ENVIRONMENTAL INFLUENCES ON THE SUSTAINABLE PRODUCTION OF THE SYDNEY ROCK OYSTER

SACCOSTREA GLOMERATA:
A STUDY IN TWO SOUTHEASTERN AUSTRALIAN ESTUARIES

Ana M. Rubio

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in
The Australian National University

Centre for Resource and Environmental Studies (CRES)
The Australian National University
February 2007
Declaration

This thesis is my own work and contains no material previously published or written by another person except where acknowledgement or citations have been made in the thesis. The data used in this thesis I have collected personally except where acknowledgements have been made. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in some of the experiment’s design, data interpretation or in style, presentation and linguistic expression is acknowledged.

Ana Rubio

February, 2007
Acknowledgements

I would like to thank all my supervisors and advisors for their guidance and encouragement throughout my candidature. A special thanks to Dr Phillip Ford for his time and valuable advice and, for offering me the opportunity to be part of the CSIRO Land & Water team and Prof Ian White for his support and help in initiating my PhD and for introducing me to the NSW Sydney rock oyster industry and its challenges. Thanks to Damian Ogburn for helping me to get involved with the SRO growers and introducing me to the supportive NSW DPI Fisheries team, who deserves also a big thanks, especially Michael Dove, Wayne O’Connor, Steve McOrrie, Lynne Foulkes and their GIS team. The last of my supervisors (but not the least!) is Dr Patrick Hone who provided invaluable comments through the PhD and help towards getting project funding, and for introducing me to the cheerful and supportive FRDC team.

I am particularly grateful for the support and trust that the NSW oyster growers put in me for dealing with such a challenging problem in the industry— without their support I would not have been able to work on this thesis topic. Special thanks to the following growers for making my life very pleasant and cheerful in the long field trips: Audrey Thors and her team Bay Rock Oyster in initiating this project and supporting me all way through, providing accommodation and resources; Mc Ash Oysters for their continuous encouragement and ‘long chats’; John and Annette Collison for ‘adopting me’ half way through the project and for devoting large amounts of their time and resources towards this project. In general, thanks to all the Clyde and Crookhaven/Shoalhaven growers, especially to John and Jim, Anne, Stuart, Steff, the Allen brothers and finally but not least, Sid for all his help with the oyster trays and for all the breakies and lunches he organised when I was extremely busy sampling- thanks to all!

I would also like to thank three amazing women from CSIRO Land & Water, Sue Vink, Carol Kelly and Katrina Turley, who taught me so much and made the long hours of laboratory bearable! I would not have been able to collect as much data if not for my great boat ‘Ana’s Dint’ provided by CSIRO and for the enthusiastic field assistants, especially Grant Robinson and Jim Brophy. Statistical advice was given by Jeff Wood at the SCU in ANU and the editing advice of Sue Holzknecht (SRES, ANU).

My favourite advisor and boyfriend, Alex, deserves an enormous thanks for his patience and support and, for his time teaching me how to use Matlab so that I could do the modelling presented in this thesis. Thanks also to all the friends and family for their continuous encouragement!

This project was funded by an ANU PhD Scholarship with additional grant support from the Australian government through Fisheries Research and Development Corporation (FRDC).
Abstract

There has been a continuous decline in both the production and general performance of the SRO in NSW estuaries over the past three decades. The relationship of this decline to both environmental and oyster-density related factors are assessed in this thesis. This question has been examined at different scales: a large scale that compares two different estuaries (Clyde and Shoalhaven Rivers, southern NSW); a regional scale that encompasses variations within an estuary and, at a lease scale that examines processes pertaining to individual or small groups of oysters. Levels of inorganic nutrients were in general very low potentially limiting primary production. The limiting nutrient was nitrogen or phosphorus depending on whether long term conditions were dry or wet, respectively. Only during rain events, through the input of terrestrial material, were conditions favourable for fast rates of primary production. Carbon and nitrogen isotope analysis has demonstrated that both external material and local resuspension of the benthos constitute a major proportion of the SRO diet. The uptake of the various food sources also varied considerably depending on local environmental conditions. Increases in SRO growth were strongly correlated to increases in temperature with a low temperature cut-off at ~13°C. Growth also appeared to reduce considerably when salinities lower than ~15ppt persisted for the order of a month. These factors may alter growth through changes in filtration rates. These processes were modelled in a coupled hydrodynamic-NPO (Nitrogen-Phytoplankton-Oyster) model of the Clyde River. This demonstrated that primary production was more affected by estuarine dynamics and nutrient concentrations than oyster uptake. At the current levels of oyster densities, primary production by itself could not account for the observed oyster growth, however growth became realistic with observed levels of POC added to the model. A set of environmental indices were used to complement the model and to assess the sustainability of the culture system. The combined indices indicated that while the ecological carrying capacity of the Clyde was exceeded the production capacity at an estuarine scale was not. On the lease scale, density experiments showed that while growth was not reduced as a result of current stocking densities, the condition index was significantly affected.
This thesis is dedicated to the Clyde and Shoalhaven oyster growers

‘Oysters may be the food of love,
but it is definitely a labour
of love to produce them’
(Anonymous)

An early morning sampling in the Clyde River…
Table of contents

Glossary ... VII

Chapter 1: The Sydney Rock Oyster Industry: Introduction and Background to This Study ... 1

1.1 World oyster production ... 2
1.2 Oyster production in Australia ... 3
1.3 History of oyster production in New South Wales ... 4
1.4 Problems and threats to the Sydney rock oyster industry ... 11
1.5 Hypotheses and research objectives ... 12
 1.5.1 Background .. 12
 1.5.2 Need for this research ... 13
 1.5.3 Main hypothesis .. 13
1.6 Objectives of this research ... 14

Chapter 2: Sustainable Limitations of Shellfish Culture ... 17

2.1 Definition .. 17
2.2 Mariculture areas for shellfish production ... 18
2.3 Characteristics of oyster culture .. 19
2.4 Requirements for non-limiting oyster growth ... 19
2.5 Physiological process and oyster food intake ... 21
2.6 Factors limiting oyster growth ... 25
2.7 Management of shellfish production limitation .. 26
2.8 Models for assessing carrying capacity ... 28
 2.8.1 Examples of published models for assessing carrying capacity................................ 30
2.9 Conclusions ... 38

