
 

 

Utilising airborne scanning laser (LiDAR) to 

improve the assessment of Australian native 

forest structure 

 

Alex C. Lee 

BSc, MSc (Auckland) 

 

 

Submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy 

 at the Australian National University 

 

 

October 2008 

 

 

 



   

ii 

 

 

 

 

 

 
River Red Gum (E. camaldulensis) located on an island in the Murray river, NE Victoria.  

 



   

iii 

TABLE OF CONTENTS 

 

List of Figures............................................................................................................      x 

List of Tables.............................................................................................................    xvi 

List of Equations.......................................................................................................  xviii 

List of Abbreviations................................................................................................    xix 

Certificate of Authorship.........................................................................................    xxi 

Preface.......................................................................................................................   xxii 

Acknowledgements...................................................................................................  xxiii 

Abstract...................................................................................................................... xxiv 

 

Chapter 1. Introduction....................................................................... 1 
1.1 Introduction ............................................................................................... 1 

1.1.1 The requirement for forest information............................................. 1 

1.1.2 Forest assessment in Australia .......................................................... 4 

State of the Forest Reporting ......................................................... 4 

Continental Forest Monitoring ...................................................... 7 

1.1.3 Dealing with scale in remote sensing of forests ................................ 10 

1.1.4 Summary ........................................................................................... 13 

1.2 Thesis Research Question......................................................................... 15 

1.2.1 Primary research question ................................................................. 15 

Rationale and Research Objectives................................................ 15 

Objective 1: Measuring forest cover using LiDAR ........................ 16 

Objective 2: Measuring forest height using LiDAR ....................... 17 

1.2.2 Research delimitations ...................................................................... 18 

1.3 Outline of Thesis........................................................................................ 20 

Chapter 2. Research issues.................................................................. 21 
2.1 Introduction ............................................................................................... 21 



   

iv 

2.2 Continental Forest Measurement in Australia ....................................... 22 

2.2.1 Description of Australian forests....................................................... 22 

2.2.2 Defining and measuring Australia’s forests ...................................... 24 

National Vegetation Information System ....................................... 25 

Current National Forest Inventory reporting ................................ 26 

Limitations with NFI forest height and cover reporting ................ 30 

2.2.3 Utilising data within integrated sampling schemes ........................... 33 

Sampling strategies overview......................................................... 33 

Random, systematic, and stratified random sampling ................... 36 

Model based sampling.................................................................... 37 

Using field data for remote sensing calibration............................. 38 

2.3 Remote Sensing of Forests ........................................................................ 40 

2.3.1 Overview ........................................................................................... 40 

2.3.2 LiDAR remote sensing of forests ...................................................... 46 

Overview ........................................................................................ 46 

Large footprint LiDAR ................................................................... 50 

LiDAR for Australian forests.......................................................... 51 

LiDAR calibration studies.............................................................. 52 

2.3.3 Tree crown delineation using high resolution remote sensing .......... 54 

Local minima location.................................................................... 55 

Minima contouring......................................................................... 56 

Template matching and object-oriented analyses .......................... 57 

Delineation limitations................................................................... 58 

2.4 Scale in Remote Sensing ........................................................................... 60 

2.4.1 Overview ........................................................................................... 60 

Modifiable Areal Unit Problem...................................................... 62 

Hierarchy theory and Landscape Ecology..................................... 63 



   

v 

2.5 Summary.................................................................................................... 65 

Chapter 3. Data Analysis Methodology ............................................. 67 
3.1 Introduction ............................................................................................... 67 

3.2 Research Design Overview ....................................................................... 69 

3.2.1 Multi-scale strategy overview ........................................................... 69 

Developing a hierarchical multi-scale modelling framework........ 69 

Applying the multi-scale hierarchical framework.......................... 71 

3.3 Data Collection .......................................................................................... 75 

3.3.1 Introduction ....................................................................................... 75 

3.3.2 Queensland study site........................................................................ 75 

Overview of Queensland multi-stage sampling.............................. 78 

Stage III: LiDAR data capture .................................................. 79 

Stage IV:  Field sampling.......................................................... 81 

Stage V:  Georeferencing of photography to LiDAR ............... 83 

3.3.3 NE Victorian study site ..................................................................... 85 

Plot location site descriptions ........................................................ 88 

3.3.4 Data descriptions for both sites ......................................................... 91 

Ancillary data................................................................................. 91 

Summary of Queensland and NE Victorian field data ................... 91 

API classification comparisons with NFI....................................... 91 

3.4 Phase 1 – LiDAR Plot / Stand Scale Forest Structure Assessment ....... 94 

3.4.1 Introduction ....................................................................................... 94 

3.4.2 LiDAR pre-processing ...................................................................... 94 

Stage VI:  Bare ground surfaces .................................................... 94 

Site Characteristics and terrain complications.............................. 96 

3.4.3 Estimating Tree Height for Plot / Stand ............................................ 98 

Stage VIII: Maximum and predominant height from LiDAR ......... 98 



   

vi 

Plot scale LiDAR apparent vertical profiles .................................. 99 

Creating apparent vertical profiles using field data ...................... 102 

Growth stage assessment using apparent vertical profiles ............ 103 

3.4.4 Estimating plot scale canopy cover ................................................... 104 

Stage VIII: Foliage and Crown cover ............................................ 104 

3.5 Phase II –Tree and Component Scale Structure Modelling.................. 106 

3.5.1 Tree scale modelling strategy............................................................ 106 

HSCOI Stage IX: Calculation of stem diameter............................. 107 

3.5.2 Individual crown segmentation and delineation................................ 109 

Conceptual overview...................................................................... 109 

Stage I - Empirical functions for general crown templates............ 110 

Stage II - Creating individual crown segments .............................. 114 

Stage III - Classification of crown segments.................................. 116 

Stage IV - Creating crown objects ................................................. 121 

3.5.3 Tree component scale LiDAR modelling.......................................... 127 

Branch radius calculation.............................................................. 130 

3.6 Phase 3 – Multi-Scale Calibration and Validation Case Studies .......... 131 

3.6.1 Introduction ....................................................................................... 131 

3.6.2 Multi-scale assessment of height and cover ...................................... 131 

Multi-scale predominant height assessment................................... 131 

Multi-scale canopy cover assessment ............................................ 136 

LiDAR and API crown cover comparison...................................... 137 

Crown Separation method test ....................................................... 138 

3.6.3 Landsat cover investigation and validation ....................................... 139 

3.6.4 ICESat calibration with airborne LiDAR.......................................... 142 

Vegetation comparisons ................................................................. 143 

ICESat footprint derivation and attribute extraction ..................... 143 



   

vii 

3.7 Summary.................................................................................................... 150 

Chapter 4. Results ................................................................................ 152 
4.1 Introduction ............................................................................................... 152 

4.2 Field Plot Representativeness................................................................... 153 

4.3 Multi-Scale Height Results ....................................................................... 155 

4.3.1 Plot scale height results ..................................................................... 155 

Maximum canopy height ................................................................ 155 

Predominant canopy height ........................................................... 157 

4.3.2 LiDAR height results with different assessment areas...................... 159 

Multi-scale variation of LiDAR height in NE Victoria................... 159 

Multi-scale variation of LiDAR height at Injune............................ 164 

4.3.3 Apparent vertical profiles.................................................................. 166 

Simulating apparent vertical profiles............................................. 166 

Growth stage and disturbance assessment using profiles.............. 168 

4.4 Multi-scale Canopy Cover results............................................................ 176 

4.4.1 Plot scale cover results ...................................................................... 176 

Comparisons between cover using field data................................. 176 

Crown cover comparison between LiDAR and photography......... 180 

LiDAR foliage-branch cover comparisons with field data............. 182 

SLATS foliage projective cover comparison with LiDAR cover .... 184 

Correlations between cover metrics and data sources .................. 186 

Crown separation method test results ............................................ 189 

4.4.2 Forest cover assessment at a range of scales ..................................... 192 

4.5 Tree Scale Stem and Crown Delineation Results ................................... 198 

4.5.1 Tree stem density and location.......................................................... 198 

Stem mapping at Injune.................................................................. 198 

Tree scale stem diameter derived from height ............................... 200 



   

viii 

4.5.2 Tree crown delineation results .......................................................... 201 

4.6 Multi-Scale Calibration Results ............................................................... 209 

4.6.1 Landsat pixel scale LiDAR cover calibration ................................... 209 

4.6.2 Crown and foliage cover translation function ................................... 211 

4.6.3 ICESAT case study calibration using LiDAR height and cover ....... 215 

4.6.4 Stand reconstruction results using tree components.......................... 218 

4.7 Summary.................................................................................................... 225 

Chapter 5. Discussion .......................................................................... 227 
5.1 Introduction ............................................................................................... 227 

5.2 Improving the Assessment of Forest Structure using LiDAR............... 228 

5.2.1 Improving forest structure measurement using LiDAR .................... 228 

5.2.2 Improving forest height assessment using LiDAR............................ 233 

Maximum canopy height ................................................................ 233 

Predominant canopy height ........................................................... 234 

Apparent Vertical Profiles ............................................................. 236 

Maximum stand height at a range of assessment scales ................ 239 

Predominant Height at a range of assessment scales .................... 240 

National Forest Inventory Reporting ............................................. 241 

5.2.3 Improving forest cover assessment using LiDAR............................. 241 

Field data comparisons.................................................................. 242 

LiDAR cover comparisons with field and CASI ............................. 243 

LiDAR to API comparisons ............................................................ 245 

LiDAR to Landsat TM comparisons............................................... 247 

Landscape sampling....................................................................... 248 

Multi-scale sampling and reporting of cover ................................. 249 

5.2.4 Assessment of the Height Scaled Crown Openness Index (HSCOI) 251 

HSCOI derived stem density .......................................................... 251 



   

ix 

HSCOI derived stem height and diameter...................................... 253 

HSCOI crown delineation .............................................................. 253 

5.2.5 Calibration case study examples using LiDAR................................. 256 

Landsat TM calibration using LiDAR structural output ................ 256 

Foliage-branch cover-to-crown cover translation function........... 257 

ICESat calibration for continental monitoring .............................. 258 

Stand reconstruction modelling for SAR simulation ...................... 259 

5.3 Practical Implications, Limitations and Recommendations.................. 262 

5.3.1 Practical implications ........................................................................ 262 

5.3.2 Limitations and recommendations for future research ...................... 264 

Chapter 6. Conclusion ......................................................................... 267 
6.1 Thesis Conclusion...................................................................................... 267 

References ............................................................................................. 269 

Appendix A ............................................................................................ 289 
Ancillary Results....................................................................................................... 289 

Appendix B ............................................................................................ 320 
Plot data illustrations for NE Victoria.................................................................... 320 

Appendix C ............................................................................................ 326 
List of Published Papers........................................................................................... 326 

Statement of Author Contribution to Published Papers ....................................... 327 

Appendix D ............................................................................................ 332 
Hemispherical photo calibration methodology overview...................................... 332 



   

x 

LIST OF FIGURES 

  

Figure 1: CFMF multi-tier design illustrating the potential role of airborne LiDAR as a 
Tier 2 dataset (after Wood, et al., 2006).............................................10 

Figure 2: Distribution of NFI forest types in Australia.  Source – State of the Forests 
Report, 2003 (NFI, 2003). ..................................................................28 

Figure 3: Illustration of different cover measurement sensors and range of scale and 
spatial resolution, both field and remotely sensed (McDonald, et al 1998; 
McCloy, 2006)....................................................................................29 

Figure 4: Graphical representation of the elements of a small footprint airborne scanning 
laser (LiDAR) system.  GPS refers to Global Positioning System, INS is 
Inertial Navigation System.  Note that the graphic and elements are 
illustrative only and not to scale.........................................................49 

Figure 5: Methods chapter layout showing major components of LiDAR assessment of 
forest structure. ...................................................................................68 

Figure 6: Thesis conceptual overview outlining linkages between multi-scale hierarchal 
modelling and applications for modelling forests with LiDAR. ........72 

Figure 7: Flowchart of multi-scale calibration modelling and application strategy ..74 
Figure 8:  Location of the 37 x 60 km Injune study area, within south-central 

Queensland. ........................................................................................76 
Figure 9: Sketch of the Maranoa River by the explorer Thomas Mitchell in 1846 (upper) 

(Mitchell, 1846); and a photo of the Maranoa from a nearby location in 
2004 (lower). ......................................................................................77 

Figure 10: Landsat ETM image (2003) of study area and systematic photo and LiDAR 
plot layout, with field plot locations circled. State Forests are the light 
green hashed areas.  Study area boundary was 37 km x 60 km, and 
sampling units are 4 km apart.............................................................80 

Figure 11: True colour 1:4000 stereo aerial photograph of PSU 138 overlain with the 
500 x 150 m primary sampling unit and 30 secondary sampling units (50 
x 50 m).  Polygon vectors mapped through API delineate different forest 
communities (based on dominant species composition and cover)....84 

Figure 12: Location of the secondary study site within the Broken and Ovens 
catchments in NE Victoria..................................................................85 

Figure 13: Layout of LiDAR data collection with ancillary NVIS vegetation data 
aggregated to broad species classes (NLWRA, 2001) within the NE 
Victorian study area............................................................................87 

Figure 14: Field plot site information summary (LiDAR derived) with max tree height 
(LiDAR), dominant species groups (field), and broad landform zone 
(derived) (Wood et al., 2006). ............................................................88 

Figure 15: Original DEM TIN created with all ground returns, for PSU 142 ...........95 
Figure 16: Final spatially refined DEM TIN for PSU 142 ........................................95 
Figure 17: DEM difference surface - original DEM subtracted from final DEM for PSU 

142. .....................................................................................................95 
Figure 18: LiDAR representations – raw points profile across Qld plot width (p81-11), 

vertical profile of summed returns per 1m height interval, and cumulative 
height percentage curve summary. .....................................................101 

Figure 19: Steps to generate foliage branch cover, and CHM crown cover from LiDAR
............................................................................................................105 



   

xi 

Figure 20: (a) Height-to-D130 translation function using 80% of field measured stems 
and (b) validation using remaining 20% of field stems......................108 

Figure 21: Hollows function derived from field data measurements (outside field plots), 
and applied to LiDAR derived stems. ................................................108 

Figure 22: Flowchart of crown delineation methodology..........................................111 
Figure 23: Calibration using 80% of field data trees (Upper) and validation using 20% 

of field data trees (Lower) for estimating crown area from height, for (a) 
Eucalypt and Angophora trees, and (b) Callitris and Acacia trees (live 
trees 5cm+ D130). ................................................................................113 

Figure 24: Crown segmentation using surface generated from a 1m circular (a) and 
5x5m rectangular (b) moving window. ..............................................115 

Figure 25: Smoothing of segmentations (a) and segment clipping with HSCOI derived 
crown boundary delineation (b)..........................................................115 

Figure 26: Illustration of different apparent vertical profiles for the two main structural 
types....................................................................................................118 

Figure 27: Examples of the two broad genus groups based mature tree structural crown 
forms...................................................................................................119 

Figure 28: Crown structural classification into two broad genus categories at (a) 
segment_1m and (b) segment_5m scales.  Green is Callitris-Acacia and 
light brown is Eucalypt-Angophora. ..................................................119 

Figure 29: Derivation of circular crown shape assumption, using all field live stems 
5cm+ D130 (n = 2708) and comparing crown north-south length versus 
east-west length. .................................................................................122 

Figure 30: Final crown structural classification (a) and delineation after spatial 
assessment (b).....................................................................................123 

Figure 31: Voxel groups associated with branch clusters within an individual E. 
populnea tree from PSU 142, with a planimetric view (upper) and 3D 
view (lower)........................................................................................129 

Figure 32: Predominant stand height assessment using LiDAR 10m cells at different 
spatial extents at CFMF plot 212 (Ovens river). ................................132 

Figure 33: Illustration of CFMF plot p212 with plot, transect and stand scales of 
assessment.  The LiDAR point data slice was approx. 100m deep....133 

Figure 34: Multi-scale assessment of predominant height for NE Victorian sites, with 
example for plot 212 shown. ..............................................................135 

Figure 35: Example of predominant height assessment at a range of scales for Injune 
(PSU 142 shown, with 10m cells within 30 larger 0.25ha SSU’s).....135 

Figure 36: Illustration of the multiple scales of FBC circular assessment for NE 
Victorian plots.  LiDAR (2m+) for plot 212 has red/orange colour as 
highest returns (~ 40 m), with lowest  non-ground dark blue.  
Background image was Landsat ETM. ..............................................137 

Figure 37: Vector pixel layer example for PSU 142, derived from Landsat SLATS FPC 
grid (background). Values within cells indicate FPC.........................141 

Figure 38: LiDAR return density (all returns) for PSU 142.  Values within cells indicate 
LiDAR FBC........................................................................................141 

Figure 39: HSCOI derived stems for PSU 142.  Values within cells indicate stem 
density per FPC pixel (stems per hectare). .........................................141 

Figure 40: HSCOI derived crown delineations for PSU 142.  Values within cells 
indicate LiDAR crown cover percent per pixel area. .........................141 

Figure 41:ICESat transects (light blue) with the airborne LiDAR transects (yellow) and 
numbered overlap locations across CFMF pilot region in NE Victoria.
............................................................................................................142 



   

xii 

Figure 42: Examples of the ICESat footprint size and shape attributes derived using 
airborne LiDAR. a) single footprint with returns that are within the 
footprint (black) and over 2m in height (light blue); and  b) two footprints 
from different dates showing different shapes due to different laser 
sensors used. .......................................................................................146 

Figure 43: Layout of the Results chapter showing the major components of the strategy 
for using LiDAR to improve forest structure measurement. ..............153 

Figure 44:  Comparison of the LiDAR structural (height and cover) range of field plots 
and all SSU’s ......................................................................................154 

Figure 45:  Comparison of maximum height between field and LiDAR at Injune for; (a) 
field plots; and (b) individual tree height for 100 manually selected, 
isolated overstorey trees .....................................................................156 

Figure 46: Comparisons field and LiDAR for NE Victorian plots for; a) max plot height 
for field plot and transect areas; and b) frequency distribution of 
maximum LiDAR height. ...................................................................156 

Figure 47: Frequency distribution of LiDAR maximum height at Injune for: (a) field 
plots; and (b) all 4500 SSUs...............................................................157 

Figure 48: Injune field plot predominant height (10m cells) for: (a) from field data and 
LiDAR at different sampling rates, and (b) frequency distribution of 
LiDAR heights....................................................................................158 

Figure 49: NE Victoria field plot predominant height (10m cells) for: (a) from field data 
and LiDAR at different sampling rates, and (b) frequency distribution of 
LiDAR heights....................................................................................158 

Figure 50: Frequency distributions for predominant height at Injune for 4500 SSUs 
derived from transfer function using 90th percentile LiDAR height. .159 

Figure 51: Representativeness test for field plot (~0.09 ha) and transect area (~1 ha) 
versus swath overlap area (~25ha) for LiDAR (a) predominant height, 
and (b) maximum height, in NE Victoria. ..........................................160 

Figure 52: LiDAR predominant height assessment at a range of spatial scales for NE 
Victorian sites where field plots are located.......................................162 

Figure 53: Comparison of sampling strategies for estimating stand (~20ha) predominant 
height for field plots in NE Victoria using (a) single locations (field or 
LiDAR); and (b) multiple samples within stand. ...............................163 

Figure 54: LiDAR predominant height assessment at a range of spatial scales for 12 
PSUs at Injune. Dominant species codes are given in Chapter 3. ......165 

Figure 55: Comparisons between apparent vertical profile from LiDAR and field cubic 
modelling for matches that are: (a) good (p142-02), and (b) not as good 
(p81-11). .............................................................................................167 

Figure 56: Correlation of percentage of cubes at each 1m height interval, with LiDAR 
and field apparent vertical profiles for matches that are; (a) good (p142-
02), and (b) not as good (p81-11).......................................................167 

Figure 57: Field data summary for SSU 124-19, illustrating tree growth stage and genus 
distribution by stem diameter (total Basal Area = 4.30m2) and stocking (n 
= 603). ................................................................................................169 

Figure 58: Apparent vertical profiles from LiDAR (black) and field (grey) cubic 
modelling for SSU 124-19..................................................................169 

Figure 59: Growth stage example using indicative LiDAR vertical profiles from NE 
Victoria. For the LiDAR profiles the x-axis is percentage of canopy 
returns, y-axis is height above ground (m). ........................................171 

Figure 60: LiDAR apparent vertical profile showing the potential difference in fire 
intensity between two high country plots on steep slopes.  (a) plot 562, 
less intensity fire impact, with understorey and lower canopy still 



   

xiii 

present.  (b) plot 558, intense fire impact, no understorey or lower canopy 
left and scorched crowns. ...................................................................172 

Figure 61: Comparison of LiDAR apparent vertical profiles and plot photos for plots in 
NE Victorian E. radiata forests, illustrating a potential understorey fire 
recovery sequence, based on the last recorded fire within; (a) 1 year 
(p313), (b) 12 years ago (p550), and (c) 64 years ago (p463)............173 

Figure 62: Assessment of stand structure using apparent vertical profiles at a range of 
scales, for the Injune study area .........................................................175 

Figure 63: Injune field data comparisons for transect FPC versus transect FBC (left), 
and transect FBC (2000) versus field hemi-photo FBC (2004) (right).
............................................................................................................177 

Figure 64: Comparison of FBC field plot measurements:  a) transects in 2000 and 2004; 
and b) transects and hemispherical photo in 2004..............................178 

Figure 65: Estimated hemispherical photo view extent, based on calibration results for 
p142-13.  HSCOI crown delineations are shown for reference.  The field 
plot boundaries and transects are approximately 50m long ...............178 

Figure 66: Comparison of field tree-map CC measurements: a) with transect FBC; and 
b) with hemispherical-photo FBC. .....................................................179 

Figure 67: NE Victorian plot tree-map CC correspondence with hemispherical photo 
FBC.....................................................................................................179 

Figure 68: Injune API CC (mid-point of class) correspondence with the LiDAR CC 
sample within the API polygon. .........................................................181 

Figure 69: Comparison of individual API polygon CC (mid-point of class) and LiDAR 
CC (mean, min and max) based on 25m cells within the PSU.  Individual 
polygon IDs have been removed for clarity. ......................................181 

Figure 70: NE Victorian API CC (mid-point of class) correspondence with the LiDAR 
CC field plot and transect area sample within the API polygon. .......182 

Figure 71: Comparisons of LiDAR FBC at 0.5 and 2 m height thresholds, with a)  field 
transect FBC; and b) FBC derived from hemispherical-photographs.
............................................................................................................183 

Figure 72: LiDAR FBC distribution from a) Injune field plots; and b) 4500 SSUs across 
study area............................................................................................183 

Figure 73: SLATS Landsat derived FPC distribution for the Injune study area 
(220,000ha).  NFI forest classes are shown........................................184 

Figure 74: SLATS Landsat derived FPC distribution for the NE Victoria study area.  
NFI forest classes are shown. .............................................................185 

Figure 75: Crown separation transect method for p142-13.  Field mapped stems are 
solid orange circles (proportional to D130) and open circles (proportional 
to mean crown radius).  LiDAR point sampling density (grey) and 
HSCOI crown delineations (green) are shown. Field plot boundaries and 
transects are 50m long. .......................................................................190 

Figure 76: Crown separation transect method for p81-16.  Map elements are described 
in the Figure 75 caption.  Field plot boundaries and transects are 50m 
long. ....................................................................................................190 

Figure 77: Apparent vertical profiles for p142-13 (a) and p81-16 (b), highlight different 
vertical foliage characteristics, which may contribute to the different 
cover results observed. .......................................................................191 

Figure 78: Comparison of FBC from LiDAR and hemispherical photos, in a) field plot 
area; and b) transect area. ...................................................................194 

Figure 79: Comparison of FBC from LiDAR in transect area and field plot 
hemispherical-photo. ..........................................................................194 



   

xiv 

Figure 80: Comparison of FBC for different data and pixel sizes, within the LiDAR 
swath for NE Victorian plot 220. .......................................................194 

Figure 81: LiDAR FBC at plot locations with increasing assessment area, for Floodplain 
ecozone. ..............................................................................................195 

Figure 82: LiDAR FBC at plot locations with increasing assessment area, for Foothills 
ecozone. ..............................................................................................195 

Figure 83: LiDAR FBC at plot locations with increasing assessment area, for Subalpine 
ecozone ...............................................................................................195 

Figure 84: LiDAR FBC at plot locations with increasing assessment area, for the NE 
Victorian Montane ecozone................................................................196 

Figure 85: LiDAR FBC at plot locations with increasing assessment area for Injune.
............................................................................................................197 

Figure 86: Crown/clusters and stem locations identified using the HSCOI surface 
generated for PSU 142. Darker areas in the HSCOIstand surface indicate 
crowns that are taller and contain a greater density of canopy elements. 
Internal squares are SSU field plot locations numbered (from left to right) 
as 02, 13, 18 and 20. ...........................................................................199 

Figure 87: Correspondence between field-measured D130, and height derived D130 from 
HSCOI derived stems. ........................................................................200 

Figure 88: Correspondence between plot-level basal area, for stems measured in the 
field and estimated from LiDAR HSCOI modelling..........................201 

Figure 89: Correlation between field estimated crown area and area derived from 
LiDAR HSCOI crown delineations, aggregated into broad class types.
............................................................................................................205 

Figure 90: Comparison of crown diameter for; a) field and HSCOI trees from plots 142-
13 and 81-16, and b) NE Victorian plot CC comparison between field 
tree-map buffer and HSCOI crowns...................................................207 

Figure 91: NE Victorian LiDAR crown delineation examples and associated field plot 
centre photos.  (a) Plot 382 with a good match between plot level crown 
cover and stem density; and (b) Plot 562 with a poor match for plot level 
crown cover and stem density. ...........................................................208 

Figure 92: Comparisons of SLATS FPC and LiDAR FBC at 0.5m (left) and 2m (right) 
thresholds............................................................................................210 

Figure 93: Comparison of SLATS FPC and LiDAR CC...........................................210 
Figure 94: Comparisons of LiDAR stem density and FBC at 0.5m (left) and 2m (right) 

thresholds............................................................................................210 
Figure 95: Comparisons of LiDAR stem density and Landsat FPC (left), and LiDAR 

CC (right)............................................................................................210 
Figure 96: Comparison between LiDAR CC and SLATS FPC within 12 PSU’s using all 

25 m cells where CC ≥  FPC (n = 855). .............................................212 
Figure 97: Derivation of translation function between SLATS FPC and LiDAR CC 

within 12 PSU’s, using 80% of 25 m cells where CC ≥  FPC (n = 683).
............................................................................................................212 

Figure 98: Validation of translation function between SLATS FPC and LiDAR CC 
within 12 PSU’s, using 20 %f 25 m cells (n = 172) where CC ≥ FPC.
............................................................................................................212 

Figure 99: Comparison between LiDAR CC and FBC within 1161 x 25 m pixel sized 
areas from 12 PSU’s. ..........................................................................214 

Figure 100: Comparison between LiDAR CC and FBC for Injune SSU’s (50 m), NE 
Victorian  field plots (30 m), and selected ICESat footprints from NE 
Victoria (50 - 100m).  Red arrows indicate current NFI CC-FPC 
translation thresholds..........................................................................214 



   

xv 

Figure 101:  Airborne LiDAR from three ICESat footprints from ALS tile 26 displayed 
on a 1 m LiDAR derived DEM. .........................................................216 

Figure 102: Perspective view of LiDAR within ICESat footprint areas. See Figure 101 
for legend............................................................................................216 

Figure 103: Sample of mapped tree stems, crowns, and primary (thicker lines) and 
secondary (thinner lines) branch distributions in PSU 142 derived from 
the LiDAR data. Inset extent is marked as a dashed box. ..................219 

Figure 104: Perspective view of a portion of PSU 142 showing mapped tree stems, 
crowns, and voxels derived from the LiDAR analyses.  The view extent 
of Figure 103 is in the foreground......................................................219 

Figure 105: (a) E. populnea-dominated forest at PSU_142. (b) Graphical output of part 
of the reconstructed canopy from the DSTO radar simulation (Lucas et 
al., 2006c)...........................................................................................220 

Figure 106: Injune correspondence between field data and LiDAR allometric and 
component estimated biomass – all assessed stems (n = 200) ...........221 

Figure 107: Injune correspondence between field data and LiDAR allometric and 
component estimated biomass – LiDAR modelling outlier stems removed 
(n = 185) .............................................................................................222 

Figure 108: Injune correspondence between field data and LiDAR allometric and 
component estimated biomass – LiDAR modelling and highly different 
field outlier stems removed (n = 170) ................................................222 

Figure 109: Injune correspondence between LiDAR allometric and LiDAR component 
estimated biomass – all assessed stems (n = 200) ..............................223 

Figure 110: Summary of predominant and max height for each CFMF field plot, by 
ecozone. ..............................................................................................294 

Figure 111: Comparison of stand sampling strategies for estimating stand (~20ha) 
predominant height by ecozone..........................................................295 

Figure 112: SLATS Landsat FPC (2000) spatial distribution at the Injune study site.
............................................................................................................305 

Figure 113: NE Victorian SLATS FPC (uncalibrated) from two Landsat scenes.  
Systematic field plots are yellow, additional calibration plots are pink.
............................................................................................................306 

Figure 114: Injune cover matrix graphs.  All scales are percent cover......................311 
Figure 115: NE Victoria cover matrix graphs.  All scales are percent cover.............312 
Figure 116: LiDAR derived tree stem basal area (per pixel) versus SLATS FPC, for 

1114 Landsat pixels in 12 PSUs at Injune..........................................319 
Figure 117: Registration of calibration images using Nikon fisheye lens, showing 

effective view area, zenith rings, and gaps in extent with the merged 
photos. ................................................................................................333 

Figure 118: Calibration images taken at ANU showing area imaged, and the same 
effective view extent with (a) Nikon lens, and (b) Minolta lens. .......334 

Figure 119: Effect of background colour and pixel brightness threshold in hemispherical 
photo analysis on cover estimates, using Nikon and Minolta lenses. 335 

Figure 120: Simulated viewsheds at different zenith angles for Nikon fisheye photos 
when taken along Qld transects within a field plot ............................336 

Figure 121: Assessing potential hemispherical photo view areas for NE Victorian plots 
against of LiDAR returns (FBC) clipped at a range of circular areas.
............................................................................................................338 

Figure 122: Assessing view area of NE Victorian plot hemispherical photos against 
LiDAR (FBC) % circular area assessment for plot and transect areas 
respectively.........................................................................................339 



   

xvi 

LIST OF TABLES 

 

Table 1: Area of NFI forest types ('000 ha) across the States and Territories in Australia. 
Source: National Forest Inventory State of the Forests Report, 2003.
............................................................................................................27 

Table 2: NFI translation between foliage projective cover (FPC) and crown cover (CC) 
(National Forest Inventory, 1998). .....................................................31 

Table 3:  Advantages and disadvantages assumptions of different hierarchal processing 
levels for forest assessment using LiDAR..........................................70 

Table 4: Main stages in the acquisition, processing and analysis of field and remotely 
sensed data (Tickle, et al., 2006)........................................................79 

Table 5: Estimated year of last fire and logging for NE Victorian plots (DSE, 2003)
............................................................................................................90 

Table 6: NFI, Victorian SFRI , and Queensland API crown cover class standards...92 
Table 7: Height class and ranges for NFI, Victorian SFRI, and Queensland API 

standards .............................................................................................93 
Table 8: Illustration of a selection of terrain complications on canopy height estimates

............................................................................................................97 
Table 9: Translation between LiDAR and field estimation methods for predominant 

height ..................................................................................................99 
Table 10: Growth Stage type using SFRI and EMC classifications ..........................103 
Table 11: Overview of processing stages for the HSCOI ..........................................107 
Table 12: Genus probability selection criteria ...........................................................120 
Table 13: Spatial criteria for merging a segment with neighbouring segments.........123 
Table 14: Spatial criteria for splitting a segment .......................................................126 
Table 15: Functions used to calculate branch start and end radius ............................130 
Table 16: Multi-scale predominant height assessment buffer selection areas for NE 

Victorian plot locations. .....................................................................134 
Table 17: Formulae utilised for footprint dimension and area calculations: .............143 
Table 18: ICESat attributes extracted for comparison with airborne LiDAR............144 
Table 19:  Variables extracted or calculated for footprint size estimation. ...............144 
Table 20: Assignment of LiDAR returns within ICESat footprint ............................145 
Table 21: ICESat case study footprints; description, full waveform, and LiDAR 

apparent vertical profiles ....................................................................147 
Table 22: Description of LiDAR attributes utilised for ICESat calibration and validation

............................................................................................................148 
Table 23: Representativeness of Injune forest structure sampling, comparing LiDAR 

from 4500 SSUs across the landscape with LiDAR from field plots (in 
parentheses), by NFI class. .................................................................154 

Table 24: Representativeness of NE Victorian forest structure sampling, comparing 
continental NFI data with field plot LiDAR (in parentheses). ...........154 

Table 25: Maximum height comparison between field and LiDAR for Injune and NE 
Victoria plots ......................................................................................155 

Table 26: Comparisons of predominant height: field and LiDAR for Injune and NE 
Victoria plots ......................................................................................159 

Table 27: LiDAR height comparisons at a range of assessment area scales for NE 
Victoria ...............................................................................................160 

Table 28: Summary statistics for predominant height at a range of assessment scales, 
per NE Victorian ecozone ..................................................................163 



   

xvii 

Table 29: Summary of matrix results for the field plot area. .....................................166 
Table 30: Plot descriptions for three plots illustrating growth progression with time 

since fire. ............................................................................................172 
Table 31: Comparison of relative accuracy of CC estimates between API and LiDAR 

CC, across different LiDAR sampling ranges of the API polygon. ...180 
Table 32: Comparison of NFI forest cover class distribution across the Injune landscape  

using SLATS FPC for study area, and LiDAR PSU sample (1,125ha) for 
FBC and CC. ......................................................................................184 

Table 33: NE Victotian SLATS FPC for study area compared to LiDAR and hemi-
photo data in field plot and transect areas, using percentage of 20km 
systematic samples in each NFI forest class.......................................185 

Table 34: Matrix of correlations for cover metrics across a range of datasets and 
measurement scales, for the Injune field plots * ................................187 

Table 35: Matrix of correlations for cover metrics across a range of datasets and 
measurement scales, for the NE Victorian field plots ........................188 

Table 36: Matrix of P-values for cover metric correlations across a range of datasets and 
measurement scales, for the NE Victorian field plots ........................188 

Table 37: Crown separation test comparison for p142-13 and p81-16......................189 
Table 38: FBC comparison between field plot and transect area combinations for NE 

Victoria. ..............................................................................................192 
Table 39: Summary of LiDAR FBC at different scales, averaged per NE Victorian 

ecozone. ..............................................................................................193 
Table 40: Tree stem density per plot correspondence for Injune and NE Victoria from 

HSCOI modelling...............................................................................199 
Table 41: Description of LiDAR crown delineation validation classification types. 202 
Table 42: Summary of crown delineation validation comparison of 90 trees aggregated 

by type. ...............................................................................................202 
Table 43: Examples of LiDAR crown delineation classification types found in the 

validation. ...........................................................................................203 
Table 44: Genus probably modelling accuracy assessment by delineation type, using 90 

randomly selected trees ......................................................................206 
Table 45: SLATS FPC comparisons with LiDAR derived cover and stem density 

metrics for Injune ...............................................................................211 
Table 46: LiDAR CC comparisons with SLATS FPC and LiDAR FBC, for Injune and 

NE Victoria.........................................................................................211 
Table 47:  LiDAR and ICESat attributes from the riparian strip footprint f (ICE-id = 484 

)...........................................................................................................217 
Table 48: LiDAR and ICESat attributes from the mid-slope footprint (ICE-id = 480)

............................................................................................................217 
Table 49: LiDAR and ICESat attributes from the ridge top footprint (ICE-id = 475)

............................................................................................................217 
Table 50: Comparison of structural attributes between field data (4 plots) and LiDAR 

stand modelling for PSU 142 .............................................................218 
Table 51: Summary of biomass estimates for PSU 142 plots from field, LiDAR stem 

allometric, and LiDAR component sources. ......................................223 
Table 52: Summary of biomass functions using field data and LiDAR stem and 

components.........................................................................................224 
Table 53: Major knowledge limitations for LiDAR utilisation in multi-scale sampling 

schemes...............................................................................................227 
Table 54: Description of different types of LiDAR and field error with stand 

reconstruction using component modelling, for SAR simulation. .....261 
Table 55: Species name and API codes for Injune trees............................................289 



   

xviii 

Table 56: Injune field plot height results from field and LiDAR data for max and 
predominant height, and at different measurement scales..................290 

Table 57: NE Victorian field plot height results across a range of datasets and 
measurement scales.  All values are in metres. ..................................292 

Table 58: Results from correlation and Kolmogorov-Smirnov test comparisons between 
LiDAR and field cubic modeling derived apparent vertical profiles for 
Injune..................................................................................................296 

Table 59: Injune field plots apparent vertical profiles using modelled field data (red) and 
LiDAR returns (blue), and plot centre hemispherical photo. .............297 

Table 60: Injune field plot percentage cover results across a range of datasets, cover 
metrics, and measurement scales........................................................307 

Table 61: NE Victorian field plot percentage cover results across a range of datasets, 
cover metrics, and measurement scales.  All values in percentage cover.
............................................................................................................309 

Table 62: Crown Separation ratio calculation test for p142-13 .................................313 
Table 63: Crown Separation ratio calculation test for p81-16 ...................................314 
Table 64: Slope and intercept significance values for calibration and validation 

functions .............................................................................................315 
Table 65: LiDAR return density at different height thresholds for Injune plots........317 
Table 66: LiDAR return density at different height thresholds for NE Victorian plots.

