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Figure 1.1: A schematic diagram of a shock tunnel
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represents the initial shock into an equilibrium test gas.

represents the reflected shock with an equilibrium nozzle reservoir behind it.
represents the standing shock on a wedge in a nonequilibrium test gas.

denotes equilibrium conditions

denotes frozen conditions

denotes relaxing conditions
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Figure 2.1: Vibrational transition probabilities
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Vibrational level population distribution for
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Figure 2,3:

Vibrational temperature (Y) vs reservoir
pressure (Po) at a reservoir temperature

*
T0 = 4500K and area ratio A/A = 32, wee

Theory: ® experimental value of Y from
Hurle et al, (1964) reinterpretated according
to MacDonald (1972),
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(1964) reinterpretated according to MacDonald
(1972).




populations of H2 at 5000K and 1 atm

with no dissociation. V-T transitions
only, ~-- V-T and V-V transitioms. The
populations were in a Boltzmann
distribution at 300K.
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Figure 2.5: Time evolution of vibrational level
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Figure 2.6: Time evolution of vibrational level

populations of H2 at 5000K and 1 atm

with no recombination. V-T transitions
only, =--- V-T and V-V transitions., The
populations were in a Boltzmann
distribution at 10000K.
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"Pime evolution of vibrational level

populations of H2 at 5000K and 10 atm

with dissociation. Half the atom
population is also plotted. —V-T
transitions only, =-~~ V=T and V-V
transitions. The populations were in
a Boltzmann distribution at 300K.
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Time evolution of vibrational level
populations of H, at 5000K and 10 atm
with recombination. Half the atom
population is also plotted. V-~-T
transitions only,—--- V=T and V-V

transitions. The populations were in
Boltzmann distribution at 10000K. The
8

mole fraction of H2 was 10 °,



Figure 2,9:
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Varliation of initial dissociation rate of

H2 with mole fraction of H2 in Ar at 5000K

and 1 atm, —&——  V-T transitions only,
—+8—— V-T and V-V transitions,

V-T and V-V transitions with ¢q equal to 100,
—©—— V-T transitions only, with equal

normalised V-T transition probabilities for

H2—H2 and HZ-Ar collisions.
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Figure 2,10: Vibrational excitation rates of H2. The

straight line is the experimental value of
Kiefer and Lutz (1966b). Results of four

shocks in 5 torr initial pressure of H2 at

300K are plotted. The slowest rate for
each shock is for V-T transitionms only, The
effect of V-~V transitions is shown by varying
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Vibrational excitation rates of NZ' The

straight line i1s the experimental value of
Appleton (1967). Results of four shocks

in 5 torr initial pressure of N2 at 300K
are plotted, The slowest rate for each
shock is for V-T transitions only. The effect

of V-V transitions is shown by varying q.



12

11
B
w
$
wipg
—
o
=
>
= 9
O
QP
= B
o
o
—

7

B

Figure 2.12:

|
1.6 2.2 2.8 3.4 4.0
19008/7 (

Dissociation rate coefficient kd of HZ.H For

comparison the experimental value of kdz given

by Breshears and Bird (1973a) is shown.
Results of three shocks in 5 torr initial
pressure of H2 at 300K are plotted. The
effect of V-V transitions is shown by varying
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Vibrational de-excitation rates of H2. The

straight line is the experimental value of
Kiefer and Lutz (1966b). The reservoir
conditions are 3000K and 50 atm. The rates
-for V-T traansitions only, V-T and V-V
transitions and V-T and V-V transitiomns with
g equal to 10 are seen to be nearly identical.
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Vibrational and translational temperature
along the nozzle. The reservoir conditions
are 3000K and 50 atm.---calculations using
Lordi et al., (1966), —8— V-T transitions
only, -—o-— V-T and V-V transitions.
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1.0

Atom mass fraction, vibrational and trans-
lational temperature along the nozzle ~--
calculations using Lordi et al. (1966),

e = V-T transitions only, —O—
V-T and V-V transitions.
The reservoir conditions are 5000K and 200
atm,
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equilibrium energy, per mole, of the SHO and
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Ratie of equilibrium to initial density as a
function of shock speed for two driver con-
ditions. Curve I, 2700 1b/in2, curve II,
10500 1b/in2 diaphragm burst pressure.
Calculated, @ measured,




Figure 3.3:

C

2.5 pusec

Three time-resolved interferograms of
nitrogen dissociation behind a shock.
4.80 km sec”y, 31 torr, 298.2K.
5.60 km seczl, 19 torr, 298.2K.
7.31 km sec ©, 5 torr, 300.2K.
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Figure 3.4:

‘ 01 . 0.2
Distance behind shock,s{cm)

Calculated and measured fringe shift in the
relaxation zone for three shock speeds: @
4,80 km sec ~, 31 torr; = 5.60 km sec_l,

19 torr; A 7.31 km sec-l, 5 torr,
Calculated curves according to ilanson and
Baganoff (1972) ---, Appleton et al. (1968)

equations 3.2-11 and 12
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Figure 3.5a:
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T/1000 (°K)

Pre~exponential factor for the rate coefficient
N

kd versus temperature; (u] Hanson and

Baganoff (1972), 0 present, a Cary (1966),

v Appleton et al. (1968), @ Byron (1966).
The error bars indicate authors' estimated un-—
certainties. Edge-hatching delineates regions
in which 3 or more but not all, authors agree,
or that if only 2 authors cover the range, they
agree, Cross-hatching indicates where all
authors agree., The numbers indicate how many
authors agree in the region.
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Nozzle stagnation condition = B2

Nozzle stagnation condition = C1l
Figure 3.8: Static pressure variation with time, measured
from shock reflection in the shock tube,

Vertical scale: Stagnation pressure - 35 atm/div
Static pressure - 0.143 psi/div

Horizontal scale: Time, increasing from right to
' left - 100 usec/div
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Figure 3.9: Calculated and measured shock angle on a 35°
Selne vt shs wmas of staspatian. teanexratuce
To. ) represents a free-hand fit to the

calculated points ] . The time, after

shock reflection, of each measured interferogram
is indicated: @ 500 usec, A 350 pysec, N

300 usec, ¥ 225 psec ¥ 200 psec. ¢
represents the ratio of vibrational de-excitatiom
rate to excitation rate used in the calculations.
The error bar of 300K for TO, above 4500K, is

considered to be pessimistic.
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Figure 3,10: Calculated and measured shock angle on a 39°
wedge for the range of stagnation temperature
To' The description is the same as Figure

3.9.
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Calculated and measured shock angle on a 41°
wedge for the range of stagnation temperature
To. The description is the same as Figure

3.9,