CHAPTER 3: Study Areas: Clyde and Shoalhaven Rivers ... 39

3.1 Site selection ... 39
3.2 Geography and geology of sites ... 41
 3.2.1 Clyde River geography and geology ... 42
 3.2.2 Crookhaven / Shoalhaven River geography and geology 44
3.3 Climate and Hydrology of the sites .. 46
 3.3.1 Climate of the sites ... 46
 3.3.2 Hydrology of the sites .. 47
3.4 Ecology of sites ... 49
 3.4.1 Clyde River ecology ... 49
Chapter 4: Estuary Sampling, Oyster Growth and Food Measurements

4.1 Measurement sites

4.2 Spatial and temporal variability of estuarine water quality

4.2.1 Monitoring objectives

4.2.2 Monitoring methodology

4.2.3 Monitoring equipment

4.2.4 Chemical measurements

4.3 Field measurements of oyster performance

4.3.1 Variability in oyster growth

4.3.2 Dependence of oyster growth and condition on size-class

4.3.3 Density and growth experiments

4.4 Use of stable isotopes to examine the diet of the Sydney rock oyster

4.4.1 Experimental design

4.4.2 Methodology

Chapter 5: Physical, Chemical and Estuarine Water Quality Results

5.1 Physico-chemical data results for the estuaries

5.1.1 Salinity

5.1.2 Temperature

5.1.3 pH

5.1.4 Dissolved oxygen

5.1.5 Rainfall and river flow data

5.1.6 Rainfall and its effect on salinity

5.1.7 Advection—diffusion box model of the Clyde River

5.2 Nutrient chemistry of the sampled estuaries

5.2.1 Dissolved inorganic nutrients

5.2.2 Seston components at both sampling estuaries

5.3 Integration of the physico-chemical variables

5.3.1 Trends and spatial and temporal variability

5.3.2 Comparison of the sampled estuaries

5.3.3 Relationships between environmental variables in the Clyde River
5.3.4 Rainfall events in the Clyde River ...126
5.3.5 Nutrient limitations ...130
5.4 Discussion and Conclusions ...132

Chapter 6: Spatial and Temporal Variations in Sydney Rock Oyster Growth and Mortality ...135

6.1 Sydney rock oyster growth ...135
6.1.1 Spatial variability of average growth ...135
6.1.2 Seasonal variability of average growth ...141
6.1.3 Size-dependence as a proxy to age-classes ...142
6.1.4 Control of growth ...157
6.1.5 Condition Index ...163
6.1.6 Effect of stocking densities on growth ...165

6.2 Mortality rates of SRO ..171
6.2.1 Spatial variability ...171
6.2.2 Seasonal and inter-annual variability ...172
6.2.3 Age-dependence effect ..173
6.2.4 Stocking density effect ...175

6.3 Production index (PI) ...176

6.4 Discussion of SRO growth and mortality ...179
6.4.1 Spatial variability ...179
6.4.2 Temporal variability ..180
6.4.3 Allometric relationships for SRO ...181
6.4.4 Von Bertalanffy growth model for SRO ..182
6.4.5 Oyster mortality rates and production index ..185

Chapter 7: Diet of the Sydney Rock Oyster ..189

7.1 Isotopic approach ...189
7.2 Objectives ...191
7.3 Water quality and oysters used for isotopic analysis192
7.3.1 Water quality during isotopic sampling ..192
7.3.2 Oyster morphometry and flesh condition ..194

7.4 Analysis of oyster tissues ...195
7.4.1 Statistical analysis ..195
7.4.2 Isotopic composition of SRO tissues ...195
7.4.3 Composition of SRO tissue ..201

7.5 Analysis of food sources ...205
7.5.1 Primary sources and potential food sources ..205

7.6 Summary of oyster and food results. ...211
7.7 Diet of the Sydney rock oyster ..214
 7.7.1 Concentration-weighted mixing model...214
 7.7.2 Food preferences ..217
7.8 C and N content of the SRO and its diet ..220
 7.8.1 Site 1, a marine-influenced site ...223
 7.8.2 Site 2, an estuarine creek ..223
 7.8.3 Site 3, upstream site ...223
7.9 Discussion ..223
 7.9.1 Sydney rock oyster tissue ..224
 7.9.2 Suspended organic matter ...225
 7.9.3 Sediment organic matter ...225
 7.9.4 The diet of the Sydney rock oyster ...226
 7.9.5 C:N ratios for SRO tissues and food sources ...227
 7.9.6 Effect of rain events on the isotopic signature and diet of the SRO229
7.10 Conclusions ..232

Chapter 8: Integration of the Environmental Factors that Affect Oyster Growth...235
 8.1 Integration of Dynamic Models ..235
 8.1.1 Oyster stocking densities in the Clyde River ..236
 8.2 NPB model (Nitrogen—Phytoplankton—Benthos [Oyster] model)238
 8.2.1 Model description ...239
 8.2.2 Initial conditions ...241
 8.2.3 Boundary conditions ..241
 8.2.4 Model parameterisation ...242
 8.2.5 Model Assumptions ...243
 8.2.6 Model output ..245
 8.3 Environmental indices (EI) ..255
 8.3.1 Clearance efficiency (Environmental Index ‘EI-1’)255
 8.3.2 Filtration pressure (Environmental Index ‘EI-2’)257
 8.3.3 Regulation ratio (Environmental Index ‘EI-3’) ..259
 8.3.4 Phytoplankton-flushing index (‘Environmental Index ‘EI-4’)260
 8.4 Discussion and Conclusions ..260

Chapter 9: Discussion and Conclusions ..265
 9.1 Do environmental parameters limit SRO growth in NSW?..............................265
 9.2 Spatial distribution and temporal variation of seston and water quality266
 9.2.1 Advection-diffusion model of the Clyde River ...267
 9.2.2 Nutrients ..267
 9.2.3 Suspended matter ..269
9.3 Variability of oyster growth, condition and survival ...269
 9.3.1 Growth rates ..270
 9.3.2 The von Bertalanffy growth model ..271
 9.3.3 Production index ...272
 9.3.4 Oyster mortality ..272
 9.3.5 Oyster stocking densities ..273
9.4 Oyster food sources ...273
9.5 Coupled Model of oyster growth ..274
9.6 Environmental indices ..275
9.7 Environmental constraints on production ...276
9.8 Recommendations ..277
9.9 Future research: ..277
9.10 Final Comments ..279