............................................................................................................318 
Table 67: NE Victorian field plot data (left to right) - LiDAR CHM surfaces, LiDAR 

apparent vertical profiles, and plot centre hemispherical photos.  With 
CHM surfaces dark blue is ground, red-brown is tallest canopy.  Refer to 
LiDAR profile for respective heights (m). .........................................320 

 

 

LIST OF EQUATIONS 

Equation 1 ............................................................................................................104 
Equation 2 ............................................................................................................107 
Equation 3 ............................................................................................................112 
 



   

xix 

LIST OF ABBREVIATIONS 

AIRSAR Airborne Synthetic Aperture Radar 

AGO Australian Greenhouse Office 

API  Aerial Photographic Interpretation  

BA  Basal Area 

CASI Compact Airborne Spectral Imager 

CC  Crown Cover 

CFMF Continental Forest Monitoring Framework 

CHM Canopy Height Model 

CRCGA Cooperative Research Centre for Greenhouse Accounting 

D130  Diameter of tree stem at 130 cm height above ground 

DEM Digital Elevation Model 

DNRE Department of Natural Resources and Environment (Victoria)  

DPI  Department of Primary Industries (Queensland) 

DSTO Defence Science and Technology Organisation 

DTM Digital Terrain Model 

EMC Ecological Maturity Classification  

FBC Foliage-Branch Cover 

FPC  Foliage Projective Cover 

GIS  Geographic Information Systems 

GPS  Global Positioning System 

HSCOI Height Scaled Crown Openness Index 

ICESat Ice, Cloud, and land Elevation Satellite 

IBRA Interim Biogeographical Regionalisation for Australia  

JERS Japanese Earth Resources Satellite 

LiDAR Light Detection And Ranging 

MAUP Modifiable Areal Unit Problem 



   

xx 

MODIS MODerate-resolution Imaging Spectroradiometer 

NFI  National Forest Inventory 

NFPS National Forest Policy Statement 

NLWRA National Land and Water Resources Audit 

NVIS National Vegetation Information System 

PSU  Primary Sampling Unit 

QDNRM Queensland Department of Natural Resources and Mines 

RSE  Residual Standard Error 

RWG2  Research Working Group 2 

δ  Standard Deviation 

SAR Synthetic Aperture Radar 

SFRI Statewide Forest Resource Inventory (Victoria) 

SLATS Statewide Landcover And Trees Study (Queensland) 

SLR  Single Lens Reflex (camera) 

SPOT Satellite Pour l'Observation de la Terre 

SOFR State of the Forests Report 

SSU  Secondary Sampling Unit 

TIN  Triangulated Irregular Network 

TM / ETM Thematic Mapper / Enhanced Thematic Mapper 

UTM Universal Transverse Mercator 

 



   

xxi 

CERTIFICATE OF AUTHORSHIP 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another person 

nor material which to a substantial extent was accepted for the award of any other degree or 

diploma at the Australian National University or any other educational institution, except where 

due acknowledgement is made in the thesis.  Any contribution made to the research by 

colleagues with whom I have worked at the Australian National University or elsewhere during 

my candidature is fully acknowledged. 

 

 

______________ 

Alex Lee       Date: 

 

 



   

xxii 

PREFACE 

 

Parts of the description of the Injune study area in Chapter 3 of this thesis was 

published in: 

Tickle, P. K., Lee, A., Lucas, R. M., Austin, J. and Witte, C. (2006) 

Quantifying Australian forest floristics and structure using small 

footprint LiDAR and large scale aerial photography. Forest Ecology 

and Management, 223, 379-394. 

 

Description of the Height Scaled Crown Openness Index (HSCOI) in Chapter 3, 4, and 

5 was published in: 

Lee, A. C. and Lucas, R. M. (2007) A LiDAR-derived Canopy Density Model 

for Tree Stem and Crown Mapping in Australian Forests. Remote 

Sensing of Environment, 111, 493-518. 

 

Description and discussion of the LiDAR modelling for stand reconstruction for SAR 

simulation was published in: 

Lucas, R. M., Lee, A. C. and Williams, M. L. (2006) Enhancing SAR 

simulations using LiDAR for understanding the relations between 

forest structure and SAR imagery. IEEE Transactions on Geoscience 

and Remote Sensing, 44, 2736-2754. 

 

In Tickle et al., (2006) and Lucas et al., (2006) all LiDAR related processing and 

discussion was undertaken by me.  

Appendix 3 provides a more detailed description of author contributions to the above 

papers. 



   

xxiii 

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude and appreciation for all the people who helped me 

in various ways as I undertook this research.  In particular, I sincerely thank the members of my 

supervisory panel for their guidance and support – Dr Cris Brack, Dr Brian Lees, Dr Brendan 

Mackey, and especially Dr Richard Lucas for being such a willing and energetic colleague on 

field trips, conference, and late night online writing sessions from opposite sides of the globe.  I 

also extend my thanks to: 

• The Fenner School of Environment and Society for financial and academic support, 

and for making the almost home away from home bearable.  In particular I thank the 

IT and other support staff for their continual help. 

• The Cooperative Research Centre for Greenhouse Accounting for financially 

supporting the research, and providing a both academically stimulating and 

challenging forum to test my ideas out. 

• The staff of the various government agencies that provided resources for field work, 

supplied data, and technical support.  So, a big thank you to everyone at the Bureau 

of Rural Sciences, the Queensland Department of Natural Resources and Mines, and 

the Victorian Department of Natural Resources and Environment. 

• My parents, Myrene and Ray Lee for always believing in me and supporting any 

crazy idea that I wanted to do.  I also thank Sue and Justin McCarthy (and the rest 

of the McCarthy clan) for endless support to our long studying (or suffering?) 

family with child minding and the rest. 

• Finally, to my lovely wife Tess whom I owe so much, for keeping me sane when 

there was so much more to do, and being able to look after our sons, and for not 

going too crazy while trying to complete her own PhD.  Lastly, I thank my magic 

little man Max, who would always cheerfully waved goodbye to Daddy as he 

disappeared off to “nooni”.  We can now finally spend more time together.   



   

xxiv 

ABSTRACT 

Enhanced understanding of forest stocks and dynamics can be gained through improved 

forest measurement, which is required to assist with sustainable forest management decisions, 

meet Australian and international reporting needs, and improve research efforts to better 

respond to a changing climate.  Integrated sampling schemes that utilise a multi-scale approach, 

with a range of data sourced from both field and remote sensing, have been identified as a way 

to generate the required forest information.  Given the multi-scale approach proposed by these 

schemes, it is important to understand how scale potentially affects the interpretation and 

reporting of forest from a range of data.   

To provide improved forest assessment at a range of scales, this research has developed 

a strategy for facilitating tree and stand level retrieval of structural attributes within an 

integrated multi-scale analysis framework.  The research investigated the use of fine-scale 

(~1m) airborne Light Detection and Ranging (LiDAR) data (1,125 ha in central Queensland, 

and 60,000 ha in NE Victoria) to calibrate other remotely sensed data at the two study sites.  

The strategy refines forest structure mapping through three-dimensional (3D) modelling 

combined with empirical relationships, allowing improved estimation of maximum and 

predominant height, as well as foliage and crown cover at multiple scales.  Tree stems 

(including those in the sub-canopy) were located using a height scaled crown openness index 

(HSCOI), which integrated the 3D density of canopy elements within the vertical profile into a 

two-dimensional spatial layer.  The HSCOI modelling also facilitated the reconstruction of the 

3D distribution of foliage and branches (of varying size and orientation) within the forest 

volume.     

Comparisons between forests at the Queensland and NE Victorian study sites indicated 

that accurate and consistent retrieval of cover and height metrics could be achieved at multiple 

scales, with the algorithms applicable for semi-automated use in other forests with similar 

structure.  This information has facilitated interpretation and evaluation of Landsat imagery and 

ICESat satellite laser data for forest height and canopy cover retrieval.  The development of a 
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forest cover translation matrix allows a range of data and metrics to be compared at the plot 

scale, and has initiated the development of continuous transfer functions between the metrics 

and datasets.  These data have been used subsequently to support interpretation of SAR data, by 

providing valuable input to 2D and 3D radar simulation models.  Scale effects have been 

identified as being significant enough to influence national forest class reporting in more 

heterogeneous forests, thus allowing the most appropriate use and integration of remote sensed 

data at a range of scales.  An empirically based forest minimum mapping area of 1 ha for 

reporting is suggested.  The research has concluded that LiDAR can provide calibration 

information just as detailed and possibly more accurately than field measurements for many 

required forest attributes.  Therefore the use of LiDAR data offers a unique opportunity to 

bridge the gap between accurate field plot structural information and stand to landscape scale 

sampling, to provide enhanced forest assessment in Australia. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction  
 

1.1.1 The requirement for forest information  

To manage forests sustainably, meet national and international reporting requirements 

and provide input to climate change research, it is important to accurately measure forest stocks 

and dynamics.  To this end the Australian National Forest Inventory has proposed the 

Continental Forest Monitoring Framework (CFMF) as a way to address these challenges.  

Integrated sampling schemes such as the proposed CFMF utilise a multi-scale approach with a 

range of data, sourced from both field and remotely sensed.  Given the multi-scale approach of 

the proposed CFMF, it is important to understand how scale affects the interpretation and 

reporting of forest measures using both high resolution data (spatial and spectral), such as aerial 

photography or airborne Light Detection and Ranging (LiDAR) and moderate spatial resolution 

data (e.g., Landsat TM, radar).  Specifically, the thesis will investigate how higher spatial 

resolution data such as airborne scanning LiDAR can improve the calibration of a range of 

lower spatial resolution data (Landsat, radar and ICESat satellite based laser data), and lead to 

an improvement in the assessment of forest at scales ranging from local, regional to continental.   

As a signatory to international agreements, including the United Nations Framework 

Convention on Climate Change (UNFCCC) and the Montreal Process Working Group for 

sustainable forest management, Australia is increasingly required to provide accurate and 

quantitative information on forest species/community composition (herein referred to as 

floristics), structure (e.g., height and cover) and condition over the entire continent (Richards 

and Brack, 2004).  Additionally, to effectively respond to a changing climate, there is a need to 

improve forest and vegetation assessment methods, particularly as the dynamics (direction and 

magnitude) of potential change need to be identified as well as the current stock (Burrows et al., 

2002).  This presents many research challenges as a greater range of information is required, 

which previously had not been widely or consistently collected (Wood et al., 2006; Thackway 
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et al., 2007).  In addition, such information is required by governments, industry, private 

landholders and the public to detect trends in commercial, biodiversity and greenhouse values, 

assess the performance of management practices and public policies, guide sustainable 

development, and forecast the future condition of these ecosystems (Henry et al.,  2002; 

National Forest Inventory, 2003, Brack, 2007).   

However, undertaking such assessments within Australia represents a significant 

challenge for two main reasons.  First, Australia has an estimated 164 million hectares (ha) of 

native forests and woodlands, which are widely distributed, and generally located around the 

outer margins of the continent.  Second, around 70 % of these forests are under private 

management, with less than 10 % in commercial public forest estate.  Traditionally, forest 

information collected from publicly managed forests had improved spatial resolution, temporal 

collection, and a greater range of attributes.  In the areas under private management, the 

information available on structure and condition is especially limited (National Forest 

Inventory, 2003). The development of efficient and cost-effective methods for retrieving this 

essential information is therefore critical if national and international obligations are to be better 

fulfilled and the sustainable development and conservation of forest resources optimised 

(Thackway et al., 2007).  Such information is also vital if Australia is to continue to contribute 

in a meaningful way to Kyoto Protocol related discussions (Brack et al., 2006).   

Landscapes are spatially heterogeneous geographic areas characterised by diverse 

interacting (spatially and temporally) patches or ecosystems, ranging from relatively natural 

terrestrial and aquatic systems such as forests, grasslands and lakes to human-dominated 

environments including agricultural and urban areas (Turner and Gardner, 1991; Forman, 1995).  

In natural forests and woodlands, or those where a diversity of management practices occur, 

traditional point or plot (herein defined as an area used to collect floristic and or structural data 

that can be any size, but for practical field survey purposes is generally not more than 1 ha 

(McDonald et al., 1998)) based measurements of structure, biomass and species composition are 

difficult to extrapolate to the landscape because of the inherent complexity of the system.  Such 

variability arises from natural disturbance, different processes of regeneration and succession, as 
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well as human interaction and management practices that occur at a range of spatial and 

temporal scales.  The difficulty in quantifying this inherent variability leads, therefore, to 

uncertainties in local to regional extrapolations of the attribute of interest (Norman et al., 2003).  

However, the integration of remotely sensed data, acquired by airborne and/or spaceborne 

sensors across the electromagnetic spectrum, and at a range of scales, provides a more 

appropriate mechanism for extrapolation (Patenaude et al., 2005).  This is because data from 

different sensors can provide unique and specific information (e.g., on height, cover and 

productivity) in several dimensions that relate directly to the state and dynamics of forested 

landscapes (Tickle et al., 2006).   

In the assessment of forest stocks and dynamics within landscapes, individual trees 

(herein defined as a woody plant more than 2 m tall with a single stem or branches well above 

the base (McDonald et al., 1998)) can be considered as one fundamental unit of measurement.  

Where this scale of assessment is a requirement, then ideally, full accounting across the 

landscape would be generated using tree level information.  However, this is currently not 

achievable or practical because of cost, effort, processing and storage issues.  In some cases it 

may not even be necessary to have this level of detail to adequately answer some research 

questions.  For this reason, a census of a landscape commonly uses remotely sensed data with 

spatial resolutions ranging from 10 m ~ 1 km.  However, the information that can be extracted 

from this data is generally more useful for landscape scale assessments, as individual trees 

cannot usually be discerned.   

Conversely, fine scale (high spatial and/or spectral resolution) remotely sensed data 

(herein defined as pixels or data elements < 5 m) or field data can provide much more 

information at the plot level, but is usually limited to a small sample of the landscape (Wulder, 

1998).  Therefore, in order to better understand the complexity of forest dynamics within the 

landscape, what is required is an ability to discern broad-scale patterns and processes, and relate 

these to finer scales at which human investigations are most familiar (Hay et al., 2001).  Hence, 

and as a compromise, there is a need to make use of medium scale data to provide a census of 

the landscape, but to use the finer spatial resolution data to provide critical calibration and 
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validation data, algorithms, and perspectives that allow the knowledge gap to be bridged.  When 

this is undertaken within appropriate landscape sampling schemes which integrate data across 

scales, then the landscape variability can be adequately captured, described, and ultimately 

modelled (McCloy, 2006).    

 

1.1.2 Forest assessment in Australia 

In Australia, the primary national level initiative for investigating forest assessment 

using multi-scale data analyses that includes remote sensing is undertaken by the National 

Forest Inventory (NFI) with the State of the Forests reports, and proposed Continental Forest 

Monitoring Framework (CFMF).   

 

 State of the Forest Reporting 

State of the Forest reports utilise the Montreal Process criteria and indicators framework 

as a basis for describing the state of Australia’s forests.  The Montreal Process ‘Santiago 

Declaration’ aims to report on a set of criteria and indicators developed by 12 member countries 

that have temperate and boreal forests, to better undertake sustainable forest management.  

Criteria are defined as broad categories of forest values that we desire to maintain, whilst 

indicators are measurable aspects of these criteria.  The Montreal Process identified seven broad 

criteria important for sustainable forest management: biological diversity, productive capacity, 

ecosystem health and vitality, soil and water resources, global carbon cycles, socio-economic 

benefits, and an effective legal, institutional and economic framework.  Some 67 indicators have 

been identified for reporting against these criteria at a national level, though implementing the 

framework is voluntary and not legally binding.  In Australia, Commonwealth, State and 

Territory forestry and conservation Ministers have endorsed the Montreal Process as a regional 

reporting framework for forests.  Criteria and indicators can be used over time to describe the 

state of a nation’s forests and assess progress towards the goals of sustainable forest 

management (National Forest Inventory, 1998). 
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The Australian Commonwealth government has produced a number of national reports 

on Australia’s forests that draw on the Montreal Process framework.  Australia’s First 

Approximation Report for the Montreal Process (Commonwealth of Australia, 1997) provides 

an initial report against the national level criteria and indicators.  Australia’s State of the Forests 

Reports (National Forest Inventory, 1998; National Forest Inventory, 2003), provides a 

comprehensive description of Australia’s forests, and cover most aspects of the Montreal 

Process criteria and indicators.  These reports highlight accomplishments such as the 

development of the Comprehensive Regional Assessment regional framework, and links with 

domestic and international activities, including Regional Forest Agreements in the late 1990’s, 

and current research and development projects.  The reports present data and issues about 

progress to date on reporting those indicators that are most easily assessed (National Forest 

Inventory, 2003).   

Prior to the establishment of the National Forest Inventory (NFI) in 1988, capacity to 

report nationally on Australia’s forests was limited.  The Australian Commonwealth, State and 

Territory governments signed the National Forest Policy Statement (NFPS) in 1992, and in so 

doing, endorsed the existence and aims of the NFI.  NFPS policy pursues broad national goals 

within a regionally based planning framework that integrates environmental and commercial 

objectives (National Forest Inventory, 1998).   

Since establishment, the NFI has compiled a near complete and relatively consistent 

baseline snapshot of Australia’s forest extent and basic characteristics.  The NFI had to rely on a 

compilation approach, primarily from State and Territory agencies, for national reporting due to 

limited resources, demands for immediate reporting and the system of government and resource 

management responsibilities.  This meant that data was compiled from a variety of pre-existing 

sources and collected to a variety of standards.  It has been noted by the NFI that, in general, 

higher quality data (i.e., as noted previously, higher spatial and temporal resolution, with greater 

attribute range and measurement consistency) on forests is found on the part of the public land 

estate that is vested in public forest management agencies.  Data for forests on land in public 

conservation reserves is generally of poorer quality, when compared to data from publicly 
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managed forests.  There are large data gaps for forests on private and leasehold land (National 

Forest Inventory, 2003).  Between State and Territories there are differences in definitions for 

data types reported under Montreal Process indicators (for an example, see Chapter 3, section 

3.3.4).  While all States and Territories are moving towards adopting standard national 

classification systems and definitions for indicators such as forest type, tenure and plantation 

regions, there are still issues with adapting existing forest data to standard national definitions 

and classification systems.  This has resulted in large data gaps, and spatial data that are 

inconsistent or unavailable nationally for some of the indicators (National Forest Inventory, 

2003). 

The utility of existing forest and vegetation mapping for detecting and monitoring 

change is limited because this information is compiled from data sourced from a range of scales, 

acquired over different time periods, and obtained for a variety of purposes.  Historically, 

information was derived from a combination of field survey and aerial photography (Skidmore 

and Turner, 1987), with more recent programs utilising satellite imagery (QDNRM, 2005).  

New mapping programs, for example the National Vegetation Information System (NLWRA 

2001), are not efficient for monitoring and determining change or trends as each update 

effectively creates a new baseline.  This contrasts with updates made within an efficient and 

repeatable monitoring system, and at a level of detail that is increasingly being required to 

answer ever more complex management questions.  Another important factor concerning 

existing data is the absence of precision (or quality) estimates of key attributes relating to, for 

example, forest structure.  Differences in attributes estimated using new data or techniques 

cannot definitively be interpreted as a real change, as they may be a result of improved 

measurement.  Therefore there is a need to develop rigorous monitoring systems that enable 

accurate and timely reporting, which can be used as early warning signals of inappropriate 

management actions and a trigger for adaptive management (Norman et al., 2003).   

Scale also impacts on the implementation of the Montreal Process, particularly as much 

of the existing data does not adequately represent the variation present in Australian forests, for 

example, local scale vegetation species/community composition and structure.  National to 
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regional scale mapping has management implications in that it under-represents rare forest 

types, hence efforts to ensure ecological diversity may not be focused on the required areas.  

The process of compiling regional and national datasets also potentially presents a barrier to 

land owner and local community involvement in the mapping and monitoring process.  Given 

the Montreal Process requires Australia to report on trends in attributes, the NFI is leading the 

establishment of a Continental Forest Monitoring Framework (CFMF) (Norman et al., 2003).  

This framework will be discussed in the next section. 

 

 Continental Forest Monitoring 

The proposed CFMF was initiated to provide an integrated, scientifically reliable, 

nationally consistent inventory and monitoring program to determine trends in extent, structure, 

composition, health, status, use, and management of all types and tenures of Australia’s forests.  

The framework will use a range of sampling and mapping methodologies to monitor the 

condition and management of Australia’s forests and woodlands.  This will constitute a major 

change in direction for forest inventory from a largely static, passive “snap-shot” approach that 

relies heavily on State and Territory based mapping, to one in which existing mapped data can 

be integrated with results from a consistently collected continental monitoring framework (Lee 

et al., 2003). 

Currently there are major knowledge gaps for forests under private management (70 % 

of Australia’s forest) and in conservation reserves (13% of Australia’s forest), which limit 

current assessment and reporting requirements (Norman et al., 2003).  A continental monitoring 

framework aims to be cost effective, readily applied, repeatable, transparent and verifiable.  The 

information will be able to inform and evaluate national policy, regional decisions on trans-

boundary issues, and to support sub-regional monitoring activities aimed at evaluating 

management actions.  As described in Norman et al., (2003), the CFMF will be designed with 

political and economic, as well as scientific, requirements and constraints in mind, to: 
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1. Report average trends but also to detect outliers where possible, while still maintaining 

statistical validity for, as a minimum, ecozones with an area of 1 million hectares or 

greater. 

2. Measure relevant biophysical metrics objectively, consistently, and preferably directly, 

using technology independent means, and use continuous variables rather than 

categorical variables where possible, as well as providing for adaptive re-measurement.  

3. Involve permanent site-based measurement using the most cost-effective sampling 

approach integrated with a range of remotely sensed data collected at a range of scales 

within a system that integrates sample and map-based assessments. 

4. Provide accurate estimates of change for all metrics at 5 yearly intervals for as long as 

such reporting remains relevant to national needs. 

5. Retain the flexibility to respond to emerging priorities from broader natural resource 

management interests and changes in indicators and technology and utilise existing data 

sources to the maximum extent possible. 

In the light of these parameters and in consideration of international experience 

combined with the present state of inventory knowledge and technologies, a multi-tier data 

collection design was chosen by the CFMF Technical Advisory Committee (Figure 1) (Norman, 

et al., 2006; Wood et al., 2006).  The design takes advantage of opportunities presented by 

recent developments in remote sensing at a range of scales, whilst retaining the ability to 

incorporate new more efficient data collection technologies as they become available.  The 

design features three interrelated tiers of data collection.  Tier 1 maps land cover type and 

vegetation canopy density across all areas using medium scale remotely sensed data, for 

example from Landsat Thematic Mapper (TM), Moderate Resolution Imaging 

Spectroradiometer (MODIS).  Tier 1 mapping products could be enhanced through information 

from the Ice, Cloud and land Elevation Satellite (ICESat) which could provide a sample of 

vegetation heights reasonably consistently collected across the continent.  Tier 2 utilises high 

spatial or spectral resolution remote sensing across a relatively large (≥ 5%) representative 

sample, at the intersections of a regular grid (nominally 20-50 km) across the whole country, to 
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assess a greater range of forest attributes.  Potential datasets include: airborne datasets such as 

Light Detection And Ranging (LiDAR), aerial photography, or hyperspectral data such as that 

from the Compact Airborne Spectrographic Imager (CASI), and/or higher spatial resolution 

satellite imagery such as SPOT5 or equivalent.  This data collection is integrated closely with 

the Tier 3 level where the full set of attributes are directly measured periodically on the ground 

at a relatively small (< 0.1%) representative sub-sample of the Tier 2 sample (Wood et al., 

2006).   

Small footprint LiDAR is an active sensor that uses laser beams in the near infrared 

spectral range directed towards the ground.  The laser scanner determines distance between 

aircraft and a point on the earth’s surface based on the known speed of light, and measured time 

difference between emission of a light pulse and reception of the reflected signal.  By 

combining range or distance, scanning angle, aircraft attitude (pitch, yaw, roll) and position 

(from Global Positioning Systems (GPS)) the exact x,y,z coordinate of the point on the earth’s 

surface can be calculated.  The resulting data is a 3D point cloud from terrain, vegetation, and 

other surface features (e.g., buildings) often with several million measurements per square 

kilometre (Lim et al., 2003b).  The point density and ground coverage is a function of the 

scanning mechanism, aircraft flying parameters, topography and the requirements of the project 

survey which all impact on the quality and accuracy of results generated.  Where multiple users 

of the data are present, (e.g., hydrologists, foresters, urban planners) there are usually trade-offs 

in the utility of the data for each group, as a given point density may not meet the needs of all 

users.  Many surveys utilised for forest assessment typically acquire a point density of 1 or 2 

returns per square metre, and this point density is generally adequate for detailed terrain 

mapping, for individual trees to be discernable, and to provide an indication of the presence or 

absence of understorey foliage.  However, improved results are obtained with higher sampling 

densities (which are also often required for urban planning), though at the expense of smaller 

area covered due to a lower flying height (and therefore higher cost per hectare) and greater 

computational and storage requirements (Reutebuch et al., 2005).  The ability to generate a high 

level of detail, often at the same accuracy as field plot estimates across large swaths of the 
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landscape (Lim et al., 2003b), is the reason the CFMF investigated the use of LiDAR in the 

framework.  However, more research is required to fully realise the potential of the data for 

improving the accuracy of forest structure assessment (Wood et al., 2006).  

 

Figure 1: CFMF multi-tier design illustrating the potential role of airborne LiDAR as a Tier 2 
dataset (after Wood, et al., 2006). 

 

 

1.1.3 Dealing with scale in remote sensing of forests  

In remote sensing, scale typically refers to the resolution and extent of an assessment 

unit, and scaling is the process of translating or extrapolating information from one resolution to 

another (Wu and Qi, 2000).  An appreciation of scale and scaling is important to better 

understand broad-scale patterns and processes, and effectively relate them to fine scale 

measurements with which we are most familiar.  Accurately transferring information between 

scales is necessary because many environmental and resource management problems can only 

be dealt with effectively at broad scales (Wu and Qi, 2000).  

To improve our understanding of how scale can be utilised effectively when using 

remote sensing, it is first necessary to define the terms and theory.  In this study, two broad 
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types of scale are defined: absolute and relative.  Absolute scale is an objective assessment that 

is referenced to some independent baseline.  Absolute scale is a practical, standard system used 

to partition geographical space in operational spatial or temporal units (Wu and Qi, 2000; Hay 

et al., 2001).  Ecologists recognise two aspects of scale: grain, which is the smallest spatial unit 

over which observations are made, and extent, which is the range or total area over which 

observations of a specified grain are undertaken.  In remote sensing, spatial resolution is 

equivalent to grain, in that it is the smallest unit for which a sensor averages observations (either 

actively or passively) of the Earth’s surface (Hay et al., 2001).  For optical imagery and 

Synthetic Aperture Radar (SAR), these units are generally rectangular (e.g., pixel), whilst for 

Light Detection And Ranging (LiDAR) these are circular or elliptical.  Cartographically, scale 

refers to the ratio of map distances represented with respect to actual distances on the ground 

(Dungan, 2001).  In a relative scale framework, scale is intrinsically linked to both the spatial 

entities and relationships between these entities, and can be expressed as ratios.  Relative scale 

can be defined as the window through which an investigator views the world.  As such, the 

choice of scale becomes linked to the phenomenon under observation and the questions being 

posed about it (Hay et al., 2001).  This thesis seeks to utilise scale in both the absolute and 

relative sense. 

To make progress on scale issues, it must be recognised that all remotely sensed data 

and spatial analyses are sensitive to the size, shape and orientation of the data collection units.  

The collective descriptor of these elements in geostatistics is termed “support” (Atkinson and 

Curran, 1995; Dungan, 2001).  This recognition is critical when minimizing bias in 

characterising forested landscapes and to avoid developing misleading relationships.  Remotely 

sensed data, when represented as raster data models, have enforced a limited, though much 

more consistent, set of supports in the form of pixels.  The change of support, (e.g., aggregating 

pixels or classified elements from smaller to larger sizes) is one precisely defined aspect of up-

scaling and down-scaling (Ju et al., 2005).  Appropriate use of scaling requires an explicit 

acknowledgment that increasing support involves decreasing variance, increasing symmetry for 

univariate distributions, and introducing potentially unpredictable effects on multivariate 
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distributions.  Regression based approaches to ‘calibrate’ remotely sensing information to 

canopy variables or other regionalised variables are reliant on the specifications of support for 

all variables involved.  When discussing the variability of a quantity expressed for a region, it is 

essential that reference is made to the support on which it is measured (Dungan, 2001).  

Scaling effects on spatial analyses have been identified since the 1930’s (Gehlke and 

Biehl, 1934), and a well known aspect of this, as identified in the statistical and geographical 

literature, is termed the “Modifiable Areal Unit Problem” (MAUP) (Openshaw, 1984).  The 

MAUP consists of two inter-related concepts that occur when analysing spatial data.  The first is 

the “scale or aggregation problem”, where the same set of spatial data are aggregated into 

several sets of larger areal units (i.e., the size of the support), with each combination leading to 

different data values and inferences.  The magnitude of potential error will depend on the 

inherent heterogeneity of the forest and the nature and extent of the sampling strategy.  The 

second aspect of the MAUP is the “zoning problem”, where a given set of areal units are 

recombined into zones that are of the same size but located differently (i.e., the shape of 

support).  This again results in variation in data values and consequently, different conclusions 

might be formed (Jelinski and Wu, 1996; Fotheringham et al., 2000). 

The identification and use of basic attributes or geographical entities defining the 

objects under investigation was researched as a way to avoid MUAP issues (Fotheringham, 

1989).  Given the diversity of geographical problems and strategies that are currently being 

addressed and implemented, this approach may not be relevant or even possible in all cases of 

spatial analysis.  Nevertheless, it is a fundamental practical exercise that should be undertaken 

to ensure the validity of any scientific enquiry, and therefore is at the core of the scale issue 

(Marceau, 1999).  For forest assessment, the basic entity approach is appealing because the 

basic spatial unit of a forest can be easily defined as a tree (and the spaces between trees).  

While individual trees are readily discernable in fine spatial resolution remotely sensed data, 

automated tree extraction is still an emerging field that requires further research (Bunting and 

Lucas, 2006).  If entities (such as trees), and relationships between related variables, emerge at 

specific scales (e.g., from tree, to forest patch, and to landscape mosaic), there must be a way to 
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define them and to relate them across discrete levels of organisation.  This practical problem is 

raised when building a digital database in which individual objects must be identified, and their 

spatial and temporal topology built (Marceau, 1999).  This idea is also at the foundation of new 

sets of techniques for feature extraction from digital imagery referred to as multi-scale object-

specific techniques, where the focus is on the detection and identification of individual objects 

appearing on an image when the appropriate scale is reached (Burnett and Blaschke, 2003; Hay 

et al., 2005).   

 

1.1.4 Summary 

This chapter has outlined the current situation with forest assessment at the national 

scale in Australia.  The review has identified the need to improve national level reporting of 

forest structure, in order to meet the many challenges Australia faces in relation to sustainable 

management of forest resources and ecosystem services, especially in response to a changing 

climate.  For example, it is difficult to generate a comprehensive understanding of Australia’s 

forest estate due to the large continental area and dispersed nature of the forests.  Additionally, 

much of the forest estate is located on private or leasehold land where accurate and up-to-date 

measurements are very rare or difficult to acquire.   

The National Forest Inventory has begun to address these issues by proposing the 

Continental Forest Monitoring Framework as a new approach to inventory of the national forest 

estate.  The integrated sampling framework seeks to utilise medium scale remotely sensed data 

for national mapping, combined with fine scale field data and high-spatial/spectral resolution 

airborne imagery for calibration and validation.  This strategy aims for an efficient balance 

between the level of attribute detail and the spatial coverage.  As with most new approaches, 

there is often uncertainly as to how it should be implemented, and what the best combinations of 

sensors and methodologies are.  One of the key concepts of the proposed framework is the use 

of continuous rather than categorical measurements of forest structure, generated from a range 

of data sources and at multiple scales.    
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Therefore, there is a need to be able to accurately translate between assessment scales.  

As scale issues affect all remotely sensed data in some way, there is a requirement to understand 

the magnitude of the potential impacts so error in forest structural modelling and reporting can 

be minimised.  Investigations into scale issues have indicated that using basic geographic 

entities or objects (e.g., trees) are an effective way to reduce, mitigate, or at least better 

understand the effects of scale on forest assessment when using remote sensing.   

LiDAR data has known potential for generating continuous assessments of forest 

structure that can be equivalent to field measurements, but over much larger areas that can be 

surveyed on the ground.  This provides a source of calibration data that can sample more of the 

landscape variability at fine scales, allowing improvements in the accuracy of reporting from 

medium scale data.  What is currently missing is a strategy for using LiDAR to link fine scale 

field data with medium scale data within multi-scale integrated sampling schemes.  An integral 

part of a multi-scale strategy is the use of basic geographic entities.  There is a current research 

gap for generating structural information at a tree scale (crowns and/or stems) from LiDAR data 

in Australian forests.  These requirements form the basis of the primary research question that 

will be addressed in this thesis. 
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1.2 Thesis Research Question 
 

1.2.1 Primary research question  

Section 1.1 identified the need for a strategy to utilise fine scale remotely sensed data to 

link field data with forest structure mapping data across a range of scales, for example within 

multi-scale frameworks.  Airborne small footprint scanning LiDAR is a dataset that has shown 

promise to date in being able to meet many of the requirements for a multi-scalable dataset, 

however there is limited research on the utility of LiDAR for Australian forest structural 

assessment in the context of a multi-scale monitoring strategy.  Therefore, in order to evaluate 

the utility of LiDAR as an effective multi-scale calibration dataset, the primary research 

question of this thesis is:  

How can airborne LiDAR improve Australian forest structure assessment? 

 

 Rationale and Research Objectives 

Forest structure can be broadly defined depending on the research interest.  The 

assessment of structure can encompass a wide range of metrics and be valid at a range of scales 

Lund, (2002).  For example, Specht and Specht (1999) state that plant community structure 

reflects its position in space and time, and illustrates the spatial distribution of plant community 

biomass, as well as indicating the effects of prevailing disturbance patterns.  A range of life-

forms can be recognised, and whilst these life-forms often intergrade, often broad divisions are 

apparent, with strata or layers emerging.  For example, overstorey development can be 

indicative of the time since disturbance, the competitive ability of different species and the 

quality of the site (Specht and Specht, 1999). 

For the purposes of this thesis, the concept of forest structure is defined as a measure of 

density: that is, the density of tree stems within a unit area, the density of crown branches and 

foliage originating from those stems (i.e. crown and foliage cover), and the density of foliage at 

different heights throughout the forest volume.  A multi-scale calibration strategy incorporating 

basic geographic entities would allow a better understanding of the potential impacts of scale on 
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the assessment of forest structure.  For example, how different assessment sizes may cause 

variation in what is reported as ‘forest’.  As scale issues are inherent with analyses of remotely 

sensed data, particular emphasis will be placed on the development of a strategy to use LiDAR 

for forest structure assessment at multiple scales.  This will incorporate knowledge of scale and 

use a framework based around ecological hierarchy theory.  Given the above, and in order to 

answer the primary research question, two objectives are defined, which delimit the boundaries 

of the research.  These objectives specifically address two metrics that constitute forest 

structure, defined here as height and cover.   

