.3-7)
where

dx_ 1
o ae J(ktl) T
AT

Q(i,k,T)in_l+P(k,T)]_l.

1

Brer”™ |

<
o~ R
(o]
1 18

i

By recursion, the unsteady population is given by

n-1
X = Xn(ss) + jio Bn—j exP('j(QV/Y*(H—(j+1)/Z)GVZG/T))i

¢

1 n-i"'

| [y

(2.3-8)
The first-moment equation is obtained by multiplying the
Master equations 2.3-1 and 2 by v and summing over all the

vibrational levels. It is

).

v,v—lxv - Pv—l,vxv-l

(2.3-9)



The V-V terms cancel out because one-guantum transitions
conserve vibrational quanta (see Hsu and McMillen 1970 for

a proof). However this deoes not mean that vibrational energy
is conserved during V-V energy exchanges.

Following Bray (1963 and 1970a), it is assumed that

X = X (Y,T) and so
v v
dX 83X X
v (v ey My ar )
dt =( 3y )T at T (BT )Y dt _ (2.3-10)
where higher order derivatives d"T/dt" are neglected. By

substituting this equation into the first moment equation,

dY/dt is found:

m m aX
ay daT v
ac = Wy By o X = Poly JKe) td EvgE )y)
=0 v=0
m 39X ,
R A (2.3-11)

Using this equation with a specified Y,T,NTO and dT/dt,

the variation of Y din a nozzle expansion can be found. The
values of the derivatives are found by perturbing Y and T
where Eq. 2.3-8 is used to find Xv" Figure 2.2 shows the

vibrational level distributions for pure N2 with Y = 3000K

and T = 1000K for various values of dT/dt (compare with

Fig. 1 of Bray 1970a). The necessary data for NZ’ from

6.217 x 10>, m = 47,

3.7 x 10—6T sec_l,

[l

Bray (1968), is ev = 3395K, §

P(T) = 1,07 X10"4T sec_l, Q(T)

(o)
6' = 5.39 x 10%¢ and o (N,-N,) = 3.35A,

2.3,.2 Comparison with Experiment

Using dY/dt in a Runge-Kutta nozzle integration (see
section 2,6.3 and Lordi et al. 1966) theoretical calculations
of Y for the shock tunnel experiments of Hurle et al. (1964)

in pure N2 are made, Y = T is assumed until the vibratiocnal



sudden freeze criterion (Phinney 1964, Bray 1970b and

section 2.6.3), using Ty from shock tube experiments (Millikan.
and White 1963a and Appleton 1967), is satisfied. For
thermodynamic equilibrium calculations using the vibrational
energy, an effective vibrational temperature Tv is used.

TV is defined by

m
iov X, = l/(exp(ev/Tv)—l) | (2.3-12)

v
Figures 2.3 and 2.4 show the results of the calculations.

Just as these calculations were being completed, MacDonald

(1972) showed that the SLR experiments need to be reinterpreted

when Y 1s greater than T. The new interpretation of Hurle

et al.'s measurements according to MacDomnald is also shown in

the figures. The vibrational energy relaxation rate

corresponds to about Ts/l.4 or ¢ = 1.4 while the Y rate

n

corresponds to TS/3 or ¢ 3. These results appear to

confirm the theory of Bray (Bray 1968 and 1970a and Bray and
Pratt 1970).

The results obtained here, for N2 and by Centexr and

Caledonia (1972), for (€O, indicate that anharmonicity effects

account for the observed behaviour of N2 and CO0 vibrational

relaxation in a nozzle. The electron-beam experiments in
N2 (see Hurle 1971) have yet to be compared with detailed
calculations of the type given here and by Center and

Caledonia (1972).

2.4 Full Solution

The vibrational Master equation, including dissociation,
is numerically integrated in a heat bath, behind a normal shock
and along a nozzle. From these solutions the vibrational

excitation, dissociation, vibrational de-excitation and
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recombination rates are found.
For H2 the value of m is 15, which is smaller than

m for N2 and 02, and so H2 is used as the model for di-
atomic molecules because the computing time is lowest. Some
calculations for N2 are also made. Exact agreement with

experimental results for H2 relaxation rates is not the aim
of this calculation, and consequently rotation and tramnslation
are assumed to be in equilibrium; even though for H2 there
appear to be doubts about this assumption (Dove, Jones and
Teitelbaum 1973, Kamaratos and Pritchard 1973 and Pritchard
1973).