References ..- 281 -

Appendix I: Summary of Precision Criteria for Environmental Nutrient Parameters I

Appendix II: Environmental parameter plots ...III

Appendix III: Stable isotope results ..IX
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>The distribution of the Sydney rock and Flat oysters along the Australian mainland coast</td>
</tr>
<tr>
<td>1-2</td>
<td>Annual NSW Sydney rock oyster production 1938/39 to 2003/04</td>
</tr>
<tr>
<td>1-3</td>
<td>Total number of bags by market size grade produced in the top 10 Sydney rock oyster producing estuaries in NSW for the financial year 2004/05</td>
</tr>
<tr>
<td>1-4</td>
<td>Percentage contribution of the southern estuaries on total NSW Sydney rock oyster production for the period 1944 to 2005</td>
</tr>
<tr>
<td>1-5</td>
<td>Oyster size grades sold during the period 1994-2005 for the five top NSW oyster producing estuaries in 2005</td>
</tr>
<tr>
<td>2-1</td>
<td>Simulation of oyster biomass in box 3 of Ferreira’s model (1998) as a function of time and individual weight for an oyster culture in Carlingford Lough</td>
</tr>
<tr>
<td>2-2</td>
<td>Model output of production calculated with theoretical models for different values of annual mortality and standing stock</td>
</tr>
<tr>
<td>3-1</td>
<td>Geographical location, catchment area and aerial photographs of the entrance of the two river systems used in this research: the Crookhaven/ Shoalhaven Rivers and the Clyde River (NSW, Australia)</td>
</tr>
<tr>
<td>3-2</td>
<td>The Clyde River estuary and its tributaries</td>
</tr>
<tr>
<td>3-3</td>
<td>Crookhaven/ Shoalhaven River estuary and its tributaries below Nowra</td>
</tr>
<tr>
<td>3-4</td>
<td>Average annual precipitation in NSW for the period 1900-2006</td>
</tr>
<tr>
<td>3-5</td>
<td>Monthly rainfall by year for two rain gauges in the lower Clyde River catchment: a) B. Bay Town (at the Catalina Club, Station Number 69134); b) Brooman (at Carisbrook, Station Number 69121) for the period 1992-2005</td>
</tr>
<tr>
<td>3-6</td>
<td>Monthly rainfall for three rain gauges in the Shoalhaven River catchment: Nowra Town (Station Number 68072); Moss Vale (Station Number 68239) and Bomaderry creek (Station Number 215016) for the period 2003-2005</td>
</tr>
<tr>
<td>3-7</td>
<td>Clyde River and Crookhaven & Shoalhaven River production (bottle and plate oysters)</td>
</tr>
<tr>
<td>3-8</td>
<td>Intertidal stick cultivation of Sydney rock oysters in the Clyde River (Clyde-3 location), NSW, at low tide</td>
</tr>
<tr>
<td>3-9</td>
<td>Floating intertidal cylinders or tumblers in Curley Bay in the Crookhaven River, NSW, (location Shoal-2, map Figure xxx, Chapter 4)</td>
</tr>
<tr>
<td>3-10</td>
<td>Floating basket designed by the Allen brothers in the Crookhaven/Shoalhaven estuary, NSW</td>
</tr>
<tr>
<td>4-1</td>
<td>Locations of the sampling sites in the Clyde River</td>
</tr>
<tr>
<td>4-2</td>
<td>Locations of the sampling sites in the Crookhaven/ Shoalhaven R</td>
</tr>
<tr>
<td>4-3</td>
<td>Summary of the period covered by the water and oyster monitoring programs/experiments for the Clyde and Crookhaven/Shoalhaven Rivers</td>
</tr>
<tr>
<td>4-4</td>
<td>Experimental trays used for one of the growth experiments. These trays allowed the monitoring of individual oysters all through the experiment</td>
</tr>
<tr>
<td>4-5</td>
<td>Oyster morphometric measurements used in this study and oyster organs</td>
</tr>
<tr>
<td>4-6</td>
<td>Density levels used in floating cylinders deployed in the Shoalhaven River</td>
</tr>
<tr>
<td>5-1</td>
<td>Interquartile boxplots of seasonal temperature and spatial salinity levels in the Shoalhaven River</td>
</tr>
<tr>
<td>5-2</td>
<td>High and low tide longitudinal salinity (in ppt) distribution in the Clyde R. estuary (sampling date: 26/2/05) and at low tide in the Shoalhaven (sampling date 3/8/05) under dry normal conditions</td>
</tr>
<tr>
<td>5-3</td>
<td>Daily river stage height (m) for two gauges, Bomaderry- blue line, and Broughton Mill- red line in the lower Shoalhaven estuary during the period January 2003 to March 2006</td>
</tr>
<tr>
<td>5-4</td>
<td>Time series of total rainfall (mm) and flow rate (ML/day) at Brooman (40km upstream) and time series of flow rates (ML/day) at Brooman and Buckenbowra Creek (5km upstream)</td>
</tr>
<tr>
<td>5-5</td>
<td>Longitudinal salinity gradient in the Clyde River for the October 2005 rain event (200-mm rainfall, ~20,000 ML/day discharge) for A) 5 days; B) 20 days; C) 35 days; D) 50 days</td>
</tr>
<tr>
<td>5-6</td>
<td>Schematic of the 1-D advection diffusion box model developed for the Clyde River estuary</td>
</tr>
<tr>
<td>5-7</td>
<td>Mean width (m), depth (m) and estimated cross sectional area (m^2) along the Clyde estuary from the mouth to the upstream tidal limit at Brooman (40 km)</td>
</tr>
<tr>
<td>5-8</td>
<td>Flushing times (days) for the Clyde estuary (colour bar) and geographical location of the boxes used in the advection and diffusion model</td>
</tr>
<tr>
<td>5-9</td>
<td>Surface contour plot of the observed and modelled salinity levels in the Clyde River for the period March-03 to February-06. Middle panel shows modelled results but mapped onto observed sampling times and locations</td>
</tr>
</tbody>
</table>
Figure 5-10: Time series plots of water quality parameters in the Clyde River (A)-Chl-a, TSM, POM; (B)-DSi, TOC, DOC; (C)-NOx, NH4, TN, TDN; (D)-Temp, Sal for the period Feb 2004 to January 2006 averaged over all sampling locations. Mean ± S.E. Red discontinuous boxes show rain events... 101