 

 Objective 1: Measuring forest cover using LiDAR 

The first objective seeks to understand how forest cover reporting can be enhanced 

using airborne LiDAR.  The rationale for objective one is as follows.  The NFI uses the crown 

cover (CC) metric to report on forest, which is defined as the percentage of a sample area within 

the vertical projection of the periphery of tree crowns, where crown are treated as opaque 

(McDonald, et al. 1998).  Traditionally the source of this data for the NFI was estimated from 

field transects and air photo interpretation (API) (QDNR, 2000).  API may be a relatively 

inexpensive dataset to acquire, but there are high costs and long timeframes (if a wide range of 

attributes are required) involved with the interpretation, and the results can be subjective and 

hard to objectively validate or repeat consistently.  The results are generally categorical which 

has limitations for monitoring.  New satellite based forest cover estimation use the foliage 

projective cover (FPC) metric (defined as is the percentage of a sample area occupied by the 

vertical projection of foliage only (McDonald, et al. 1998)), in semi-automated and repeatable 

programs, which generate continuous data which is more suited to classification at a range of 

scales, and monitoring (QDNRM, 2004).  Whilst monitoring programs (such as the proposed 

CFMF) seek to use continuous variables from a range of sources at different scales for 

monitoring, there are limitations in the current translation between FPC and CC, and especially 

when data is compiled from individual States and Territories.  The current translation uses very 

broad classes and there is large variation between environments.  Thus there is a need for 



Chapter 1: Introduction 
   

17  

additional empirical refinement in order to move towards a more robust and repeatable 

continuous transfer function between metrics.   

Because airborne LiDAR spans a range of spatial resolutions between potential data 

sources, there is potential to provide consistent calibration and translation between data sources, 

different cover measurement metrics, and at a range of assessment scales.  As a result, new 

methods to provide calibration and translation metrics will be investigated as part of research 

objective one.  For example, crown cover will be explicitly mapped using tree level LiDAR 

multi-scale modelling, in order to provide a source of crown cover data that can be up-scaled to 

calibrate other data at the most appropriate resolution.  The results of the modelling will then be 

used to develop an initial empirical (continuous) transfer function between foliage and crown 

cover, and tested on a range of medium scale data. 

 

 Objective 2: Measuring forest height using LiDAR 

The second objective seeks to identify how forest height reporting can be enhanced 

using airborne LiDAR.  The rationale for objective two is as follows.  Currently the NFI uses 

mean stand height categorised into a few broad height classes for reporting.  Traditionally forest 

height has been estimated from field data or as classes of mean stand height from API.  

However the categorical data have limited potential for effective monitoring, and can be 

difficult to accurately measure from API in tall or dense forests, especially where the ground is 

not visible (VDNRE, 2000).  With laser data from sensors such as ICESat satellite becoming 

increasingly available, there is the opportunity to enhance the height information available for 

national reporting and monitoring, if an effective understanding of the strengths and weaknesses 

of the data can be obtained.   

In addition to spanning the proposed CFMF data spatial resolution range, airborne 

LiDAR may also offer the unique ability to rapidly assess of canopy height, in an accurate and 

repeatable manner.  Therefore, in order to address objective two, different height metrics will be 

generated from airborne LiDAR and compared to field estimates.  Then the impact of scale on 

height metrics when reporting forest different assessment scales will be investigated.  Finally, 
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utilising the knowledge gained from field calibration and potential effects of scale, initial 

correlations will be developed between LiDAR and ICESat derived forest height metrics.  This 

will indicate how accurate ICESat data may be when utilised for continental forest structure 

monitoring.   

The anticipated outcomes of achieving the two research objectives include: the 

improved understanding of how different structural metrics are correlated between data sources, 

and assist in the development of empirical transfer functions between structural metrics to 

improve the calibration of remotely sensed data.  In this context, improvement can be defined as 

increasing the efficiency of assessments when compared to current methods.  This may be 

achieved by generating assessments at the same level of accuracy that is achieved with current 

methods, but the new method can generate results faster, with lower costs and less effort, and/or 

over larger areas.  Improvement can also occur with the development of new metrics, to produce 

the required information more effectively or provide new insights (Brack, 2000).      

The primary research question and associated objectives form the basis of significant 

new work in the field of high spatial resolution remote sensing of forests.  The development of 

correlations among structural measurements through the use of basic geographic entities, and 

utilisation of these for multi-scale calibration and validation for Australian forest assessment, 

provides an important new contribution to national forest inventory and carbon monitoring 

initiatives.  

 

1.2.2 Research delimitations 

To establish the boundaries of the present research, the following elements are 

demarcated.  The primary source of small footprint LiDAR and additional data for calibration 

and validation was from data collected at existing study sites in south central Queensland (ex 

CRC Greenhouse Accounting and Australian Research Council SPIRT funded project; Tickle et 

al., 2006; Lucas et al., 2006a) and in North East Victoria (from the National Forest Inventory 

CFMF pilot study area; Wood et al., 2006). 
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In order to address the primary research questions, this thesis makes several 

assumptions.  First, that plot data drawn from existing landscape sampling schemes is 

representative of forest across the landscapes under investigation (Tickle et al., 2006; Wood et 

al., 2006).  As the sampling strategies at the study sites had already been established and data 

collected prior to this thesis, research will be limited to testing the representativeness of field 

plot information using the available data.  Second, whilst the two study areas utilised in this 

research may well span a broad range of Australian forest types, the conclusions reached about 

the utility of LiDAR to improve the assessment of forest structure will primarily be applicable 

to the forest types found at the study sites, and in particular, where LiDAR and field data were 

coincident.  Third, that field data is the most accurate source of forest structural data with which 

to compare and calibrate remotely sensed data.  This assumption will be investigated and 

discussed with respect to the conceptual similarities and differences between the metric 

measurement methods. 

Due to the exploratory nature of the primary research question, emphasis will be on 

developing descriptive comparisons between data, in relation to the structural metric under 

investigation.  Comparison correlations will utilise simple linear regression techniques as the 

primary statistical tool in the first instance. 
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1.3 Outline of Thesis 
 

There are a total of six chapters in this thesis.  The current chapter, Chapter 1, has 

presented a brief introduction to the central research question of this thesis.  It has discussed the 

requirements for forest information, dealing with scale issues in remote sensing of forests, forest 

remote sensing strategies, and the current state of national forest assessment in Australia.  The 

need to investigate how LiDAR can improve forest structure assessment has been identified. 

Chapter 2 provides a review of LiDAR remote sensing of forests and dealing with scale 

in the analyses of remotely sensed data.  Descriptions of Australia’s forests and their definition 

at the national level are provided, and an overview of the current field based methods for forest 

structural assessment.  

Chapter 3 describes in detail the research methodology that was designed to test and 

address the research question.  It will outline the two study areas, the data utilised, multi-scale 

analysis, and calibration of other remotely sensed data for forest structure. 

Chapter 4 outlines the results of the multi-scale strategy and data analyses, using 

LiDAR to assess forest structural metrics, as outlined in Chapter 3. 

Chapter 5 discusses the findings of the research, and demonstrates that small footprint 

LiDAR can improve forest structural assessment.  It will revisit the research question from 

Chapter 1 and state the extent to which the research achieved its goal.  Chapter 5 will also 

discuss the theoretical and practical implications of the research, limitations, and the future 

directions for forest assessment utilising small footprint LiDAR.  The thesis is concluded in 

Chapter 6.  

Appendices A and B contain additional tabular and graphical information and examples 

that support the primary results presented in Chapter 4.  Appendix C contains copies of key 

papers progressively published as a result of my research.  Appendix D contains additional 

calibration information from the hemispherical photograph analyses for plot scale cover.  
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CHAPTER 2. RESEARCH ISSUES 

2.1 Introduction 

The aim of this research is to determine how LiDAR can improve the assessment of 

Australian forest structure.  As such, it is inherently about improving forest measurement 

strategies in order to provide a better understanding of forest stocks and dynamics, assist with 

sustainable forest management decisions, and meet national and international reporting needs.   

This chapter provides a review of the relevant literature and background for measuring 

and monitoring Australia’s forests using remote sensing.  Section 2.2 of this chapter examines 

the definition and location of forest in Australia, and outlines current national forest assessment 

methods and limitations.  The important elements for linking field and remotely sensed data 

within different sampling strategies are also outlined.  Section 2.3 introduces forest 

measurement using both passive optical (e.g., Landsat TM) and active (e.g., radar, LiDAR) 

sensors.  An extensive overview of LiDAR remote sensing of forests is provided including its 

use (either singularly or in conjunction with other remotely sensed data), for calibration of 

medium scale data, and for structural assessment (e.g., including tree crown delineation).  Given 

the multi-scale approach of integrated sampling schemes, such as the proposed CFMF, it is 

important to understand how scale potentially affects the integration, interpretation and 

reporting of forest structure from field and remotely sensed data.  Therefore a theoretical 

perspective on scale is presented in section 2.4.  Finally, the chapter is summarised in section 

2.5. 
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2.2 Continental Forest Measurement in Australia  

2.2.1 Description of Australian forests 

Within Australia, the structural characteristics and distribution of plant communities are 

largely a function of tectonic, geologic, pedologic and climatic (e.g., rainfall, fire) related 

influences (Peel et al., 2005).  Forest occurs across a wide range of environments, from dense 

wet tropical rainforests to sparse dry desert woodlands, and from coastal plains to alpine high 

country.  Most Australian native forest tree species trace their origins back to the super-

continental Gondwanan landmass.  After the final break-up of this super-continent about 38 

million years ago, and subsequent shift northwards, sclerophyllous vegetation that was better 

adapted to hotter and drier conditions gradually replaced the previously dominant rainforest.  In 

this environment, sclerophyllous vegetation evolved hard, spiky or shiny leaves to reduce 

moisture loss and to cope with the nutrient-deficient, weathered, shallow and fragile soils that 

formed over much of the continent (Boland, et al., 1992).  These conditions, along with an 

increased fire frequency, resulted in Eucalyptus and Acacias flourishing, while species 

dependent on constant high levels of moisture were confined to relatively small areas of the 

continent.  Over the last two million years, the climate has fluctuated between warm, wet 

periods and cool, dry periods, with the forests advancing and retreating in response to these 

changes (Wardell-Johnson et al., 1997; National Forest Inventory, 1998).   

As a result of regular burning by humans over tens of thousands of years, major effects 

on vegetation structure and composition are evident although the extent and implications of this 

are still debated.  In Australia, indigenous people arrived about 50,000 years ago, and used fire 

as a hunting and land management tool, with widely varying use across the country.  European 

settlement after 1788 resulted in more varied and widespread impacts on forests, with large 

areas cleared for agriculture and urban use.  Estimates indicate that around 33 % of the original 

forested area was cleared and another 40 % was affected by timber harvesting at some stage 

(National Forest Inventory, 1998).  Changes in fire and grazing regimes, especially with the 

removal of Indigenous practices, may have encouraged regeneration in some areas where 

previously forests with a more open or sparse understorey occurred (Walker et al., 1993; 
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Burrows et al., 2002).  New plantations have been also been established, composed of both 

exotic and native species (National Forest Inventory, 1998). 

According to the 2003 State of the Forests report (National Forest Inventory, 2003), 

approximately 164 million hectares (21 %) of the Australian continent (768 million hectares) is 

covered in forests (see Table 1 and Figure 2).  The genus Eucalyptus, which occurs naturally 

predominantly in Australia, and Acacia both account for the majority of the country’s forests in 

terms of area.  There are more than 700 species of eucalypts, as well as many other genera of 

trees (such as rainforest and native conifers), in a rich array of ecosystems that vary in their 

floristic composition, structure and the fauna they support.  Current forest distribution is mainly 

confined to regions where average rainfall exceeds 500 millimetres per year, largely in the 

northern, eastern and south-western coastal zones, including Tasmania.  In drier parts of the 

country open woodland and mallee forests are found.  In some places, for example the Eastern 

Goldfields region of Western Australia, the stature and extent of the native forest is greater than 

would be expected from the low rainfall.  In these drier locations trees have developed survival 

mechanisms to withstand the conditions, relying on groundwater stores or occasional floods 

(Wardell-Johnson et al., 1997; National Forest Inventory, 2003).   

Most native forests are more open-crowned, with canopy covers of less than 70 % and 

comprised of species with architectures that are markedly dissimilar to those found in both 

temperate and tropical closed forests (Barlow, 1994).  The vegetation is mostly woody, 

sclerophyllous and evergreen, and is characterised by leaves which tend to be vertically 

orientated in response to the high sun intensity.  The dimensions (area and depth) of crowns in 

the upper canopy are highly variable, ranging from large and expansive (typical to many 

Eucalyptus and Angophora species) to small and compact (typical to Callitris species).  In many 

cases, both crown types occur in the same stand but often in different strata, and variation in tree 

height, crown size, shape and density (which is high even within species) occurs as a function of 

the volume and type of soil that can be exploited for water and nutrients.  Crown size is also 

indicative of the area a plant will influence through, for example, shading and litter deposition 

(Jupp and Walker, 1996).   



Chapter 2: Research Issues 
   

24 

2.2.2 Defining and measuring Australia’s forests 

Information about vegetation and vegetation dynamics is increasingly being recognised 

as a fundamental dataset that is required to inform public debate with regard to audits of 

resource condition.  Therefore, vegetation information is required to effectively plan and report 

on resource development based on biophysical, social and economic aspirations (Thackway et 

al., 2007).  There are two primary national level forest and vegetation mapping initiatives 

currently underway in Australia: the National Forest Inventory (NFI) and the National 

Vegetation Information System (NVIS).  NVIS will be briefly described in this section followed 

by an outline of current NFI forest assessments and limitations.  The proposed CFMF design 

was previously described in Chapter 1. A summary of the typical requirements and rationale for 

permanent plot based sampling strategies are outlined in this chapter, and a description of 

different sampling systems is given.  The integration of field data for remote sensing calibration 

is discussed in terms of data sources, accuracy, and compilation issues. This provides context 

and rationale for the assessment of the utility of LiDAR to improve forest structure 

measurement, within integrated sampling schemes.  

A consistent and practical definition of forest is fundamental to monitoring and 

reporting effectively Australia’s forest estate.  The current definition of forest that was adopted 

by Australia’s National Forest Inventory and used in State of the Forests Reports (National 

Forest Inventory, 1998; 2003), as well as by the Australian Greenhouse Office (AGO) 

(Richards, 2002) is:  

An area, incorporating all living and non-living components, that is 
dominated by trees having usually a single stem and a mature or potentially 
mature stand height exceeding two metres and with existing or potential 
crown cover of overstorey strata about equal to or greater than 20 per cent. 
This includes Australia’s diverse native forests and plantations, regardless of 
age. It is also sufficiently broad to encompass areas of trees that are 
sometimes described as woodlands.   

(National Forest Inventory, 1998) 

 

The definition is based on the 1992 National Forest Policy Statement, signed by all 

State, Territories and the Australian Government, but modified to remove uncertainty relating to 
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crown cover and height, and to meet operational implementation requirements.  The minimum 

potential crown cover to qualify an area of trees as forest is now 20 %, which puts into effect the 

National Forest Policy Statement requirements that ‘forest’ is to include what has sometimes 

been called ‘woodland’.  The definition also refers to ‘trees having usually a single stem’ and 

sets the lower tree height limit at two metres, which allowed the inclusion of the forest-forming 

mallees.  Shrublands are excluded, even if they are taller than two metres, because of the 

requirement to be of tree formation.  This definition is biologically based, rather than focused on 

particular forest uses (Hnatiuk, et al., 2003).  It is similar to the single internationally agreed 

definition used by the United Nations Food and Agriculture Organisation, which is:  

Land with tree crown cover (or equivalent stocking level) of more than 10 
per cent and area of more than 0.5 hectares. The trees should be able to reach 
a minimum height of 5 metres at maturity in situ. May consist either of 
closed forest formations where trees of various storeys and undergrowth 
cover a high proportion of the ground; or of open forest formations with a 
continuous vegetation cover in which tree crown cover exceeds 10 per cent.  

(FAO, 1998) 

 

National Vegetation Information System 

The National Vegetation Information System is a consistent attribute and database 

framework for describing, translating and compiling existing mapped information for all 

vegetation types across the whole landscape, and at regular intervals by the respective 

Australian State and Territory land and vegetation management agencies (NLWRA, 2001).  The 

NVIS framework describes native vegetation using the concept of a ‘definitive vegetation type’, 

which details the structure and floristics of vegetation at the association or sub-association level 

and within mapped vector polygons (NLWRA, 2001).  This is in contrast with the NFI 

requirement to only measure forest at the genus level with a broad structural classification 

(National Forest Inventory, 2003).  The NVIS structure was developed in response to an 

increasing requirement to provide information for the long-term sustainable use and integrated 

natural resource management of regional ecosystems.  However, as indicators of resource 

condition have yet to be fully developed, it is necessary to investigate approaches that 

encompass all vegetation information across landscapes at a level of detail relevant to regional 
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decision-making.  Whilst ‘definitive vegetation types’ represent an integration or aggregation of 

many attributes (i.e., structure and floristics), they are not readily suited for measuring and 

monitoring trends, mainly due to the categorical nature of the vegetation type descriptions 

(Thackway et al., 2007).  

 

Current National Forest Inventory reporting 

At the national level Australia’s native forests are classified into three crown cover 

classes: woodland (20–50 %), open (50–80 %), and closed (80–100 %).  Three height categories 

are used to classify Australia’s native forests: low (2-10 m), medium (11-30 m), and tall (>  30 

m).  Almost two-thirds of the native forest estate is woodland, with around 70 % being of 

medium height (Table 1).  In New South Wales, Victoria and the Australian Capital Territory 

the majority of the forests are classified as open forest (Figure 2).  

Traditionally, the primary sources of cover information that the States and Territories 

feed into the NFI compilation process are derived from air photo interpretation, and more 

recently satellite imagery (Hnatiuk, et al., 2003) (see Figure 3 for a range of sources).  Crown 

cover (CC) is interpreted over generally homogeneous areas from aerial photography.  Crown 

cover is expressed as the percentage of crown area projection per unit land area, with crown 

area defined as the total area contained within the external boundaries of the tree crown, where 

crowns are considered opaque (McDonald, et, al., 1998).  Foliage projective cover (FPC) is 

based on the vertical projection of the crown foliage, and is derived from satellite imagery (e.g., 

Landsat TM).  A related measure, foliage-branch cover (FBC) also includes branch elements in 

the assessment of cover, rather than just foliage.  With both foliage measures, the density can 

vary according to species, crown type, age, location and time of year (National Forest Inventory, 

2003; VicDNRE, 2000).  Foliage projective cover is considered to provide a better indication of 

the photosynthetic potential of a plant community because trees generally have irregular canopy 

shape and low foliage density (Specht and Specht 1999).  However, McDonald, et, al., (1998) 

recommend that crown cover be used as the primary structural attribute because foliage cover 

can seasonally vary, but crown size will remain constant unless major disturbance occurs.  



Chapter 2: Research Issues 
   

27 

Table 1: Area of NFI forest types ('000 ha) across the States and Territories in Australia. Source: National Forest Inventory State of the Forests Report, 2003. 

Forest type 
Australian 

Capital 
Territory 

New 
South 
Wales 

Northern 
Territory Queensland South 

Australia Tasmania Victoria Western 
Australia Australia Percent of 

native forest 

Acacia 0 1 251 1 613 6 984 1 939 74 63 4 563 16 488 10 
Callitris 0 1 240 386 387 261 1 56 0 2 330 1 
Casuarina 0 1 000 14 216 763 1 4 40 2 039 1 
Eucalypt 116 22 218 27 911 38 706 7 849 2 476 7 562 20 184 127 024 78 
     Eucalypt mallee woodland 0 9 0 122 5 180 0 1 171 3 918 10 400 – 
     Eucalypt mallee open 0 13 0 0 864 0 0 1 051 1 929 – 
     Eucalypt low woodland 3 114 16 368 1 373 1 207 65 246 2 616 21 992 – 
     Eucalypt medium woodland 18 2 269 5 532 32 696 554 1 274 598 10 321 53 263 – 
     Eucalypt tall woodland 0 91 0 1 130 0 289 219 0 1 728 – 
     Eucalypt low open 4 72 257 0 1 0 273 22 629 – 
     Eucalypt medium open 63 15 921 5 703 3 326 42 7 2 809 2 048 29 920 – 
     Eucalypt tall open 28 3 729 0 59 1 841 2 246 170 7 073 – 
     Eucalypt low closed 0 0 18 0 0 0 0 8 27 – 
     Eucalypt medium closed 0 0 33 0 0 0 0 30 63 – 
     Eucalypt tall closed 0 0 0 0 0 0 0 0 0 – 
Mangrove 0 3 355 196 19 0 2 173 749 <1 
Melaleuca 0 44 1 593 5 301 1 19 96 0 7 056 4 
Rainforest 0 486 224 2 885 0 598 16 5 4 214 3 
Other 0 415 738 1 059 34 0 135 398 2 780 2 
Total native forest 117 26 658 32 836 55 734 10 866 3 169 7 935 25 365 162 680 100 
Total forest (2003)1 133 26 981 32 843 55 942 11 015 3 364 8 295 25 717 164 290  
Total land area 240 80 160 134 620 172 720 98 400 6 780 22 760 252 550 768 230  
Forest as per cent of land area 55 34 24 32 11 50 36 10 21  

1 – Includes plantations 
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Figure 2: Distribution of NFI forest types in Australia.  Source – State of the Forests Report, 2003 (NFI, 2003).   



Chapter 2: Research Issues 
   

29 

census
Resolution 10cm 50cm 1m 2m 5m 10m 15m 20m 25m 30m 40m 50m 100m 250m 500m 1km 1% 2% 5% 25% 50% 100%

 

MODIS - FPC

returns                | voxels - FBC

Landsat TM derived FPC (e.g. Qld SLATS)ETM+ pan

SPOT5 - CC or FPC?

2 bands

Aerial Photo Interpretation (API) - polygons with broad CC classes only

Stand

pan (2.5m)

ICESat footprints (50-100m) -  varies between CC or FBC

Landscape
sample

Hemispherical photos - e.g. a single photo with estimated 50m view - FBC

Plot tree map and crown measurements - CC

 Hyperspectral & high resolution imagery - CC - (e.g. Ikonos, Quickbird, CASI - 2m crowns; Hymap 5-10m crowns)

R
em

ot
el

y 
se

ns
ed

 d
at

a

Scale Tree component Tree crown

Field transects - e.g. 1m interval, 50m long - FBC, FPC

Plot

Fi
el

d 
da

ta

SAR or other imagery - theoretical cover assessment ability, but need further research

Crown delineations - CCLiDAR

 
Figure 3: Illustration of different cover measurement sensors and range of scale and spatial resolution, both field and remotely sensed (McDonald, et al 1998; McCloy, 

2006).  
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According to the NFI, there is currently no nationally consistent standard for mapping 

tree height, and it was noted that mapping compiled for national level reporting had nearly 150 

different height classes (Wood, et al., 2006).  Accurate and consistent height information is not 

extensively available across the continent due to the time, effort and resources required to 

collect the data in the field or interpret from stereo aerial photography.  Generally, the majority 

of accurate height information is only available for areas that are, or were, managed as State 

Forests (National Forest Inventory, 2003).  Height information in other forested areas are 

usually broad estimates from a few field plots, or infrequent high quality study sites that have 

API or LiDAR for example. These measurements are then extrapolated to similar environmental 

and/or forest conditions within broad scale datasets. 

 

Limitations with NFI forest height and cover reporting 

The National Forest Inventory compiles national scale forest information using data 

from the States and Territories.  A major difficulty with this approach is that each source of data 

is provided at different assessment scales (e.g., pixel spatial resolution or aerial photographic 

scale), level of attribute detail, accuracy (spatial and attribute) and dates of collection (Wood et 

al., 2006).  Mismatches between categorical cover and height classes are observed when 

compiling and translating API derived data into National Forest Inventory classes.  The 

observed mismatches make accurate national aggregation of the height or cover class area 

difficult, and limit the effective use of the data in modelling and calibration of other data.  

Examples of mismatches between height and cover classes when using National Forest 

Inventory, Queensland and Victorian API schemes are given in Chapter 3.  A related issue is 

that, due to large class ranges and subjective interpretation, there is low sensitivity to change 

when comparing data from different dates, unless it occurs at a class boundary.  The low 

sensitivity with the current classes prevents effective monitoring other than at very broad scales 

(Scarth et al., 2001).   

To integrate different sources of cover information, the National Forest Inventory 

provides a broad conversion between foliage projective cover and crown cover (Table 2).  With 
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continuous cover information now available from satellite imagery (e.g., Landsat TM derived 

foliage projective cover; QDRM, 2003), a continuous and objective transfer function is needed 

to make better use of both historical and current/future information.  Whilst there are methods 

for translating between cover metrics when using field data (e.g., McDonald et al., 1998), these 

require the subjective assessment of canopy openness, which cannot be done using medium 

scale remotely sensed data.  This issue is highlighted by the AGO, who state that there is no 

direct relationship between tree crown cover and woody foliage projective cover, but that 

generally 20 % tree crown cover equates to around 10-15 % woody foliage projective cover 

(Table 2), with the relationship varying according to geography and vegetation community 

(AGO, 2003).  Therefore a major research gap exists in the development of an objective 

translation between cover metrics, derived from different remotely sensed data.   

Table 2: NFI translation between foliage projective cover (FPC) and crown cover (CC) (National 
Forest Inventory, 1998). 

Cover Class FPC range CC range Forest Cover Type 
1 0-10% 0-20% Non Forest 
2 10-30% 20-50% Woodland 
3 30-70% 50-80% Open Forest 
4 70-100% 80-100% Closed forest 

 

There is a need for an integrated sampling framework for forest assessment due to the 

current ‘snap-shot’ data compilation approach used by National Forest Inventory and National 

Vegetation Information System.  For example, when comparing the two forest area estimates 

made in the 1998 and 2003 State of the Forests Reports (SOFR), the forest extent in 2003 was 

an increase over that reported in 1998.  However, it was determined that the increase largely 

represents more comprehensive forest mapping of the continent rather than an actual increase in 

the area of forest (National Forest Inventory, 2003).  Current information on woody cover 

change indicates that total forest cover in Australia is in fact decreasing, though because of 

recent State and Federal legislation, the rate of current forest clearance has reduced from the 

higher rates experienced in the 1970s and early 1980s (AGO, 2005).  The confusion arising 

from incomplete compilation and reporting, and a reliance on a wide range of data sources and 

processing methodology, highlights the need for an integrated continental sampling and 
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monitoring strategy.  Such a strategy is required if accurate reporting across large areas with 

detailed information is to be achieved (Wood et al., 2006).  

The lack of an appropriate minimum area for defining forest is another limitation of the 

current National Forest Inventory mapping process.  In Australia, the Australian Greenhouse 

Office uses a minimum woody area of 0.2 ha, and for Kyoto Protocol reporting the minimum 

area of forest ranges from 0.05-1.0 ha (Furby, 2002; AGO, 2005).  The variable application of a 

minimum forest area by different agencies within a country is a common issue (Lund, 2002).  

Currently for the National Forest Inventory, sensor spatial resolution or public reporting scale 

determines the minimum area of forest.  For example, the National Forest Inventory aggregates 

25 m Landsat TM derived cover pixels to a minimum reporting level of 100 m, which is 

considered suitable for national reporting (Wood et al., 2006).  Conversely, API mapped forest 

polygons are converted to 100 m raster grid cells, with the resultant issues for accuracy in area 

and shape when converting from vector to raster formats.  API can readily utilise a standard 

minimum area based on the interpreter’s ability to discern homogeneous regions at the scale of 

the photo (e.g., 3 ha in Tasmania, with 1:20,000 scale photography; Stone, (1998)).  However, 

there is no nationally consistent minimum area available due to the range of photographic scales 

in use (Wood et al., 2006).  When using satellite imagery to classify forest cover, the pixel size 

becomes the minimum area defined as woody cover (e.g., a Landsat TM 25 m pixel is 0.0625 

ha).  If the strict NFI definition of ‘forest’ is applied to each pixel, then the vegetation has to be 

≥  20% crown cover and ≥  2 m height within the pixel.  Without appropriate calibration and 

validation of the assumed cover and height thresholds, the resulting forest classification can be 

inaccurate, and generate potentially large variation in national level spatial and temporal 

estimates of the forest estate (Lund, 2002).   

When defining a minimum area, there is the issue of when does a tree or group of trees 

with ≥  20 % crown cover per unit area become classifiable as a forest?  With moderate scale 

image spatial resolutions (~25 m+) it is conceivable that a single pixel will, in theory, be larger 

than all but the very largest tree crowns.  In sparser forests, it is possible that a single tree can be 

found within a single pixel, and be large enough to register greater than the 20 % cover 



Chapter 2: Research Issues 
   

33  

threshold.  This single tree per pixel as ‘forest’ concept, whilst currently meeting a strictly 

applied definition of NFI forest, is unlikely to be of use to ecologists or foresters (or other users) 

that may have different perceptions of, or requirements for, what a “forest” should be.  

Whatever the perceptions, it is likely that users of the forest data consider that a forested area 

should (or does) contain more than one tree, and it should at least be a self-sustaining area made 

up of a number of trees (Lund, 2002).  Additionally, when using automated crown delineation 

routines to derive then aggregate individual tree crown objects into ‘forest’ (however defined), a 

fundamental requirement is the minimum area of the reporting unit.  For example, a requirement 

could be that the forest area is made up of more than one tree.  The issue then becomes one of 

how to empirically and objectively determine the minimum area and density that is required to 

meet these criteria.  Wood et al., (2006) state that the NFI Steering Committee is still examining 

the best way to define a minimum area for national forest compilation and reporting.  This 

research gap will form a component of the methods and results undertaken in this thesis to 

address the primary research question. 

 

 

2.2.3 Utilising data within integrated sampling schemes  

Sampling strategies overview  

It is important to understand the strengths and limitations of different sampling schemes 

in order to have confidence in the collected data, and to provide avenues of query to test 

assumptions of representativeness at multiple scales.  The following section provides a brief 

outline of common sampling designs, and a summary of the use of field data for remote sensing 

calibration within integrated sampling schemes.  The use of remotely sensed data for forest 

assessment is described in Section 2.3. 

Permanent plot-based inventory systems utilising representative sampling are not new 

to forest assessment, and provide the most direct and effective measurement of trends in forest 

change and tree growth (Norman et al., 2003).  Trends have been estimated either through 

comparison of successive aggregate values from single-measure temporary plots, aggregation of 
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compared successive measures of individual permanent plots, or through a hybrid of these 

approaches, such as sampling with partial replacement (Scott, 1998).  These inventory systems 

are widely utilised throughout the world, with Canada, New Zealand, Scandinavia and the 

United States of America (USA) all having similar forest assessment, management and 

implementation issues (Norman et al., 2003).  For example, these countries have extensive areas 

of relatively undisturbed natural forests over which the accessibility, level of existing 

knowledge and management intervention is relatively limited.  Inventory sampling used by 

these countries is based on simple and flexible (though less efficient) systematic grids using 

permanent field plots with limited pre-stratification (or none at all) (Norman et al., 2003).  

Systems are commonly two-or three stage (or phase) incorporating remotely sensed data from 

API or satellite based remote sensing.  For example, the USA uses a three phase system, where 

aerial photos (and increasingly satellite imagery) are used on a one kilometre grid in the first 

phase to stratify locations to place field plots (phase 2 and 3 plots), and to determine expansion 

factors for strata (e.g., forest, non forest) (Smith, 2002).   

New Zealand (Coomes et al., 2002) and Canada (Wulder et al., 2004) employ similar 

strategies but rely more heavily on remotely sensed data to provide some of the required forest 

attributes.  New methodologies are continually being developed, for example in Canada the 

Forest Research Partnership developed Enhanced Inventory Project as well as the Earth 

Observation for Sustainable Development of Forests, which have the main objectives of testing 

and evaluating new technology to develop an enhanced forest resource inventory to replace the 

current aerial photographic and ground sampling approach.  Key components of the project 

were the integration of airborne LiDAR, multi-band orthophotography and other remotely 

sensed data (e.g. hyperspectral, SAR) to generate digital terrain models, canopy surfaces, stand 

variables by species, stand level diameter distributions, and an increased understanding of the 

LiDAR data collection variables on estimation of forest variables (Natural Resources Canada, 

2007). 

In Scandinavian countries, forest inventory is well advanced, with many countries 

utilising private companies for resource assessment, for example FORAN Remote Sensing 
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(http://forangroup.com/) in Sweden.  In Norway and Sweden conventional inventory methods 

use either systematic field plots and/or aerial photography to delineate stands and carry out 

stand inventory of floristics and structure.  Research into LiDAR inventory has been widely 

taken up and has now become a practical and economic alternative.  LiDAR based inventory 

utilises aerial photography for stand delineation and stratification, followed by LiDAR and field 

sampling for stand assessment (e.g. height, mean diameter, basal area, stocking and volume) 

(Næsset, 2004; Holmgren, and Jonsson, 2004).  In Finland, major changes are underway in 

national forest inventory, for example, it is planned that from 2010 all forest inventory 

conducted by Forest Centres will be based on laser scanning, aerial photography and 

deliberately positioned field plots. Non-parametric plot based methods will be applied to 

generate estimates by forest stand by species of age, height, diameter and volume (Finnish 

Forest Association, 2008). 

There is wide variation between countries for plot dimensions, orientation and sample 

density.  The same issues facing these countries also occur in Australia, and the NFI is utilising 

the international experience in the development of the proposed CFMF (Wood et al., 2006). 

Within any sampling framework, errors in measurement, estimation and sampling are 

commonly recognised.  Measurement error may occur in estimating structural attributes, such 

as tree height.  Estimation errors are associated with the prediction of new attributes, many of 

which are difficult to measure (e.g., biomass) from measured attributes (e.g., diameter at 130 cm 

height (D130)).  Within a sampling strategy, a key component is to reduce both the measurement 

and estimation errors at the site level and from both field and remotely sensed data. (Schreuder 

and Gregoire, 1993; West, 2004)  Sampling errors relate to how well the sample represents the 

entire population or region.  When designing sampling strategies, consideration needs to be 

given to the intensity of samples required to adequately represent the area or population.  

Samples too close together will tend to duplicate information creating a wasteful (and 

expensive) design.  However, samples too far apart will give rise to large sampling variances 

(potential error) and so be inefficient (Scott, 1998). 

 

http://forangroup.com/�
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Random, systematic, and stratified random sampling 

The simplest and easiest technique to sample a population is to select an unbiased 

sample across the area to be assessed.  This is achieved by randomly locating samples until the 

desired number have been collected.  A limitation with simple random sampling is that often 

clusters of sites are generated in some parts of the area and no observations in others, which, 

depending on the research interest, can limit the suitability of the method for effective spatial 

sampling (Haining, 1990).  This limitation can be offset with stratified random sampling, where 

an independent random selection in made within partitioned regions or strata.  This strategy 

allows the variances of the estimators from each stratum to be combined to obtain variances of 

estimators for the whole population (Thompson, 2002).   

Stratification schemes are most efficient when the population is partitioned such that the 

units within the stratum are as similar as possible.  Whilst variance between strata may be high, 

a stratified sample with adequate units from each stratum in the population will tend to be 

representative of the population as a whole (Thompson, 2002).  Stratified random samples 

become inefficient when the distance between samples is less than a predefined optimal distance 

used in a systematic sample.  Therefore, some form of systematic sampling may be desirable 

which keeps sites at some optimal distance apart while providing full coverage of the area under 

investigation.  If attributes under investigation tend towards highly variable distributions, then a 

relatively dense network of sites is required so that the variable nature of the area can be 

characterised (Haining, 1990).   

Whilst random allocation of sites reduces bias toward any particular spatial attribute, 

clustering can occur even with stratification, for example near strata boundaries (Thompson, 

2002).  Theoretical evidence stresses the effectiveness of systematic sampling in a variety of 

spatial situations.  However, issues can arise with aligned systematic sampling because of 

spatial variability occurring at a range of measurement scales, discontinuous spatial variation, or 

where there are features that are not easily sampled using a regular grid (e.g., riparian 

vegetation; Haining, 1990).  Practical issues also influence sampling design.  While a 

potentially optimal design may use a dense network of sites on a regular grid, when cost, 



Chapter 2: Research Issues 
   

37  

timeliness of survey, and access (especially to private land or remote/difficult terrain) are 

considered then it is likely that not all potential sites can be used.  In these instances, an 

increased sampling error has to be accepted or a different sampling methodology used 

(Thompson, 2002).    

 

Model based sampling 

An example of a potentially powerful sampling design, developed to address some of 

the issues of random and systematic sampling, is model-based sampling.  With this strategy, a 

regression model is used to determine the value of the attribute of interest, based on its 

relationship to an easily observed variable that was measured on every sampling unit in the 

population (West, 2004).  Multiple covariate attributes can be utilised in the regression model, 

so long as they are all available in the sampled population (i.e., remote sensed data), which can 

often result in improved model prediction accuracies.  Model based sampling designs have been 

used at local and regional levels for over 20 years (Biggs et al., 1985; Wood and Schreuder, 

1986; Hamilton and Brack, 1999).  However, whilst the application of model based sampling at 

continental scales was proposed (Brack, 2004), and forms a key part of the Australian 

Greenhouse Office NCAS methodology (Brack et al., 2006), the sampling strategy has not yet 

been implemented for national forest monitoring. 