For the heat bath solutions Equations 2,2-3, 4 and 5
are integrated with VX = 1. Using dx/u instead of dt in
the Master equation and the following three differential
equations, which determine the temperature, density and flow
velocity, the shock wave and nozzle solutions are found by

integrating with respect to distance x. Following Labib

et al. (1972) the equations are

ar | aNy 28 4 . {2eu - P T
Tdx N, dx RT Adx RT 2T N,dx 2 Npdx

Ry dNy Te.  dN 28 dRy Ny

- rva e wae D/ Uge - tHE R Dy
kT Ndx T Nde T 2 R\dT N,
(2.4-1)
dN 2% 2¢

dp _ dT T u  dAy- u
pdx (de + N,.dx T RT Adx]/[ RT 1) (2.4-2)
du _ _ dp dA _
udx pdx + Adx ) (2.4-3)
wvhere Eu = m'u2/2NT, A is the cross-sectional area of the
stream tube (constant for a normal shock), dNH = NTOdXH =
Npo2dX 41> dNHZ = - N, dX .., dN, = N, dX , e = E,-E_ and
RH is the rotational energy.

2
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Normal methods of numerical integration such as the
Runge~Kutta and Adams predictor-corrector are not suitable
for the solution of the Master equation because the equations
are stiff, However the algorithm of Gear (1971) was
written especially for stiff differential equatioms and so
it is used here. In the following sub-sections vibrational
relaxation is studied first and then simultaneous vibrational
and chemical relaxation is allowed. The effect of V-V
transitions on the solutions is found by multiplying the normal
value of Qgé by various values of q (see Equation 2.2-14).
Using the A.N.U. Univac 1108 computer, the typical time for
the non-isothermal solutions for H2 is 5 minutes. The
necessary data for H is given in section 2.2.2,

2

2,4.1 Heat Bath

A detailed investigation of the relaxation rates is left
for the shock and nozzle solutions, in sections 2,4.2 and 3,
respectively. However some effects of V~V transitions and
a discussion of the linear rate law are presented here.

The heat bath solution has been presented previously for
vibrational relaxation by Dove and Jones (1971) for excitation
of H2 in Ar without V-V transitions and by Hsu and

McMillen (1972) for de-excitation of N including V-V

2
transitions. Dove, Jones and Teitelbaum (1973) have included
rotational levels in the Master equation for H2 in Ar and
have shown evidence for vibration-rotation coupling. Rich

and Rehm (1967) presented analytic solutions for the case of
equi-distant vibrational energy level spacing, i.e. a
Truncated Harmonic Oscillator (THO), with and without V-V
transitions for a general diatomic gas. However none of

these references has presented heat bath solutions for both
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vibrational excitation and de~excitation, with and without
V-V transitions, for a gas of anharmonic oscillator molecules;
this is done here.

Figure 2.5 shows the time evolution of the H2 levels
at 5000K and 1 atm, from an initial population in equilibrium
at 300K, with the levels eventually reaching a Boltzmann
distribution at 5000K. The V-V transitions have the effect
of increasing the relaxation rates of the lower levels and
decreasing the rates for the upper levels,. For de-excitation
from equilibrium at 10000K to 5000K at constant pressure of
l atm, see Figure 2.6, the V-V transitions have the same
effect,

The heat bath solution for dissociation has been
presented previously by McElwain and Pritchard (1971) for H

2

in He, Dove and Jones (1971) for H2 in Ar and Wengle

(1973) for H2 and 02 in Ar, all without V-V transitions.
V-V transitions were included by McElwain and Pritchard (1970)
for H, in He. Recombination in a heat bath without V-V
transitions has also been presented by McElwain and Pritchard
(1971)., These references serve as a check on the features
of the calculations presented here.

Figure 2.7 shows the time evolution of the H2 levels
at 5000K and 10 atm, from an dnitial population in
equilibrium at 300K, with the levels eventually reaching
vibrational and chemical equilibrium at 5000K. The popula=-
tion of the highest level of the molecule now represents’
half the atom population. It is clearly seen that dissocilation
occurs before a Boltzmann distribution is reached among the

upper levels. This is found to become more pronounced as

the temperature is increased. The relaxation of upper levels
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is decreased by V-~V transitions as found for vibrational
relaxation. Thus the rate of increase of the atoms is delayed,
i.e, the induction time for dissociation is increased by V-V
transitions. Recombination from 10000K and 10 atm with a
-mole fraction of HZ equal to 10_8, shown in Figure 2.8,
appears to show that V-~V transitions have no effect on the
relaxation rates of the levels. Starting from the top, the

levels increase in population until they are nearly in

equilibrium then recombination becomes effective,

The linear rate law assumes that, for H2 and H in
Ar
N H, N N
. _ Ar TAr 2 Hy H'H
Ld = kd ﬁ;— + kd NT + kd ﬁ; (2.4-4)

Kiefer (1972) using a steady-state solution has shown that

this equation can fail for H2 and H in Ar and for O2

and 0 in Ar ©but this conclusion was sensitive to the V-T
transition rates of H and O, The vibrational relaxation
rate of H2 by H has yet to be measured definitely (see
Breen, Quy and Glass (1973b) for an attempt) so no attempt was
nade here to check the rate law for H2 and H mixtures,