Figure 5-11: Time series plots of water quality parameters in the Clyde River (A)-Chl-a, Phaeo; (B)-DO, pH; (C)-PO4, TP, TDP; (D)-Temp, Sal for the period Feb 2004 to January 2006 averaged over all sampling locations. Mean ± S.E. Red discontinuous boxes show rain events... 102

Figure 5-12: Contour plots of surface physico-chemical water data in the Clyde R (A: Sal (ppt); B: NOx (mg N l⁻¹); C: Chl-a (µg l⁻¹); D: Temp (°C); E: FRP-P (mg P l⁻¹); F: NH4⁺ (mg N l⁻¹)) for locations 1 (ocean) to 8 (upstream) over the period Mar 04 to Jan 06. Arrows indicate rain events. White 'x' shows measured data.. 107

Figure 5-13: Contour plots of surface physico-chemical data in the Clyde R. (A: TSM (mg g⁻¹); B: POM (mg g⁻¹); C: POC (mg C g⁻¹); D: TN (mg N g⁻¹); E: TP (mg P g⁻¹); F: TOC (mg C g⁻¹)) for locations 1 (ocean) to 8 (upstream) over the period Mar 04 to Jan 06. Arrows indicate rain events. White 'x' shows measured data.. 108

Figure 5-14: Time series of surface physico-chemical data for sampling sites 1, 2, 4, 5 & 6 in the Shoalhaven R. (dissolved inorganic nitrogen, NOx; dissolved inorganic phosphorus, PO4; chlorophyll-a, Chl-a; total suspended matter, TSM; particulate organic matter, POM; dissolved silica, SiO2) over the period Nov04 to Jan06. Rain event (160mm) in July-05 marked with grey boxes. Each sub-panel for a particular variable has the same X axis range. Location Shoal-3 was omitted due to infrequent sampling... 109

Figure 5-15: Time series of surface physico-chemical data for sampling sites 1, 2, 4, 5 & 6 in the Shoalhaven R. (total nitrogen, TN; total phosphorus, TP; ammonia, NH4⁺; total organic carbon, TOC; particulate organic carbon, POC; dissolved organic carbon, DOC) over the period Nov04 to Jan06. Rain event (160mm) in July-05 marked with grey boxes. Each sub-panel for a particular variable has the same X axis range. Location Shoal-3 was omitted due to infrequent sampling... 110

Figure 5-16: Interquartile boxplot for average dissolved silica (mg Si/L) at each location and at each season in the Clyde River... 111

Figure 5-17: Interquartile boxplot for average dissolved inorganic phosphorus (mg P/L) at each location and at each season in the Shoalhaven River.. 112

Figure 5-18: Effect of rainfall on seston parameters shown in contour plots for surface seston quality indicators (A: POM:TSM ratio; B: Chl:TSM ratio; C: PC:Chl-a ratio; D: POC (mg C l⁻¹); E: PN (mgN l⁻¹); F: particulate C:N molar ratio) calculations for locations 1 (ocean) to 8 in the Clyde R for the period Mar 04 to Jan 06. Arrows indicate rain events ... 117

Figure 5-19: Time series of physical and chemical parameters for two harvesting grounds: Clyde-2 (Moonlight, blue lines) and Shoal-5 (Berry, red lines).. 123

Figure 5-20: Time series of Clyde averaged concentrations at all estuarine sites for salinity, chlorophyll-a, nitrogen oxide, flow and total rainfall.. 128

Figure 5-21: Temporal variation and corresponding lags for NOx and Chl-a across all sites in the Clyde River for the October 2004 rain event. Grey bars show peaks in rainfall, flow, NOx and Chl-a 129

Figure 5-22: Regression fitted line to the relationship between natural logarithm of normalised NOx concentration and days since rainfall for the decay period after 5 major rain events. Log (NOx) = 0.048-0.089 days... 130

Figure 5-23: Contour plot of the N:P atomic ratio for dissolved inorganic nutrients in the Clyde R. showing the N:P ratios required for marine phytoplankton and mollusc optimum growth. Black bars showing total rainfall (mm) .. 131

Figure 6-1: Boxplot of average growth rate (ARG, day⁻¹) for single seed and stick Sydney rock oysters at five locations in the Clyde R for the period July 2003 to August 2005 .. 136

Figure 6-2: Shell morphometrics and total weight of stick and single seed SRO at five locations in the Clyde R. Black dashed line shows the average of all sites. Error bars show standard deviations. Winter seasons are highlighted (dashed boxes).. 139

Figure 6-3: Histogram of pooled total weight (g) of stick oyster and break down by locations at the end of the 2 years of the ‘growth-experiment’ (N=300 at the start of the experiment, initial weight = 13±0.5g) ... 140

Figure 6-4: Histogram of pooled total weight (g) of single seed oysters and break down by locations at the end of the 2 years of the ‘growth-experiment’. (N=100 at the start of the experiment, initial weight=23.6±4g; shell length=65±0.6mm).. 140

Figure 6-5: Mean percentage seasonal increases of growth in weight and shell dimensions: shell length, width and thickness for SRO cultivated in the Clyde R. over the period July 2003 to December 2005.. 141
Figure 6-6: Mean total weights (g) of four size classes of SRO cultivated in the Clyde (C, continuous line) and Shoalhaven (S, dashed line) Rivers for the period Nov-2004 to Dec-2005 .. 143

Figure 6-7: Mean total shell lengths (mm) of four size classes of SRO cultivated in the Clyde (C, continuous line) and Shoalhaven (S, dashed line) Rivers for the period Nov-2004 to Dec-2005. .. 144

Figure 6-8: Regression lines of the relationship between shell shape dimensions for the four-size classes in the Clyde R. and Shoalhaven R. Slope and correlation coefficients of the regression lines shown in Table 6-3 ... 146

Figure 6-9: Allometric relationships of the shell dimensions and weight from four size classes of SRO from the Shoalhaven and Clyde Rivers (I). The legend for colored points as in Figure 6-8 149

Figure 6-10: Allometric relationships of shell dimensions and weight from four size-class of SRO from the Clyde R. and Shoalhaven R. .. 150

Figure 6-11: Allometric curves based on the allometric coefficients from Table 6-5 for shell parameters to total weight from four-size classes cultivated in the Clyde (red) and Shoalhaven (blue) R. Curves were superimposed on the data for stick (black) and single seed (grey) from the ‘growth-experiment’ for validation .. 151