An advantage of a model-based strategy is that it utilises the full power of regression 

analysis in establishing relationships between the variable of interest (often something more 

difficult to measure – such as field data) and one or more covariates that can be (generally more 

easily) measured in the population (e.g., using remote sensing).  Generally, all that is required is 

that the data collected covers most of the value range of the covariates occurring in the 

population, and that the sample is objectively selected (West, 2004).  These criteria allow field 

data collected for purposes other than forest inventory to be utilised more often, thereby 

reducing cost and resource requirements.   

Disadvantages of model-based sampling are that (as with most stratified designs) some 

prior knowledge or data is required in order to develop the regression models.  If there are large 
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uncertainties in the existing data, or gaps in the extent or knowledge of the range of values in 

the population, then the resultant models may have large variances and poor prediction ability 

when applied to new areas.  Second, a model-based sampling strategy could become potentially 

confusing and unwieldy (and therefore difficult to ‘sell’ and implement) when a large number of 

variables of interest are being investigated, with each requiring a separate regression model to 

be developed.  This may be mitigated to some extent if there is correlation between forest 

metrics, thereby allowing a smaller set of variables to predict a larger range of metrics.  Despite 

these potential disadvantages, where cost is a factor, the ability to predict a required attribute 

based on readily available remotely sensed data can provide a relatively inexpensive initial 

estimate (with confidence levels), especially if the required information was not available 

previously, or is available but has low spatial or spectral resolution and limited attributes   

(Brack, 2007).  

 

Using field data for remote sensing calibration 

Field data are used to enhance the extraction of information from remotely sensed 

sources, through calibration of the data and information, and to provide an assessment of the 

accuracy of derived information.  This methodology is a core part of the strategy for integrated 

sampling schemes.  The following section outlines current knowledge and theory on the data 

integration process, and provides guidance for addressing the primary research question, in 

terms of linking and calibrating LiDAR with field estimates of forest structure.  

Field data can be defined as independently verifiable, more detailed and accurate 

(spatially and in information content), and collected using proven and repeatable techniques, 

usually at a fine spatial resolution (Curran and Williamson, 1985).  Field data are collected at 

key locations determined through appropriately designed sampling strategies, as outlined 

previously (Curran and Williamson, 1986).  The field site concept is defined by McDonald et 

al., (1998) as a small area of land that is considered to be representative of the vegetation, 

landform, or land surface / features associated with the observations.  It is noted that whilst the 

extent of a site is arbitrary, a square or rectangular site of 400 m2 is appropriate for sampling 



Chapter 2: Research Issues 
   

39  

vegetation, however this may vary depending on the surrounding land cover.  What is required 

with all field data collections used with remotely sensed data is a clear definition of the purpose 

of the data, and a specification of the criteria that the field data must meet, such as (but not 

limited to) the types or intended use, spatial resolution, timeliness and accuracy of the data 

collected (Zhou et al., 1998; Fisher et al., 2006).   

When using field data to validate remote sensing derived information, accuracy is 

defined as the closeness of derived values to field estimates (Cooke and Harris, 1970).  

However, as field data are rarely totally accurate, the accuracy assessment is not necessarily an 

estimate of the closeness to the “true” values (although it may be close).  This also suggests that 

field data should not be called “ground truth”, as it is also an estimate of the attribute of interest 

(Brogaard and Ólafsdóttir, 1997).  Two other concepts related to the usefulness of field data for 

calibration deal with bias and precision.  Bias is defined as the difference between the mean 

value from a set of repeated measurements and its ‘true’ value.  Precision is defined as the 

variation in a set of repeated measurements (West, 2004).    

Three different types of accuracy can be recognised with respect to remote sensing 

analyses: classification accuracy, parameter estimate accuracy and location accuracy.  

Classification accuracy can be undertaken at a pixel level, where the classification result is 

compared to field estimates for each pixel in a sample, and a commission and omission error 

table generated.  When object-oriented analyses are undertaken on the data, objects (e.g., crops, 

fields or forest patches) that are generated from a number of pixels (or segments / clusters) can 

be assessed for accuracy for both class attributes and area / boundary location (Van Gendern et 

al., 1978).   

Parameter estimate accuracy compares the estimate of a physical attribute (e.g., forest 

height or cover) with ground measurements, usually with correlation and regression analyses to 

establish the relationship and set confidence ranges (Thompson, 2002).  Whilst the assessment 

process is generally simple (depending on the metric being compared), accuracy estimates can 

be compromised when there is a mismatch between the sensor spatial resolution and the scale at 

which in-situ measurements are collected.  The use of in-situ measurements for model 
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calibration and validation therefore requires robust and defensible methods to adequately 

sample or spatially aggregate ground measurements to the scale (e.g., size and shape) at which 

the remotely sensed data are acquired (Curran and Williamson 1986; Atkinson and Curran 

1995; Baccini, et al., 2007).   

Location accuracy assessments between field and remotely sensing data compare 

points, lines, or polygon area features.  Assessments generally rely on specialised field survey 

techniques (e.g., through the use of ground control points) and/or Global Positioning Systems 

(GPS), for the registration and geo-rectification of the remotely sensed data (Lund, 1998).  

Where both field and remotely sensed data have utilised the same ground control points, and 

thus have the same inherent positional error, it can be difficult to judge which source provides a 

more accurate estimate of the object location, particularly when fine scale remotely sensed data 

are used.   

 

 

2.3 Remote Sensing of Forests  

 

2.3.1 Overview  

Remotely sensed imagery records the spectral reflectance from the surface of the Earth, 

and is a useful source of information about the spatial distribution of vegetation.  Applications 

for mapping the location of vegetation, its quality, quantity and dynamics are numerous and 

continually expanding.  There is also a correspondingly intensive research effort for improving 

analytical methods (Dungan, 2001).  The scale of the land surface unit under observation (pixel 

size) and spectral range combine to determine the amount of information that can be derived 

from these sensors; thus an understanding of potential scale effects is critical to effective use of 

remotely sensed data (Hay et al., 2005).   

Remote sensing use within forest inventory has been steadily increasing over the last 60 

years.  The first use began with black and white aerial photography after the First World War, 

with major utilisation and colour photography occurring after World War II.  There has been an 



Chapter 2: Research Issues 
   

41  

ever expanding use of satellite remote sensing from the 1970’s, with the spatial resolution, 

extent, diversity (multi-spectral, hyper-spectral, microwave/radar, laser), and reliability of 

remote sensing technologies improving rapidly over the last decade (Wulder, 1998).  

Additionally, the increasing adoption of a range of remote sensing instruments in multi-resource 

inventories has produced more accurate information, particularly for defining forest boundaries 

and producing national level maps (Lund, 1998; McRoberts and Tomppo, 2007).   

Methods for processing moderate spatial resolution (~20 m+) remote sensing to produce 

forest and land cover information are well developed and accepted (e.g., Richards et al., 2000; 

Cihlar, 2000; Donoghue, 2000; Patenaude et al., 2005).  Broad scale forest mapping and 

monitoring worldwide has been undertaken primarily using NASA’s Landsat series, the 

Advanced Very High Resolution Radiometer (AVHRR) (e.g., Lu et al., 2003), the Satellite Pour 

l'Observation de la Terre (SPOT) series, and more recently with the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensors (Wulder, 1998; Hill et al., 2006).  Processing 

methods for determining forest cover from moderate spatial resolution sensors like Landsat TM, 

range from band ratio combinations such as NDVI (e.g., Miura et al., 2006) to more complex 

modelling using, for example, regression based modelling (Lucas, et al., 2006c) or Geo-Optical 

(GO) and radiative transfer methods (Li and Strahler 1985; Li et al., 1995, McCloy, 2006).  

With GO methods for example, pixel radiance is modelled as the area-weighted combination of 

the range of sunlit and shaded tree objects and background components visible to the sensor.  

GO models are used to estimate the bidirectional reflectance distribution function  using discrete 

3D objects, where the shape, density and patterns control the reflectance response to 

illumination and different view angles.  In the Li-Strahler GO model a spherical shape is 

assumed for the partially illuminated tree crowns that make up the vegetation canopy (Jupp and 

Walker, 1996; Scarth and Phinn, 2000).   

The Landsat series of satellites have been in operation since 1972, and have been 

utilised for a broad range of applications in Australia.  The latest sensors - Landsat 5 Thematic 

Mapper (TM) and Landsat 7 Enhanced Thematic Mapper (ETM) - have 30 m spatial resolution 

across 7 spectral bands, with Landsat 7 having an additional 15 m panchromatic band (NASA, 
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2008).  A fault developed in Landsat 7 during 2003 resulting in data gaps, rendering its data 

unusable for National Forest Inventory applications; however more recent research into 

increasingly sophisticated data blending algorithms incorporating MODIS and Landsat, the 

SLC-off limitation is becoming less of an issue (Gao et al., 2006; Wulder et al., 2008).  This 

also highlights the requirement for CFMF data collection methods to be technology independent 

(Principle 4), or at least not substantially reliant on any one sensor (Wood, et al., 2006).  In 

Australia, two major users of Landsat TM imagery for state and national level forest 

measurement and monitoring are the Queensland Statewide Land-cover And Trees Study 

(SLATS) program and the Australian Greenhouse Office National Carbon Accounting System 

(NCAS).   

SLATS use Landsat TM imagery from 1989-to-present for estimating the extent and 

change in woody vegetation.  A multiple regression vegetation index developed using field site 

data sampled throughout Queensland, is used to calculate a gradient of woody foliage projective 

cover, and seeks to detect woody vegetation to the lowest possible detection limit (QDNRM, 

2003; Lucas et al., 2006b).  This vegetation index compensates for the difference in background 

soil colour which can otherwise cause significant overestimation (for black soil) or 

underestimation (for red soil) of woody vegetation cover.  Dry season imagery (July – 

September) is used to minimise the variability in image quality due to atmospheric haze and 

cloud, and to provide the maximum differentiation between pasture and forest canopy (Lucas, et 

al., 2006b).  For purposes of vegetation management, SLATS detects all woody vegetation, 

with a minimum threshold of approximately 7 % foliage projective cover in most cases, but the 

minimum threshold may be up to 12 % where image quality is poorer (AGO, 2003; QDNRM, 

2003).  Recently airborne LiDAR data were collected at a number of test sites, and research is 

underway to use the LiDAR to improve the Landsat TM derived foliage cover estimation 

models (J. Armston, pers. com.).  

NCAS use Landsat TM data to identify change in forest cover status to feed into 

national carbon accounting models.  The primary mission of NCAS is to support Australia’s 

position in the international development of policy and guidelines for terrestrial greenhouse gas 
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sinks and emissions.  NCAS estimates continental biomass stock and flux at sub-hectare 

resolution using Geographic Information Systems (GIS) based process models (3PGs) 

combined with empirical data (Richards and Brack, 2004; Richards and Evans, 2004).  Maps of 

biomass potential are interpolated from mapped multi-temporal productivity layers, calibrated 

with measurements of mature forest biomass.  Biomass accumulation is estimated with simple 

growth formulae, linked to site productivity (predicted using soil and climate factors) and 

combined with stand age estimated from disturbance analyses derived from Landsat MSS and 

TM images spanning 1972-2002 (Richards, 2002).  NCAS was developed using a process of 

continuous improvement, and this allows for enhanced capability for monitoring, scenario 

modelling, and capability to support climate change mitigation initiatives (Brack et al., 2006).  

For example, vegetation layers used in the modelling for stratification and allocation of mature 

biomass estimation functions were derived initially from a combination of the Resource 

Assessment Commission survey (RAC, 1992) and Carnahan (AUSLIG, 1990) mapping 

(Richards, 2002).  A more recent update includes the National Vegetation Information System 

data (ESCAVI, 2003).   

The NCAS, according to international guidelines, measures a claimed constant 

minimum threshold of 20 % interpreted tree crown cover at 2 m height, and identifies only 

verifiable, deliberate land use change (i.e. from a forest to a non-forest use).  It was noted in the 

NCAS documentation that the 20 % crown cover is at the lower limit of cover that can be 

accurately resolved using Landsat TM data (Richards, 2002).  However it should be noted that 

non-stereo optical data is inherently asymptotic to vertically distributed structural elements 

(McCloy, 2006), so while the NCAS may claim to utilise a 2 m height threshold, in practise this 

can only be assumed or roughly estimated based on temporal analyses.  Actual fine scale active 

data sources such as LiDAR would be required to quantitatively apply a specific height 

threshold to the modelling.  Whilst seeking to develop a consistent and comprehensive 

assessment of vegetation across the continent, these data still contain knowledge gaps and issues 

with mapping scale, currency, and use (e.g., determining a 2 m height threshold using passive 



Chapter 2: Research Issues 
   

44  

optical data), which can introduce error when assessed, utilised, or validated at the sub-hectare 

level.  

Synthetic Aperture Radar (SAR) is another potential source of forest information.  

Knowledge of the information content of this data source acquired over forest environments, 

and in particular microwave interaction with different components (leaves, trunks, branches) is 

required to support the retrieval of their biomass, structure and floristic composition at an 

operational level (Hyyppä et al., 2000).  Such knowledge is increasingly important given the 

deployment of lower frequency spaceborne radar sensors (e.g., Japan’s Advanced Land 

Observing Satellite (ALOS) Phased Array L-band SAR) to complement the current suite of C-

band sensors observing the Earth.  Active microwave sensors can penetrate the canopy and so 

provide information about the entire vertical depth of the forest, as well as being sensitive to a 

range of forest parameters, including the geometric structure of tree components (Liang et al., 

2005).   

Another benefit of SAR systems is the ability to make all-weather (although results can 

be negatively impacted by wet conditions e.g., de Jong et al., 2002) and night-time observations 

at high spatial resolution, and at a range of frequencies and polarizations.  In gaining such 

knowledge, a number of approaches can be adopted, including the use of empirical relationships 

(Dobson et al., 1995; Lucas et al., 2000; Le Toan et al., 2004) and modelling by distributing 

tree components of varying size, geometry and dielectric properties within two-dimensional 

(2D) layers (e.g., Durden et al., 1989; Lucas et al., 2004; Liang et al., 2005).  More recent 

modelling have utilised 3D cubes (e.g., Sun et al., 2002) and simulated microwave interaction, 

overall backscatter coefficient, and the magnitude of contributory mechanisms (e.g., single 

bounce, volume scattering).  In the latter case, the cubes or “voxels” (volumetric pixels) have 

typically been constructed around artificial trees or those that have been measured from field 

data.  However, at the present time these systems and methodological approaches tend to be best 

suited for structurally homogeneous forest types, and those in the lower biomass range (30-200 

Mg ha-1) due to issues of sensor saturation (Imhoff, 1992; Lucas et al., 2006a).   
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LiDAR remote sensing directly measures both horizontal and vertical spatial elements 

of forest structure.  Many studies utilising either both small footprint (< 0.5 m radius) or large 

footprint (10 m +) waveform digitization airborne LiDAR, have demonstrated an ability to 

recover structural elements such as tree and canopy height, canopy cover and volume, canopy 

height profiles, biomass and basal area at accuracies near equivalent to (and sometimes better 

than) field survey (Magnussen and Boudewyn, 1998; Lim et al., 2003b; Riano et al., 2004; 

Gobakken and Naesset, 2005; Lefsky et al., 2005b).  LiDAR remote sensing of forests will be 

covered in more detail in section 2.3.2.  

When mapping forest structure, an optimal integration strategy would include finely 

detailed measurements that field sampling (or field equivalent remotely sensed data) provides, 

combined with the broad spatial coverage of moderate spatial resolution remote sensing.  

Although this level of forest structural information cannot be provided by any current single 

technology, advancements in SAR and LiDAR have the potential to lead to broad-scale 

mapping of both horizontal and vertical structure in the near future (Reutebuch et al., 2005).  

However, intermediate scale mapping of forest structure is possible through statistical analyses 

such a model based sampling, and/or fusion of information from multiple sensors.  This process 

takes advantage of the highly detailed vertical measurements provided by LiDAR: either 

detailed full waveform-digitizing (where available e.g., SLICER / LVIS (Harding et al., 2001)) 

or ICESat (Lefsky et al., 2005a), or less detailed but more available small footprints systems 

(Lim et al., 2003b).  The LiDAR is then combined with the broad-scale mapping capabilities of 

passive optical sensors, for example Landsat TM (Hudak et al., 2002; Wulder and Seemann, 

2003; Donoghue and Watt, 2006), or hyperspectral (Bunting and Lucas, 2006; Koetz et al., 

2007; Addink et al., 2007; Lucas et al., 2008), or the coarse sensitivity to horizontal and vertical 

structure afforded by SAR (Reutebuch et al., 2005; Hyde et al., 2006; Lucas et al., 2006a).   
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2.3.2 LiDAR remote sensing of forests 

Overview 

As described previously, LiDAR is increasingly being utilised in the calibration 

between field data and other remotely sensed data.  The following section outlines the research 

into the application of LiDAR for forest assessment, including strengths and limitations for 

assessing forest cover and height.  This provides context and direction for discussing the utility 

of LiDAR to improve measures of forest structure, which is presented in Chapter 5.   

In recent years, the retrieval of forest structural attributes across the landscape has been 

advanced considerably following the development of remote sensing technology, and 

particularly multiple (discrete) return and full waveform LiDAR (Lim et al., 2003b).  Small 

footprint LiDAR is an active sensor that uses a laser beam in the near infrared spectral range 

directed towards the ground.  The time and intensity of any return signals from the original 

pulse are used to measure the distance to an object.  Depending upon flying height, the footprint 

size may vary from 0.1 to 5.0 m and the interval between laser returns may range from 0.25 to 5 

m.  With the aid of real-time differential GPS (with base stations) and sophisticated inertial 

navigation systems (INS) that measure aircraft pitch, yaw and roll, most LIDAR are now 

capable of achieving absolute spatial accuracies of < ± 1m in the x and y directions, and < 0.25 

m in the z direction (i.e., elevation).  In most systems, the laser pulse is emitted via a rotating 

mirror, which creates a zigzag swath of laser returns either side of the aircraft (Figure 4).  For 

forest assessment purposes, LiDAR provides a highly precise dataset of points representing a 

sample of terrain and vegetation.  The high geo-registration accuracies now makes it possible to 

“image” individual tree crowns, and to locate the same trees on the ground using, for example, 

hand-held GPS (Lovell et al., 2003).  

Over the last 15 years, the use of small footprint airborne LiDAR for retrieving ground 

surface and vegetation parameters has been demonstrated.  The data have been used primarily to 

retrieve commonly measured forest attributes, namely tree-based estimates of top height and 

crown dimensions (Leckie et al., 2003; Solberg et al., 2006), or stand-based estimates of mean 

or maximum canopy height (Mean et al., 2000; Naesset, 2002), basal area and stem volume 
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(Holmgren et al., 2003), canopy cover (Todd et al., 2003; Riaño et al., 2004), timber volume 

(Maltamo et al., 2004) and/or biomass (Lim and Treitz, 2004).  Algorithms have typically been 

developed through empirical relationships with ground data, and their success was reported by 

referring to a testing ground dataset and utilizing standard statistical descriptors (e.g., the 

coefficient of variation, r2).  This work has now matured to the state where direct estimates of 

structural variables (e.g., tree heights, canopy cover) routinely achieve r2 values approaching or 

exceeding 0.90 (e.g., Suarez et al., 2005).  Hyyppä et al., (2001) demonstrated that LiDAR 

could provide more precise stand-based estimates than conventional field-based inventory.   

To date, the research and development effort has largely been undertaken by timber 

companies, government organizations and the academic scientific community.  Research into 

LiDAR application have often been in close collaboration due to the high cost of acquisition, 

mission planning, collection of associated field data, along with computer storage and 

processing software.  Most studies have been conducted across a range of forested biomes 

(boreal, temperate, subtropical and/or tropical) in the US (Lefsky, et al., 1999; Hall et al., 2005), 

Canada, (Magnussen and Boudewyn, 1998; Lim and Treitz, 2004), Australasia (Lovell et al., 

2003; Tickle et al., 2006; Goodwin et al., 2006) and Europe (Hyyppä et al., 2001; Gaveau and 

Hill, 2003).  When retrieving forest structural attributes, the majority of studies have utilised 

LiDAR height information, which has generally been in the form of canopy height surfaces or 

models (CHM) interpolated from point data from the outer surface on the canopy.  In earlier 

studies using LiDAR data, emphasis was placed on retrieving tree or stand height from the 

canopy height models or information on the vertical stratification of foliage and branch 

elements (e.g., Magnussen and Boudewyn, 1998; Todd et al., 2003; Lovell et al., 2005). 

Whilst most LiDAR studies have utilised a scanning mode sensor since they offer a 

larger measurement area and the ability to delineate individual crowns, profiling systems were 

initially trialled before being superseded by scanners.  Profiling LiDAR systems use a single 

beam emitted below the aircraft to sample the ground and features, generating a single line 

transect of points, rather than a scan of an area.  More recently profiling systems have been 

investigated again as a less expensive alternative to scanners, especially for regional or 
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continental sampling.  In Australia, a profiler system was used to assess foliage projective cover 

and canopy height, with R2 values greater than 0.9 with field estimates reported.  Monitoring of 

changes in cover and height resulting from logging or growth, were shown to be successful 

(Weller et al., 2003).   

In North America both the USA and Canada have reported LiDAR profiler trials.  In the 

state of Delaware, USA, a single set of airborne laser-profiling data acquired in 2000 was used 

to assess forest wood volume and biomass, with estimates within 22% of US Forest Service 

county level estimates.  Mature forest stands that provided suitable habitat of endangered 

species were successfully identified and mapped.  The studies concluded that line intercept 

sampling techniques used in conjunction with a relatively inexpensive, portable airborne laser-

profiling system should be utilised as a regional (hundreds of thousands of hectares or larger) 

assessment tool for assessing and monitoring a wide of range of natural resources (Nelson et al., 

2003; Nelson et al., 2004).  In Canada, two coincident LIDAR profiler transects were integrated 

with Landsat ETM+ imagery to monitor boreal forest change over a 5 year period (1997 and 

2002) along an approximate 600 km corridor.  The results indicated that key canopy attributes 

(including forest canopy height) were stable over the five-year period.  It was found that, as 

expected, forest growth occurred incrementally over broad areas; with losses being very evident 

and spatially constrained.  It was concluded that the approach held potential for investigating the 

impacts of climate change across a boreal forest latitudinal gradient (Wulder et al., 2007). 

At present, attention is increasingly turning to the estimation of a greater range of forest 

attributes as processing methods become more sophisticated.  Desirable attributes include tree 

density (e.g., Holmgren et al., 2003; Leckie et al., 2003), basal area or biomass (e.g., Lefsky et 

al., 1999; Lim and Treitz, 2004; Lefsky et al., 2005a) and measures of canopy cover (Riaño et 

al., 2004; Chen et al., 2004).  For the purpose of retrieving these attributes, measures derived 

from the LiDAR CHM (maximum, mean or percentiles) and/or the percentage of canopy strikes 

per unit area or volume have typically been considered.  For estimating stem density, several 

studies have simply counted crowns delineated using the CHM (e.g., Hyyppä et al., 2001; 

Leckie et al., 2003; Suarez et al., 2005), whilst others have used more complex transfer 
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functions based on specific percentiles of the height distribution of canopy LiDAR pulses or 

mathematical functions (e.g., Weibull (Lovell et al., 2003; Maltamo et al., 2004); or Johnson’s 

SB (Jerez, et. al., 2005) that describe apparent vertical profiles. 

 
Figure 4: Graphical representation of the elements of a small footprint airborne scanning laser 

(LiDAR) system.  GPS refers to Global Positioning System, INS is Inertial Navigation System.  Note 
that the graphic and elements are illustrative only and not to scale. 

 

Plot and stand-level descriptions (e.g., density, mean height and canopy cover) have 

been obtained through aggregation of tree level information (e.g., Popescu et al., 2003).  

However, success in locating and attributing stems occurring in high density young forests or 

beneath overstorey canopies and integrating these with those of the overstorey trees for stand-
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based estimates were limited to only a few studies (e.g., Hyyppä et al., 2001; Leckie et al., 

2003; Gaveau and Hill, 2003; Suarez et al.,2005; Koukoulas and Blackburn, 2005).  

Some studies have examined the potential to integrate existing API with LiDAR.  For 

example, St-Onge et al., (2004) assessed the potential for improved utilisation of historical 

aerial photography for tree height measurement by using LiDAR derived ground Digital Terrain 

Models (DTM).  The study used LiDAR to derive ground elevation (base of tree), and then 

using stereo photogrammetry to measure tree height.  This allowed the improvement of photo 

interpretation and measurement of height even in more dense forests, which traditionally were 

more difficult to interpret due to higher cover in lower or understorey strata.  As the ground 

terrain was unlikely to change in a major way (unless there has been significant 

disturbance/erosion), then the same DTM could be used with historical photography, thus 

expanding the utility of historical aerial photo archives.   

 

Large footprint LiDAR 

The majority of studies have focused on small footprint LiDAR, largely because of the 

earlier development of this technology but also because of the wider availability of commercial 

systems in many countries.  By contrast, full waveform large footprint airborne systems are still 

experimental in the USA, and not yet commercially available.  This limitation is being 

addressed to some extent by spaceborne LIDAR platforms such as the Geoscience Laser 

Altimeter System (GLAS) on the current NASA Ice, Cloud, and land Elevation Satellite 

(ICESat).  The GLAS sensor is a full-waveform laser with an approximate ellipsoid footprint of 

70 m diameter on average (variable between 50 m diameter circle to 60 x 120 m ellipse), with 

samples approximately every 200 m along track, and 183 day repeat cycle path.  Investigations 

into forest height extraction have been initiated, and are currently ongoing (Ranson, et al., 2004; 

Lefsky, et al., 2005a; Harding and Carabajal, 2005). 

These and other full waveform LiDAR data (e.g., SLICER and LVIS) are showing 

considerable promise for forest assessment.  Depending on foliage canopy, they are capable of 

sampling almost the full canopy profile within each footprint.  The high level of sampling 
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provides information on the distribution of strata (including the sub canopy), the canopy volume 

and other stand attributes (e.g., growth stage) which have proved difficult to obtain with small 

footprint LiDAR or other methods (Lefsky, et al., 1999; Harding, et al., 2001; Lim et al., 

2003b; Lefsky et al., 2005b).  However, whilst providing stand level descriptions, these systems 

have proved limited for retrieving tree level information such as the location of individual stems 

and their associated crowns dimensions.  This occurs largely because the diameter of the 

footprint, (generally 8 – 70 m; Lim et al., 2003b), presents a lower bound on the horizontal 

spatial resolution.  Also, it is often difficult to relate field scale data or provide absolute 

measures of the foliage height distribution (Harding, et al., 2001).   

This is in contrast to the small footprint systems within which tree crowns can be 

readily discerned and information on the vertical profile also obtained.  Large footprint systems 

generate a full waveform for each footprint, resulting in large volumes of complex data 

requiring sophisticated processing.  Small footprint systems also generate large volumes of data 

but the data themselves are relatively simple (i.e., in terms of spatial location, elevation and 

intensity) and are more readily available for immediate use and analysis.  Even so, the 

representation of the canopy vertical profile is at a lower spatial resolution and can be biased 

toward the upper parts of the canopy, thus potentially affecting foliage cover estimates derived 

from LiDAR, as identified in Lovell et al., (2003).   

 

LiDAR for Australian forests 

A key benefit of all LiDAR systems is that they provide information on the distribution 

of plant elements in the sub-canopy and, in Australia, this information is sought as it has 

relevance to managing flora and faunal species, understanding both forest health and condition, 

and the capacity of forests to regenerate, especially following fire, drought or harvesting (Stone 

et al., 2000).  Such knowledge is also required for improved carbon accounting of both current 

and future carbon stocks (Dean et al., 2004), and for risk assessment in relation to fire fuel loads 

and crown fires (Riaño et al., 2003; Andersen et al., 2005).  However, useable algorithms for 

retrieving information on the sub-canopy of forests in Australia from LiDAR have been difficult 
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to obtain, partly because most have been developed on, and are applicable to, single-layered 

forests or those that are multi-layered but with a relatively uniform structure.  Such structures 

are common to forests in northern hemisphere temperate regions, which are composed primarily 

of coniferous (e.g., Hall et al., 2005) and/or broadleaved (e.g., Patenaude et al., 2005) species, 

and also the tropics (Drake et al., 2002; Clark et al., 2004).   

Native forests typical to Australia differ from these formations in that many are more 

open, and comprised of a mix of species with markedly different architectures.  In particular, the 

dimensions (area and depth) of crowns in the upper canopy are highly variable, ranging from 

large and expansive (typical to many Eucalyptus and Angophora species) to small and compact, 

such as those typical to Callitris species (Specht and Specht, 1999).  In many cases, both crown 

types occur in the same stand but often in different strata, which present significant challenges 

for deriving estimates of tree density, basal area and crown cover from LiDAR canopy height 

models.  Specifically, when locating individual trees within the canopy height model, many 

trees partially or wholly in the sub-canopy or understorey are not identified (Hyyppä et al., 

2001), high points in crowns often do not necessarily correspond to the location of the stem 

(Lee et al., 2001), and multiple high points within a single crown may occur that falsely indicate 

the presence of several separate trees (Florence, 1996).  Stand-based basal area estimates may 

also be inaccurate, particularly if these are generated by counting locally high points from the 

LiDAR canopy height model and subsequently applying regression equations relating height 

and stem diameter at 130 cm height (D130), as many trees are omitted or attributed with incorrect 

height values.  Estimates of stand-based crown cover are also often based on arbitrary 

thresholds of the canopy height model rather than on a measure that better relates to the 

distribution of foliage and branch elements. 

 

LiDAR calibration studies 

In parallel with LiDAR research for extracting forest metrics of interest, a number of 

studies have examined the interaction and responses of LiDAR data from different forest 

structural configurations, and with different sensor parameters.  This has enabled, to some 
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degree, an ability to compare results between sensors and forests.  However, given the large 

range of forests and structures found worldwide, and the ever increasing sophistication of 

sensors, there is still much research to be undertaken.  Assessment of sensor and forest structure 

interactions can be categorised into three broad research topics – forest simulation studies, 

multi-sensor and multi-forest type comparisons, and comparisons between ground and airborne 

LiDAR systems. 

Forest simulation studies have sought to better understand the LiDAR interactions, such 

as the effect of scan angle and return sampling density in different forest structures and terrain, 

by controlling all aspects of the interaction through modelling.  The modelling can be used to 

account for bias in actual LiDAR data and optimise sensor configurations for differing forest 

types.  Models have included 3D ray-tracing simulation, relatively simple forest stand 

simulation such as plantations, and recently more sophisticated forest stand simulations where a 

range of structural configurations simulate trees with variable heights, crown dimensions and 

foliage clumping (Holmgren et al., 2003; Lovell et al., 2005; Goodwin et al., 2007).  Simulation 

results have been impressive with correlations between the simulated and actual LiDAR results 

having an r2 exceeding 0.9.  Results have identified linear relationships between LiDAR return 

spacing and predominant height (Lovell et al., 2005), height estimation differences of less than 

2.5 m (Goodwin et al., 2007), and canopy profiles that have a similar form to LiDAR profiles, 

but which can have a systematic overestimation of 2.5 m (Holmgren et al., 2003).  

A number of studies have had access to sensor systems that allowed different 

parameters to be tested over the same forest location, or similar systems across a range of 

different forest types.  This has facilitated an improved understanding of how different sensor 

parameter combinations measure the forest.  For example, in both Canada and Australia the 

influence of flying altitude, beam divergence, mean point spacing, and pulse repetition 

frequency on return intensities and vertical frequency distributions were investigated (Chasmer 

et al., 2006a; Goodwin et al. 2006; Thomas, et al., 2006; Hopkinson, 2007).  Results showed 

that platform altitude and footprint size did not have a major influence on standard forest 

structure attributes (height, basal area, and biomass) and normalised canopy height profile 
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estimation.  However, there was a positive relationship between platform altitude and the 

underestimation of tree crown area and crown volume, with higher altitudes and/or lower return 

spacing resulting in greater error (Goodwin et al., 2006; Thomas, et al., 2006).  

A few studies have utilised ground based laser ranging sensors in combination with 

airborne LiDAR, to either compare both laser based methods of forest assessment with field 

data (e.g., in Australia - Lovell et al., 2003) or directly compare the results from the two laser 

systems (Chasmer et al., 2004; Chasmer et al., 2006b).  A high percentage of airborne LiDAR 

pulses were found to be intercepted at the top of the canopy, with fewer returns from within the 

canopy and understory.  Additionally, a statistically significant tree height difference between 

field measurements and the maximum laser pulse return from both airborne and terrestrial 

LiDAR was found, with an underestimate of tree height by one metre on average from the 

maximum airborne laser pulse returns (Chasmer et al., 2006b).  It was concluded that future 

research should focus on improving understanding of how laser pulse returns are "triggered" 

within vegetated environments, and how canopy properties or data acquisition parameters may 

influence the location of this "trigger" event (Chasmer et al., 2006b). 

 

2.3.3 Tree crown delineation using high resolution remote sensing 

Developing a crown cover dataset that can be utilised at multiple scales is a significant 

component of this thesis and is undertaken in order to address the primary research question.  

This section provides background to tree crown delineation methods using fine spatial 

resolution remote sensing and focuses mainly on those that have utilised LiDAR data.  Bunting 

and Lucas, (2006) provide a detailed review of crown delineation methods.  Some of the 

concepts and issues to address presented here will be utilised as part of the research design 

presented in Chapter 3.  

Common approaches to defining and/or delineating tree crowns firstly involve the 

development of a forest/non-forest mask, with thresholds of reflectance for optical images (e.g.,  

Bunting and Lucas, 2006) or height with LiDAR based methods (Hyyppä et al., 2001).  Once a 

mask was applied to the image or layer, then individual crowns or crown apices are found 
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through either (or a combination of) locating local maxima, identifying crown boundaries at 

minima in the reflectance or height surface topology, and /or using templates of different crown 

sizes and shapes.   

 

Local minima location  

Many studies have utilised a range of spatial methods to detect crown centroids and 

boundaries.  These methods begin by finding local maxima in the image, which may have been 

initially smoothed using low pass-filters to remove apparent noise (often small internal crown 

gaps).  Filters of different sizes and shapes, related to the expected crown size found in the area, 

can be used to iteratively determine the maxima most likely to equate to tree centroids.  Local 

minima are identified and used to map crown boundaries through region-growing from local 

maxima, combined with watershed based segmentation methods (Chen et al., 2006).  Various 

clustering and optimising approaches have sought to refine the number of maxima and minima 

and have tended to limit crown splitting during segmentation, often combined with knowledge-

based assumptions on the shape of trees. (e.g., Wulder et al., 2000; Hyyppä et al., 2001; 

Culvenor, 2002; Culvenor, 2003; Popescu et al., 2003; Popescu and Wynne, 2004).   

The minima and maxima finding methods tend to be most accurate in mature or early-

mature coniferous stands.  They were more limited in dense young stands, in dense clusters of 

deciduous trees, or mature heterogeneous forests where single trees could not be identified in 

the complex canopy.  In dense stands, the crown area was found to be underestimated, because 

of partly interlocked crowns (Pouliot et al., 2002; Koch et al., 2006).  Reported accuracies were 

variable and depended on the forest types, with the modelled crown mapping successfully 

identifying between 60-80 % of the field mapped crowns.  Stem detection accuracy was found 

to be no longer obtainable in any stand condition with a density greater than approximately 

2,200 stems ha-1 (Rowell et al., 2006) 

The use of a calibration model to correct the segmented areas was suggested by Hyyppä 

et al., (2001).  It was observed that whilst crowns in the top layer were detected, smaller trees 

underneath were not found.  Coops et al., (2004) applied Culvenor’s (2002) tree identification 
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and delineation algorithm (TIDA) to both fine spatial resolution multi-spectral imagery, and 

discrete-return LiDAR data, with the LiDAR performing better at crown matching when 

compared to field data.  The authors concluded that the optimal result was obtained when tree 

crowns were delineated using both LiDAR and multi-spectral data.    