The relaxation rate used is the value given by Kiefer (1972)
using Millikan and White's (1963b) correlation. For H2 and

Ar mixtures the initial dissociation rate with and without

V-V transitions 1s shown on Figure 2.9 for 5000K. The rate

coefficient kér calculated from 4000K to 8000K is found to
be 1.5 times higher at 4000K and equal at 8000K to kgr

determined experimentally by Breshears and Bird (1973a).
H

Their measurement of kd was made assuming the linear rate
law for mixtures up to 20% H2 in Ar and according to

H
Figure 2.9 this would lead to an overestimation of kdz. The

linear rate law appears to fail even without V-V transitions.

R, T o —
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However if the normalised V-~T transition probabilities,

P(v,T)/P for H,~Ar collisions are used for H,-H

10° 2 2 2

collisions the rate law, without V-V transitions, is linear,
in agreement with McElwain and Pritchard (1970). For this

case it 1is interesting to note that pT(Hz-Ar)/pT(Hz—HZ) is
H2/kAr
d d '

These heat bath calculations show that the model is

nearly equal to k

suitable for describing the relaxation rates and can therefore
be used for the shock and nozzle solutions. The effect of
V-V transitions on the relaxation rates of the levels, on

the induction time and on the rate law has been clarified.

The linear rate law appears to fail even for mixtures of di-
atomic molecules and inert atoms, as the concentration of the
inert atoms is reduced, although the V-T transition
probabilities need to be known more accurately before a

definite conclusion can be reached.

2.4.2 MNormal Shock

The above method may now be applied to calculations of
vibrational excitation and dissociation in the flow after a
normal shock, This has so far only been done for the iso-
thermal case, Experiments in N2 by Appleton (1967) and
Hanson and Baganoff (1970) and CO by Hanson (1971) have
shown evidence of "hooks" on Landau-Teller plots of log10

T_1/3. Simpson (1973) suggests that

(ptv(atm—sec)) against
the shock tube evidence for this effect is divided and not
very conclusive but calculations here, Figure 2,10, for H2
show a tendency to "hooks" or an increase in the vibrational
excitation rate as equilibrium is approached, Calculations
are made for an initial condition of 300K and 5 torr at the

four shock speeds of 8, 10, 12 and 14 km/sec with Ty de-
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termined from Equation 2.2-7. No dissociation is allowed
te occur for these solutions, The V-V transitions cause
the relaxation rate to increase as equilibrium is approached
with the increase becoming larger for q -equal to 100,
For slower shocks there is less tendency for "hooks" which
is in agreement with the experiments. The "hooks" may be
more pronounced if multi-quantum transitions were allowed but
allowing only one~quantum transitions seems sufficient in
showing this effect.

This acceleration of relaxation appears to contradict
the results of Rich and Rehm (1967) who showed, in a heat bath,
that V-V transitions increase the accuracy of the vibrational
energy relaxation Equation 2.2-7. However it must be noted
that for their model tlhere is no energy lost to, or gained
from, translation during a V-V energy exchange and so V-V

transitions cannot directly influence the vibrational energy

relaxation rate, In agreement with Rich and Rehm, heat bath
calculations using the present method with & = 0 (THO) show
no acceleration of relaxation. Checks are made, considering

V-V transitions only, to ensure that in both the MO and
THO calculations vibrational quanta are conserved and that no
energy is lost to, or gained from, translation for the THO,
The hook effect increases the rate by a factor of 1.7 at most
and temperatures have to be near or above Bv for it to be
significant. If indeed the "hooks" are real then possibly
they could be used to deduce the self V-V transition
probabilities for a diatomic molecule. The jitter which
appears on Figure 2.10 and other figures is due to re-
calculating the transition probabilities at say every 50K
rather than at every integration step.

Calculations of vibrational excitation after normal



36.

shocks in N2 are shown in Figure 2.11l. Shocks of speeds
4.5, 4.0, 3.5 and 3.0 km/sec are considered in N2 at 300K
and 5 torr. This covers the range of temperatures at which

Appleton (1967) and Hanson and Baganoff (1970) have measured

the vibrational excitation rate. The data, from section 2.3.1,
Millikan and White (1963a), Benson and Berend (1966) and
Dorrance (1962) used for the calculation is listed:

3

ElO/k = 3395K, 6§ = 6.217x 10 ~, m 12

43, pT(N,-N,) = 5.7« 10~

exp(234.9T_1/3) atm-sec, L(NZ—NZ) 0.2632 and G(NZ-NZ) = 3.752.
As found for H2, there is a deviation away from the expected
rate which is caused by including V-V transitions in the
Master equation. The deviation again increases with
temperature, These results seem to indicate that the "hooks"
observed by Appleton (1967) and Hanson and Baganoff (1970)
and discounted by Simpson (1973) may be real,

The disscciation rate coefficient, kd, for three shocks,

with initial conditions of 300K and 5 torr and shock speeds

of 10, 12 and 14 km/sec, is shown in -Figure 2.12, For

H
comparison the wvalue of kd2 found by Breshears and Bird

(19733) 1s also plotted, The normal V-V transition

probabilities have little effect on kd and a value of ¢

equal to 100 is needed to increase kd by a factor of two.

