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ABSTRACT

A theoretical and experimental  study  of  the vibrational 

and chemical relaxation rates  of  diatomic gases,  in  flows 

behind shock waves  and along nozzles,is made here.

The validity of  the  conventional  relaxation rate models, 

which  are generally used  to analyse experiments, is tested by 

developing a detailed microscopic description of  the diatomic 

relaxation processes.     Assuming  the diatomic molecules to

be represented by  the anharmonic Morse Oscillator,  the 

vibrational Master equation,  which  describes  the  time 

variation  of  each vibrational energy  level population, is 

constructed by allowing one-quantum vibration to translation 

V-T) energy exchanges and vibration to vibration (V-V) energy 

exchanges between the molecules.  Dissociation and

recombination are allowed to occur from, and to, the uppermost 

vibrational  level. Solving the Master equation, it is found

that a number of effects are explained by the inclusion of

V-V  transitions. In particular it  is  found that  V-V energy 

exchanges  cause  the  induction  time for H2 dissociation  to
be increased; suggest  that  the  linear rate law, for H2 and
Ar  mixtures, fails for a H2 mole  fraction above 20%;  give
an acceleration of vibrational excitation as equilibrium is 

approached  for H2 and N2; cause the vibrational temperature
to be lower than the value found without V-V  transitions for 

vibrational de-excitation in nozzle flows of H2 and N2,  and 
conversely for recombination of H2 in nozzle flows.  The
most important  result is  the demonstration  that conventional 

nozzle flow  calculations, with shock-tube-determined dis-

sociation and vibrational excitation rates, appear to be valid 



for the recombining and vibrationally de-excitating flows

considered.

The dissociation rates of undiluted nitrogen are measured

in the free-piston shock  tube DDT, using time-resolved optical 

interferometry,  over a  temperature range of  6000-14000K and 

confirm the strong  temperature dependence of the pre-

exponential  factor  observed by Hanson  and Baganoff (1972).

The vibrational de-excitation and excitation rates are

determined in the small  free-piston shock tunnel T2  over 

temperature ranges of 2000-4000K and 7000-10300K, respectively, 

by measuring  the shock angles  and curvatures,  from optical 

interferograms,  of  flow over an inclined  flat plate in the 

nonequilibrium nozzle flow.  The de-excitation rate is  found

to be within a factor of  ten of the excitation rate, while the 

excitation rate of N2 by  collision with   N  is  found to be
less  than about 50  times  the excitation rate  of  N2 by N2.
The dissociation rates  of nitrogen, in the flow behind a shock 

attached to a wedge, are investigated in the large free-piston 

shock  tunnel,  using  the shock curvature  technique.   The 

discrepancy, reported by Kewley and Hornung (1974b),  between 

theory and  experiment at the highest enthalpy is  found  to be 

resolved by including the measured helium contamination

(Crane 1975)in  the  free-stream. Reasonable agreement is 

obtained between experimental shock curvatures  and calculations 

using accepted dissociation rates.
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