 

Minima contouring 

Methods that use valley following (or contouring) along canopy reflectance or height 

topographical minima extend the minima-finding concepts described previously.  Reflectance 

topography is formed by the brighter reflectance from the tops of trees, and darker intensities on 

the crown sides or gaps between trees due to shading.  After high spectral resolution (both 

multi- and hyperspectral) images are smoothed using a range of filters, height or reflectance 

minima are identified using a range of search kernels, and the minima contour is followed in a 

clockwise manner such that similar sized, symmetrical and non-overlapping crown shapes are 

formed.  Often rule-based isolation models are used to improve the segmentation results (e.g., 

Leckie et al., 2003; Leckie et al., 2005; Gougeon and Leckie, 2006).  These methods have been 

extended using image contouring procedures and supervised feature extraction to generate 

polygons, which are manipulated based on geometrical and spatial properties of known tree 

crowns (e.g., Koukoulas and Blackburn, 2005).  Accuracy of the valley following methods 

ranged from 50–60 % of field measured tree delineations being identified when only using 

spectral imagery, to 80–90 % when LiDAR and multi-spectral imagery were combined.  

Common errors found by the studies were delineating a single cluster that actually consisted of 

two or three crowns, and a consistent height underestimation of 1.3 m on average by the LiDAR 

derived delineations.  Overall, results indicated that the LIDAR produced better results in semi-

natural forests, whereas delineations from spectral images (e.g., aerial photography) were more 

accurate in broadleaved deciduous plantations. 

 

http://www.visionbib.com/bibliography/author/gou.html#Gougeon, F.A.�
http://www.visionbib.com/bibliography/author/lec.html#Leckie, D.G.�
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Template matching and object-oriented analyses  

A further refinement of geometric and spatial crown modelling approaches uses 

template matching algorithms within object-orientated segmentation.  These methods link 

physical models of trees to the imagery, canopy height models or point data using template (2D 

and 3D) matching techniques, and often at different scale-levels.  Templates of known growth 

stage and species are associated with potential crowns in the image that have the most similar 

template (e.g., Persson et al., 2002; Solberg et al., 2006).  The methodology can be enhanced 

when very high sampling rate LiDAR (12 returns per square meter) is used to detect trees 

(Brandtberg et al., 2003).  The accuracy of earlier methods was up to 71 % of all trees (>  5 cm 

stem diameter) detected (and 91 % of the stem volume), and later methods identifying up to 93 

% of the dominant trees and 19 % of the sub-canopy trees.  Standard error estimates for height 

and crown diameter were around 1.2 m and 1.1 m respectively, with crown diameter 

overestimated by 0.8 m (Solberg et al., 2006).  It was observed that the segmentation technique 

generated crown diameters that were too small for trees with intersecting tree crowns because 

segments could not overlap.  

The template concept is further extended by using Definiens eCognition Expert-based 

object-oriented image classification and segmentation methods (e.g., Suárez et al., 2005; 

Bunting and Lucas, 2006).  Forest features from different spectral types are identified using 

scale and homogeneity metrics obtained from reflectance parameters, and height from a LiDAR 

can be added if available.  Object maxima within larger potential crowns were used as seed 

pixels, which were expanded to the edges of the reflectance topology.  The final crowns were 

generated after classification-based splitting or merging using scale dependent templates. 

Results suggested that LiDAR can predict tree tops more efficiently for smaller-diameter than 

for larger-diameter trees, with the discrepancy related to the fact that these trees are generally 

sub-dominants and have canopy heights below the mean height of the surrounding trees (Suárez 

et al., 2005).  In forests with a high density of individuals (e.g., regrowth), local maxima were 

counted to approximate density within clusters, as individual crowns could not be delineated.  

The delineation process provided accuracies on an average of 70 % (range 48 – 88 %) for 
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individuals or clusters of the same species (stem diameter > 10 cm), with lower accuracies 

associated with dense stands containing several canopy layers (Bunting and Lucas, 2006).   

 

Delineation limitations 

The crown delineation methods described above have a number of issues that require 

further research to resolve.  First, some crown centroid and local minima methods apply 

restrictions based on crown size, shape or spacing.  Others may require a user defined kernel, 

such that a bright point is identified each time the window is moved across the image.  TIDA 

and similar algorithms have had problems with larger gaps between trees, which are erroneously 

classified as tree segments in some cases, and therefore the algorithm appeared to operate best 

in more closed forests (Culvenor, 2002).  Also, with these methods, crown boundaries are at 

least one (or more) pixels wide, which is inappropriate for forests with touching or interlocking 

crowns, or even crowns identified at different height strata.  In these cases, a mapped "gap" 

pixel is an artefact of the method and does not represent an actual gap.  However, it could also 

be said that this is also an artifact of the raster data model used to display the results, rather than 

the actual delineation method itself.  Whilst using vector boundaries would reduce the apparent 

size of the potential crown boundary, how best to represent interlocking crowns or crowns in 

different height strata, whilst still maintain a boundary between crown objects is an issue 

common to all delineation methods, when utilised in 2D GIS or image processing systems.  This 

issue is yet to be resolved.   

One possible solution to representing a cluster of trees with interlocking crowns may be 

to use an outer crown boundary without internal boundaries, but using points to represent tree 

trunk locations.  Attributes could be attached to the points indicating probable crown size and 

shape that is also related back to the overall cluster size and shape.  Alternatively, the crown 

cluster itself could contain attributes describing the estimated stem density, including sub-

canopy stems.  For example, Maltamo, et al., (2004) investigated tree crown segmentation 

methods, where individual single trees were recognised, and tree height and crown area 

detected.  It was observed that while the detection of suppressed trees from a height model 
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based on LiDAR was difficult, it was possible to predict these trees by using theoretical Weibull 

distribution functions.  Weibull distributions were fitted to the LiDAR detected tree height 

distribution, in order to predict the number of small trees based on empirical correlation with 

field data. 

An issue with boundary following methods is that they tend to ignore the 3D 

positioning of crowns.  Specifically, assumptions are made that all or most stems have a crown 

area similar in size, are reasonably symmetrical, do not cast shadows or overlap each other, and 

have definitive boundaries.  Whilst the practicalities are many for this approach when 

developing new algorithms, in mature or disturbed forests stands, these situations tend to be less 

common.  In a similar manner, template methods require prior knowledge of the range of crown 

forms throughout different growth stages.  In mixed species forests with a range of soil types 

and landforms, the range of templates are required to match most or all potential forms can be 

prohibitive to gather and utilise.   
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2.4 Scale in Remote Sensing 

2.4.1 Overview 

An understanding of scale as a fundamental concept in the effective utilisation of 

remotely sensed data is required for assessing forested landscapes, primarily because scale 

determines the quality and type of information that can be extracted from data (Wulder, 1998).  

Forest landscapes are spatially correlated and scale-dependent.  Therefore multi-scale 

information is required to fully describe, understand, manage, and predict the complex 

hierarchical dynamics that determine structure, processes, and functioning (Hay, et al., 2001; 

Wu, 2004).  Understanding landscape functioning and process is required if improving 

sustainable forest management and better prediction of the potential impacts of climate change 

on ecosystems is to be achieved.  When scaling or extrapolating fine scale remote sensing or site 

specific data to medium scales, substantial error can result if the approach is arbitrary or 

inappropriate (Hay et al., 2001).  Interpretation error can also occur when making statistical 

inferences from medium scale aggregated data or relationships to individuals, with this termed 

the ecological fallacy by Robinson, (1950; in Marceau, 1999).  Therefore, the prediction and 

mitigation of scale and aggregation effects on statistical results and modelling, or exploring 

improved methods of integrating data across scales, are recognized as major research goals 

(Marceau, 1999; Atkinson and Tate, 2000).  There has been an ever increasing sophistication of 

analytical research techniques, leading to enhanced prediction accuracy for forest inventory and 

biophysical parameters when using remotely sensed data (Wulder, 1998). 

Initial methods to understand the effects of scale utilised semi-variogram graphs as a 

way to investigate optimal spatial resolution for a particular investigation (Woodcock and 

Strahler 1987).  These graphs showed how the local variance of a digital image for a scene 

changed as the resolution-cell size changes, and therefore assisted in selecting an appropriate 

image scale. Semi-variograms were generated by imaging the scene at fine spatial resolution 

and then collapsing the image to successively medium spatial resolutions while calculating a 

measure of local variance (Jupp et al., 1989).  Research of this type provided insight into remote 

sensing scale effects, by indicating that there is an implicit limit to the information content 
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associated with a particular sensor, and this limit is determined through knowledge of the spatial 

resolution of the sensor (Wulder, 1998).  In pixel based analyses, image classification is a form 

of simplification, and appropriate simplifications serve to further our understanding of complex 

issues and problems, and are nearly always based on high-spatial resolution models 

(Visvalingam, 1991; Dungan, 2001).  Typically, each measurement is classified independently 

of the others; however spatial autocorrelation is an inherent feature of high-spatial resolution 

images.  Where spatial autocorrelation is ignored, significant biases can be introduced that 

reduce the accuracy of areal inventory (Curran and Williamson, 1986). 

Over the last decade, there has been a shift from pixel based remote sensing analysis to 

that which incorporates multi-scale object-oriented methods (Hay et al., 1997).  The main 

drivers have been the commercial availability of high spatial resolution data (< 5 m) combined 

with an increase in computing power with decreasing cost, and the cross-fertilisation of object-

oriented software developments from the Computer Science and Geographic Information 

Systems disciplines.  These systems incorporate raster processing ability, and in many cases are 

available as off-the-shelf commercial products (Hay, et al., 2005).  An important component of 

the shift in analysis methods is the conceptual ability to recognise and generate image objects in 

high-spatial resolution data that are made up of many individual pixels (with generally similar 

values per object, but not exclusively) and which correspond to real-world geographic entities.  

This then emulates what human interpreters visualise when analysing an image.  Visualisations 

encompass a scale dependent range of objects of varying shape, size, arrangement, texture, and 

spatial context (Hay, et al., 2005).  Whilst these concepts, termed H-resolution (and the 

converse case, termed L-resolution, where the cells are larger than the objects being imaged 

(Strahler et al., 1986)), have been discussed for over 20 years, it is only relatively recently that 

the tools and data have matured sufficiently to match the conceptual understanding, and thus 

allowing user requirements to be met.   

Object-oriented concepts developed from the recognition that pixels are an arbitrary 

grid imposed on the surface, where grid boundaries do not have a corresponding real world 

counterpart.  The integration of energy that constitutes the pixel digital number is also derived, 
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in part, from areas outside the pixel, and thus pixels are not true geographic (or ‘real-world’) 

entities (Hay et al., 2005).  The analysis of H-resolution imagery with object-oriented methods 

in conjunction spatial statistics provides for stronger relationships and linkages to be created 

between the image spectral and spatial information, and between ground data.  Parameters may 

be estimated empirically: either with regression-based models, or in a more deterministic 

fashion, such as deriving stem counts from delineated tree crowns (Wulder, 1998).  The 

advantage of deterministic models is that they lead to a more direct understanding of the nature 

of the scene, sensor, atmosphere and their joint interactions.  Empirical models are useful for 

data exploration, suggesting relationships that can be refined further by models with more 

deterministic components.  When exercised under conditions for which they have been 

calibrated, empirical models can produce very accurate scene inference (Dungan, 2001).  The 

combination of empirical and deterministic approaches may provide for an increase in the 

ability to estimate forest inventory and biophysical parameters (Wulder, 1998). 

 

Modifiable Areal Unit Problem 

Remote sensing technologies represent the primary data source for landscape analysis, 

but there is often difficulty in extracting accurate, reproducible information from imagery.  This 

is because, as noted previously, the results of spatial analyses are sensitive to the size (scale) of 

the data collection units.  If scale is not accounted for adequately, it can lead to bias and the 

development of spurious relationships.  A well known aspect of scaling effects on spatial 

analyses is the “Modifiable Areal Unit Problem” (MAUP) (Openshaw, 1984; Jelinski and Wu, 

1996), which was described previously in Chapter 1.  The MAUP issue must be considered 

when relating field data to image data.  For adequate calibration and extraction of accurate 

information the ground data must represent an areal extent similar to the spatial resolution of the 

remote-sensing instrument.  This is because there is a direct relationship between the size of the 

objects of interest on the ground and the image (pixel) spatial resolution (Wulder, 1998).  

Object-based approaches that use basic geographic entities have been put forward as a viable 

solution to the MAUP issues associated with pixel-based remotely sensing (Fotheringham et al., 



Chapter 2: Research Issues 
   

63  

2000).  By generating basic geographic entities that specifically relate to real-world objects, the 

resultant remotely sensed analyses are much more likely to be valid, meaningful, and useful 

(Hay et al., 2005).     

Research efforts to better understand the information content of optical remotely sensed 

data at medium scales have utilised aspects of the multi-scale use of geographical entities.  The 

multi-scale basic entity strategy has also been employed to better predict microwave interactions 

in the canopy.  Both research efforts have led to the development of a range of new vegetation 

modelling approaches.  Models use a range of geometric forms, at varying levels of 

sophistication in terms of how strata and shading are defined, to physically represent the canopy 

and canopy gaps.  Alternatively, empirical relationships between canopy reflectance and the 

variable of interest are developed (McCloy, 2006).  The main types of physical modelling 

approaches include the turbid medium (e.g., Combal et al., 2000), the geo-optical (e.g., Li and 

Strahler, 1985; Jupp and Walker, 1996), ray tracing or flux / radiosity (e.g., Smith and Goltz, 

1994; Gastellu-Etchegorry et al., 1996; Casa and Jones, 2005), and hybrids of these such as 

linear semi-empirical adaptations of physical models (e.g., Fang and Liang, 2005).  Depending 

on the size of the forest stand being modelled, some models can be very computationally 

intensive, which limits their practical application.  In other cases, when forests exhibit a highly 

clumped nature and contain heterogeneous crown shapes, such as found in Australian 

woodlands, then assumptions on the size, shape and distribution of canopy elements are often 

violated, so reducing their accuracy (McCloy, 2006).    

 

Hierarchy theory and Landscape Ecology 

Ecological systems overwhelmingly complex and this complexity must be managed or 

defined for effective understanding and scaling within the system to occur (Wu, 1999).  

Hierarchy theory suggests that complex systems have a high degree of redundancy, and 

description and understanding can be facilitated by simplification through time-space 

decomposition into a limited number of subsystems (Turner and Gardner, 1991).  When applied 

to a forested landscape for example, a hierarchical model may be composed of drainage basins, 

http://en.wikipedia.org/wiki/Drainage_basin�


Chapter 2: Research Issues 
   

64  

which in turn are composed of local ecosystems or stands, which are in turn composed of 

individual trees (which in turn are composed of stems, branches and leaves, and so on) and tree 

gaps (Forman 1995).  Hierarchy theory is a part of general systems theory, and has emerged as 

part of a movement toward a general science of complexity, levels of organization and issues of 

scale (Simon, 1962; Simon 1973).  A concept of duality for interactions within hierarchy theory 

has been suggested, such as process-structure, and part-whole.  For example, Koestler (1967) 

referred to the notion of a ‘holon’, defined as a hierarchical entity that is at once a whole and at 

the same time a part.  A holon at once operates as a quasi-autonomous whole that integrates its 

parts, whilst at the same time integrating itself into an upper level purpose or role.  The 

relationship between two adjacent hierarchical levels is asymmetric: the upper level exerts 

constraints (e.g., as boundary conditions) and provides context to the lower level, whereas the 

lower provides initiating conditions and mechanistic understanding to the upper (Wu, 1999). 

Recent theoretical developments in landscape ecology have recognised that identifying, 

and taking advantage of the hierarchical structure and near-decomposability of complex 

ecological systems may hold the key to improving understanding and prediction through robust 

simplification and successful scaling (Allen and Starr, 1982; Turner and Gardner, 1991).  Wu 

(1999) summaries the paradigm of hierarchical patch dynamics as being one that integrates 

hierarchy theory and patch dynamics and, whilst allowing simplification of the complexity of 

nature, still retains the essence of the system.  A hierarchical patch dynamics scaling strategy 

can be implemented in three stages, each of which may involve a number of steps and methods: 

(1) identifying appropriate patch hierarchies to decompose complex spatial systems., (2) making 

observations and developing models of patterns and processes around focal levels, and (3) 

extrapolation across the domains of scale using a hierarchy of models (Wu, 1999).  Generally, 

decomposing a complex system may invoke a bottom-up (aggregation) or top-down 

(partitioning) scheme or both (O’Neill et al., 1986).  The establishment of an appropriate patch 

hierarchy then allows patterns and processes to be studied at their characteristic focal levels or 

domains of scale, through the careful choice of grain (e.g., observation resolution) and extent 

(Wu, 1999).   
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2.5 Summary 

The primary aim of this thesis is to determine how LiDAR can improve the assessment 

of forest structure.  This Chapter has reviewed the current literature to gain an understanding 

why forest structural measurements need improving, and how LiDAR may assist with this task.  

The main issues identified in the literature form the basis of the research design (described in 

Chapter 3), developed to address the primary research question. 

This chapter has identified that the National Forest Inventory currently utilises data with 

categorical classifications, and compiled for national reporting from the States and Territories 

using a ‘snap-shot’ approach every five years.  This methodology is not well suited to effective 

monitoring of forest stocks and dynamics, especially in response to a changing climate.  The 

National Forest Inventory has proposed the Continental Forest Monitoring Framework (CFMF) 

as a strategy to overcome the current reporting limitations.  One of the key concepts of the 

proposed framework is the use of continuous measurements for forest structure, gathered within 

an integrated multi-scale scheme, and utilising a range of data sources.  The proposed 

framework has identified a number of limitations requiring further research.  These include the 

ability to effectively translate between structural metrics using continuous transfer functions, 

and the derivation of an objective and empirically based minimum area for reporting forest.   

Multi-scale integrated sampling strategies are an efficient way to measure the landscape 

in detail, and involve taking fine scale measurements from a few well-selected field data and 

calibrating medium scale data that can be applied across the landscape.  A limitation of these 

strategies is that with large landscape variability, it is difficult to achieve a representative 

sample when limited to surveying relatively few field plots (e.g., due to cost, effort, and access 

limitations).  Effective calibration of medium scale data is therefore limited, which in turn 

affects the accuracy of regional or national reporting.  LiDAR has been shown to have potential 

for generating information that is equivalent to field measurements, but over much larger areas 

that can be surveyed on the ground.  This then provides a source of calibration data that can 

sample more of the landscape variability at fine scales, allowing improvements in the accuracy 

of reporting from medium scale data.  What is currently missing is a strategy for using LiDAR 
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to link fine scale field data with medium scale data (e.g., Landsat TM, ICESat, radar) within 

integrated sampling schemes for Australian forests. 

Scale issues affect all remotely sensed data in some way (e.g., the Modifiable Areal 

Unit Problem), which can lead to error in forest structural modeling and reporting.  

Investigations into scale issues have indicated that using basic geographic entities or objects 

(e.g., trees) within a hierarchical system is an effective way to reduce, mitigate, or at least better 

understand the effects of scale on forest assessment when using remote sensing.  Up-scaling tree 

level data to match the spatial resolution of the medium scale data can reduce scale issues, and 

improve calibration and validation of structural measurements.  However, the research gap for 

Australian forests is the ability to generate structural information at a tree scale (crowns and/or 

stems) from LiDAR data.  Ultimately, the results of investigations into the research gaps 

identified here will enable the primary thesis research question to be addressed, and therefore 

determine how LiDAR can improve forest structure assessment in Australia. 
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CHAPTER 3. DATA ANALYSIS METHODOLOGY 

3.1 Introduction 

To answer the primary research question and objectives, there is a need to investigate 

how LiDAR can improve the assessment of forest structure in Australia.  The preceding chapter 

identified a number of limitations with current national forest structure measurement and 

monitoring.  This chapter describes the research design and methodology that will address these 

limitations, and provide the results to address the research objectives, and therefore answer the 

primary research question.  The research design described in this chapter will encompass: 

1 A strategy for using LiDAR to link fine scale field data with medium scale data (e.g., 

Landsat TM, ICESat, radar) within integrated sampling schemes;   

2 The ability to generate structural information at a tree scale (crowns and/or stems) from 

LiDAR data for Australian forests, to allow sensor independent up-scaling and improved 

calibration of medium scale remotely sensed data, for both height and cover metrics;     

3 The ability to effectively translate between structural metrics using continuous transfer 

functions, and the derivation of an objective and empirically based minimum area for 

reporting forest. 

 

This chapter is divided into several sections (Figure 5).  Section 3.2 outlines the 

research design for developing a hierarchical multi-scale framework strategy, which utilises 

LiDAR to link fine scale field data with medium scale remotely sensed data.  Section 3.3 

provides an overview of the published procedures were used to collect the field and remotely 

sensed data at both Queensland and NE Victorian study sites.  Section 3.4 describes the methods 

for plot to stand scale assessment of forest structural metrics relating to height and cover, to 

allow translation between LiDAR and field data estimates.  Section 3.5 outlines the spatial data 

analysis techniques used to develop the tree and tree component scale results using LiDAR.  

Section 3.6 describes a number of case studies where exploratory data analysis techniques are 
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used to calibrate other remotely sensed data using multi-scale LiDAR products.  Section 3.7 

summarises the main outcomes of the chapter.   

It should be noted that, unless otherwise specified, ESRI ArcInfo Arc Macro Language 

(AML) algorithms written by the researcher performed the iterative calculations and spatial 

analyses described in the following sections.  Statistical analyses were undertaken in SPLUS 

(version 7). 

 

Figure 5: Methods chapter layout showing major components of LiDAR assessment of forest 
structure. 

 

 

Multi-scale assessment, 
minimum forest area

Individual crown 
delineation 

Tree 
components

Tree component 
biomass 

Methods 
Chapter 
outline 

Research Strategy 

Plot scale 
comparisons 

Tree and component scale 
modelling 

Multi-scale calibration 
case studies 

 Summary

Stand simulation  
for SAR modelling 

Height – max, 
predominant, 

vertical profiles 

Landsat 

Hierarchical 
framework 

CC – FBC 
translation 

Cover – CC, 
FBC, FPC 

Study areas 

Tree & 
component scale 

Plot scale 

Multi-scale 
calibration 

ICESat 

Tree stem + 
crown 

mapping 

Terrain 



Chapter 3: Data Analysis Methodology 
   

69 

3.2 Research Design Overview 

3.2.1 Multi-scale strategy overview 

To facilitate the improvement of forest structure assessment and specifically 

measurement of forest height and cover using LiDAR, the research design strategy has two 

main components.  First, a multi-scale analysis strategy is outlined that uses LiDAR to link field 

data to medium scale remote sensing through the use of basic geographic entities.  Second, case 

studies will be described which highlight the different applications that can be undertaken using 

the strategy, which were used to address the limitations identified in Chapter 2.  

 

Developing a hierarchical multi-scale modelling framework 

When using LiDAR to effectively link field data with a range of medium scale remotely 

sensed data, it is necessary to operate at multiple scales.  As outlined in Chapter 2, an 

examination of hierarchy theory from the field of landscape ecology suggests that when one 

studies a phenomenon or entity at a particular hierarchal level (the focal level, often denoted as 

Level 0), the mechanistic understanding comes from the next lower level (Level -1), whereas 

the significance of that phenomenon can only be revealed at the next higher level (Level +1) 

(Wu, 1999).  Thus three adjacent levels or scales are usually necessary for understanding most 

of the behaviour of ecological systems.  When developing a spatially explicit dataset consisting 

of basic geographic entities, the first task is to define the actual basic entity of analysis.  In order 

to delimit practical and achievable objectives for this thesis, the basic entities for each of the 

three hierarchal levels are defined as:    

1 Level 0: An individual tree or tree cluster.  Clusters are mapped where interlocking 

crowns or high stem densities preclude individual crown separation.  Two entities will be 

mapped at this level (i.e., tree crowns/clusters of crowns, and individual stems).  Mapping 

individual stems is especially important for interpreting crown clusters, as the cluster area 

is likely to contain more than one tree.   

2 Level +1:  The wider forest stand, which is defined here as the maximum spatial extent of 

the available LiDAR data.  This level can be divided into the plot scale (for direct 
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comparison with field data), and the stand or landscape scales (to test representativeness of 

plots within the stand and landscape). 

3 Level –1:  Within-tree components, defined as trunks and crowns (from Level 0) containing 

major branches, and leaves and small branches (represented as canopy voxels).  The 

amount of leaves and small branches is calculated using allometry applied to the Level 0 

tree entity structural dimensions and species (species information is derived from externally 

supplied hyperspectral data).  Primary and secondary branches are modelled based on stem 

location, crown dimensions, and voxel distribution within the crown.     

The three hierarchical levels form the basis of the strategy to address the research gap in 

terms of developing a strategy to link LiDAR structural assessments of height and cover with 

other data.  The assumed advantages and disadvantages of measuring structure at the different 

levels within the hierarchical strategy are listed in Table 3.   

Table 3:  Advantages and disadvantages assumptions of different hierarchal processing levels for 
forest assessment using LiDAR 

Level Assumed Advantages Assumed Disadvantages 

Plot or 
Stand  
(+1) 

- Rapid application, conceptually 
and computationally simple. 
- Applicable across landscape when 
using large datasets. 
- Accurate at plot level with 
suitable field calibration. 

- “Black box” approach; can be difficult to account 
accurately for effect of within plot variation or intra-
plot variation observed. 
- Within plot structural complexity reduced to a few 
simple “average” values which limits explanatory 
ability. 
- A range of possible component structural 
arrangements can give the same overall plot result; 
thus predictive ability is reduced especially in 
heterogeneous environments. 
- Ensuring accurate plot boundary location for 
comparisons can be difficult.  
  

Tree 
(0) 

- More accurate representation of 
within plot/stand variability. 
- Can be scaled up or down to any 
pixel scale within limits of base 
data. 
- Stand level stem and crown 
mapping reasonably 
computationally quick. 
 

- Takes longer than plot scale to generate. 
- Assumptions required on tree crown shape, as well 
as representativeness of LiDAR data penetrating tree 
crowns (i.e. vertical strata assessment) . 
- Validation accuracy depends on tree level field 
data accuracy; issues with GPS locations, incorrect 
matching of stems and less accurate field 
measurements (e.g., height) that can lead to poorer 
correspondence results. 

Tree 
component   

(-1) 

- Much greater level of detail 
possible; therefore fine spatial 
resolution remote sensing 
calibration and ecological 
modelling can be undertaken. 
- Suitable for radar volumentric 
canopy interaction modelling and 
simulation. 

- Long processing times because of level of detail 
required.   
- Many assumptions on branch and leaf location, 
size, density and orientation. 
- Difficult to validate especially when field data not 
explicitly collected to same level of detail, therefore 
validation generally undertaken using mediumr 
spatial resolution data.  
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Whilst the primary analysis hierarchy is described above, the hierarchical strategy can 

be applied at other scales depending on the research problem being addressed.  The respective 

entities can be defined along the a scale continuum, ranging from tree components (stems, 

branches and leaves), trees, forest stands or patches, up to whole forests or forested regions, and 

ultimately biomes.  For example, a hierarchical strategy used to address variability within forest 

stands would have the focal level as a field plot (or equivalent assessment unit), with the level –

1 being a tree crown or stem map within the plot, and the Level +1 being the wider stand within 

which the plot is found.  Alternatively, if the research was investigating variability between 

forests stands in the landscape, then the forest stand would be the focal level, with field plot 

sized areas within the stand constituting Level –1, and the wider landscape being Level +1.  

Thus a hierarchical multi-scale strategy is a useful approach for improving forests structural 

measurement, when linking datasets and metrics.  This assertion will be revisited in the 

Discussion chapter, and an assessment made of its validity. 

 

Applying the multi-scale hierarchical framework  

The multi-scale hierarchical framework uses three processing phases to generate the 

data required for the strategy.  A number of case studies then test the application and overall 

usefulness of the strategy (Figure 6).  The first phase begins at the Level +1 scale, to establish if 

there were robust relationships between plot scale field data and LiDAR derived metrics for 

forest height and cover metrics (Lucas et al., 2006a; Tickle et al., 2006).  This was done for 

both study sites, to gain an understanding of any regional differences in metric estimation.  

After validation to acceptable levels of accuracy, the LiDAR derived height and cover metrics 

were applied to the full extent of the LiDAR data within both the Injune and NE Victorian 

landscape-sampling schemes.  This then creates a large sample from which to assess the 

landscape distribution and variability of the structural attributes, and tests field plot 

representativeness.  

The second phase utilises a range of spatial modelling methods to delineate and map 

Level 0 entities such as tree crowns and stems (Lee and Lucas, 2007).  Level 0 entities were 
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then used to aid in the modelling of Level -1 tree components such as branches and leaf clumps 

(Lucas et al., 2006c) by providing a bounding area within which to assign individual tree 

identifiers.  Within phase II, height was calculated for individual tree stems, tree crown extent 

was mapped to determine plot crown cover, which allows quantification of within-plot 

variability.   

 

 

Figure 6: Thesis conceptual overview outlining linkages between multi-scale hierarchal modelling 
and applications for modelling forests with LiDAR. 

 

Phase III integrates data across scales, where tree and tree component level data were 

used to create calibration or validation layers at the most appropriate scale and alignment for the 

data being investigated.  Because the different data used for forest assessment have different 

pixel sizes and interactions with vegetation, it can be difficult to use one calibration dataset 

(e.g., field data) for calibration of multiple datasets.  As described previously, remotely sensed 

data can suffer from scale issues such as the MAUP, and a suggested approach to address these 

issues was through the use of basic geographic entities.  A calibration dataset made up of basic 

geographic entities (e.g., tree crowns, stems, or tree components) can then be re-scaled to any 
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spatial resolution and shape that is required.  This enables an improved match with the sensor 

being calibrated (e.g., Landsat TM, ICESat, radar), or research question being investigated.  To 

determine overall utility of LiDAR to improve forest structural assessment, and thus address the 

two research objectives, four case studies are presented: 

1. Multi-scale assessment of height and cover.  This case study examines the effect of 

plot or assessment size on the reported height or cover metric when compared to the 

wider stand.  The results will be used to empirically determine an efficient minimum 

area for reporting forest;  

2. Comparison of SLATS Landsat TM derived foliage projective cover with LiDAR 

estimates of crown and foliage branch cover, stem density and basal area.  The 

comparisons will also aid in the development of a continuous translation function 

between foliage projective cover and crown cover;  

3. Investigation of ICESat full waveform laser data for extracting forest stand height 

and cover;  

4. An illustration of the use of LiDAR tree and tree component modelling to 

reconstruct a forest stand for coherent SAR simulation modelling, as different 

wavelengths interact with the respective components in different ways. 

 

Figure 7 illustrates how the datasets used in this research integrate to address the 

research aim.  The utilisation of multi-scale processing feedback loops was identified for the 

three phases: initial plot scale, tree and component scales (i.e. unpacking the plot “black box”), 

and then refinement of plot scale methodology and application to other remotely sensed data. 
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Figure 7: Flowchart of multi-scale calibration modelling and application strategy 

 

1 - from apparent vertical profiles and cumulative percentage summaries. 
2 - from percentage of vegetation returns (2m+) (FBC) or through empirical transfer function derived from field 
transect data (FPC). 
3 - from interpolation to TIN model utilising either 2m contour, or rasterise TIN and calculate percentage of cells 
2m+ 
4 – Height Scaled Crown Openness Index – see Section 0 
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3.3 Data Collection 

3.3.1 Introduction 

To address the primary research objectives and question, data from two different forest 

measurement pilot projects were utilised.  The first project undertook data collection in 2000, 

and concentrated on a study area in the south central Queensland forest and woodlands.  The 

project was funded by the Cooperative Research Centre Greenhouse Accounting (CRCGA) 

(Tickle, et al., 2006; CRCGA, 2006) and an Australian Research Council SPIRT grant (Lucas, 

et al., 2004).  The Queensland study area was the primary site for this thesis, and was where all 

development of the models was undertaken.  The second project collected data in 2003 as part 

of a National Forest Inventory Continental Forest Monitoring Framework pilot project in North 

East Victoria (described in the Introduction chapter).  The NE Victorian site was a secondary 

site for this thesis, and provides validation for the models developed at the Queensland site, and 

highlights any regional modification that may be required if the LiDAR models were to be 

utilised in other regions. 

 

3.3.2 Queensland study site 

The Injune study focused on an area of mixed species open forests and woodlands near 

the town of Injune (Latitude 25° 36’ S, Longitude 147° 30’ E) in the Southern Brigalow Belt 

(SBB) Interim Biogeographical Regionalisation for Australia (IBRA) region (Thackway and 

Cresswell, 1995) (Figure 8).  The SBB region, which was one of 16 IBRA regions within 

Queensland, constitutes 12.5 % of the state’s land area.  Approximately 8,901,250 ha, or 41.2 

%, of the SBB was presently covered by forests and woodlands.  The main study site had an 

area of 221,120 ha, with approximately 192, 153 ha (86.9 %) identified as forests and 

woodlands.  Within the study site elevation varies from 437 - 850 m and the mean annual 

rainfall was approximately 635 mm, although was variable, with most recorded between 

December and February (summer).  The mean annual maximum temperature was 27oC (Bureau 

of Meteorology, 2004).    
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Figure 8:  Location of the 37 x 60 km Injune study area, within south-central Queensland. 

 

The area was first explored by Europeans in 1846, with Thomas Mitchell travelling 

north through the eastern portion of the Injune study area following the Maranoa river, and 

recording landscape and vegetation observations along the way (see Figure 9; Mitchell, 1846).  

Settlement by graziers mostly likely occurred in the 1860’s and railways were constructed in the 

1870’s.  Severe drought in the 1890’s forced many landholders off their properties.  From the 

early 1900’s the Queensland forestry department began reserving land and timber for wood 

production, with commercial harvesting of Callitris and Ironbark (Eucalyptus) species occurring 

from the 1940’s onwards.  Throughout the area, selective logging has only occurred once at any 

one site.  The level of timber resource use reflects both the extent of the resource and the 

relatively slow growth in this area.  Growth was influenced by relatively poor soils and low 

rainfall (B. Howard, Qld DPI, pers. comm.).  This then indicates that major human induced 

structural change in the forest of the study area has not been widespread (as indicated in Figure 

9). 

The forests in the study area contain a diverse range of species, although several 

dominate, and both excurrent (i.e. conical shape common to many gymnosperms) and decurrent 

(i.e. round or spreading shape common to most angiosperm trees) structural forms were 

commonplace (Lucas et al., 2004).  White cypress pine (Callitris glaucophylla) dominates many 

stands but this species was selectively harvested, so large individuals were typically absent.  

Most Callitris occur in dense stands comprised of a large number of smaller individuals (up to 

several trees per m2).   
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Figure 9: Sketch of the Maranoa River by the explorer Thomas Mitchell in 1846 (upper) (Mitchell, 

1846); and a photo of the Maranoa from a nearby location in 2004 (lower).  
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Eucalyptus species are widespread throughout the area, with Silver-leaved Ironbark (E. 

melanaphloia) and Poplar Box (E. populnea) dominating.  Tumbledown Red Gum or Baradine 

Gum (E. dealbata var chlorodata) and Smooth Barked Apples (Angophora leiocarpa) occur 

along the creeks and at scattered locations throughout the landscape, and individual trees often 

contribute the greater proportion of the stand biomass.  Larger individuals of both Eucalyptus 

and Angophora species form the upper canopy of many stands, below which several layers of 

sub-canopy trees of varying densities occur.  Brigalow (Acacia harpophylla) and tall 

understorey shrubs such as Wilga (Gejeira parviflora) and Sandalwood Box (Eremophila 

mitchelli) are commonplace.  Many stands contain a mix of Acacia, Callitris, Eucalyptus and 

Angophora species.  A wide range of growth (and therefore structural forms) exist because of 

the varying impacts of different soil types, natural fires, droughts, clearing (e.g., pulling, 

poisoning) and grazing (Tickle et al., 2006).    

 

Overview of Queensland multi-stage sampling  

The following section presents an overview of the Injune study sampling strategy.  It 

should be noted that the sampling strategy and data acquisition were carried out prior to the 

initiation of this thesis.  The methods are described in more detail in Lucas et al., (2006a) and 

Tickle et al., (2006).  

The acquisition of image and field data was undertaken in four main stages (Table 4).  

In Stage I, a systematic sampling scheme (Schreuder et al., 1993) was implemented to guide the 

acquisition of large scale aerial photography (LSP) (Stage II) and LiDAR data (Stage III).  

Following collection and initial interpretation of these data, a stratified random selection 

strategy was used to select 34 field plots, where forest inventory data were collected (Stage IV).  

The majority of the fieldwork was carried out during the period of LiDAR data acquisition and 

within one month of the LSP data acquisition, thereby minimising any seasonal effects and the 

likely impacts of anthropogenic land cover change at the field sites.  Description of processing 

stages I, II, and VII can be found in Tickle et al., (2006) (Appendix C), whilst stages III, IV, V, 

VI and VIII are described in subsequent sections.  
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Table 4: Main stages in the acquisition, processing and analysis of field and remotely sensed data 
(Tickle, et al., 2006) 

Stage Task Purpose 
Sampling and data acquisition 

I Sample design To select appropriate field sample locations 

II LSP capture and pre-stratification To allow description of the species/community 
composition 

III LiDAR capture To facilitate retrieval of structural attributes 
(height, crown, foliage and/or branch cover) 

IV Field sampling To provide ground truth for interpretation of 
LSP and LiDAR and validation of products. 