These results show that the set of transition probabilities
for HZ-H gives a value of kg too small to be resolved
because the profiles of the faster shocks merge with those of
the slower shocks.
In diatomic dissociation studies it is customary to
express kd in the form given by Equation 1.2-6, ct ™ exp(—ed/T),

where n 1is expected to be less than or equal to 1.5. Here

a value of n between 1 and 1.5 fits kd over a temperature
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range of 3000K to 6000K, which is in reasonable agreement with

Sutton (1962) who found =n to be 1. It has been suggested

by Kiefer (1972) that values of n greater than 1.5 found

for undiluted diatomic gases (see section 1.2.2) are caused

by V-V transitions but this is not apparent for H2'
Calculations for nitrogen dissociation behind a shock

wave are not practical because of the excessive amount of

computer time required.

2.4.3 Nozzle Flow

The nozzle flow is represented by flow along a conical
nozzle, with a 7.5 half angle and a 0.318 cm throat diameter;
the calculation beginning down—stream of the throat where the
Mach number is around 1.04. The flow conditions at the start
of the calculations are found using the computer program of

Lordi et al. (1966). Contrary to Labib et al. (1972), RH
2

was assumed to be equal to RT for both the shock and nozzle
solutions because this is the value assumed by the conventional
nozzle program. Following Labib etﬂal. (1972), the vibrational
populations were assumed to be still in equilibrium at the
start point.

Figure 2.13 shows the results of a nozzle calculation
with the reservoir conditions of 3000K and 50 atm. It can
be seen that the vibrational relaxation rate for H2 along
a nozzle follows the experimental value down to a temperature
of 860K although it is a factor of 1.4 faster. The effect
of V-V transitions on the rate was negligible even for ¢
equal to 100, Similar results for N2 were found in section
2.3.2 in that the vibrational energy relaxation rate was

independent of V-V transitions while the vibrational

"temperature" rate was not. Since the vibrational energy is
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determined mainly by the first level population, the

temperature (=Y) of the first level(defined by X1/X°

T01
= exp(wallTOI)) is a good guide to the vibrational energy in

the gas. In Figure 2.14, TOl

temperature) are plotted against distance along the nozzle.

and Too (free stream translational

It can be seen that freezes at around 1500K with no

To1
V-V transitions and at a slightly lower value with them
included. This effect of V-V transitions in reducing T01
is in agreement with the results of section 2.3.2,. The
observed freezing temperature is in approximate agreement with
numerical calculations of vibrational de-excitation using

Lordi et al, (1966) and the vibrational sudden freeze criterion
(Phinney 1964, Bray 1970b and section 2.6.3) for the same
nozzle flow.

For recombinafion of H2 along a nozzle, with reservoir
conditions of 5000K, 6000K and 7000K at 200 atm, the rate co-
efficient kd is virtually identical to the normal shock value
in the range 6000K to 2700K. This agrees with the results
of Labib et al. (1972) showing that the rate quotient law
(Eq. 1.2-5) 1s wvalid, i.e. kd=kr K(T). Figures 2,15a, b

and ¢ show T and o, the atom mass fraction, plotted

TOl’ @

against distance along the nozzle for the three different

reservoir conditions, Contrary to the solution without
chemical effects TOl is higher with V-V transitions than
without them. When the lowest levels freeze out the

vibrational relaxation rate becomes negative, in agreement
with Labib and Pritchard (1974) who observed the same effect

for H2 in He. Since kd is found for temperatures down

to 700K an approximate expression for | to be used in the

Ld,

conventional nozzle program, is fitted to the results.
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The expression 1is kd = 8,1x 102l T—z exp(~6d/T)cmsmole—lsec—l.
Considering the Master equation, the vibrational relaxation
rate is assumed to be uncoupled from recombination and so
the sudden freeze criterion is used in the conventional nozzle
calculation. The results in Figure 2.15 show good agreement
between the two solutions for o and TOl' Calculations
with 30 and 40 degree nozzles, for 7000K and 200 atm, give

gqualitatively similar results to those presented in Figure

2.15¢ with higher frozen values of ¢ and TOl'

2.5 Summary of Theoretical Results

The model for diatomic relaxation rates used here seems
to give an adequate description of vibrational and chemical
relaxation even though it is still incomplete because it
neglects multi-quantum transitions, rotation effects and
dissociation from vibrational levels other than the top
pseudo-level, The questions, 1 and 2 outlined in section
1.3.1, and 1 and 2 outlined in section 1.3.2, are examined
using the first-moment solution (section 2.3) or by numerical
integration (section 2.4) of the Master equation. Question
3 of section 1.3.2 will be examined in Chapter 3.