Figure 6-12: Allometric curves based on allometric coefficients from Table 6-5 for dry weight of oyster flesh to total weight and shell length, and shell weight to total weight from four-size classes cultivated in the Clyde (red) and Shoalhaven (blue) Rivers... 152

Figure 6-13: von Bertalanffy growth curves using A) length (mm) and B) total weight (g) for various size classes of SRO at the Clyde and Shoalhaven R. using coefficients from Table 6-6, B. 155

Figure 6-14: von Bertalanffy growth rates with associated instantaneous growth rates (calculated as the derivative of the growth function, equation [4-5]).. 156

Figure 6-15: Weight (g) von Bertalanffy growth curve based on SRO growth data from the ‘size-experiment’ in the Clyde R (coefficients from Table 6-6, B). Comparison of the model with data for the stick (black dots) and single seed (green dots) SRO from the ‘growth-experiment’ 157

Figure 6-16: Average water temperature (ºC) in the Clyde R. from winter 2003 to summer 2006........ 158

Figure 6-17: Average water temperature (ºC, red) and growth increment (g/month, blue) for the whole Clyde R. estuary ... 158

Figure 6-18: Contour plot of growth increment (g/day) through time (Y axis) for the different oyster culture locations (X axis, distance from the mouth) with contour lines superimposed for water temperature ... 159

Figure 6-19: Relationship between growth rates and water temperature for measured growth data from the ‘growth-experiment’ ... 160

Figure 6-20: Growth increments (g) for stick and single seed oysters from the growth experiment at 5 growing locations in the Clyde River with total rainfall (mm) lagged by 3 months........................... 161

Figure 6-21: (Top) Observed and modelled ARG time series for the Clyde (blue) and Shoalhaven (black) Rivers based on growth data from all four size-classes. (Bottom) Reconstructed weight time series from observed and modelled ARGs .. 163

Figure 6-22: Condition Index for four size-classes at two estuaries Clyde R. (C) and Shoalhaven R. (S) for the period Nov 2004 to Dec 2005 .. 164

Figure 6-23: Change in condition index over time for three stocking densities for A) intertidal trays in the Clyde River; B) floating cylinders in the Shoalhaven River (experiments 1 & 2) 168

Figure 6-24: Change in average oyster weight over time for three densities for A) intertidal trays in the Clyde River; B and C) floating cylinders in the Shoalhaven River (experiments 1 & 2, respectively) .. 169

Figure 6-25: Effects of stocking density on oysters growing on trays and on cylinders for A) average oyster weight gain (g); B) biomass gain over the duration of the experiments................. 170

Figure 6-26: Percentage survival of A) stick and B) single seed SRO at five locations in the Clyde R. for the period July- 2003 to August-2005 ... 171

Figure 6-27: Seasonal %mortality for stick and single seed oysters in the Clyde R. for the period July-2003 to November 2005 .. 173

Figure 6-28: A) Total whole weight and B) % survival for the 4 size-class oysters in the Clyde and Shoalhaven R. representing 4 years of oyster production. The experiment was undertaken for the period January to December 2005. Each size-class represents a year of oyster production...... 175

Figure 6-29: Monthly percentage mortality for oysters cultivated in intertidal trays at three different density levels in the Clyde River .. 176

Figure 7-1: Histogram showing estimates of trophic shift for C and N... 190

Figure 7-2: Physico-chemical data for 3 sites in the Clyde R. for the isotopic sampling dates [winter=Aug & Oct 05 and summer= Jan & Feb 06]. (a) Temperature (ºC); (b) salinity (ppt); (c) water flow at Brooman (ML/ day); (d) total suspended matter (-) and particulate organic matter (.) mg/L; (e)
Figure 7-3: (a) Condition index and (b) weight increase (g) at three sampling sites in the Clyde R. during summer 05 and summer 06 only for the oysters used in the isotopic analysis. ... 207
Figure 7-4: Mean (±SE, n=4) carbon and nitrogen isotope values for oyster muscle, gill and gonad tissue sampled from three sites in the Clyde R. during winter 2005 (n=2, winter1 and winter2) and summer 2006 (n=2, summer1 and summer2). .. 208
Figure 7-5: Comparisons of mean (±SE, n=12) carbon and nitrogen isotope values for oyster muscle, gill and gonad tissue sampled from three sites on the Clyde R. over two seasons: winter and summer. .. 209
Figure 7-6: (A-D) % Nitrogen; (E-H) % Carbon; (I-L) C:N ratio (n=4) for SRO muscle; gill and gonad and whole oyster for three sampling sites in the Clyde R. twice in winter 2005 and twice in summer 2006. .. 210
Figure 7-7: Suspended particulate organic matter (POM) for δ¹³C (‰) and δ¹⁵N (‰) values from three sampling sites in the Clyde R over two seasons (winter 2005 and summer 2006).. 211
Figure 7-8: Relationship between Chl-a (µg/L) and C:N ratios of POM in the water column in the Clyde River. .. 212
Figure 7-9: Relationship between δ¹⁵N of POM and TSM:POM ratios in the water column in the Clyde River. .. 213
Figure 7-10: Relationship between biodeposits carbon:nitrogen ratio and carbon:nitrogen ratio of the food (as POM) for three sampling periods. The thick line marks the 1:1 ratio. .. 214
Figure 7-11: Carbon (%) content vs. nitrogen (%) content for a) suspended particulate organic matter (POM) in surface waters and B) surficial sediments (SOM) under oyster leases for three sites in the Clyde River. .. 215
Figure 7-12: δ¹³C plot for all average SRO tissues and calculated whole body and its potential food sources. Error bars show S.E. .. 216
Figure 7-13: δ¹⁴N plot for all average SRO tissues and calculated whole body and its potential food sources. Error bars show S.E. .. 217
Figure 7-14: δ¹³C-δ¹⁴N plot of the SRO tissues, calculated whole-body and its potential food sources for three sampling sites in the Clyde River. .. 218
Figure 7-15: Schematic diagram of the concentration-weighted model approach and the mixing triangle output. The square symbol represents the consumer, the circles the three sources and the pentagon symbol is the predicted diet. .. 219
Figure 7-16: A) Concentration-weighted isotope mixing model output for oysters in Site1 and the predicted diet from three food sources: POM at Site1, benthic diatoms and mangroves. B) Histograms of the food fractions in the predicted diet for each food source included in the model. .. 220
Figure 7-17: Schematic diagram showing flow of carbon and nitrogen from the food source to the presumed diet. .. 221
Figure 7-18: Percentages of C and N of the food source contribution towards the predicted diet and the food availability at three sites in the Clyde River for winter (W) and summer (S). Oyster performance in terms of total oyster weight (results from Chapter 6) for the sampling locations used for the isotopic analysis. .. 222
Figure 8-1: Boundary of the various boxes where oyster densities were assessed in order to estimate carrying capacities in the Clyde River. Each box corresponds to a major cultivating ground as described in Chapter 3. Oyster leases are marked in green. Dotted lines represent boundaries of the boxes in the hydrodynamic model. .. 223
Figure 8-2: Schematic diagram of the number of boxes used in the hydrodynamic model coupled to the NPO model. .. 224
Figure 8-3: Relationship between Total Weight (g, TW) of oyster and Dry Weight (g, DW) of oyster flesh for a large number of Sydney rock oysters of many size-classes sampled in the Clyde River. .. 225
Figure 8-4: Model output of surface contour plots for salinity (ppt), dissolved inorganic nitrogen (mgN/L) and the phytoplankton (mgC/L) using observed oyster stocking densities for each box. Oyster filtration parameterised as a function of temperature and salinity only. .. 226
Figure 8-5: Evolution of the observed levels in the Clyde River for salinity (ppt), dissolved inorganic nitrogen (mgN/L) and the phytoplankton (mgC/L) as per Figure 8-4 but sub-sampled at times and sampling locations consistent with the observed time series shown in Figure 8-5. .. 227
Figure 8-6: Modelled evolution of salinity (ppt), dissolved inorganic nitrogen (mgN/L) and the phytoplankton (mgC/L) as per Figure 8-4 but sub-sampled at times and sampling locations consistent with the observed time series shown in Figure 8-5. .. 228
Figure 8-7: Terms that contribute to the changes in phytoplankton concentration in a single box 6 (~8km upstream) following a rainfall event: growth of phytoplankton (gro); tidal mixing (mix); riverine advection (adv); oyster uptake (upt) and natural phytoplankton mortality (mor). Right plots resulted from increasing the observed oyster stocking density (left panels) by 10 times........... 250

