Analysis and Applications of
Smoothed Particle Magnetohydrodynamics

Zdzisław Meglicki

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University
July 1995

Author address:

CENTRE FOR INFORMATION SCIENCE RESEARCH, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIAN CAPITAL TERRITORY, 0200, AUSTRALIA
E-mail address: Zdzislaw.Meglicki@cisr.anu.edu.au
I hereby state that this thesis is my own original work.
To my parents

Special thanks are due to Prof. Robert L. Dewar, Prof. Dayal Wickramasinghe, Dr Robert A. Gingold, Dr Geoffrey V. Bicknell, Prof. Michael M. McRobbie, Dr Stephen Roberts, Dr David B. Singleton, Mr. Drew R. Whitehouse, Ms. Judy H. Jenkinson, Dr Geoffrey A. Latham, Dr Lindsay Hood, Mr John D. Barlow, Mr David Sitsky, Prof. James Binney, Prof. Willy Benz, Dr Charles A. Wingate, Dr Robert F. Stellingwerf, Dr Joe P. Morris, Prof. Joe J. Monaghan, Dr Helen Pongracic, Prof. Annick Pouquet, Prof. Ariel Königl, Prof. Diego Molteni, Dr Robert Whitehurst, Dr John A. Krommes, Dr Robert Fiedler, Dr Daniel C. Barnes, Ms Adrienne L. Fairhall, Dr Lena Białkowska, Dr Michał Jankowski, Dr Ksawery Stojda, Dr Agnieszka Morawinska, Dr Zbigniew Leyk, and, last but not least, to Ms Barbara Meder – all of whom contributed generously to this work.
ABSTRACT. Smoothed Particle Hydrodynamics (SPH) is analysed as the weighted residual method. In particular the analysis focuses on the collocation aspect of the method. Using Monte Carlo experiments we demonstrate that SPH is highly sensitive to node disorder, especially in its symmetrised energy and momentum conserving form. This aspect of the method is related to low β MHD instabilities observed by other authors. A remedy in the form of the Weighted Differences Method is suggested, which addresses this problem to some extent, but at a cost of losing automatic conservation of energy and momentum.

The Weighted Differences Method is used to simulate propagation of Alfvén and magnetosonic wave fronts in $\beta = 0$ plasma, and the results are compared with data obtained with the NCSA Zeus3D code with the Method of Characteristics (MOC) module.

SPH is then applied to two interesting astrophysical situations: accretion onto a white dwarf in a compact binary system, which results in a formation of an accretion disk, and gravitational collapse of a magnetised vortex. Both models are 3 dimensional.

The accretion disk which forms in the binary star model is characterised by turbulent flow: the Kármán vortex street is observed behind the stream-disk interaction region. The shock that forms at the point of stream-disk interaction is controlled by the means of particle merges, whereas Monaghan–Lattanzio artificial viscosity is used to simulate Smagorinsky closure.

The evolution of the collapsing magnetised vortex ends up in the formation of an expanding ring in the symmetry plane of the system. We observe the presence of spiraling inward motion towards the centre of attraction. That final state compares favourably with the observed qualitative and quantitative characteristics of the circumnuclear disk in the Galactic Centre. That simulation has also been verified with the NCSA Zeus3D run.

In conclusions we contrast the results of our Monte Carlo experiments with the results delivered by our production runs. We also compare SPH and Weighted Differences against the new generation of conservative finite differences methods, such as the Godunov method and the Piecewise Parabolic Method. We conclude that although SPH cannot match the accuracy and performance of those methods, it appears to have some advantage in simulation of rotating flows, which are of special interest to astrophysics.
Contents

Chapter 1. Introduction 1

Chapter 2. The Basic Formalism 11
 1. Weighted Residuals Methods and SPH 11
 2. SPH and Weighted Differences 15
 3. Boundary Conditions 20
 4. Conservation Laws 22
 5. Other formulations of SPH 32

Chapter 3. The Verification of SPH and Weighted Differences 35
 1. Verification of the Equation of Motion 37
 2. Verification of the Faraday Equation 40
 3. Figure of Merit Experiments 43
 4. Gradient Experiments 50
 5. Alfvén Wave and Magnetosonic Wave Tests 61
 6. Conclusions 74

Chapter 4. Coding 77
 1. A Small and Simple Particle Code 78
 2. Vectorisation 87
 3. The Connection Machine Algorithm 93

Chapter 5. 3D Structure of Accretion Disks 103
 1. Observed features of accretion disks in cataclysmic variables 103
 2. The modelling method 105
 3. Results and Discussion 115
 4. Conclusions 128

Chapter 6. Gravitational Collapse of a Magnetised Vortex 129
 1. MHD and the Centre of the Galaxy 129
 2. The Modeling Method 130
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>The Results</td>
<td>137</td>
</tr>
<tr>
<td>4.</td>
<td>The Discussion</td>
<td>149</td>
</tr>
<tr>
<td>5.</td>
<td>The Tilted Dipole Model</td>
<td>153</td>
</tr>
<tr>
<td>6.</td>
<td>Verification of the Model with Zeus3D</td>
<td>159</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusions</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Chapter 7. The Conclusions</td>
<td>165</td>
</tr>
<tr>
<td>Appendix A.</td>
<td>Zeus3D Configurations</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>1. Configuration for Alfvén and Magnetosonic Wave Test</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>2. Configuration for the Collapsing Vortex Test</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>191</td>
</tr>
</tbody>
</table>