Post-processing 
V Georeferencing of LSP to LiDAR To allow overlay of API vector information 

VI Generation of LiDAR height 
surfaces 

Calculation of a bare earth DEM and 
vegetation height 

Data analysis 

VII 
Classification of 

 forest communities based on LSP 
interpretation 

To determine spatial distributions of dominant, 
co-dominant and sub-dominant species 

VIII 
Tree height, FBC, FPC and 

canopy cover  
retrieval from LiDAR 

To provide individual tree and stand level 
estimates 

 

Stage III: LiDAR data capture  

Airborne scanning LiDAR data were captured over a one-week period commencing 

August 24th 2000 using an Optech 1020 scanning laser, mounted in a Bell Jet Ranger helicopter.  

The Optech 1020 measured 5,000 first and last returns and the intensity of each return per 

second.  The LiDAR operated within the near infra-red spectrum with a beam divergence of 0.3 

milliradians, a footprint of approximately 7.5 cm and a mean sampling interval of < 1 m.  

Data were acquired flying in an east-west direction centred on a 150 x 500 m (7.5 ha) 

Primary Sampling Units (PSUs) located 3.7 x 4 km apart in the east-west and north-south 

directions respectively (Figure 10).  Each of the 150 primary sampling units was then 

subdivided into 30 systematically numbered Secondary Sampling Units (SSU) that are 50 x 50 

m (0.25 ha) in size.  The helicopter flew at a nominal altitude of 250 m, which resulted in a 

swath width of approximately 200 m.  A GPS base station was established for all flights. With 

full differential GPS corrections, in addition to pitch, yaw and roll compensation from an 

inertial navigation system, coordinates were guaranteed by the data supplier to an absolute 

accuracy (standard deviation (sigma) of the control point sample) of < 1 m in the x and y 

directions and < 0.15 m in the z direction.   
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Figure 10: Landsat ETM image (2003) of study area and systematic photo and LiDAR plot layout, 

with field plot locations circled. State Forests are the light green hashed areas.  Study area 
boundary was 37 km x 60 km, and sampling units are 4 km apart. 



Chapter 3: Data Analysis Methodology 
   

81 

Stage IV:  Field sampling 

Field inventory data were collected during August 2000.  The collection of field data 

over the same period as the remotely sensed data acquisition was considered necessary to limit 

the impact of changes in seasonal foliage cover or land cover (associated with disturbance by 

fire or clearing) on the subsequent development of relationships with remotely sensed data.    

Prior to acquisition of the field data, a 100 x 100 m regular grid on a transparency sheet 

was overlain on the overlap area of each of the 150 hardcopy large scale photography stereo 

pairs.  A count of dots (located at the intersection of the grid lines) were used to estimate the 

proportions of land use, land cover and forest types as well as forest height and cover, 

disturbance regimes and vehicular access (Jones, 2000).   

After interpreting the photography, the API codes were used to stratify and identify 

suitable locations for field sampling.  The stratification assumed that the vegetation types 

contained within the 150 primary sampling units were representative of the proportions across 

the entire study area.  For the purposes of stratification, the different forest types were classified 

into four distinct structural categories: Acacia or sparse vegetation (containing species such as 

BGL, SWB, BLH, BOK); Callitris (e.g., CP-, FMP); Eucalypt Ironbark (e.g., SLI, GTI, BRI, 

NRI); and Eucalypt Other/Angophora (e.g., PBX, ECH, SBA, RBA) (see Table 55, Appendix A 

for the species name and API codes).  The Eucalypt class was split as the various Ironbark 

species were seen to contribute a significant proportion of the mapped landscape.  Each forest 

type was then ranked into three (low, medium and high) potential and relative biomass classes 

using a combination of API and biomass estimates from the Japanese Earth Resources Satellite 

(JERS-1) Synthetic Aperture Radar (SAR) data, resulting in 12 vegetation strata (Jones, 2000; 

Lucas et al., 2000).   

It was determined that the field inventory would be limited to 2 - 4 secondary sampling 

units per day using 2 field crews of 5 staff.  Therefore, out of a potential 150 primary sampling 

units, 13 were selected that contained the necessary strata and met access, travel times, and 

safety criteria.  Within these 13 sampling units, 34 secondary sampling units were randomly 

selected across the 12 strata (in proportion to their area within the 150 primary sampling units).    
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Once located, a 50 x 50 m square plot, aligned in a north-south direction, was 

established using GPS survey and laser range-finding equipment.  Tapes of 50 m length were 

then laid out to produce a 10 x 10 m grid to guide the subsequent location of trees for 

measurement.  Within each plot, the location of all trees > 10 cm in diameter (at 130 cm above 

ground level) was recorded digitally by placing reflectors at each of the plot corners and then 

using either a GEOSCAN or CENTURION Laser Rangefinder to record the distance and angle 

from each tree to the nearest visible reflector.  Trees 5 - 10 cm in diameter were located by 

reading the x and y distances (in cm) from 50 m tapes placed perpendicularly (at 10 m intervals) 

across the entire plot. The cover and height of trees and shrubs < 5 cm in diameter was 

estimated within five 10 x 10 m sub-plots, with the centres of four located at a distance of 10 m 

from each of the corners and a fifth located at the centre of the plot.  Within each plot, each tree 

was identified to species level and key measurements recorded included trunk diameter (cm, at 

both 30cm and 130cm) and height (m) to the top of the tree, to the canopy base, and to the first 

green limb.  Three additional secondary sampling units that were identified as non-forest but 

containing regenerating vegetation, species and structural measures were selected.  Within these 

‘regrowth’ plots five 10 x 10 m subplots were located.    

Transects were established within the field plot to estimate vegetation cover.  Transects  

consisted of three 50 metre tapes laid out in the north-south direction at 10, 25 and 40 m, 

moving eastward from the south-west corner.  Along each transect the presence or absence of 

overstorey canopy material was recorded at 1 m intervals.  The recording method, after (Specht, 

1970), uses a plastic tube which was attached to a 2 m length rod and contains an internal cross-

hair.  A mirror situated at the base of the tube at an angle of 45o then enables the operator to 

record the presence or absence of green leaves or wood (trunk or branches) in the canopy 

vertically above.  Foliage-branch projected cover (FBC) and foliage projected cover (FPC) was 

then calculated as the sum of foliage and/or branch records as a proportion of the total 

observations.  For the purposes of this study, foliage-branch cover relates to the amount of light 

that would reach the ground, and was the percentage of the plot area occupied by the vertical 

projection of foliage and branches, while foliage projected cover only considers light 
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interception by green foliage.  Crown cover (CC) was defined as the percentage of the site 

within the vertical projection of the periphery of crowns, with crowns considered opaque 

(Walker et al., 1988; McDonald et al., 1998).  As part of a subsequent 2004 field trip, an 

azimuthally independent estimation of foliage projective cover was tested on selected 

Queensland field plots.  This was an improved Queensland Statewide Landcover and Trees 

Study (SLATS; QDNRM, 2003) field transect collection method, and involved laying out a 50 

m transect on a bearing due north from the plot centre, with two other transect at 60o and 120o 

degrees respectively from the first transect.  Canopy measures were then conducted as described 

previously (J. Armston, pers com). 

Hemispherical photography was used to gather information on canopy openness and 

cover for the Injune study site.  During the second field campaign to the Injune study area in 

2004 to collect additional data for this thesis, hemispherical photographs were taken within 31 

field plots at 10 m intervals along the three 50 m north-south transects previously established 

within each plot.  Photos were collected using a Nikon D70 digital SLR 6.1 mega-pixel camera 

with a 10.5 mm full frame hemispherical prime lens with a tripod.  Two photos were taken at 

each 10 m interval along the transects: one oriented north-south and the other east-west, which 

were subsequently merged for a single photo.  Estimates of foliage cover for the fields plots 

were generated using Gap Light Analyzer (Version 2) software (Frazer et al., 1999).  For 

comparisons with LiDAR cover estimates, two estimates were made.  First, the single photo 

closest to the plot centre was used, and secondly, three photos from the centre of each transect.  

Appendix D describes the photographic calibration undertaken to generate estimates of foliage-

branch cover from the hemispherical photography. 

 

Stage V:  Georeferencing of photography to LiDAR 

Initial georeferencing of the aerial photography applied known GPS locations from the 

aircraft navigation unit at the time of the photography acquisition.  The GPS coordinates were 

applied to the centre of the image, and aligned using the image principle points.  Additional 

pseudo-control points were derived based on aircraft flying height and camera parameters such 
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as lens focal length and image pixel resolution.  Additional detail on the photographic 

acquisition and interpretation was found in Jones (2000).  The initial georeferencing produced 

an accuracy of ± 20 m.  Image rectification used a polynomial function with ground control 

points (GCPs) sourced from the LiDAR data swath, resulted in root mean square errors of < ± 2 

m within the LiDAR strips.  Following registration of the photography, floristic and structural 

mapping was interpreted from the photographs (Jones, 2000). Interpreted crown cover 

projection was averaged for each mapped forested polygon (for all forest types), and polygons 

that had clusters of gaps or open areas were dealt with by averaging the overall estimated crown 

cover class for the polygon (Jones, 2000). The API was then scanned, vectorised and rectified 

using the same transformation as the digital imagery, allowing GIS overlays of species type 

with the LiDAR data. 

 
Figure 11: True colour 1:4000 stereo aerial photograph of PSU 138 overlain with the 500 x 150 m 

primary sampling unit and 30 secondary sampling units (50 x 50 m).  Polygon vectors mapped 
through API delineate different forest communities (based on dominant species composition and 

cover). 
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3.3.3 NE Victorian study site 

Both field and LiDAR data was collected as part of a National Forest Inventory 

Continental Forest Monitoring Framework (CFMF) pilot implementation project in North East 

Victoria in 2003.  The design of the sampling strategy and data collection were determined prior 

to this thesis, although were implemented during the course of the study.  The total area of the 

two catchments utilised for the pilot study was 1,507,068 hectares (Figure 12).  There were 22 

field plots (30 x 30 m) measured at forested sites the nodes of the 20 km systematic sampling 

grid (Figure 13).  Within each plot, structural attributes similar to those measured within the 

Injune study area were recorded (e.g., location, species, height, and crown dimensions for every 

tree with D130 ≥ 10cm).  Additional tree measurements were made where trees intersected four 

45 m transects, located in the north, east, west and south directions from the plot centre (Wood 

et al., 2006).   

 
Figure 12: Location of the secondary study site within the Broken and Ovens catchments in NE 

Victoria. 

 

At each field plot, digital hemispherical photos were used to provide plot estimates of 

cover.  A Minolta DiMAGE 7Hi 5 mega-pixel digital camera with a fisheye adapter lens, and 

tripod were used for the photography.  The photos were taken at 10 m intervals along the four 

transects, with an image also taken at plot centre.  The plot estimate of canopy cover was 
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derived from an average of the centre photo and four plot edge photos, located 15 m from the 

centre along each transect.  Calibration and analyses of the images used Gap Light Analyzer 

(Version 2) software (Frazer et al., 1999).  Appendix D outlines the calibration process. 

Airborne scanning LiDAR data were captured from 15th– 19th April 2003, using an 

Optech 1225 scanning LiDAR mounted in a fixed wing aircraft.  The Optech 1225 had a 

scanning rate of 25,000 Hz, recording both first and last returns, and the intensity of each return.  

The LiDAR operated within the near infra-red spectrum with a beam divergence of 0.2 

milliradians, a footprint of approximately 22 cm, and a mean post spacing of < 1 m.  LiDAR 

was collected over each of the CFMF plots, located at the nodes of the 20 km CFMF sampling 

grid.  The LiDAR was collected as a continuous transect of data, with the swath approximately 

400m wide and a total length of 1,485 km (Figure 13).  Due to the nature of the sample grid 

layout, some plots were overflown twice (or three times in one instance) when the plot was on 

the intersection of the north-south and east-west flight lines.  In total, approximately 59,400 ha 

of LiDAR data was collected (~4 % of the study catchments), with over 1 billion individual data 

points.  The LiDAR data was acquired 2 weeks before the field campaign started.  This enabled 

the calibration of the LiDAR products with field data to be as accurate as possible, given that 

regeneration of burnt areas was rapidly occurring.   

Aerial photography was collected over the field plots at the same time as LiDAR, but 

was not interpreted for forest structure attributes due to a lack of qualified interpreters.  

Therefore the existing Victorian Statewide Forest Resource Inventory (SFRI) API polygon 

layers were used for comparison with LiDAR.  Victorian SRFI API quantifies crown cover by 

comparing a mapped eucalypt forest stand to silhouetted examples of known density classes.  

Alternatively, a dot grid on transparency sheets was overlaid on the forest stand, and then a 

comparison was made of the number of dots which fall on tree crowns to the total number of 

dots in the forest stand.  The density fraction was then expressed as a percentage (VicDNRE, 

2000).  Forest stand height from SFRI API was measured using stereo photogrammetry, and 

recorded as the average height of the most abundant crown form class (i.e., that which occupied 

30 % or more of the stand area) (VicDNRE, 2002).      
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Figure 13: Layout of LiDAR data collection with ancillary NVIS vegetation data aggregated to broad species classes (NLWRA, 2001) within the NE Victorian study area. 
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Plot location site descriptions 

Site descriptions for the field plot locations combined dominant tree species and broad 

soils information with initial LiDAR derived site characteristics such as elevation and slope 

(Figure 14).  The field plot locations were broadly classed into four landform or ‘ecozones’ 

categories based on obvious, but arbitrary, clustering of the attributes.  The ecozone boundaries 

were an initial classification based on the available data, and may change when more data (field 

or remotely sensed) were analysed from around Australia by the National Forest Inventory 

(Wood et al., 2006). 

 
Figure 14: Field plot site information summary (LiDAR derived) with max tree height (LiDAR), 

dominant species groups (field), and broad landform zone (derived) (Wood et al., 2006). 

 

The Floodplain zone was generally flat, and dominated by red gum and grey box (E. 

camaldulensis, E. microcarpa).  These forests can grow quite tall (mean of 35 m), with LiDAR 

analyses indicating that they can attain a height at least to 50 m.  The elevation was below 200 

m, and the dominant soils were clay-loam (chromosol).  In contrast, the Foothill zone appears to 

have a significantly lower max tree height (mean of 22 m), possibly relating to poorer site 

quality (for example less water availability and lower nutrient soils).  Slope was more variable, 

but still generally low (i.e. less than 15º), and the elevation range for this landform / ecozone 
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class was 200 – 400 m.  The dominant eucalypt tree species were box (E. polyanthemos ssp 

vesti, E. microcarpa, E. goniocalyx), hill red gum (E. blakelyi), red ironbark (E. sideroxylon ssp 

tricarpa) and red stringybark (E. macrorhyncha).  The plots were found on clay-loam 

(chromosol), sandy-loam (sodosol), and sandy (kurosol) soils. 

The Montane landform zone includes plots mainly found on steep mountain slopes, or 

on river terraces in the valleys, within the elevation range 400-900 m.  Slope was highly 

variable, and it was observed that the plots with the tallest trees were found on the flattest sites, 

possibly indicating a relationship to water availability (i.e. near to streams) and shelter (i.e. not 

on exposed ridge-tops).  The overall mean tree height was around 30m, but this was variable.  

The dominant eucalypt species include box (E. goniocalyx,) and stringybark (E. macrorhyncha,) 

on the lower elevation sites, with gum (E. dalrympleana, E. rubida ssp rubida, E. globulus ssp 

bicostata) and peppermint (E. radiate, E. dives) on the higher elevation sites.  Soils were 

generally light clay (dermosol) dominated, with some clay-loam (chromosol) sites. 

Field plots in the Subalpine zone range from 900 - 1450 m, where slopes were generally 

steep, though variable.  The effect of the harsh subalpine environment was evident in the 

reduction in max tree height from an average of 35 m to 15 m, as the higher elevations are 

reached.  Gum (E. dalrympleana, E. rubida ssp rubida), ash (E. delegatensis), and peppermint 

(E. dives, E. radiata) species dominate in the lower elevations within this class, with snow gum 

(E. pauciflora ssp pauciflora) dominant at the highest elevations.  These sites have subalpine 

humus soils (tenosol). 

Most areas in NE Victoria have been burnt by wildfire at some stage, with much of the 

Montane areas burnt in major fires in 1939.  Some state forest sites have been also logged to 

various degrees.  Table 5 provides a summary of these disturbances, from available data (as of 

2003).  It should be noted that some plots have been subjected to wildfire since 2003.  These 

disturbances influence the forest structural attributes extracted from remotely sensed data 

collected for this thesis, so this background knowledge was useful to assist in interpreting the 

results, especially when using LiDAR apparent vertical profiles (see Table 67, Appendix B).   
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Table 5: Estimated year of last fire and logging for NE Victorian plots (DSE, 2003) 

Plot Ecozone Year of last recorded burn Year of last recorded logging 
8 Floodplain - - 

212 Floodplain - - 
119 Floodplain - - 
99 Floodplain - - 
186 Foothills - - 
309 Foothills - - 
169 Foothills 1985 1980 (single tree selection) 
216 Foothills - - 
220 Foothills 2003 - 
382 Foothills 1994 1993 (group selection) 
463 Montane 1939 1983 (group selection) 
554 Montane 1939, 1985 - 
459 Montane 1939 - 
573 Montane 1939, 1985 - 
313 Montane 2003 1986 (group selection) 
391 Montane 1939, 1999 - 
467 Montane 1939 - 
550 Montane 1939, 1991 1989 (single tree selection) 
562 Montane 1939, 2003 - 
605 Subalpine 1939 - 
603 Subalpine 1939, 2003 1979 (group selection) 
558 Subalpine 1939, 2003 - 
471 Subalpine 1939, 2003 - 
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3.3.4 Data descriptions for both sites  

Ancillary data 

For both study areas, a number of existing regional scale datasets were used for 

additional information and calibration against the fine scale field data.  The datasets include the 

Queensland Statewide Landcover and Trees Study (SLATS) Landsat TM derived foliage 

projective cover, nominally for 2000, and change in woody/non-woody extent from 1991 to 

1999 (QDNRM, 2003) for the Injune study site.  For NE Victoria, uncalibrated SLATS data was 

available that was generated using 2003 Landsat ETM imagery.  The number of field plots used 

to calculate estimates for comparison with foliage projective cover have been clipped to the 

extent of the Landsat imagery (which was missing 14.3% of the study area) to allow appropriate 

comparisons between datasets.  This results in 33 of the initial 39 systematic grid nodes being 

used, of which 14 (of the initial 17) were located at forested sites, according to field and high 

spatial resolution remotely sensed data.  The National Vegetation Information System (NVIS) 

pre-clearing vegetation (nominally 1940-50’s) (NLWRA, 2001), and extant vegetation (1995), 

were used, and which were updated with Queensland Herbarium vegetation data (1999) 

(NLWRA, 2001) for the Injune study area.  For both study sites data from the State of the 

Forests Reports (National Forest Inventory, 1998, National Forest Inventory, 2003) were used. 

 

Summary of Queensland and NE Victorian field data 

Summaries of field data tree and plot distributions of the key attributes are provided in 

Lee and Lucas, 2007 (Appendix C).  Note that two secondary sampling units in the Queensland 

data were excluded (i.e., n = 32) because these were only partially covered by LiDAR data. 

 

API classification comparisons with NFI 

When compiling and translating categorical forest cover information derived from aerial 

photos into National Forest Inventory crown cover classes, a match between classes was 

generally (although not always) observed.  For example, there were two mismatches between 

National Forest Inventory crown cover class ranges and those used for both the Statewide Forest 
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Resource Inventory (SFRI) API eucalypt crown cover classes, and those used in Queensland 

(Table 6) (VicDNRE, 2002; Jones, 2000).  The class threshold values between National Forest 

Inventory and both State-based API standards do not match for the woodland class.  Here the 

National Forest Inventory 20% cover class break was not replicated in the API classes, so there 

was a 9% difference between the two systems.  This was likely to cause either overestimation or 

underestimation in the data supplied to the National Forest Inventory, depending on how the 

data (percentage area of cover class) was rounded (up or down) to match the National Forest 

Inventory classes.   

Table 6: NFI, Victorian SFRI , and Queensland API crown cover class standards 

Victorian SFRI API cover Queensland API cover  NFI Crown 
Cover Class Class Cover range Class Cover range 

1 0–9% 1 < 10% 
1 

2 10–29% 2 10-29% 

2 
3 30–49% 3 30-49% 
4 50–69% 

3 4 50-79% 

5 70–84% 

4 
6 85–100% 

5 80-100% 

 

Additionally, for the SFRI classification at the closed forest class there was a 5% 

difference between the thresholds for closed forest, with this being 85% in the SFRI 

classification and 80% in the National Forest Inventory class.  Table 7 provides a comparison 

between the National Forest Inventory height classes, and two examples of API height classes 

for Victoria and Queensland.  As Table 7 shows, there were a number of mismatches between 

classification systems, making accurate national aggregation of the area of the height classes 

difficult.  The Queensland API classification, as described in Jones, (2000), used stand height 

(mean height of the co-dominant mature trees) into one of the three broad classes described in 

Table 7.  Comparisons with the National Forest Inventory classification show there was a 2 m 

mismatch between low and medium National Forest Inventory classes, but given the limited 
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ability to discern this resolution of height measurement through API, it was likely to introduce 

only minor error into the compilation. 

Table 7: Height class and ranges for NFI, Victorian SFRI, and Queensland API standards 

NFI Height SFRI API Height Queensland API Height 
Class Range (m) Class Range (m) Class Range (m) 

6 <5 
1 2-10 

1 <12 

5 5-14.9 

4 15-27.9 
2 10-30 

2 12-30 

3 28-39.9 

2 40-51 3 30+ 

1 >51 

3 30+ 
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3.4 Phase 1 – LiDAR Plot / Stand Scale Forest Structure Assessment 

3.4.1 Introduction 

This section outlines the methods used to generate plot and stand scale forest structure 

estimates from LiDAR data.  The pre-processing of the LiDAR, for the calculation of bare earth 

terrain surfaces was presented.  Methods for deriving apparent vertical profiles are described, 

followed by plot scale height and canopy cover assessments.  

 

3.4.2 LiDAR pre-processing 

Stage VI:  Bare ground surfaces  

An initial Digital Elevation Model (DEM) was constructed by interpolating pre-

classified first and last ground returns with a 1 m proximal tolerance (where any returns found 

within 1 m of other returns were excluded) and represented as a Triangulated Irregular Network 

(TIN) model (Figure 15).  However, examination of the resulting surface indicated a certain 

degree of ‘noise’ and surface variation resulting from on-ground surface features (e.g., logs, 

grass swards and shrubs).  Therefore, and following other studies (e.g., Suarez et al., 2005), a 

multi-scale filtering strategy was employed.  Here the lowest returns (first or last) within local 

search windows of increasing dimension (1 x 1 m to 5 x 5 m) were selected to generate bare 

ground surfaces, on the assumption that these were more likely to represent the true elevation 

surface.  The most suitable window size for generating the final elevation surface (Figure 16) 

was determined by examining a corresponding elevation standard deviation surface generated 

using a 5 x 5 search window.  The standard deviation elevation surface was generated by 

dividing the PSU into 5 x 5 m kernels, and within these squares the standard deviation of the 

ground return heights was calculated.  Flatter areas were identified from the standard deviation 

surface in areas of lower deviation in the elevation range, and therefore would only require 

ground returns from larger search windows or kernels (e.g., 5 x 5 m) to efficiently describe the 

terrain.  Where ground elevation was more variable (e.g., water courses) then returns from 

smaller kernels were used, with the general rule being that the greater the deviation, the smaller 

the kernel. 
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Figure 15: Original DEM TIN created with all ground returns, for PSU 142 

 
Figure 16: Final spatially refined DEM TIN for PSU 142 

 
Figure 17: DEM difference surface - original DEM subtracted from final DEM for PSU 142. 
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Subtracting the initial TIN ground model from the final spatially filtered surface 

produced a difference surface (Figure 17).  As an example, the surface analysis for primary 

sampling unit 142 indicated that the spatially filtered elevation layer was lower and differed, on 

average, by 8 cm (standard deviation (δ) = 8 cm, range = -0.5 to 0.5 m).  Similar results were 

observed within the other primary sampling units, and these compared well to other studies 

(e.g., Hodgson and Bresnahan, 2004).  The on-ground surface features previously identified 

were also evident within the difference surface, indicating that spatial filtering of the surface 

was effective in their removal.  Once calculated, the height of woody vegetation was determined 

as the difference in elevation between the final bare ground surface and the first and last 

vegetation LiDAR returns.  Only returns above 0.5 m were subsequently used for canopy 

assessment, as those below this height were considered to be from shrubs, tall grass, and larger 

items of woody debris.      

 

Site Characteristics and terrain complications 

LiDAR ground surfaces were used to assess elevation, slope, aspect, and landscape 

position of the field plot.  In some cases this was the most reliable method to collect this 

information.  Drainage lines and old logging tracks were identified in some cases, providing 

insight into the history of sites and the local hydrology in the surrounding area.  This 

information can also be used to provide a quality control check for the LiDAR height above 

ground values.  For example in areas of terrain with high ground surface variability, such as 

when there are cliff lines or rocky outcrops present, then canopy heights might be highly 

variable, reflecting the ground surface below the tree ( as illustrated in Table 8).  Here, when 

calculating tree top height on steep slopes or when cliffs were present, the down-slope part of 

the crown will actually have a height ‘higher’ than the crown underneath the trunk or on the up-

slope side of the crown.  This may not reflect the ‘true’ overstorey canopy variability, 

potentially giving canopy height values which were inconsistent with a similar stand structure 

found on sites with less slope.   
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Table 8: Illustration of a selection of terrain complications on canopy height estimates  

 

 
 
 

Top of canopy for generally flat topped eucalypts - 
LiDAR has same elevation “above sea level” 

values. Height above “ground” could be: 
 
 
 
 
 
 

-  tree height up-slope (10m) 
 
- tree height at trunk (15m) 
 
- tree height down-slope (20m)  

 
(note – graphic not to scale, for illustration only) 

 

 
Processing of canopy LiDAR returns to calculate an 
apparent “height above ground” value.  Here trees 
on steep slopes when represented as canopy height 
above ground would appear as in the graphic (i.e. 5 

m taller).  This representation assumes that the trunk 
was located under the tallest part of the crown.  

 

 

An extreme example that can occur was where tree 
canopies overhang cliff edges.  The ironbark tree 

has canopy elements twice as high (above ground) 
as the actual tree height. 
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3.4.3 Estimating Tree Height for Plot / Stand 

Stage VIII: Maximum and predominant height from LiDAR 

Stand height was a required parameter for broad scale reporting at the NFI and NVIS 

scale.  However, in heterogeneous forests when using remote sensing it can be difficult to 

reliably scale field plot measures of tree height to a consistent, objective and repeatable measure 

of stand height.  For forest monitoring, it was useful to know: 

1. The mean or predominant height of the plot or stand at the time of measurement, as an 

indicator of stand (assuming the plot area was representative of the wider stand) 

growth stage (i.e. regeneration, young, mature, senescent), and to provide a reference 

point for subsequent measurements;  

2. The maximum height of the plot / stand, as an indicator of potential site quality, and 

therefore potentially the maximum height the majority of trees in the stand will 

eventually reach, if it can be established that the tallest trees currently on the plot were 

mature; 

3. Some indication of the variation in tree heights throughout a plot or stand – low tree 

height variation could indicate an even aged stand, whereas high tree height variation 

could indicate a mixed age stand. 

 

These three height parameters were measured using LiDAR in the following way.  The 

maximum height was the highest canopy return recorded within the plot or stand.  Predominant 

height was calculated as the mean of the maximum height of the tallest trees (field data) or 

assessment cells (LiDAR) within a defined area (e.g., field plot).  Height variation was assessed 

using the standard deviation of tree heights or the assessment cells used for predominant height.  

Predominant height was generally calculated using a sampling rate of 50 trees ha-1, 

although between the States and Territories this can range 40-75 trees ha -1 (RWG2, 1999).  

When using plot scale assessments of LiDAR, the tallest individual trees cannot be 

automatically selected to directly compare to field estimates (this was undertaken in Phase II 

LiDAR processing).  Therefore, spatial sampling across the plot was used, where a regular grid 
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creates a number of assessment cells, within which the maximum LiDAR height was recorded.  

The mean of the cell height then determines the predominant canopy height for the plot.  

Ideally, the assessment cell size will approximate an individual crown area, so it can be assumed 

that a cell was equivalent to a single tree for accurate comparisons.  A cell size of 10 m was 

chosen because 93% of CFMF field measured trees have crowns smaller than 10 m diameter, 

and square plots could be efficiently covered by whole numbers of cells.   

However, there was still a conceptual difference between the field-measured 

predominant ‘stem’ height, and LiDAR cell-based predominant ‘canopy’ height.  Therefore, two 

field sampling rates were chosen to compare to the LiDAR predominant height estimates, as it 

was unknown how the stem sampling rate compared to the canopy sampling.  A sampling rate 

of 100 trees ha -1 within a NE Victorian 30 x 30 m plot (0.09 ha), equates to the 9 tallest field 

trees, and dividing the plot into 10 m cells gave a 3 x 3 array (9 cells in total) (Table 9).  A 

sampling rate of 50 trees ha -1 equates to the 5 tallest field trees, rounded up to whole trees.  The 

respective sampling rates for the Injune study used more trees due to larger field plots (Table 9). 

Table 9: Translation between LiDAR and field estimation methods for predominant height 
Data Source Plot size (area) Sampling rate 

(trees ha-1) 
Field tallest trees 

per plot 
LiDAR cell count 

per plot 
NE Victoria     

LiDAR 10 m cell 30 x 30 m 
(900m2) 

50 5 9 

LiDAR 10 m cell 30 x 30 m 
(900m2) 

100 9 9 

Injune     
LiDAR 10 m cell 50 x 50 m 

(2500m2) 
50 13 25 

LiDAR 10 m cell 50 x 50 m 
(2500m2) 

100 25 25 

 

Plot scale LiDAR apparent vertical profiles 

As indicated in Chapter two, initial investigations of LiDAR vertical foliage profiles 

have shown promise in assessing the vertical structure of forests, improving understanding of 

growth stage, understorey recovery since disturbance, condition, and biomass.  Apparent 

vertical profiles were generated for all field plots at both study sites.  Whilst vertical profiles 

may indicate overstorey and understorey strata, they were termed ‘apparent’ as the literature has 

identified that they may not be entirely representative of the full vertical structure (Lovell, et al., 



Chapter 3: Data Analysis Methodology 
   

100 

2003; Coops et al., 2007).  This will be tested by comparing the plot vertical structure profiles 

from field tree data simulated within 1m3 reference matrix to those generated from LiDAR (Lee 

et al., 2004 – Appendix C). 

In the simplest sense, apparent vertical profiles are the summation of the number of 

non-ground LiDAR returns per arbitrary height interval (Figure 18 – left, centre).  Most small 

footprint LiDAR profiles reported in the literature use a 1 m height bin, as this generally equates 

to the LiDAR post-spacing sampling density, and was an efficient compromise between 

showing detail in vertical forest structure against the number of returns collected.  Height bins 

with a very small height range would only record a few returns and not show much information, 

whereas larger height ranges would mask subtle variation and potential strata breaks.  

With apparent vertical profiles, larger percentage values indicate where the foliage was 

most dense and/or the crowns most wide.  Strata breaks (i.e. between over and understorey) are 

most likely to be where there are the least percentage values (Figure 18 - centre).  Both of these 

statements assume a representative sample of the actual vertical foliage distribution.  As stated 

in Chapter 2, Lovell et al., (2003) hypothesise that this may not be the case.  Cumulative 

percentage curves are generated by sorting all non-ground returns (lowest to highest), and 

calculating the cumulative percentage value for all returns (Figure 18 - right).  This provides the 

height of the vegetation at certain quantiles or class percentiles of LiDAR data, which have been 

used in multiple regression models for assessing forest structure and biomass (e.g., Magnussen 

and Boudewyn, 1998).  For example, the height of vegetation at 50 % of all the non-ground data 

in the plot was at approximately 18 m (Figure 18).  This indicates a large and relatively tall 

overstorey canopy was “capturing” at least half of the non-ground returns.  
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Figure 18: LiDAR representations – raw points profile across Qld plot width (p81-11), vertical profile of summed returns per 1m height interval, and cumulative height 

percentage curve summary. 
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Creating apparent vertical profiles using field data 

A method to generate apparent vertical profiles from field measurements was developed 

to be able to objectively quantify obvious strata breaks, to provide validation against LiDAR 

apparent vertical profiles, and to compare against existing vertical foliage profiles for this 

environment (e.g., Walker et al., 1986).  Additionally, if significant differences were observed 

between the profiles, then it may indicate that there was bias in the LiDAR profile in terms of it 

representing the actually foliage distribution.  A cubic matrix was developed for vertical profile 

generation using field data, based on the methodology of Walker and Penridge, (1987).  The 

field modelled profiles were then compared with LiDAR profiles, with a full description given 

in Lee et al., (2004) (Appendix C). 

One method to examine the accuracy of the vertical profile modelling of the field data, 

similar to that used in Goodwin et al., (2007), was to compare the LiDAR and field estimate 

percentage of cubes at each height interval.  A good correlation will indicate that the profiles 

were similar; whereas a poor correlation will highlight that there were significant differences in 

the profile at different heights.  This method will work best when there was a reasonably large 

spread of percentage values, for example one or two large peaks in the profile.  Where there was 

an even distribution of cube percentage values across the height range then the correlation may 

not represent the accuracy as well, because values will be concentrated within a small range.  

Where there was a mismatch in top height estimates between LiDAR and field data, this can 

impact on the accuracy assessment method, as there was likely to be an offset between profiles, 

which will not reflect the overall profile distribution. 

Due to the limitations of the first profile accuracy assessment, additional accuracy 

assessments were undertaken using a Kolmogorov-Smirnov test.  The two-sample Kolmogorov-

Smirnov test can be considered as an alternative to an unpaired t-test but which actually tests for 

any difference between the distributions that the two samples came from.  A significant 

difference could mean that the population medians were different, the variances were different, 

or the shapes of the distributions were different, but the test will not indicate which of these it 

was.  The Kolmogorov-Smirnov test was used because the apparent vertical profile distributions 
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from LiDAR and field 3D cubic modeling were often not normal, therefore a standard t-test 

would not be appropriate.  However, whilst these non-parametric tests were simple to interpret, 

they are less powerful in being able to detect differences which may actually occur (Townend, 

2002).  Therefore the results will be used as a guide, rather than providing conclusive evidence, 

when discussing the relative similarity of the field and LiDAR modeled apparent vertical 

profiles. 

 

Growth stage assessment using apparent vertical profiles 

A qualitative assessment of forest growth stage for the NE Victorian plots was made 

using LiDAR apparent vertical profiles, which were linked to growth stage classifications from 

two different State systems.  The State systems were the Victorian State Forest Resource 

Inventory (SFRI) API based classification, and the Queensland Ecological Maturity 

Classification (EMC) (FERA, 1998).  Based on the growth stage descriptions, the two 

classification systems have been linked (Table 10).  Example LiDAR vertical profiles from NE 

Victorian field plots were then visually assessed and allocated to one of the classes.  

Table 10: Growth Stage type using SFRI and EMC classifications 

Class number EMC description SFRI class 
1 Dominant in over-mature trees, trace 

regeneration / regrowth late mature 

2 Mainly dominant with mature trees with 
some shorter regrowth mature 

3 Mainly dominant with regrowth, some taller 
mature trees 

4 Dominant in regeneration /regrowth, trace 
mature / over-mature 

early mature 

5  unevenaged (no clear eucalypt age class 
dominance) 

6  Undefined (not measured) 
 

 



Chapter 3: Data Analysis Methodology 
   

104 

3.4.4 Estimating plot scale canopy cover 

Stage VIII: Foliage and Crown cover 

LiDAR derived foliage-branch cover (FBC) was calculated as the percentage of all 

returns that were 2 m or greater in height (Figure 19).  The > 2 m threshold was based on the 

National Forest Inventory definition for forest.  It was also useful for comparison with field data 

that was collected using a sighting tube at eye level.  Another height threshold of > 0.5 m was 

also used for comparison with hemispherical-photo or satellite imagery derived cover, where 

applying a height threshold cannot be readily done, and it was assumed that almost all canopy 

material was assessed. 

To generate initial plot scale crown cover estimates from LiDAR data, returns > 2 m 

height were interpolated to a canopy surface / height model, using the highest returns within a 

defined search radius (typically 1 or 2 m) (Figure 19).  Then, crown cover (CC) was calculated 

for each field plot as: 

100*(%)
n

x
CC

i∑
=  

 

Equation 1 

 

where x was the number of 1 m2 tree crown cells (> 2 m height) and n was the number 

of cells in the plot. 