Figure 8-8: Evolution of modelled oyster biomass (Benthos, g m⁻³) over time for four cultivation grounds along the Clyde estuary and associated average estuarine water temperature (°C) (right panel). Oyster Performance index (PI= biomass*survival) associated with each cultivation ground is shown above each panel. Oyster filtration parameterised as a function of temperature and salinity only............. 251

Figure 8-9: Modelled oyster biomass time series where POC was incorporated in model as an additional food source. Each subplot corresponds to different cultivating grounds. Filtration rates used were a function of T, S and TSM (Table 8-2)... 253

Figure 8-10: Modeled oyster biomass time series where POC was incorporated in model as an additional food source. Each subplot corresponds to different cultivating grounds. Filtration rates used were a function of T and S (Table 8-2)... 254

Figure 8-11: Modelled oyster biomass time series where POC was incorporated in model as an additional food source. Each subplot corresponds to different cultivating grounds. Filtration rates were constant using a spatially and temporally averaged TSM value so that F=0.99 l/d/g oyster based on Bayne et al., 2002 ... 254

Figure II-1: Time series plots for sampled physical parameters (Temp (°C), Sal (ppt), Dissolved Oxygen (% saturation), pH) in the Clyde River for the period January-2004 to January-2006.. III

Figure II-2: Time series plots for sampled environmental parameters (NO₃ (µg N l⁻¹), FRP-P (µg P l⁻¹), NH₄⁺ (µg N l⁻¹), Silica (µg Si l⁻¹), TOC (µg C l⁻¹), POC (µg C l⁻¹)) in the Clyde River for the period July-2004 to January-2006, except for TOC & POC which cover period March-2004 to January-2006.. IV

Figure II-3: Time series plots for sampled environmental parameters (Chl-a (µg l⁻¹), Phaeo (µg l⁻¹), TSM (mg l⁻¹), POM (mg l⁻¹), TN (µg N l⁻¹), TDN (µg N l⁻¹), TP (µg P l⁻¹), & TDP (µg P l⁻¹) in the Clyde River for the period July-2004 to January-2006 ... V

Figure II-4: Surface contour plots of chemical water data (TN (mg N l⁻¹), TDN (mg N l⁻¹), TP (mg P l⁻¹), TDP (mg P l⁻¹), POC (mgC l⁻¹), DOC (mgC l⁻¹) for 8 locations (Clyde-1 (oceanic)-Clyde-8 (upstream)) in the Clyde River over the period March-2004 to January-2006.. VII

Figure II-5: Additional time series of water quality variables in the Shoalhaven River.................................. VIII

Figure III-1: Growth history of oysters used for the isotope analysis. Each subplot corresponds to a different sampling date (Winter 1: 1/8/05; Winter 2: 27/9/05; Summer 1: 10/1/06; Summer 2: 23/1/06). Thick lines represent the average weight for Site-1 (continuous); Site-2 (dots) and Site-3 (dot-line)... IX

Figure III-2: Comparisons of mean (±SE, n=12) carbon and nitrogen isotope values for oyster muscle, gill and gonad sampled from three sites on the Clyde R. over two seasons: winter and summer....... X

Figure III-3: δ¹³C-δ¹⁵N plot of the SRO tissues, calculated whole-body and its potential food sources for the three sampling sites................................ XI

List of Tables

Table 1-1: Quantity (tonnes) and value ($ ‘000) of oyster production in Australia by state .. 4
Table 2-1: Salinity and temperature ranges for optimum growth and some of the physiological processes estimated for the Sydney rock oyster. .. 24
Table 2-2 (I): Summary of some published carrying capacity (CC) models for different species of oysters and a case study for scallop and polyculture system. Font in italics are suggested improvements. .. 33
Table 2-3: Summary of the parameters used in the models in Table 2-2 .. 37
Table 3-1: Characteristics of the Clyde R. and the Crookhaven/ Shoalhaven R. and their catchments 41
Table 4-1: Sampling locations for oyster growth and water quality data in the Clyde R and the Crookhaven/ Shoalhaven R. ... 59
Table 4-2: Data and organizations that provided information for this project. .. 63
Table 4-3: Location, elevation and data obtained from the rain gauges used in this study.. 63
Table 4-4: Monitoring equipment used in this study. .. 66
Table 4-5: Initial weights for the oyster size-class experiment at the Clyde and Shoalhaven Rivers 76
Table 4-6: Spat Sydney Rock Oyster measurements from the upwelling system in the Clyde R (values are average of 10 oysters) ... 77
Table 4-7: Sampling dates for the ‘size-class’ and ‘density’ experiments at both estuaries......................... 78
Table 4-8: Density levels as trig-tray section coverage (%) and total volume (L) for the tray and cylinder experiment...