It is found that vibration to vibration (V-V) energy
exchanges cause the induction time for dissociation of H

2

to be increased; suggest that the linear rate law, for H2

and Ar mixtures, fails for a Hz mole fraction above 207%;

give an acceleration of vibrational excitation as equilibrium

is approached for H2 and N2; cause the vibrational
temperature, T01 or Y, to be lower than the value found with-
out V-V transitions for vibrational de-excitation in nozzle

flows of H and N

2 29 and conversely for recombination of
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H2 along a nozzle.

The vibration to translation (V-T) energy exchanges for
solutions in H2 appear to be the main mechanism of diatomic
relaxation rates because the calculated rate coefficients are
within the scatter of experimental results; although this
is sensitive to the possible values of L. The solutions show
that V-T transitions can alsc cause the linear rate law,
for H and Ar mixtures, to fail if the sets of normalised

2
V-T transition probabilities for H2-H2 and H2-Ar collisions
are different from each other, and that they are_the main
cause of T01 freezing in the nozzle.
The use of conventional nozzle flow programs, with shock-
tube-determined dissociation and vibrational excitation rates,

to solve for recombining and vibrationally de-excitating flows,

appears to be valid for the cases considered.

2.6 Conventional Methods of Solving Relaxation Rate Probleuns

In the preceding sectilons a detailed microscopic
description of the diatomic relaxation processes has been
prgsented. Detailled accounts of the methods for solving
relaxing flow problems are available In the references to be
quoted. The present section only gives an outline of the
method sufficient for present purposes. The specific problems
to be considered here are for relaxation behind a normal shogk,
along a nozzle and over a wedge. The conventional thermo-

dynamic model used by these methods 1s also given.

2.6.1 Thermodynamic Model

In Chapters 1 and 2, some relevant thermodynamic
quantities have already been mentioned and included in the
theoretical Master equation solutions.

For chemical relaxation, in a mixture of atoms and di-
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atomic molecules, with translational, rotational and
vibrational equilibrium, expressions for the partition functions,
internal energies, specific heats and equilibrium constant
are listed here. (See Chapter IV and V of Vincenti and Kruger
1965) .
The partition functions for a séecies i(=An ) are;
Q, = 1w Q (2.6-1)

i 3,1

[

2.3/ '
Qpe g = V(2mm, RT/h“) "2 (2.6-2)

where V 1is the volume, mi is the mass and h 1is Planck's

constant
(n;-1)

where GR i is the characteristic rotational temperature‘and

]
6 = 2 for homonuclear, = 1 for heteronuclear molecules.

Qvib’i = (ni-l)i eXp(—Evi/hT) = Qvib,i(T) (2.6-4)

= (ni—l)/(l—exp(ev i/T)) for a simple HO (SHO)
QEﬂ,i~ = i gzi exp(—Eﬂi/hT) (2.6-5)

where 8y is the degeneracy of electronic level £ with
i

ene?gy Ezi' The internal energies per unit mass of a
specles 1 are: ) .
3 £n Q
e, = § ey 4 = 5: e (2.6-6)
I 3 %; T (2.6-7)
Croc, 1= (D) %I T (2.6-8)
yib,1” (ni_l)%—;(f’(Evi/mexP(—Evi/hT))/Qvib,i=ev,i(T)
- (ni-l)%; 0, ¢/ (exp(o, L /T)-1) (2.6-9)

for a SHO
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R
e ., = — (z g, (E, /RYexp(-E, /RT))/Q
EL,1i W £1 £i Zi

) EL,1i
(2.6~10)
The enthalpy per unit mass of a species 1 1is,
= R ° -
hi = e, + wi T + hi (2.6-11)

where hz is the enthalpy of formation, per unit mass.