A canopy height model (CHM) only utilises the returns from the outer canopy (Figure 

19 panel 3).  Depending on the shape of the tree, an accurate representation of canopy form or 

volume may not be generated.  An assessment of canopy height model generation and potential 

issues with crown representation was presented in Lee et al., (2001) (Appendix C).  The 

assessment indicated that when height contours generated from the CHM were displayed in 3D, 

it was evident that they did not represent the correct shape of the canopy when compared to the 

LiDAR point cloud.  The Height Scaled Crown Openness Index was developed to address these 

issues (Phase II processing - section 3.5). 
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1. Air photo (1:1000 scale) showing tree 
crowns and plot boundary 

2. The raw 
LiDAR returns 
for the area 
within the red 
square.  Dark blue 
small points are 
returns less than 
2m in height 
above ground.  
Red and orange 
points are 20m + 
above the ground.   
Foliage + branch 
cover (FBC) can 
be calculated 
from the proportion of strikes 2m+ in height.  

3. A top of canopy surface was 
interpolated using the highest returns 
within a defined search radius (usually 1 
or 2 metres).  The interpolation also fills 
in any small gaps in the crown where the 
LiDAR did not strike vegetation 

 

4. The canopy 
height surface 
was shown, here 
with 5m height 
intervals (and the 
2m “forest” 
threshold).  The 
tallest parts of the 
crown are in 
orange, with the 
ground shown as 
beige.  This 
method does not 
consider the 
presence of any 
vegetation below the overstorey canopy top.  
 

5. The final crown cover assessment was made through the 
following steps:  
Convert the canopy height surface to a grid with 1m2 cells.   
All cells with a canopy height greater than or equal to 2 
metres are summed across the plot (green areas). 
The crown cover percentage was calculated as the total 
canopy cells divided by all the cells in the plot.  For this 
plot, 73% of the area was canopy above 2m in height. 
 
An alternative method was to generate a 2m height 
“contour” from the canopy surface and calculate the area 
within this 2m contour, which was then divided by the total 
area of the plot.  

Figure 19: Steps to generate foliage branch cover, and CHM crown cover from LiDAR 
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3.5 Phase II –Tree and Component Scale Structure Modelling 

3.5.1 Tree scale modelling strategy 

In order to answer the primary research question, and determine how LiDAR can 

improve the assessment of forest structure, the potential impacts of scale must be examined.  

From a review of the literature in Chapters 1 and 2, it was identified that the use of basic 

geographic entities enables the potential impacts of scale to be investigated.  As outlined in the 

research design, this thesis uses basic geographic entities of tree and tree components as the 

basis for enhancing forest structural assessments.  The following section describes the 

development of the tree and component scale geographic entities. 

As outlined previously (Lee et al., 2001 – Appendix C), there were a number of issues 

with using canopy height models (CHM) for tree and stand level assessment, especially when 

there was a requirement for sub-canopy stem assessment.  Therefore, to provide an alternative 

method for assessing the stand, a Height Scaled Crown Openness Index (HSCOI) method was 

developed.  The analysis of field and LiDAR data was undertaken in several successive stages 

(Stages I – IX; Table 11).  Specifically, the tree scale modelling combined with field data were 

used to: 

1. Evaluate the potential of the LiDAR data for identifying stem locations, including those 

associated with sub-canopy trees,  

2. Support the generation of empirical relationships between LiDAR-derived data (i.e., the 

canopy height models and HSCOI) and field data tree height and diameter for all 

identified stems, and  

3. Evaluate the potential of the LiDAR for retrieving stand level estimates of stem density, 

predominant stem height, basal area, and cover and (crown cover and foliage-branch 

cover).   

Each of the stages (except stage IX) was comprehensively described in Lee and Lucas 

(2007) (Appendix C). 
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Table 11: Overview of processing stages for the HSCOI  

Stage Purpose 
I Calibration and validation strategy  To ensure a) a sequence of reliable inputs to models 

and b) data to test model outputs across a range of 
forest types and environments. 

II Calculation of field plot-based stem 
density, cover, and sub-canopy tree 

assessment 

To provide calibration and validation sets at the plot 
level and to establish, based on field data, the 

accuracy of retrieval. 
III Conceptual development of the Height 

scaled Crown Openness Index (HSCOI) 
IV Calculation of the HSCOI 

Matrix generation and intersection of 
LiDAR points. 

Calculation of LiDAR penetration. 

To conceptualise and demonstrate the steps required 
for calculation of the HSCOI. 

 

V Smoothing of the HSCOI and generation 
of minima. 

To allow detection of stems regardless of crown 
dimensions and position in the vertical profile. 

VI Stem location using the HSCOI: 
Stem identification and extraction 

Filtering multiple scales utilising tree 
crown area and HSCOI thresholds. 

To allow mapping of stems by locating HSCOI 
minima and refinement of these maps by utilising 
empirical functions and field-measurements (e.g., 

height, crown area) for different species. 
VII Crown/cluster area and cover estimation  To identify the forest/non-forest boundary and 

crowns/crown clusters contained within. 
VIII Estimation of stem height and plot-scale 

attributes (including density and 
predominant height). 

To indicate stem size at the tree and stand level, 
thereby facilitating tree and stand level assessment of 

growth (successional) stage and estimation of 
biomass.  

IX Estimation of stem diameter (D130) and 
biomass 

To provide required inputs for allometric equations, 
and for SAR simulation calibration. 

 

HSCOI Stage IX: Calculation of stem diameter 

Most LiDAR studies have used various metrics of height to determine stem diameter, 

either at an individual tree level, or at a plot or stand level via basal area.  This research used 

field data to generate a function that predicted stem diameter (at 130 cm: D130) from tree height.  

A random sample (80 %, n = 3,016) of field-measured live trees with D130  ≥  5cm, (from 33 

field plots) were used (Figure 20a) such that: 

)*1189.0(
130 exp*9806.3 HD =  Equation 2 

 

All species were included in the investigation, and the empirical non-linear (power) 

function was generally applicable across the main genus types.  When evaluated against the 

remaining 20 % of live trees (D130 ≥ 5cm, n = 755), predictions of D130 were reasonable (r2 = 

0.60, RSE = 5.97 cm, with the slope and intercept of the best-fit line being 1.06 and 0.43 

respectively; Figure 20b).  Whilst some scatter was evident, the slope of the best-fit line 

indicated that stem D130 derived from height measurements approximated actual field-measured 
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D130.  The function could be further refined by splitting into multiple species-specific classes. 

However, the application would also require species classification and mapping of the remotely 

sensed data (Lucas et al., 2008).   

 
Figure 20: (a) Height-to-D130 translation function using 80% of field measured stems and (b) 

validation using remaining 20% of field stems.    

 

A hollows factor was also applied to the stems, based on a small sample of field data 

(Figure 21).  The hollows factor only applied to trees with the D130 of greater that 30cm D130, as 

no trees smaller than this were observed to have substantial hollows that would impact on 

overall tree biomass using existing allometric equations.  The range of observations for the 

hollows factor could easily utilise a linear function also, which reflects the relatively low 

number of observations.  

 
Figure 21: Hollows function derived from field data measurements (outside field plots), and applied 

to LiDAR derived stems. 
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Additionally, the sample was relative small, so further development of this function was 

recommended.  As the hollows factor was only applied to a relatively small set of the trees due 

to the D130 threshold, the amount of error contributed to the plot or stand total from uncertainty 

in this function was likely to be small, but should be investigated as a future research option. 

 

3.5.2 Individual crown segmentation and delineation 

Conceptual overview 

As shown in the thesis conceptual flowchart (Figure 7, section 3.1), crown delineation 

was a key component of developing basic geographic entities.  These entities form the building 

blocks of the multi-scale strategy to improve the assessment of forest structure using LiDAR.  

An individual tree was defined as the spatial unit of hierarchal Level 0, and the previous section 

(Lee and Lucas, 2007 – Appendix C) has described how individual tree stems can be mapped.  

This section outlines the LiDAR methods developed to delineate individual tree crowns, thus 

completing the second component of Level 0.   

Tree crowns were used to provide bounding areas for the tree component modelling, so 

that field data derived empirical functions can be applied at a tree level.  This also allows 

voxels, branches, and stems to be assigned and constrained to a single crown.  Crown cover 

estimates were generated for the field plots and larger assessment areas (e.g., primary sampling 

unit or ICESat footprints), to compare to field data.  Tree crown cover was also up-scaled and 

compared with other cover metrics such as foliage-branch cover and foliage projective cover, 

estimated from a range of sources.  As with the initial development of the Height Scaled Crown 

Openness Index (HSCOI), the crown delineation methodology has primarily been developed for 

the Queensland Injune data.  Due to time constraints, the delineation methods have not yet been 

calibrated for the NE Victorian field data.   

There were four main stages in the LiDAR crown delineation method. These are briefly 

described below, and illustrated in (Figure 21). 
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• Empirical functions were deriving from field data for two main tree structural types, 

thus allowing a simple template approach such that an expected crown area for a given 

tree height can be utilised. 

• HSCOI crown edge segments were generated, as described in Section 3.5.1. 

• Crown segments were classified into different structural types utilising LiDAR apparent 

vertical profiles and multi-scale spatial assessments. 

• Individual crown objects were generated from segments using a range of attribute and 

spatial context criteria.  The use of multi-scale adaptive templates allows the merging of 

small segments or splitting of large crown objects into more accurate crown 

representations as appropriate. Final crown dimensions were then calculated, and 

validated against field data. 

 

Stage I - Empirical functions for general crown templates 

The first stage in the individual crown delineation process was the development of 

crown templates using field data derived empirical functions.  The use of minima contouring 

and template matching methods to assist in crown delineation using high-spatial resolution 

imagery was described in Chapter 2 (e.g., Koukoulas and Blackburn, 2005; Gougeon and 

Leckie, 2006; Bunting and Lucas, 2006; Solberg et al., 2006), and crown shape was shown to 

influence LiDAR response (Nelson, 1997).   

An examination of the Injune field data identified two broad categories of crown 

shape/area (i.e., a template) for taller mature trees – small compact crowns regardless of top-

height (i.e., generally less than 50 m2), such as those from Callitris or Acacia genus (or some 

Eucalyptus in heavily stocked stands).  The other category had large wide spreading crowns as 

the maximum height of the tree was attained, which is typical of woodland Eucalyptus or 

Angophora genus.  Shorter, less mature trees of both types generally had smaller, more compact 

crowns, with the mean crown area of all trees being less than 10 m2 (Figure 23).   
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Figure 22: Flowchart of crown delineation methodology 

 

Examine field data to 
see which broad tree 
structure types are 

present 

Derive height to crown 
area relationships for the 
two main tree structure 

types 

Tall tree, wide 
crown 

function 
(Eucalypt) 

Tall tree, 
small crown 

function 
(Callitris) 

Create tree / non-tree 
boundary from HSCOI 

contour that encompasses 
~90% of LiDAR returns 

(2m+)

Create segmentation using 
HSCOI layers smoothed at 1m 

and 5m scales. Smooth 
boundaries and remove slivers 

Intersect tree crown boundary with crown segments from both 1m 
& 5m scale layers, and remove internal boundaries from non-crown 

areas.  Smooth boundaries, remove slivers, and merge very small 
segments 

For each 1m & 5m scale crown 
segments, calculate tree 

structural type using LiDAR 
vertical profiles 

Union 1m and 5m scale 
crowns.  Update 1m segment 
structural type by comparing 

to associated 5m segment type  

Check shape of new segment is not too irregular (i.e. 
is broadly elliptical) by using a vector based ray trace 

in 8 directions, then apply four criteria that assess 
ratios of radius length & area 

Shape  
ok 

Keep removing segments until new area  ≤  
80% of starting area and; 

- shape was ok, or until a single segment is left 
on list, or until checking loop has run 10 times 

Shape 
not ok 

From the list of merged segments, 
remove the segment that has 

centroid furthest away, and was 
least similar for height and HSCOI  

Create final crown delineation using ’merge’ ID.  
Calculate final crown measurements, check with 

field data 

Create new segment from 
updated list of component 

segments 

Apply four merge selection criteria to 
surrounding segments, using thresholds of 

height, adjacency, distance between 
segment centroids and HSCOI value 

Iteratively select surrounding segment centroids (tallest 
to shortest) within search radius of core segment 

centroid, as potential segments to merge with.  Segments 
need to have at least 10% area within search circle 

Those segments which meet selection criteria 
are assigned the ‘merge’ ID of the core 

segment, and all are merged into one new crown 
segment 

Those segments which don’t meet 
selection criteria are not allocated a 

merge ID 

Iteratively process each 1m scale crown 
segment (from tallest to shortest), if not 

already allocated this becomes core segment 
for this iteration.  Calculate expected crown 
area (+50%) using segment height with tree 
type function, then derive search radius from 

this area (assuming circle) 

Stop including segments when the sum 
area of current segments (core + any 

additional segments) was greater than the 
expected crown area 
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From examination of the range of field data, a basic hypothesis was postulated that the 

taller the tree, the wider the crown should be, a proposition also put forward by Jack and Long, 

(1991).  Different crown size ranges per tree height were observed for each of the two main 

crown shape/area categories (Figure 23).  It was also observed that the crown area of these two 

different types could be significantly different for the same tree top-height, especially at the 

taller end of the observed range (i.e., > 20 m).   

The crown delineation process utilises a multi-scale approach, with a fine scale 

segmentation to derive crown building blocks (equivalent to a Level –1 in a hierarchy), which 

were then compared to segmentations derived at medium scales, to put the constituent blocks 

into context (equivalent to a Level 0 in a hierarchy).  The final crown products were a 

combination of constituent crown segments.  The primary processing issue then becomes one of 

appropriately merging small segments into large (but not too large) segments for trees with wide 

crowns, whilst retaining small segments for smaller crowned trees.  The appropriate sizes were 

determined from empirical functions derived from field data, which compare tree top height and 

crown area.   

Crown area was based on an assumed circular or elliptical shape, derived from diameter 

measurements in north-south and east-west directions.  The calibration and validation of both 

functions are shown in Figure 23, with calibration utilising a random selection of 80% of field 

stems, and validation using the remaining 20% of stems.  The Eucalyptus function was 

described in Lee and Lucas (2007) and shown in Figure 23a, with the Callitris function given in 

Equation 3 (Figure 23b).   

Callitris Crown Area = 0.6027*exp(0.2015* height) Equation 3 

 

Using randomly selected validation datasets, the Angophora/Eucalypt function 

produced a correspondence (r2 = 0.70, RSE = 16.2 m2, n = 249), with a slope and intercept of 

the best-fit line being 1.66 and -1.937 respectively (Figure 23).  The Callitris/Acacia function 

produced a correspondence (r2 = 0.38, RSE = 5.8 m2, n = 506), with a slope and intercept of the 

best-fit line being 0.911 and 2.288 respectively (Figure 23).  Whilst there was much scatter in 
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the Callitris/Acacia function validation result, on average the function produced near to the 

expected field result (as evidenced by the validation best-fit line approximating the 1:1 line).  

Because the actual crown areas involved were relatively small (i.e. generally less than 50 m2), 

the function was considered adequate for the intended purpose within the delineation modelling.   

a) b) 

 
Figure 23: Calibration using 80% of field data trees (Upper) and validation using 20% of field data 
trees (Lower) for estimating crown area from height, for (a) Eucalypt and Angophora trees, and (b) 

Callitris and Acacia trees (live trees 5cm+ D130).  

 

However, the validation exercise indicated that the expected crown area derived using 

the Angophora/Eucalypt function was consistently underestimated when compared to the field 

estimated crown area.  From the validation graph (Figure 23), the line -of-best-fit was found to 

show bias in the prediction of actual field measurement value of approximately 1.5 times the 

translation function value.  Therefore to improve the predictive ability of the function when 

applied to the LiDAR modelling, a crown area expansion factor of 50 % was applied to the 

initial function result.  In the modelling algorithm the final expected crown area calculated by 
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dividing the initial expected crown area by two, and the result added to the original expected 

area.  The observed bias in the translation function validation was most likely a result of the 

large natural variation in Angophora and Eucalyptus height and crown area as measured in the 

field.  This could be linked to different species, stem density influences, soils, nutrient, and 

water availability (Florence, 1996).  Lack of accuracy in the crown area field measurements 

may also contribute to the observed variation in the relationship between crown area and height. 

As the height-to-crown area function was exponential, very large crown areas can be 

generated at the upper end of recorded tree heights.  To prevent unrealistic crown area values 

being produced, an upper crown area bound was applied to the final expected crown area.  This 

upper bound was based on the largest crown area observed in the field data, plus an expansion 

factor of approximately 10 % to allow for error in the field estimate, and for trees larger than 

those found in the field plots.  For the Queensland data, the largest crown area observed was 

455 m2, so the upper bound applied was rounded up to 500 m2.  With the Queensland derived 

function, the maximum crown area would be derived with a tree height of approximately 27 m 

or more.  When considering all LiDAR in the landscape sample, tree heights up to 35 m were 

observed, whilst the tallest tree measured in the field was 31 m, so it was therefore possible that 

larger crowned trees exist in the landscape.  Examination of LiDAR (or other high spatial 

resolution data if available) at the locations with the tallest heights would indicate if the crown 

width upper bound needs to be increased.  

 

Stage II - Creating individual crown segments 

Each crown area was segmented into potential individual tree crowns or tree clusters 

using ArcGIS hydrological functions (ESRI, 2006), where ‘drainage’ basins were delineated 

around areas of low foliage density, as indicated by high Height Scaled Crown Openness Index  

(HSCOI) values.  Using the ArcInfo ‘BASIN’ function, ridgelines between basins provided the 

vectors for the crown delineation.  The drainage basins were created by locating the pour points 

at the edges of the analysis window (where water would pour out of the grid), as well as sinks, 
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then identifying the contributing area above each pour point.  The method of deriving flow 

direction from a DEM, utilised by ArcGIS, is presented in Jenson and Domingue (1988).   

With the initial steps of the crown segmentation process for the Injune test plot (p81-

16), basin delineation was done on both the 1 m and 5 m HSCOIstand surfaces (herein described 

as segment_1m and segment_5m respectively) (Figure 24).  Segmentation vectors were smoothed 

to remove the blocky appearance resulting from the underlying HSCOI grid (Figure 25).  For 

the figures, the background image was HSCOIstand, where dark blue is high openness (bare 

ground), and red is low openness with the tallest trees (i.e. centre of tree).   

a) b) 

 
Figure 24: Crown segmentation using surface generated from a 1m circular (a) and 5x5m 

rectangular (b) moving window. 

 

a) b) 

 
Figure 25: Smoothing of segmentations (a) and segment clipping with HSCOI derived crown 

boundary delineation (b).  
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Field data stems are yellow filled circles proportional to D130, and open circles are 

proportional to mean crown radius.  Following delineation, the basins were clipped to the 

HSCOIstand, crown edge, with those basin vectors outside the tree crown area removed (Figure 

25).  When initially compared to the field tree maps, the segments_5m tend to indicate where 

large crowned trees occur, whilst creating large clusters of many smaller crowned trees.  The 

segments_1m tend to split the very large crowns into leaf clumps areas, presumably from the 

major branches, whilst correctly segmenting small trees.  Where clusters of many small trees 

occur, even segments_1m tend to aggregate these into single segments, where individual crowns 

cannot be discerned.  Each segment was then assigned the highest LiDAR return found within 

the segment.   

 

Stage III - Classification of crown segments 

The third stage in the crown delineation process applies a genus probability process at 

multiple spatial scales, using both segments_1m and segments_5m.  The segment_5m was used to 

determine if the genus distinction calculated for the segment_1m needs modification.  This was 

because large crowned trees (e.g., Eucalypt or Angophora) were often made up of many smaller 

segments equivalent to major branch clumps at the finer scale, which can have a similar 

structural signature to Callitris forms.  Therefore, if the genus assessment was only done on the 

segment_1m, large trees would remain over-segmented.  The working hypothesis with these 

structural assessments was that Callitris type trees will tend to have denser foliage concentrated 

in the upper part of the crown.  This results in more LiDAR returns being “captured” in the 

upper portions of the crown.  The resultant LiDAR apparent vertical profile from trees of this 

type will therefore tend to be strongly skewed towards the top most part of the crown, and the 

HSCOIlocal values will tend to have a smaller range, as the crown was more compact.  These 

concepts were illustrated using examples from two segments, with LiDAR returns by height, 

and associated apparent vertical profiles for the two representative broad genus types (Figure 

26).  Figure 27 provides photographic examples of the two broad genus groups. 
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Due to variability in crown form in different environments, a range of criteria were used 

to determine the probable genus group, as any one test may not give a correct result if applied 

singly.  The four tests were initially developed using nine trees (five Eucalypt-Angophora and 

four Callitris-Acacia) from two different field plots (Table 12).  When two or more of the four 

test criteria exceed the relevant threshold then the segments_1m and segments_5m were classed as 

Callitris-Acacia forms, otherwise the segment was classed as Eucalypt-Angophora.   

The two segmentations were then combined, and the genus code from each segment_1m 

was compared to the corresponding segment_5m (Figure 28).  When both segment_1m and 

segment_5m were classed as Callitris-Acacia then the final genus assignment for segment_1m was 

Callitris-Acacia.  For all other combinations of genus between the two assessment scales the 

final genus assignment was Angophora-Eucalypt.  Where more than one segment_5m overlaps 

the segment_1m, then the segment_5m that has at least 10% of the area overlapping the 

segment_1m, and was the larger for area and tallest in height was used.  Subsequent validation 

was done on the rest of the field plots, with the final genus assignment occurring for each 

assessment scale. 
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Figure 26: Illustration of different apparent vertical profiles for the two main structural types. 

 

Angophora Callitris 
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Eucalyptus (Ironbark) Acacia (Brigalow) 

Figure 27: Examples of the two broad genus groups based mature tree structural crown forms 

 

a) b) 

  
Figure 28: Crown structural classification into two broad genus categories at (a) segment_1m and (b) 

segment_5m scales.  Green is Callitris-Acacia and light brown is Eucalypt-Angophora.  
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Table 12: Genus probability selection criteria 

# Criteria Example 
1 The percentage value of the LiDAR return count at 

max frequency from the apparent vertical profile. 
 

Callitris form if result was ≥  30%. 
 

The graphic segment example has a percentage value at 
maximum LiDAR frequency of 43.2%.  

 
2 Sum of the percentage values for the LiDAR return 

frequency from each height interval bordering the 
maximum frequency height interval, (including the 

maximum frequency value). 
 

Callitris form if result was ≥  55%. 
 

The graphic segment example has a sum percentage 
value of 75.7%. 

 
3 The range of HSCOIlocal values (max – min) within the 

segment  
 

Callitris form if result was ≤  60. 
 

The graphic segment example has a HSCOIlocal range of 
60%  (81.8 – 21.9). 

 
The LiDAR canopy returns (0.5m+) used in the 

apparent vertical profiles for the other criteria are black 
points.  Ground returns are hollow/grey points.  Dark 

blue HSCOIlocal cells indicate bare ground.  

 
4 Kurtosis or skewness of the LiDAR apparent vertical 

profile.  If either one of these was met or exceeded then 
the segment was most likely Callitris.   

 
For kurtosis a Callitris form if result was ≥  2. 

For skew a Callitris form if result was ≥  1. 
 

The graphic segment example has a kurtosis of 12.14 
and skew of 3.32. 
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Stage IV - Creating crown objects 

In stage four of the crown delineation process, objects representing tree crowns were 

derived from the polygon segment_1m layer, which were assessed using a range of spatial criteria 

(see Figure 22 for the overview).  The criteria to determine the most likely crown area were 

based on the field-data derived height-to-crown area relationships, and used the segment LiDAR 

maximum height.  Segments were iteratively processed from the tallest to the shortest tree, and 

at each stage the segment being processed became the “core” segment.  Surrounding segments 

were then assessed with respect to the core segment.  This equates to the “seed” point used in 

optical crown segmentation literature (see Chapter 2; e.g., Bunting and Lucas, 2006).  Once a 

segment_1m became the core segment, or it was allocated to be merged with a core segment, it 

was removed from the processing list, thus preventing larger crowns from being “undone” as 

the iteration progressed.   

Parameters, criteria and thresholds (see Table 13 and Table 14) used to determine if a 

segment should be merged, split or remain unchanged were initially determined though iterative 

empirical testing on a selected set of tree crown segments reserved for algorithm calibration.  

These segments were selected so that they spanned species, height and crown width ranges 

observed within three different field plots (see Lee and Lucas, 2007 (Appendix 3) for a 

description of the field plots used for calibration).  Validation of the parameters and thresholds 

was achieved by executing the segmentation algorithm across the all LiDAR in the calibration 

field plots and comparing the delineation results to the remaining (independent) field data trees.  

A range of different criteria combinations were iteratively developed to account for the 

observed natural variability in tree crown dimensions, foliage density, and horizontal and 

vertical location within the stand. 

Overall there were two general assumptions that determine how the criteria and 

thresholds were applied.  First, segments were only merged if they were similar in height, 

foliage density and location (i.e. adjacent or close by).  This assumption was evaluated by 

comparing initial segment delineations with field data tree maps for a range of species and 

crown sizes.  Second, tree crowns were found to be generally circular/elliptical in shape using 
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field data measures of the crown extents in the north-south and east-west directions (Figure 29).  

It was found that, in general, crowns had even diameter distances based on the near 1:1 

relationship.  Evidence for an assumed circular shape was further bolstered by examination of 

ground and aerial photographs of the plots and raw LiDAR data of known individual trees (e.g. 

see Figure 19).  Therefore, segments that deviated greatly from this shape were considered to be 

comprised of crowns of several trees, and were split if constituent segments were available.   

 
Figure 29: Derivation of circular crown shape assumption, using all field live stems 5cm+ D130 (n = 

2708) and comparing crown north-south length versus east-west length. 
 

The first part in the crown object delineation stage assessed the area of the core 

segment.  The segment_1m LiDAR height and probable genus were used to calculate the 

expected crown area, using the field data relationships described previously.  Segments were 

then defined as being near equal, too small, or too large with respect to the expected area.  If the 

core segment was too small, the surrounding tree segments_1m that overlapped the segment_5m 

within which the core segment centroid was located were selected.  This prevented crowns 
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growing too large by not selecting segments_1m that may be part of other trees (as identified by 

the 5 m assessment scale).  The selected surrounding crown segments_1m were processed tallest 

to shortest, and four criteria were utilised, as described in Table 13:   

Table 13: Spatial criteria for merging a segment with neighbouring segments 

Criteria Description 
1 The selected segment_1m was adjacent to core segment. 
2  The selected segment_1m had LiDAR height ≥ 73 % of the height in core segment. 
3 The centroid of the selected segment_1m was within 110 % of the search distance from 

core segment centroid.  The search distance was calculated as the radius of a circle with 
an area the same as the expected crown area. 

4 The selected segment_1m centroid HSCOIstand was within 25 % of core segment centroid 
HSCOIstand. 

 

The selected segment_1m was coded with the core segment ID (termed the “merge ID) 

when any of these four combinations of criteria were met – (1 and 2); or ((1 or 2) and 3); or (1 

and 3 and 4); or (2 and 3 and 4).  Otherwise the surrounding segment_1m was not added to larger 

crown, but instead was released back into the iterative processing list.  Processing was complete 

for the core segment when either no more surrounding segment_1m meet the assessment criteria, 

or when the total area of the core segment plus any additional segment_1m that have been 

allocated to it exceeded the expected crown area.  Once all segments_1m had been processed, the 

final assigned “merge” ID was used within a ‘dissolve’ process, where any adjacent segments_1m 

with the same merge ID were combined to form a larger crown (see Figure 30b).   

a) b) 

  
Figure 30: Final crown structural classification (a) and delineation after spatial assessment (b). 
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If a core segment was too large as indicated by the expected crown area assessment, a 

range of criteria were used to determine if it should be split.  Note that larger segments can only 

be split into constituent segment_1m parts, if present.  Shape was assessed using four shape 

criteria, with the segment shape deemed to be too irregular when the criteria for the shape ratio 

and one of the others were met.  When this occurred the segment was coded as available for the 

splitting process.  If the criteria indicate that a segment_1m was too irregular, but could not be 

further split due to there not being any constituent segments_1m,, then a flag was entered into the 

database indicating that the segment was most likely made up of many small stems, but where 

individual crown areas could not be resolved using the available data and processing scales.  

The four assessment criteria were summarised below and illustrated in Table 14: 

• (1) if the perimeter-to-area shape ratio was greater than or equal to the threshold.  If 

this was the case then the three additional checks were undertaken,   

o (2)  if the segment roundness ratio was less than or equal to the threshold,  

o (3)  if the elongation ratio was less than or equal to the threshold; or  

o (4)  if the eccentricity ratio less than or equal to the threshold.    

For criterion 1, the expected shape ratio (perimeter-to-area ratio) was calculated for a 

circle, which was assumed to be the shape of an idealised tree crown.  When compared to the 

actual perimeter-to-area ratio from the segment, the ratio indicated the similarity to a circular 

shape.  The expected perimeter-to-area function was developed empirically for an area ranging 

from 1 m2 to 600 m2, which was 150 m2 larger than the largest crown found the Injune field 

data.  The form of the function was y = 3.5449x-0.5, where y = perimeter-to-area ratio, and x = 

area.  The form of the function was modified in Table 14 to be usable in Arc Macro Language, 

as a power function (other than x2) was not available.  

For the second criterion, the circular shape (i.e. an idealised tree crown), was assessed 

in a different way to support the result of the criterion 1 measure.  Here a circle was generated 

within the segment, as well as a circle with an area the same as that of the segment.  The radii of 

the two circles were then compared as a ratio measure.  The rationale of this measure was that 

the ratio will approach one when the segment was almost circular, and thus more likely to be an 
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individual crown.  If the crown segment was very irregular, then an internal circle would be 

much smaller than the actual segment area would indicate.    

For the third and fourth criteria, an assessment of the length and width of the segment 

was made.  Here, the rationale was that a segment shape that was irregular (and less likely to be 

an individual tree crown), will have a large divergence of radii measures.  These two criteria 

were developed to provide a more direct comparison to the available field data measurements.  

To determine the segment length (and therefore shape), a star pattern of 8 arcs was generated 

from the centroid location, using a length of three times distance of the radius of the largest 

circle that can fit within the segment.  This was undertaken to ensure the assessment arcs extend 

to the crown edge. The arcs were then clipped to the segment boundary, and the longest arc 

within the segment identified, as well as the perpendicular arc.  The respective diameter or radii 

lengths compared, and where lengths were relatively even, then the shape was assumed to be 

roughly circular and thus close to an assumed individual tree crown.  The converse situation 

occurs where there was a large difference in the diameter and radii measures, and the segment 

was coded for splitting, if constituent segments were present.  
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Table 14: Spatial criteria for splitting a segment 

# Criteria Example 

1 

The shape ratio – the segment perimeter-to-area 
ratio divided by the expected (for a circle) 

perimeter-to-area ratio.   
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⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞

⎜
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⎛

=

area

area
perimeter

C
15449.3

1  

 
The segment was further checked if the result was 

≥ 1.47.  
 

The graphic example has a C1 = 1.32              
(area = 24.8m2, perimeter = 23.4m) 

 

 

2 

The roundness ratio – the radius of the largest 
circle that can be contained entirely within the 

segment divided by the radius of a circle with an 
area the same as the segment area. 

 

areasegmentwithradiuscircle
segmentwithinradiuscircleC

____
___2 =  

 
The segment was split if result was ≤ 0.61. 

 
 

The graphic example has a C2 = 2.10/2.83 = 0.74 
 

3 

The elongation ratio – the perpendicular diameter 
(of longest crown diameter) divided by the longest 

crown diameter.   
 

lengthdiametersegmentlongest
lengthdiametersegmentlarperpendicuC

___
___3 =  

 
The segment was split if the result was ≤ 0.75. 

 
 

The graphic example has a C3 = 5.03/7.73 = 0.65 
  

4 

The eccentricity ratio - the two radii that make up 
the longest crown diameter measurement.  The 
lowest radius was divided by the highest radius.   

 

diameterlongestofradiuserl
diameterlongestofradiussmallerC

____arg
____4 =  

 
The segment was split if result was ≤ 0.55 

 
 
 

The graphic example has a C4 = 3.33/4.00 = 0.83  
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3.5.3 Tree component scale LiDAR modelling 

The previous section outlined the stem mapping and crown delineation methods utilised 

to develop a hierarchical Level 0 calibration dataset.  This section extends the methods to model 

at the tree component scale (i.e., branches and leaves), in addition to the already derived stems.  

Modelling components allows more sophisticated SAR simulations to be undertaken, and 

facilitates a purely structural calculation of biomass, using specific volumes of wood or leaf 

material multiplied by the species specific weight or density of these components.  Components 

can also be spatially mapped, further enhancing the structural description of the plot that can be 

achieved.   

Prior to the component modelling, each crown was associated with a species type based 

on CASI data, using procedures outline by Bunting and Lucas, (2006).  The attribution of 

LiDAR crown delineations with CASI derived species is described in Lucas et al., (2006c) 

(Appendix C).  The main steps to model branch and leaf component level information were: 

a) Generate tabular 3D 1 m3 canopy voxel database, i.e. such as that used for the HSCOI.   

b) Intersect voxels with individual crown polygons, and assign to individual stems within the 

crown area.   

c) Spatially cluster voxels (in 3 dimensions) into primary branch clumps, with the centre of 

mass location of voxels becoming the primary branch end.  The primary branch start at 

stem was derived from empirical functions using field data.  The secondary branches that 

emanate from voxels were assigned to a primary branch (see Figure 31 for an example).  

d) Determine branch diameter as function of trunk diameter, where primary branch meets 

trunk.  The branch volume was calculated based on the assumption that the branches were 

cylinders.  Species specific wood density factors were then applied, and the structural 

woody biomass (including trunk) was calculated.   

e) Use allometrics (using species, D130, or height) to determine small branch and leaf biomass 

within voxels. 

f) Sum the estimates of structural biomass per tree and compare to field biomass estimated 

with allometrics using D130 only, for validation of the modelling.   
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These steps were comprehensively described in Lucas et al., 2006c (Appendix C), with 

additional detail on the branch radius calculation given in the next section.  Biomass estimation 

methods at the plot and tree scale were also described in Lucas et al., 2008 (Appendix C). 
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Figure 31: Voxel groups associated with branch clusters within an individual E. populnea tree from 

PSU 142, with a planimetric view (upper) and 3D view (lower). 



Chapter 3: Data Analysis Methodology 
   

130 

Branch radius calculation 

The start and end radii estimates for branches were calculated using the functions 

shown in Table 15.  All branch radius units were reported in metres.  Values for the start and 

end radii of both branch categories were based primarily on trunk and branch diameter data.  

Primary branch end radius equals the primary start radius multiplied by 0.8015.  Here 0.8015 

was the linear function parameter derived from field data tree measurements for the species, 

where y = 0.8015x, (x = branch start diameter, and y = branch end diameter); the intercept was 

forced through zero, and the range of measurements was 2.7 - 34.7 cm.  Secondary branch start 

radius equals the primary branch end radius, and the secondary branch end radius equals the 

secondary start radius multiplied by 0.8015. 

Table 15: Functions used to calculate branch start and end radius 

Primary branch start radius = 

( )( )( )
( )AngleTTan

PBsthtDBHoffsetTrHtop
_

100__ ×−−−  

Tr_offset = trunk end offset = 1.5m 
DBH_ht = height at DBH = 1.3m 
PBst = primary branch start height (m) 
 
Primary branch start radius parameters:  
Htop = tree top height (m),  
T_Angle = (Taper_A * Pi /180) (radians).  
To convert Taper_A to radians (for use in excel) 
it was multiplied by Pi and divided by 180. 
 

Taper_A = Taper function angle = 
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Taper function angle parameters: 
Tr_vert_ht = trunk vertical height (m) = (tree top 
height – Trunk end offset)  
Tr_hyp = trunk hypotenuse length (m) (i.e. 
length of outside of trunk to top height). 

 

Tr_hyp = trunk hypotenuse length = 
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Trunk hypotenuse length parameters: 
DBH = diameter at breast height (1.3m) (cm) 
Tr_e_radius = radius of trunk at end (cm) 
Tr_vert_ht = trunk vertical height (m) 
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3.6 Phase 3 – Multi-Scale Calibration and Validation Case Studies  

3.6.1 Introduction 

As described in the introduction to the this chapter, to address the primary research 

question with respect to the utility of LiDAR to improve forest structural assessment, three case 

studies were presented: 

1. Multi-scale assessment of height and cover.  This case study examines the effect of plot 

or assessment size on the reported height or cover metric (and investigates a minimum 

reporting area for forest), a comparison of crown cover  derived from LiDAR versus 

API, and a trial of the crown separation “zig-zag” transect method;  

2. Comparison of SLATS Landsat TM derived foliage projective cover with LiDAR 

foliage-branch cover and crown cover, to investigate the development of a foliage 

projective cover  to crown cover translation function;  

3. Investigation and calibration of ICESat full waveform LiDAR data for forest stand 

height and cover. 