Table 5-1: Two-way ANOVA (Location (Loc, fixed factor) and Season (S, random factor)) and Kruskal-Wallis for the physico-chemical parameters collected in the Clyde and Shoalhaven Rivers, respectively, over the period July-2004 to January-2006. Mean squares (MS), degrees of freedom (df), F-values (F) and probability shown for the two-way ANOVA output...

Table 5-2: Estuary exchange coefficients for the hydrodynamic model...

Table 5-3: Summary statistics for environmental data averaged over all sampling sites in the Clyde and in the Shoalhaven River...

Table 5-4: A) Two-way ANOVA analysis (Location (Loc) and Season (S)) for water parameters collected in the Clyde River over the period Feb-2004 to January-2006. Mean squares (MS), degrees of freedom (df), F-values (F) and probability and; B) Kruskal-Wallis test of water parameters by locations and season. Test Statistic (H), degrees of freedom (df), probability (P)...

Table 5-5: Tukey’s (parametric) and Dunn’s (non-parametric) multiple comparison tests on physico-chemical parameter concentrations between locations in the Clyde R for the period Feb 2004 to January 2006. For each location, means/medians with a common letter (a, b, c, d, e,f) differ significantly from each other (P<0.05)...

Table 5-6: Tukey’s (parametric) and Dunn’s (non-parametric) multiple comparison tests on physico-chemical parameter concentrations between seasons in the Clyde R for the period Feb 2004 to January 2006. For each season, means/medians with a common letter (a, b, c, d) differ significantly from each other (P<0.05)...

Table 5-7 A) Two-way ANOVA analysis (Location (Loc) and Season (S)) for water parameters collected in the Crookhaven / Shoalhaven River over the period Oct-2004 to January-2006. Mean squares (MS), degrees of freedom (df), F-values (F) and probability and; B) Kruskal-Wallis test of water parameters by locations and season. Test Statistic (H), degrees of freedom (df), probability (P)...

Table 5-8: Tukey’s (parametric) and Dunn’s (non-parametric) multiple comparison tests on physico-chemical parameter concentrations between locations in the Shoalhaven/ Crookhaven R for the period August 2004 to January 2006. For each location, means/medians with a common letter (a, b, c, d, e,f) differ significantly from each other (P<0.05)...

Table 5-9: Tukey’s (parametric) and Dunn’s (non-parametric) multiple comparison tests on physico-chemical parameter concentrations between seasons in the Shoalhaven/ Crookhaven R for the period August 2004 to January 2006. For each season, means/medians with a common letter (a, b, c, d) differ significantly from each other (P<0.05)...

Table 5-10: Mean±S.E. for seston quality levels collected at 6 locations in the Clyde R. for the period Apr 04 to Jan 06...

Table 5-11: Mean squares (MS), degrees of freedom (df), F-values (F) and probability for the two-way ANOVA (Location (Loc) and Season (S)) for the values of seston quality collected in 6 locations in the Clyde River over the period Apr 04 to Jan 06...

Table 5-12: Schematic diagram showing the spatial variability of the water quality parameters that had a strong gradient along the Clyde River and the Shoalhaven River...

Table 5-13: Seasonal variability in water quality parameters for Clyde (C) and Shoalhaven (S) Rivers. Highest and lowest significant levels are shown with triangles (at the significance level P<0.001)...

Table 5-14: Correlation matrix for physico-chemical and nutrient variables sampled in the Clyde R. average over all sampling locations. Rows (Top) Pearson coefficient; (Bottom) Probability of significant correlation: light grey P<0.05; dark grey P<0.001. Bold represent Pearson coeff>0.5...

Table 6-1: Non-parametric tests of growth rates for significant differences between locations in the Clyde River for oysters from two cultivation types. Post-comparisons for locations that are significantly different are shown only...

Table 6-2: Mean initial (Nov 2004) and final (Dec 2005) total weights (g) and shell lengths (mm) ± SE of SRO for each size class and estuary, with change of weight and length, and number of survivors over the sampling period given as a percentage...

Table 6-3: Slope coefficients (b) of the linear regression equations of shell width (mm) and thickness (mm) against shell length (mm) for four-size class oysters in the Clyde R. (N=179) and Shoalhaven R. (N=219), and for the stick and single seed oyster from the ‘growth-experiment’...

Table 6-4: Shell length:width:thickness ratio for different size classes in the Clyde and Shoalhaven R, and for data from the ‘growth-experiment’...
Glossary

Adductor muscle – oyster organ whose function is to close both shells tightly

Aerobic – oxygen present

Anaerobic – oxygen absent

Anterior – area of the oyster shell where the hinge is located

ANZECC – Australian and New Zealand Environment and Conservation Council. ANZEEC compiled the ‘Australian Water Quality Guidelines for Fresh and Marine Waters’. Guidelines for sustainable management of the water resources

ASS – acid sulfate soils

Australian Height Datum (AHD) – a reference water level corresponding approximately to mean sea level

Benthos – material and organisms which inhabit the seabed

Biodeposits – oyster depositions which comprised true faeces and pseudofaeces

Bistro grade – oysters that weigh ~40-45g/ each. One bag of bistro has 110 dozen oysters

Bottle grade – oysters that weigh ~35g/ each. One bag of bistro has 130 dozen oysters

Broodstock – a parent shellfish

Catching area – area for the collection of wild juvenile oyster spat which settles onto ‘catching’ substrates such as sticks or plastic slats

Carrying capacity – the maximum oyster biomass sustaining a marketable growth rate, supported by a given area as a function of the water residence time, system primary production time, and oyster clearance rate

Chl-a – Chlorophyll-a, estimate of the phytoplankton biomass (measured in µg L⁻¹)