The specific heat of a species 1 at constant volume is

de

(Cv>i ‘[ 3Ti]V = Z(cv)

; j,1 (2.6-12)

" The specific heat of a species 1 at constant pressure 1s

3h
‘ = 1 = R : -
(CP)i = ( 5T Jp = (Cv)i + m (2.6-13)
i
The pressure of a species 1 1is
3 £n Qi Ni
Pi = N]’_hT -----—-—--—-aV = V— kT (2.6-14)

A general reaction scheme can be represented by

) -
T Vip Mi ;3 I Vig Mi (2.6-15)
i i
where vir and vir are the stoichiometric coefficlents of
the reactants and products of reaction r, respectively, and

Mi is the chemical symbol of the species., The equilibrium

constant for a reaction r 1s found from the law of mass

action, 8 o
B Q ir W. B, h.
R_(m)= m[M ] 1T= 1 [ﬁi—v) exp | N T ) (2.6-16)
i i AV i
. = ' -
- where subscript e denotes equilibrium, Bir vir vir and

NAV is Avogadro's number.
For the solutions in the following sections either an

equilibrium constant(using Equation 2.6-16 or a similar variant,

with a SHO assumed), an equilibrium constant of the form

-7
K (T) = C_T rexp(—ﬁalT) (2.6-17)

or an equilibrium constant deduced from "thermo-fit" data is

used, In the thermo-fit method the enthalpy and free energy
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are specified as a function of the translatiomnal temperature
(Lordi et al. 1966 and Gordon and McBride 1971). This means
that vibrational anharmonicity, vibration-rotation coupling
and a more complicated electronic partition function can be
included for high temperature reactions,

When the vibrational energy of species 1 1s not in

equilibrium, either frozen or relaxing, then (Cv)vib,i is
zero and T in evib,i 18 replaced by an effective
vibrational temperature, Tv' T din the vibrational partition

function is also changed to Tv for the nozzleAsolution
(Lordi et al. 1966). In the normal shock solution of Garr
and Marrone (1963) the equilibrium constant remains the sane;
instead of changing the vibrational partition function they
allow the rate coefficient to be a function of vibrational
energy. Clearly the thermo-fit method is not applicable when
vibrational nonequilibrium occurs.

To examine the accuracy of the SHO which is commonly used
for the vibrational energy of a diafomic meclecule, the MO
equilibrium vibrational energy of N2 is plotted in Figure
2.16 against translational temperature. It can be seen that
SHO is accurate at temperatures below 5000K and that the

classical fully excited limit, RT/Wi, is a good approximation

at temperatures above 10000K,

2.6.2 Normal Shock

When studying relaxation rates behind a normal shock it
is assumed that transilation and rotation are always in
equilibrium,. Vibration may be in equilibrium for chemical
relaxation studies but is sometimes not. The conditions
behind the shock (subscript s) at which no relaxation has

taken place (i.e. frozen conditions), can be found using these
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assumptions, the state equation and the following three
conservation equations for steady, adiabatic and quasi-one
dimensional flow, if the initial conditions (subscript «)

before the shock are known.,

Mass: dp/p + du/u + dAJ/A = 0 (2.6-18)
Momentum: dp + pudu = 0 (2.6-19)
Energy: udu + dh = dh° = 0 _ (2.6-20)

wvhere p 1s the density, u is the velocity, A 1is the
cross-sectional area of a stream tube or nozzle, p 1is the
pressure and ho is the stagnation enthalpy. - The state

equation is found from Equation 2.6-14,
P

=z

i i
p=2=% p, = RN, TZE w— = RTi== = pRTL ¢ (2.6-21)
1 i AV i VNAV Wi i i
wherxe ¢y is the number of moles of species 1 per gram of

mixture. For a general gas, Vincenti and Kruger (1965) give

the following iteration scheme for solving the shock jump

relations for strong shocks. Using,

P, = P, + o ul(l-c) | (2.6-22)

hy o= b+ % ul(1-e?) (2.6-23)
whére €0 T Py with € = 0 at first, a value of hS can be
found. Combining Equations 2.6-11 and 21 a relation

P = po(p,h) (2.6-24)
can be found, This 1s used to find a corrected value of ¢
and the cycle is repeated with better values of . Similar

methods are used by Garr and Marrone (1963) and Bittker and
Scullin (1972). The final equilibrium conditions behind the
shock could also be fourd in this way.

For the relaxing gas an additional equation is required.

This is the rate equation of the form

Dci/Dt = wi(p,p,cj) (2.6-25)
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where {cj] iz a finite set of relaxing parameters which may
be energies of internal modes or speciles concentrations; as
indicated here, (see Hayes and Probstein 1965 p.537). Thus
the relaxing flow behind a normal shock is calculated by
solving Equations 2.,6-18, 19, 20; 25 and the general relation

h = h(Psp ’ci)’ (2.6-26)

numerically,

The normal shock computer program (called NSHOCK for
brevity) of Garr and Marrone (1963) and Garr; Marrone; Joss
and Williams (1966); which uses a modified 4th order Runge-
Kutta scheme (Treanor 1966), is used in Chapter 3; It can
be used for vibrational and/or chemical relaxation with or
without thermo-fit data; Its method of solution is similar
to the brief description given here. The model of wibration=~
dissociation coupling that can be used is that of Treanor and
Marrone (1962). For a multi-reaction; multi-species gas the
linear rate law (Eq.2.4-4) is assumed and this may or may not
lead to significant errors if rates found from various sources
are used to predict overall rates for a hitherto unexamined
system. Despite this, the linear rate law is assumed by
NSHOCK for practical reasons;