C.I.—Condition Index measured as the ratio of dry flesh to shell weight

Cilia – small hair-like structures that are part of the gill which create water currents through the mantle cavity and are involved in the removal of particles from the water column

Clearance rate – amount of particles cleared from a volume of water per unit of time (measured in mg L⁻¹)

Culling – the manual division of clumps of oysters into single oysters or the removal of organisms which attach to oyster crops

δ¹³C & δ¹⁵N – ratios of ¹³C/¹²C and ¹⁵N/¹⁴N which are the difference between the sample and conventional standards in isotope analysis e.g. Pee Dee belemnite limestone carbonate for carbon and air for nitrogen.
Depot area – growing area where blocks of catching sticks bound together are used; this structure provides protection enabling the oysters to grow to a size that can withstand predation by fish

Depuration – a cleaning process that requires oysters to be placed in a sterilised recirculation tank for 36 hours. During this period oysters cleanse themselves by filtering bacteria-free water

Detritus – small pieces of dead and decomposing plants and animals

DIN – Dissolved Inorganic Nitrogen, comprises NO₃⁻ and NH₄⁺ (measured in mg N L⁻¹)

DLWC – Department of Land and Water Conservation

DO – dissolved oxygen (measure as percentage saturation or mg L⁻¹)

DOC – Dissolved Organic Carbon (measured in mg C L⁻¹)

DW – dry weight (measure in g or mg)

EC – electrical conductivity (measured in mS cm⁻¹)

Endemic – native to a particular area and found in no other location

Environmental Index – (EI) a functional performance indicator that assesses the environmental potential characteristics of a system

Epifauna – animals living on the surface of the ocean bottom

Eutrophication – water body enriched with nutrients that results in excessive growth of organisms and depletion of oxygen concentration due to uptake in biological processes

Faeces – material that has gone through the digestive system and has been excreted

Filtration rate – amount of water volume and suspended particles taken up by the oysters (measured in L h⁻¹)

Floating cultivation – sub-tidal cultivation of oysters in baskets, pillows or tumblers suspended from tethered, low buoyancy systems that may include lines and/or floats

Flushing time – the amount of time taken on average to turn over an amount of water in a tidal waterbody

GF/F – glass microfibre filters of pore size 0.7μm

Hinge – anterior area of the shell where there is a ligament that functions as a pivot point of both valves

Labial palps – soft flaps at the mouth of the oyster whose function is to select the particles that are going into the digestive system. The rejected material is engulfed in mucus, forming what are called pseudofaeces

Mantle – a flap of flesh that covers the internal organs of an oyster
Microphytobenthos – the microscopic flora community embedded in the first centimetre of sediment that in the interface between pelagic and benthic processes, in particular in aquatic systems

Mudworm – oyster disease caused by the spionid polychaete worm (*Polydora websteri*)

\(NH_4^+ \) – dissolved ammonia (measured in mg N L\(^{-1}\))

\(NO_x \) -- dissolved organic nitrogen, including nitrate and nitrite (measured in mg N L\(^{-1}\))

NSW – New South Wales

ppm – parts per mil

pH- a measure of the acidic or basic (alkaline) conditions in an aqueous solution (a measure of the hydrogen ion concentration H\(^+\))

Phao – Phaeopigments, estimate of the numbers of dead algae cells (measured in \(\mu g \) L\(^{-1}\))

P.I. – Performance Index. Oyster biomass index suitable for comparing oyster production between areas

PIM – particulate inorganic matter (measured in mg L\(^{-1}\))

Plate grade – oysters that weigh ~45-50g/ each. One bag of Plate has 100 dozen oysters

POM – particulate organic matter (measured in mg L\(^{-1}\))

ppt (‰) – parts per thousand, typical unit for measuring salinity

Pseudofaeces – particles filtered from the water column that have been rejected before entering the digestive system

PVC – polyvinyl chloride

Oyster aquaculture lease – an area of submerged Crown Land that is leased for the purpose of oyster culture

QX – ‘Queensland unknown’, a Sydney rock oyster disease caused by the protozoan parasite *Martelia sydneyi*

Raft – sub-tidal cultivation of oysters in trays (generally stacks of 10 trays) suspended from a permanently anchored, rigid, high buoyancy structure

Rejection rate – total pseudofaeces production per unit of time (measured in mg h\(^{-1}\))

Residence time – time taken for an amount of water at an arbitrary location within a waterbody to leave through its mouth to the sea

Salinity (S) – the amount of salt contained in water (measured in ppt)

Seston – suspended material in the water column (organic and inorganic)

Single seed oyster/ cultivation– a single unattached oyster that has been removed at an early stage from catching collectors or produced as single oysters in a shellfish hatchery
SL – Shell Length, measurement from the anterior (shell hinge) to posterior edge at the furthest point of the oyster (measured in mm)

Spat – small juvenile oysters (term used up to c. 1.5 yrs old)

SRO- Sydney Rock Oyster (*Saccostrea glomerata*)

ST – Shell Thickness, measurement at the thickest point between right and left valve (measured in mm)

Stick oyster/ cultivation – 4x4cm wooden stick which provides a substrate for larvae settlement which is transportable when relocating oysters within farming grounds. This cultivation method is suitable for areas subject to wave action. Oysters remain attached to the sticks for approximately 2.5-3 years

Stocking density – number of oysters per given area or volume

SW – Shell Width, measurement at the widest point of the flat or right valve (measured in mm)

TOC – Total Organic Carbon (measured in mg C L⁻¹)

Tray cultivation – growing-out system for single seed oysters. This method is suitable for use in sheltered areas and is often used for the final oyster cultivation stage prior to harvest

TSM – Total Suspended Matter (measured in mg L⁻¹)

TW – Total weight or wet weight (measured in g)

Valves – the two shells holding the oyster flesh; in the SRO the left valve is cupped and the right valve is flat

Winter mortality – oyster disease caused by the proctoctistan parasite *Mikrocytos roughleyi*
Chapter 1: Introduction & Background
 - Hypothesis
 - Objectives

Chapter 2: Sustainable Limitations of Shellfish Culture

Chapter 3: Study Sites

Chapter 4: Methodology

Results

Chapter 5: Water Quality

Chapter 6: Oyster Growth

Chapter 7: Oyster Diet

Integration

Chapter 8: Hydrodynamic/NPO model Environmental Indicators

Chapter 9: Final Conclusions