Since the experimental work is restricted to mixtures of
N2 and N 1t is useful to use the atom mass fraction in the
relevant equations, The atom mass fraction o is given by

a = [N} WN/p (2.6-27)

with the molecular mass fraction given by

l-a = [N,] Wy /o, (2.6-28)
2
Therefore the specific enthalpy and state equations become

h = {(3.5+41.5a)T + aed}R/wN2 + (l--a)ev (2.6-29)
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where electronic energy 1is neglected, and

P = pRT(l+a)/WN . (2.6-30)
2
The gemneralised rate equation, for N2 dissociation, becomes
N
Da/Dt=p{k,%(1-a) + 2k a}((1-a)-bpa®/W/ K(T)) /W . (2.6~31)
d d N2 NZ

The two possible rates are added together assuming a linear
rate law. A similar relation is found for vibrational re-
laxation of N2 and N mixtures with no dissociation,

Dev/Dt = (ev(T) - ev)/Tv (2.6-32)

H

where (1+o.)/'rv = (l—u)/TV2

N
+ 2a/rv.

2.6,3 Nozzle Flow

The nozzle flows to be examined in Chapter 3 are assumed
to have been expanded from a reservoir of gas in chemical and
vibrational equilibrium, Using this assumption, the three
conservation equations 2,6-18, 19 and 20, the rate equation
2.6-25 and the relation 2.6-26, the nozzle soclution is found.
A 1is given as a function of distance along the nozzle. The
equations are numerically integrated.

The reservoir or stagnation conéitions are found by
solving the shock jump relations for the equilibrium reflected
shock conditions at the end of the shock tube, given the
incident shock speed and initial pressure, and then assuming an
isentropic expansion or compression of the gas to the measured
stagnation pressure, These calculations are done with the
computer program of McIntosh (1970) (called ESTC for brevity).
This method is commonly used for reflected shock tunnels.

The nozzle flow computer program (called NENZF for brevity)
of Lordi, Mates and Moselle (1966) is used in Chapter 3 for
nonequilibrium expansicns of N and N mixtures with or

2

without vibrational relaxation considered. The vibrational
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de-excitation rate is used in a sudden freeze criterion
which determines whether the vibrational energy is considered
to be in equilibrium or frozen at some constant value.

6Bup1ed vibration-recombination seems

This assumption of un
justified on the basis of section 2.4.3.

The idea of "sudden freezing" of a relaxing variable
such as o 1s due to Bray (1959). This has beer examined for
diatomic vibrational relaxation by Phinney (1963 and 1964).

Following Bray (1970b), Equation 2.6-32 is rewritten as

udev 1 - ev(T)/ev _
v v

The left-hand side has the dimension of (time)“1 and 1is at
a maximum in the equilibrium limit; therefore a local flow

time can be defined as

u dev -1
Tep = -[ v ] (2.6-34)
v e

Combining 2.6-33 and 34,

o > 1 - e (T)/e . ~ (2.6-35)

Using this relation it is seen that for near-equilibrium flow
Teg >>Tv and for near-frozen flow Tep << Tv. If one wishes
to assume vibrational equilibrium for part of the flow

calculations and frozen vibration for the rest of the flow

these inequalities are useful. A possible switchover point
could be chosen at = 1 or
£L v
u dev [ e, ] 4
m =l ), (2.6-36)
e v

This criterion has been shown to be satisfactory by Phinney
(1963). This sudden freeze criterion for vibrational

relaxation is used for the nozzle flow calculations of pure N2
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and reccombining N2 and N mixtures. When the criterion
first applies the frozen vibrational temperature Tv is made
equal to the translational temperature. Tv is then used
to calculate the frozen vibrational energy for the rest of

the calculation, This method does not predict what final

value TO1 takes, only the value of € e

2.6.4 Vedge Flow

By placing a flat wedge at sufficiently low incidence
in the hypersonic nozzle flow an attached shock wave will be
formed. If the temperature and density behind the shock are
low enough it is possible to have a frozen flow over the wedge,
i.e. the relaxation distance (ut) 1is very much greater than
the wedge size. For this case the shock will be straight
with an angle 8, with respect to the free-stream. Given
the wedge angle 6,8 can be found using the following method.
The pressure and enthalpy equations 2.6~22 and 23 can
be written as

p_ + p_u> sin’p(l-¢) - (2.6-37)
2

[+ <]

Ps

and h_ = h_ + 4u’ sin’g(1-c%), (2.6-38)

]
For vibrational equilibrium behind the shock at T > 10000K
and frozen chemistry the relation 2,6-24 can be explicitly

stated as

Pg = (4.5+0.50w)p5/{(hs—uwRed/WNz)(l+am)} (2.6-39)

for mixtures of N2 and N. The free-stream enthalpy is
h = {{(3.5+1.5a )T + o 6, }R/W + {1l-a Jde ., (2.6-40)
@ 00 o o d N2 [} yw

Thus Pys Py and hS can be found for a given shock angle
and free~stream by solving 2.6-37, 38, 39 and 40 iteratively,
starting with ¢ = 0, The corrected shock angle is found

from the straight shock relation
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tan(8-6) = ¢ tan 8 (2.6-41)
and thus,
tan 8 =\E~%f(nw) (2.6-42)

1
e? tan 8/(l-¢c) (see Hayes

where f(n) = 2n/(1+(1-4n)%) and ng
and Probstein 1965 p.218). The new value for B 1is used in
the diteration procedure until € and B8 converge to their
correct values. Thus a shock angle on the flat wedge 1is

determined by the free~stream conditions and the wedge angle,

so it could be used, in principle, to determine € e and o_.

2.6.4.1 Shock Curvature

If the relaxation distance 1is comparable to the wedge
gize, the relaxation effects can be observed. The pressure
and flow velocity are only relatively slightly affected by
the relaxation process, so that the strong decrease in trans-
lational temperature associated with the redistribution of
energy in the relaxing mode is accompanied by a stromng rise
in density. Through Equation 2.6-41 it is seen that the
density rise will cause the shock angle to decrease. It can
be.shown that the initial shock curvature at the tip is
directly praportional to the relaxation rate at the tip. A
brief derivation is given here,

Using natural coordinates s and n, where 8 1is the
distance along a streamline and n the distance along the
normal to the streamline, the following equation can be
obtained from the appropriate mass, momentum and energy con-
servation equations, the state equation and the general rate
equation (see Vincenti and Kruger 1965 p.301 and Sedney 1970

p.176):

2 Zh
(Me-1). . 96 .1 sin & €1 Y4 (2.6-43) .
— + T =
2 98 an vy puh
pu P
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where Mf is the frozen Mach number u/a where a_ =

£’ f
L
[(Bplap)s c 1% is the frozen speed of sound (S being the
*7]
specific entropy), & 1is the streamline inclination behind
the shock, j = 0 for a wedge, = 1 for a cone, y' 1is the co~
ordinate perpendicular to the axis of symmetry, and h=h(p,p,cj)

is the specific enthalpy and so hc = (ahlaci)p,p,cj(i#j)’

h = oh/o .
o (dh/ p)P,cj

Shock wave

Free-stream

From the geometry of the above figure,

o _ _ 3 8 _ 88 3 -
55 = cos A =S + sin A o 56 3E (2.6-44)
where A = B-& and %% is the shock curvature k. Using

this equation and 2.6-43 an expression for op/3s can be found.
equation

An alternative expression for op/ds is given by the n-momentum A
and 2.6-44. Equating these two expressions, k 1is found to

be (see Sedney 1961, Capiaux and Washington 1963 and Becker

1972) given by
th

[y
- i1 _j sin & _ 3E& 2 _ _
K puhp 7 as(tan_)\(Mf 1)- cot A)
13 . 2_,\09p 2 _
/(Eﬁ /sin X + (Mf 1)3E /puTcos ) (2.6-45)

For the initial shock curvature at the tip of a wedge, & is

the wedge angle, j = 0 and 3gf3%s 1is the wedge curvature (=0

T
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for a flat wedge). The derivatives 3£/3B and 3p/oB
are given by Kewley (1974).

To calculate the variation of shock curvature along the
shock 1t is required that the variation of & along the
shock is known. One method of finding this variation is
to use the nonequilibrium method of characteristics given by
Sedney (1970). Using this reference extensively, a computer
program (called NMOCW for brevity) to solve for flat or
curved wedges is given by Kewley (1974). This is used to
calculate both the shock curvature variation with shock
angle and the complete flow field for the wedge flows in
Chapter 3. Relaxation rate models of the type given in this

section 2.6 are used.

2.7 Summary

In this chapter, the conventional vibrational and
chemical relaxation rate models for diatomic gases,
specifically H2 and NZ’ have been examined by comparing
them with results of a detailed microscopic description of the
relevant processes, Using the vibrational Master equation,
foﬂr of the theoretical questions posed in the Introduction
have been studied and the results summarised in section 2,5.
A brief description of the methods of solution to be used to
examine the experimental results of Chapter 3 has been given
for normal shocks, nozzle expansions and flow over a wedge.
The relaxation rate models, used in these solutions, are of
the conventional type because the more complex model pre-
sented in this chapter is not practical, due to the large
computing times required for any diatomic gas, other than H
However the limitations shown in this chapter, of the

conventional relaxation rate models, are now recognized.