 

 

3.6.2 Multi-scale assessment of height and cover 

Multi-scale predominant height assessment 

This section tests the hypothesis that the scale of assessment (i.e. the defined area of a 

plot or “stand”) influences the reported stand height.  If the assessment area was too small, it 

may not represent the wider stand.  If it was too large then it may include tree heights from 

other stands with different structure.  It was assumed that a “stand” was structurally relatively 

homogeneous, though it was recognised that in some situations determining homogeneity can be 

difficult.  As described previously, predominant height was calculated as the mean of 10 m cells 

with a canopy height greater than or equal to 2 m, within a defined area, where the maximum 

LiDAR return per 10 m cell was used.  Because the NE Victorian LiDAR data were collected 

with a wider swath than Injune, this analysis concentrated on the NE Victorian LiDAR in the 

first instance.  This method was applied at the following scales (Figure 32): 
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• field plot scale (30 x 30m - 0.09ha) (solid yellow) 

• transect area scale (100 x 100m - 1ha) (red outline) 

• LiDAR swath overlap scale (~400 x 400m ~ 20ha) (grey outline), 

Apparent “holes” in the lattice indicate that no LiDAR returns higher than 2 m were 

observed for that cell.   

 
Figure 32: Predominant stand height assessment using LiDAR 10m cells at different spatial extents 

at CFMF plot 212 (Ovens river).   

 

An example of the raw LiDAR data in profile, for NE Victorian plot 212, has the data 

sliced to the full width of the swath, and was approximately 100 m deep (Figure 33).  The 

different scales of assessment, namely field plot, transect area, and swath extent, were indicated.  

This plot illustrates potential issues with plot height representativeness, as the location may not 

reflect the wider stand.  This issue may be more pronounced in highly variable forest 

environments such as riparian zones within floodplains (Figure 33).  In this example, it can be 

seen that the field plot was located within a cluster of taller trees, but the wider stand appears to 



Chapter 3: Data Analysis Methodology 
   

133 

have tree canopy that was generally shorter.  Note that in this illustration the trees appear to 

have quite narrow crowns. This was an artefact of the display, as the X distance (x-axis) scale 

was 4 times greater than the tree height scale (y-axis), so it was not indicative of the actual 

crown shape (see also the plot hemispherical photos in Appendix B). 

 
Figure 33: Illustration of CFMF plot p212 with plot, transect and stand scales of assessment.  The 

LiDAR point data slice was approx. 100m deep.  

 

To test whether the actual location of the field plot has an affect on the predominant 

height result, additional analyses were undertaken.  Here field and transect ‘plots’ were 

randomly located within the LiDAR swath area, and a mean value derived from the respective 

samples.  This was primarily to test if a single field or transect plot was adequately sampling the 

wider stand (as defined by the LiDAR swath).  The analysis method used the 10 x 10 m cell 

lattice which covers the whole LiDAR swath at the plot location (approx 400 x 400 m or 20 ha).  

A start cell was randomly selected from within the swath area, and from this start cell a transect 

area was derived (i.e. 100 cells in a 10 x 10 array,  with the start cell located in the lower left 

corner).  At the centre of the transect area, a field plot area (9 cells in 3 x 3 array) was 

subsequently extracted.  The predominant height was calculated for both assessment scales.  

This process was then repeated 30 times throughout the LiDAR swath area and for each of the 

plots across the landscape.   
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For the Injune multi-scale predominant height calculation, the analyses where 

undertaken using square and rectangular assessment areas respectively, due to the secondary 

sampling unit layout (Figure 35).  The first iteration of assessment begins with the centre 

secondary sampling unit (# 15), from which the predominant height was calculated based on all 

10m cells.  The second iteration then adds the 4 adjacent border secondary sampling units (5, 

14, 16, and 25) to the selection set, and predominant height calculated.  The third iteration 

selects the 3 x 3 matrix of secondary sampling units centred on secondary sampling unit 15.  

Subsequent iterations then include additional secondary sampling unit columns of three 

secondary sampling units on each side (6 in total included per iteration) moving outwards, until 

the 7th iteration calculates the predominant height using all 30 secondary sampling units.  Note 

the outer row/column (for 2 sides) of 10 m cells with a height of 0 m was initially generated to 

capture any additional LiDAR swath returns caused by adverse aircraft movement.  For this 

analysis, these cells were not used as these 10 m cells were outside the primary sampling unit 

area. 

Table 16: Multi-scale predominant height assessment buffer selection areas for NE Victorian plot 
locations. 

iteration Buffer circle area 
(ha) (radius (m)) 

Mean number of 10m cells 
assessed (>2m height) 

1 0.1 (18) 9 
2 0.5 (40) 48 
3 1.0 (56) 93 
4 2.0 (80) 186 
5 5.0 (126) 461 
6 10 (178) 913 
7 15 (219) 1324 
8 20 (256) 1666 
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Figure 34: Multi-scale assessment of predominant height for NE Victorian sites, with example for 

plot 212 shown. 

 

 
Figure 35: Example of predominant height assessment at a range of scales for Injune (PSU 142 

shown, with 10m cells within 30 larger 0.25ha SSU’s).  
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Multi-scale canopy cover assessment 

In a similar process to that used with predominant height, the foliage-branch cover 

estimates were extended to the swath width using LiDAR at a known range of scales.  This was 

due to the limitation of not precisely knowing the view extent of the hemispherical photography 

versus the LiDAR.  The utility of LiDAR as a multi-scale dataset to compare to a range of other 

sensors was initially trialled on plot 220 in NE Victoria.  At this location the trial of woody non-

woody assessment was undertaken for the LiDAR swath area (522 ha), and used LiDAR, 

SPOT5, and an early version of the Australian Greenhouse Office (AGO) Landsat TM derived 

woody non-woody layer data as part of the CFMF pilot project.  The hemispherical photo value 

was for the field plot area, to assess if the plot location and this data source were representative 

of the wider stand.   

Subsequently the LiDAR analyses were extended to investigate how foliage-branch 

cover estimate changed with an increasing circular assessment area, for all plot locations in NE 

Victoria, and using the full extent of the LiDAR data (approx 400 m x 400 m).  The analysis 

utilised vector rings of increasing radius up to 220 m, to approximate the full swath extent, and 

which were intersected with the LiDAR point data.  Foliage-branch cover was then calculated as 

the proportion of LiDAR returns >  2 m height above ground, with respect to all returns.  

Assessment rings were generated in 10 m radius increments, with the addition of 5 m and 15 m 

rings to increase the spatial resolution of the assessment at finer scales.   

For Injune, various sized rectangles were used instead of circles due to the rectangular 

shape of the primary sampling unit (Figure 35).   The Y distance incrementing by 10 m, with 5 

and 15 m distance measurements also included to increase the spatial resolution of the 

assessment at finer scales.  The Y distance reached a maximum distance of 150 m, to assess the 

whole primary sampling unit.  It was observed that the X distance of the assessment rectangles 

were equal to the Y distance multiplied by 3.333.  
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Figure 36: Illustration of the multiple scales of FBC circular assessment for NE Victorian plots.  
LiDAR (2m+) for plot 212 has red/orange colour as highest returns (~ 40 m), with lowest  non-

ground dark blue.  Background image was Landsat ETM. 

 

LiDAR and API crown cover comparison 

Historically, estimates of cover derived from API have been the primary source of 

information for NFI reporting.  However the categorical nature of the estimates can cause 

difficulties in translating and calibration with other sources or types of forest cover data. The 

mid-point of the API cover class was chosen as the variable to correlate with a LiDAR derived 

crown cover estimate, as it provides an indication of the relative accuracy of the cover 

interpretation.  The limitation of this method was that it likely introduces bias as it was derived 

from a categorical classification, and especially in classes with a large range.  The mean and 

range of LiDAR derived crown cover was calculated using 25 m cells within the API polygon.  

For this analysis the API polygon extent could range from being smaller than the LiDAR 

primary sampling unit, to being much larger (Figure 11).  As a result, the comparative analysis 
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included an assessment of the coverage of LiDAR crown cover cells within the API polygon, to 

investigate if less LiDAR coverage within the polygon also led to a less accurate comparison of 

cover.  The classes chosen for this were arbitrary, but selected such that there was useful class 

distinction for making assessments about the results, given the difficulties in comparing 

categorical interpreted data with empirically based crown delineations.  

 

Crown Separation method test 

The current nationally consistent crown cover estimation method as developed by 

Walker et al.,(1988) and Penridge and Walker (1988), was presented in the field survey 

handbook for soils and vegetation (McDonald et al., 1998).  One of the stated limitations of the 

method was having accurate and realistic crown cover maps with which to calibrate and test the 

range of assumptions that were inherent in the method (Penridge and Walker, 1988).  The 

development of LiDAR derived crown delineations allows some of the methodological 

assumptions to be examined in more detail, for both similar and different environments to that 

used in Penridge and Walker (1988).  However, it was beyond the scope of the thesis to 

undertake a full assessment for all field plots.   

An initial comparison was done using two field plots at the Injune field site.  This study 

area was chosen as it has a wider range of consistently collected cover data.  One plot (p142-13) 

was selected that closely matches the environment used to develop the crown separation zig-zag 

method, namely grazed poplar box (Eucalyptus populnea) woodland in central Queensland.  

The second plot (p81-16) was selected to test the robustness of the crown separation method in 

a more challenging forest (mature Angophora-Callitris woodland with dense understorey of 

regenerating Acacia, Lysicarpus, and Callitris), whilst still being in the same general landscape 

(the two plots were 25 km apart).  The primary assumption behind the comparison used in this 

thesis was that the LiDAR tree crown delineations were an accurate representation of the tree 

crowns, and as would be observed in the field.  The crown separation comparison test uses a 

combination of field data and LiDAR crown delineation.  The field stems points were used to 

determine the zig-zag transect path, and the LiDAR crown delineations were used to calculate 



Chapter 3: Data Analysis Methodology 
   

139 

the actual lengths of crown and inter-crown gap along the transect, as per the McDonald et al., 

(1998) method description.     

 

3.6.3 Landsat cover investigation and validation 

This section outlines a potential strategy using LiDAR to test and calibrate foliage 

projective cover at the scale of a Landsat pixel.  The methods for extracting foliage projective 

cover from Landsat data by the SLATS program were described in Chapter 2.  SLATS utilises 

an extensive program of field checking and continuous research into improving the cover 

products (Lucas et al., 2006b).  One aspect of the calibration process was the translation of field 

data foliage cover to a Landsat TM pixel, where there may be an issue from differences in scale 

between field transect calibration data and its application to the larger Landsat TM pixel.   

Hemispherical photo analyses and LiDAR data sample both the photosynthetic foliage, 

and non-photosynthetic branch and trunk canopy components, yet it was only photosynthetic 

material that satellite imagery generally responds to.  Therefore, there was a difference between 

satellite foliage projective cover (such as Landsat), and foliage-branch cover (LiDAR and 

hemispherical photo observations).  With the LiDAR individual crown delineation methods 

developed in this research, it was now possible to develop consistent translation functions 

between foliage projective cover, foliage-branch cover and crown cover, thus expanding on 

existing knowledge (e.g., Specht and Specht, 1999).   

The method used to assess the suitability of LiDAR data for calibration was described 

in the following section.  Here, the assumption was made that LiDAR derived foliage-branch 

cover was close to field based estimates of foliage projective cover and foliage-branch cover, as 

described in Section 3.3.2.  This assumption will be tested with the results presented in Chapter 

4, and in the implications discussed in Chapter 5.  There were four main stages to the foliage 

projective cover calibration strategy.  First, the Landsat TM derived foliage projective cover 

layer was used to generate a pixel vector layer, based on the individual raster pixels (Figure 37).  

Second, the vector ‘pixel’ layer was used to assign an identification code (pixel-ID) to the 

LiDAR point data, and the percentage of canopy returns within each pixel area was calculated 
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(Figure 38).  Foliage-branch cover was calculated for canopy returns at 0.5 m (vegetation cover) 

and 2 m height (forest cover) thresholds.  Third, the pixel-ID assignment was repeated for 

LiDAR mapped stems, to investigate linkages between stem density (per hectare) and foliage 

projective cover (Figure 39).  Finally, the LiDAR-derived crown delineations were clipped 

within each pixel and tree crown cover was calculated (Figure 40).   

The four-stage process was undertaken for 12 primary sampling units that contain field 

plot data.  Any Landsat pixels that were only partially covered by LiDAR data were excluded, 

giving a final total of 1,161 individual assessment pixel ‘cell’ polygons for comparison.  Across 

the assessment cells the mean return sampling density (all returns) was 1 return per 0.54 m2  

(max – 1 return per 1.49 m2, min - 0.14 m2, standard deviation - 0.2 m2).   

It was subsequently noted that a number of cells had Landsat TM foliage projective 

cover higher than LiDAR crown cover, especially in the lower cover range (see Results 

chapter).  Conceptually this was a logical inconsistency, as with a 2D representation of cover 

the foliage projective cover should always be less than or equal to crown cover, assuming an 

opaque crown.  Therefore, it appears that foliage additional to that found within the tree crowns 

was being included in the SLATS foliage projective cover estimate, most likely from shrubs and 

grasses.  In order to provide an appropriate calibration for tree “forest” cover, all cells where 

foliage projective cover > crown cover by more than 2 % were excluded, and the remaining set 

(855) used to develop the calibration and validation subsets.  The function calibration subset 

consisted of 80 % randomly selected 25 m cells, with the validation set using the remaining 20 

% of randomly selected cells. 
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Figure 37: Vector pixel layer example for PSU 142, derived from Landsat SLATS FPC grid 

(background). Values within cells indicate FPC. 

 

 
Figure 38: LiDAR return density (all returns) for PSU 142.  Values within cells indicate LiDAR 

FBC. 

 

 
Figure 39: HSCOI derived stems for PSU 142.  Values within cells indicate stem density per FPC 

pixel (stems per hectare). 

 

 
Figure 40: HSCOI derived crown delineations for PSU 142.  Values within cells indicate LiDAR 

crown cover percent per pixel area. 
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3.6.4 ICESat calibration with airborne LiDAR 

Chapters 1 and 2 identified the ICESat platform (and associated laser sensors) as a 

possible solution to the lack of a continental-wide, consistently collected height data source for 

Australia.  Therefore, to investigate the potential for ICESat data to meet this requirement, 

ICESat data were intersected with the LiDAR transects and a total of 27 overlap locations in NE 

Victoria were found (Figure 41).  The locations cover a wide range of environments, from 

Floodplains, Foothills, to Montane and Subalpine sites.  Land cover varies from dense and 

closed forests to open woodlands, as well as cropping, horticulture, and grazing.  At each 

overlap site, ICESat footprints were selected that were completely within the airborne LiDAR 

swath, and which assumed an approximate footprint size of 50 x 75 m, but which varied 

depending on the collection date.  This resulted in a total of 94 individual footprints.  For the 

purposes of this thesis, a case study using three of the initial 94 footprints were selected to 

highlight the use of LiDAR for calibration.  The processing of the LiDAR for calibration and 

comparison is described in the following sections.  The full assessment of all 94 footprints was 

reported in Lee et al., (2006).    

 
Figure 41:ICESat transects (light blue) with the airborne LiDAR transects (yellow) and numbered 

overlap locations across CFMF pilot region in NE Victoria.   
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Vegetation comparisons  

Vegetation comparisons required a number of processing stages.  First, calculation of 

approximate ICESat footprint size and shape were undertaken, which allowed representation of 

the footprint using airborne LiDAR.  Second, a range of terrain and vegetation information were 

extracted from the LiDAR data (such as elevation, slope, predominant and maximum height, 

canopy cover), within the estimated footprint area.  The extracted LiDAR information was then 

compared with the respective ICESat data.  

 

ICESat footprint derivation and attribute extraction 

To enable the most accurate comparison, the footprint shape and size needed to be 

accurately portrayed.  Data on this was extracted from the ICESat data by Peter Scarth (Lee et 

al., 2006), and this allowed the most effective selection of the airborne LiDAR data.  The 

formulae used to model ICESat footprint were given in Table 17, using the parameters extracted 

for each footprint, as listed in Table 18.  The parameters were then used to work out which 

airborne LiDAR returns were within the footprint area.  To do this the variables were extracted 

and calculated, as shown in Table 19.  

Table 17: Formulae utilised for footprint dimension and area calculations: 

 
Illustration of the major and minor 

axes for an ellipse  

 
 

Major and minor axes, and 
eccentricity (e) derivations 

 

 
 

Area of an ellipse – used to cross-check 
spatial mapping footprint area 

estimate. 

 

2a 
major axis 

2c 

minor axis 

2b 

r1 
r2 

F1 C F2 
(x0 y0)
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Table 18: ICESat attributes extracted for comparison with airborne LiDAR. 

Attribute name Code name in 
data 

Description 

Azimuth tpazimuth The orientation (from north) of the major axis of the 
elliptical footprint 

Eccentricity tpeccentri Gives the shape of the footprint, where values close to 0 
give a circle, and close to 1 give a flattened ellipse. 

Ellipse major axis tpmajoraxi The length (m) of the major axis of the ellipse 
Intensity tpintensit Intensity of returned pulse 

Footprint date J2000 Julian day from 12pm, January 1st, 2000 
Reflectance reflectance Amount of energy returned to the satellite 

Vegetation reflectance veg_ref Proportion of reflectance assumed to be from the non 
ground waveform peaks 

Ground reflectance gnd_ref Proportion of reflectance assumed to be from the ground 
waveform peak 

Foliage Projective 
Cover veg_fpc Percentage cover – values range from 0 to 1, with 1 = 

100% cover 

Centroid height centroid_ht Distance from centre of the ground pulse to the centre of 
the highest veg pulse 

Fit height fit_ht 
The third parameter (β) in the weibull distribution used 

to fit the cumulative vegetation profile -                 
(β[1]*exp(-β[2]*(height_x/ β[3]) β[4])) 

Veg height veg_ht Height where the cumulative FPC greater than 2m 
crosses 95% 

Slope DEM_slope 

In version r_28 of the ICESat data, the SRTM slope was 
extracted.  As this was not done for the r_26 version, 
then airborne LiDAR derived DEM (1m) slope was 

utilised instead.  This slope was calculated as the mean 
of slope estimates from a number of 20 x 20m cells that 

covered the footprint area. 
 

Table 19:  Variables extracted or calculated for footprint size estimation. 

Variable name Source or calculation Notes 
azim_degree Icesat item ‘tpazimuth’ Azimuth value 

azim [calc 90 - %azim_degree%]  Calculate the offset angle of major axis 
from horizontal 

eccent Icesat item ‘tpeccentri’ Eccentricity value 
majorax Icesat item ‘tpmajoraxi’ Diameter of major (long) axis 

major_rad [calc %majorax% / 2] Radius of major (long) axis 
minor_rad [calc ( %majorax% / 2 ) * [sqrt 

%min1%] ] 
Radius of minor (short) axis 

min1 [calc ( 1 - ( %eccent% * %eccent% ) ) ] Component of minor radius calculation 
 

The ICESat footprint centre point coordinates (in geographic decimal degrees 

(Lat/Long)) were then extracted and reprojected into UTM (GDA94) coordinates (metres), to be 

used with the airborne LiDAR.  The location of each LiDAR return in the area around the 

footprint was then assessed, and the distance from return location and the ICESat centre point 

calculated (Table 20).  If the LiDAR return was found within the elliptical area of the footprint, 

then it was coded with the ICESat point ID.  In this way, all points within the footprint could be 
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selected.  Where multiple footprints (from different dates) occurred in close proximity, a 

LiDAR return could fall within the elliptical area of more than one footprint.  If this occurred, 

then the footprint ID was assigned to additional items in the LiDAR spatial database.  Up to five 

ICESat footprint IDs for each return could be accommodated with the current algorithm. 

Table 20: Assignment of LiDAR returns within ICESat footprint 

Variable name Source or calculation Notes 
Calculate the rotated coordinate system orientation - this was the rotation of the ellipse clockwise from 90 

degrees in radians 
x1 [calc %LiDAR_x% - %x_cntr% ] LiDAR_x = x coordinate, and x_cntr was 

the ICESat centre x_coordinate 
y1 [calc %LiDAR_y% - %y_cntr% ] LiDAR_y = y coordinate, and y_cntr was 

the ICESat centre y_coordinate 
azim_rad [calc 0.0174532925 * %azim%] convert offset angle to radians 

cos_az [cos %azim_rad%] result in radians 
sin_az [sin %azim_rad%] result in radians 
x_chk [calc ( %x1% * %cos_az% ) + ( %y1% * %sin_az% ) ] 
y_chk [calc ( %y1% * %cos_az% ) - ( %x1% * %sin_az% ) ] 

Calculate the relative distance of the returns from centre to ellipse boundary - if %chk_dist% less than or 
equal to 1, then it was within ellipse area, and the LiDAR return was coded with the ICESat ID. 

chk_dist [calc ( ( %x_chk% * %x_chk% ) / ( %major_rad% * %major_rad% ) ) +              
( ( %y_chk% * %y_chk% ) / ( %minor_rad% * %minor_rad% ) ) ] 

 

The development of the LiDAR point extraction within an ICESat footprint initially 

used a location in red gum forest near the Murray River (Figure 42a).  Once the parameters had 

been modelled correctly, all footprints were extracted from within the available LiDAR data.  

Different footprint shapes were found with different dates of collection, highlighted with an 

example from the Foothills south of Wangaratta (Figure 42b).  In the example, the black 

footprint was collected in November 2003, and the navy footprint was collected in March 2004, 

with yellow crosses indicating the respective footprint centres.  The background image was the 

AGO Landsat TM mosaic from 2002 (25 m cells), and the LiDAR returns were coloured by 

height above ground (blue/green is 2-5 m, orange-brown are taller tree tops ~12-15 m).  Vectors 

generated from the airborne LiDAR tree crown delineation routines enclose the LiDAR returns. 
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a) b) 
 

 
Figure 42: Examples of the ICESat footprint size and shape attributes derived using airborne 

LiDAR. a) single footprint with returns that are within the footprint (black) and over 2m in height 
(light blue); and  b) two footprints from different dates showing different shapes due to different 

laser sensors used. 

 

A location approximately 30 km south of Benalla in NE Victoria was chosen as the case 

study site to examine the potential effects of slope and vegetation density on the extraction of 

ICESat height and cover attributes.  The ICESat waveforms were extracted using the 

spreadsheet developed by P. Scarth (QDNRM), and then compared to the airborne LiDAR 

return data and apparent vertical profiles (Table 21).  Note that the vertical height scales (Y-

axis) between the ICESat and LiDAR profiles were different.  Empirical results of the case 

study comparison are presented in Chapter 4.  Table 22 outlines the concept and brief 

description the different terrain and vegetation attributes calculated using airborne LiDAR that 

were used to calibrate the extracted ICESat values. 
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Table 21: ICESat case study footprints; description, full waveform, and LiDAR apparent vertical 
profiles 

Case Study 
Footprint details 

ICESat waveform profile LiDAR apparent vertical profile 

ICE-id: 484 
 

Collection date:  
6-10-2003 

 
Major axis length: 

89 m 
 

Elevation:  
304.9 m (asl) 

 
No. of LiDAR 
returns: 1233 

 
Location (DD) 

Latitude: -36.809288 
Longitude:146.04567 
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ICE-id: 480 

 
Collection date:  

6-10-2003 
 

Major axis length:  
89 m 

 
Elevation:  

313.9 m (asl)  
 

No. of LiDAR 
returns: 413 

 
Location (DD) 

Latitude: -36.810833 
Longitude:146.04591 
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ICE-id: 475 

 
Collection date:  

6-10-2003 
 

Major axis length: 89 
m 
 

Elevation: 328.8 m 
(asl) 

 
No. of LiDAR 
returns: 923 

 
Location (DD) 

Latitude: -36.81237 
Longitude:146.0462 
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Table 22: Description of LiDAR attributes utilised for ICESat calibration and validation  

Attribute Description Illustration (using ALS tile 288, ICESat ID 71) 

Elevation 

Elevation for the ICESat footprint was assessed 
using the mean ground elevation (metres above 
sea level), across the whole footprint.  For the 
footprint shown in the illustration (right), this 
means the elevation result value was 
approximately half way up the slope within the 
footprint area.  

Mean Slope 

The first slope attribute was mean slope 
(degrees).  This was calculated as the mean of a 
number of 20 m cells that cover the footprint area 
within the 1 m DEM.  Slope was calculated 
across each 20m cell.  In the illustration, the cells 
shown are 10m (for mean height).  The cells used 
for slope equate to 4 adjacent 10 m cells.  

Absolute slope 

The second slope attribute was absolute slope 
(degrees).  This was the maximum slope within 
the ground elevation range.  It was calculated as 
the slope of the max ground elevation difference 
(rise) against the mean diameter of the footprint 
(mean of X and Y coordinate distance max minus 
min) (run).   

Elevation range 

The greatest elevation difference (m) within the 
footprint, and was calculated as the max 
vegetation elevation minus minimum ground 
elevation.  

 

Returns for mean elevation 

Cells for mean slope 

Elevation range 

Absolute slope 
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Max height 

Maximum vegetation height (metres) - was the highest LiDAR return found in the 
footprint.  Within illustration (right), this was shown with the yellow highlighted 
return (lower right corner).  The 1 m spatial resolution top of canopy height grid 
was shown, coloured from dark blue (0m) through to red (60m). 

Mean height 

Predominant vegetation height (metres) - was calculated as the mean of the 
heights from 10m cells across the footprint.  The maximum height in each 10m 
cell was first calculated.  A cell needs to have LiDAR returns across at least 20% 
of the cell area for the cell to be included in the mean height and standard 
deviation calculations.  This was the reason for some cells on the edge of the 
footprint having a “0” for the cell maximum height. 

Height 
variability 

Canopy height variability (metres) was assessed using the canopy height standard 
deviation metric.  This was the standard deviation of the maximum heights from 
each of the 10m cells used in the predominant height calculation.  

Vegetation 
Foliage Cover  

Percentage vegetation foliage cover was calculated as the percentage of all 
(ground and vegetation) LiDAR returns that are 0.5m or greater in height.  
Because foliage and branches cannot be differentiated, then the cover was 
assumed to include both (FBC).  The vegetation description refers to the fact that 
all canopy material taller than 0.5m was sampled, including shrubs and 
understorey, if present and observable through the overstorey.  

Forest Foliage 
Cover  

Percentage forest foliage cover was calculated as the percentage of all LiDAR 
returns that are 2 m or greater in height.  Because foliage and branches cannot be 
differentiated, then the cover was assumed to include both (FBC).  The forest 
description refers to the fact that only canopy material taller than 2m was sampled, 
therefore meeting the NFI height definition of forest.  The illustration (right) 
shows returns 2m+ height as the larger black points. 

Crown Cover 

Crown Cover was the percentage of the footprint area that was delineated as tree 
crown.  The delineation process uses a canopy density model and extracts a crown 
edge vector which bounds at least 90% of the canopy LiDAR returns that are 2m 
+ height.   
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3.7 Summary 

This chapter described the research design and methodology that addressed the 

limitations identified in Chapter 2.  A multi-scale hierarchical strategy was described for using 

LiDAR to link fine scale field data with medium scale data.  The strategy was developed in 

response to national level forest monitoring schemes that utilise a wide range of data, and at a 

range of scales.  Therefore, there was a need to be able to calibrate and validate other data or 

measurement methodologies at the appropriate scale.   

A range of methods were used to derive forest structural attributes at the plot scale, 

(e.g., height, cover, and growth stage through apparent vertical profiles), which were then 

compared to field estimates, with results presented in the Chapter 4.  Using LiDAR to link 

consistently between different datasets (e.g., different field measurements, airborne and satellite 

imagery) at both study sites has allowed for the translation between structural metrics using 

continuous transfer functions.  Methods for improving bare ground fine scale terrain models 

have been demonstrated, which should allow more precise estimates of tree height to be 

generated.  Certain terrain locations that may cause issues for accurate tree height estimation 

have been noted, for example steep slopes and cliffs.   

Scale theory suggests that an effective way to understand variation in plot scale results 

(both within the plot, and between plots) was through the use of basic geographic entities.  

Utilising this concept, a new method to generate structural information at a tree scale (crown 

and stem entities) from LiDAR data was presented.  The Height Scaled Crown Openness Index 

(HSCOI) uses all canopy returns to calculate the relative penetration of the LiDAR, and output 

as a 2D raster layer.  The HSCOI methods were designed to compliment current canopy height 

model algorithms, and also represent an advance by using all the LiDAR collected.  The HSCOI 

layers represent high foliage density locations as minima on the surface.  Subsequent GIS based 

hydrological drainage basin and local minima “sink” algorithms were used to generate assumed 

crown delineations and tree stem location outputs (including sub-canopy trees) at the locations 

of indicative high foliage density.  These outputs were refined though the multi-scale 

application of spatial analyses using the raw LiDAR (including apparent vertical profiles) 
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combined with field data derived empirical functions.  LiDAR modelled stems and crowns were 

then attributed with height, cover, and stem diameter values.  The HSCOI modelling was further 

refined to produce component level data (branches and leaf clumps).  This facilitates stand-wide 

reconstruction of the forest at scales fine enough for radar calibration at specific wavelengths, as 

different wavelengths interact with different tree components.    

Methods to investigate the potential impact of assessment scale on reporting forest 

structure have been presented.  These methods allow the comparison of plot estimates of height 

and cover to be directly compared to stand level estimates using the same data and metrics.  

This provides an indication of how representative a plot may be with respect to the wider stand 

or landscape.  The methods also allow the assessment of a minimum area for reporting forest, 

by determining at what scale variation between plot and stand estimates were minimised.    

The multi-scale hierarchical strategy using LiDAR has generated structural data that 

was used to calibrate and validate a number of different medium scale sensors.  For example, 

SLATS Landsat TM derived foliage projective cover was compared with LiDAR foliage-branch 

cover, crown cover, and stem density.  The comparison has also facilitated the investigation of a 

foliage projective cover-to-crown cover translation function.  This function should provide for 

improved national level data use, as data can be translated without the need for broad 

categorical classification, thus allowing more sensitivity to change when utilised in monitoring 

schemes.  LiDAR data was used to investigate the extraction of forest stand height and cover 

from ICESat.  A case study was designed to test how terrain and foliage density may impact on 

the accuracy of the extracted attributes.   

The next chapter outlines the results of the methodology with reference to field data and 

other remotely sensed information.  The results of the methodology described here will enable 

the primary thesis research question to be addressed, and therefore determine how LiDAR can 

improve forest structure assessment in Australia. 
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CHAPTER 4. RESULTS 

4.1 Introduction 

The preceding chapter outlined the methods utilised in the development of a multi-scale 

LiDAR strategy to enhance the assessment of Australian forest structure (primarily height and 

cover), within integrated sampling schemes.  This chapter presents the results of this research 

(Figure 43), focusing specifically on: 

a) Plot scale assessments of height and cover, with comparisons between metrics, 

datasets, and at a range of different scales;  

b) The representativeness of field plots with respect to landscape estimates using NFI 

national scale forest data; 

c) The results of the basic geographic entity modelling, at both tree and component 

scales, for stem location, density, height, and crown area.  Above ground biomass 

is utilised to assess the results of the tree component modelling; 

d) The tree scale results that are used to calibrate other data, including Landsat foliage 

projective cover, ICESat, and stand reconstructions for SAR simulation modelling.  

An investigation of different transfer functions for a range of cover metrics is also 

presented. 

 

The research is focused primarily at the Injune study site, with some initial comparison, 

validation, and scale specific evaluations undertaken at the NE Victorian site.   In this chapter 

section 4.2 outlines the plot representativeness with respect to the wider landscape.  Section 4.3 

describes the results of plot and stand scale height analyses, with 4.4 describing the plot and 

stand scale cover analyses.  Tree scale results from the Height Scaled Crown Openness Index 

are presented in section 4.5, with the multi-scale calibration examples illustrated in section 4.6.  

The chapter is summarised in section 4.7 (Figure 43).  
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Figure 43: Layout of the Results chapter showing the major components of the strategy for using 
LiDAR to improve forest structure measurement. 

 

4.2 Field Plot Representativeness 
The Injune field plots achieved (i.e. within 5 %) the representativeness aims of the 

original sampling strategy, when compared to the distribution of forest structure from all 4500 

secondary sampling units (Figure 44).  Medium open forest is adequately represented by the 

field plots (4.3 % difference, Table 23); although the plots over and under-represent medium 

woodland (16.5 %), and medium closed forest (-6.8 %) respectively (Table 23).  Non forest 

(including open woodland) is under-estimated (-4.7%) although the focus of the sampling 

strategy was on forested sites (as described in Chapter 3).  Height comparisons with NFI data 

indicate that the different datasets broadly agree (i.e. within 5 %), but with some under-

estimation of non forest by the LiDAR estimate at both plot and landscape sample scales (Table 

23).  Cover comparisons with NFI data indicate major differences between woodland and open 

cover categories.  Were the classifications swapped, then the difference between the 4500 
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LiDAR secondary sampling units and NFI data estimates would be less than 10%, except for 

closed forest (~16 %).  In NE Victoria, the field plots were considered broadly representative 

(within 10%) for non forest and woodland when compared to the NFI data, although the field 

plot LiDAR under -estimated tall and open forest, whilst over-estimated medium and closed 

forest (Table 24). 

Table 23: Representativeness of Injune forest structure sampling, comparing LiDAR from 4500 
SSUs across the landscape with LiDAR from field plots (in parentheses), by NFI class.   

NFI Cover class NFI Height 
class Non forest 

% 
Woodland 

% 
Open % Closed % Total %* 

NFI 2003 
(%)* 

Tall % 0 (0) 0.1 (0) 0.3 (0) 0.1 (0) 0.5 (0) 0 
Medium % 2.4 (0) 14.8 (31.3) 57.4 (53.1) 16.2 (9.4) 90.9 (93.8) 86.6 
Low % 5.0 (6.3) 0 (0) 0 (0) 0 (0) 5.1 (6.3) 1.6 
Non Forest % 3.6 (0) 0 (0) 0 (0) 0 (0) 3.6 (0) 11.7 
Total (%)* 11.0 (6.3) 15.0 (31.3) 57.7 (53.1) 16.3 (9.4) 
NFI 2003 (%)* 11.7 68.2 20 0 100 

* Totals may not sum to 100% exactly due to rounding. 

 
Figure 44:  Comparison of the LiDAR structural (height and cover) range of field plots and all 

SSU’s 

Table 24: Representativeness of NE Victorian forest structure sampling, comparing continental 
NFI data with field plot LiDAR (in parentheses).  

NFI Cover class NFI Height 
class Non forest % Woodland % Open % Closed % Total % 

Tall 0 (0) 0.6 (0) 13.8 (0) 0 (10.3) 14.4 (10.3) 
Medium 0 (0) 2.0 (2.6) 18.3 (15.4) 0 (15.4) 20.3 (33.3) 
Low 0 (0) 0.1 (0) 0.2 (0) 0 (0) 0.2 (0) 
Non Forest 63.2 (56.4) 0 (0) 0 (0) 0 (0) 63.2 (56.4) 
Total 63.2 (56.4) 2.7 (2.6) 32.3 (15.4) 0 (25.6) 100 
* Plantations (1.9%) from NFI study area data included in total, but removed from table for clarity 
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4.3 Multi-Scale Height Results  
This section presents forest height estimates (maximum height, predominant height) at 

plot, stand, and landscapes scales.  Comparisons are made between field-measured and LiDAR 

derived height metrics, and LiDAR measures only based on swath scale data (for stands) or an 

aggregation of plot or stand scale assessment units for stand and landscape scales respectively.  

The evaluation also considers assessments of growth stage and disturbance evaluations from 

apparent vertical profiles.  Individual values per plot are presented in Appendix A - Table 56 for 

Injune, and Appendix A – Table 57 for NE Victoria. 

 

4.3.1 Plot scale height results 

 Maximum canopy height 

At the both the plot and overstorey tree level at Injune, LiDAR was found to be a very 

robust method of accurately determining maximum height, with initial comparisons indicating 

strong relationships between field and LiDAR estimates (Table 25, Figure 45).  For 100 

manually selected overstorey trees that were well separated and taken from a range of field 

plots, an r2 value of 0.91 was observed (Tickle et al., 2006). 

Table 25: Maximum height comparison between field and LiDAR for Injune and NE Victoria plots 

Description n R2 RSE functiona P-value 
Injune selected overstorey  treesb 100 0.91 1.38 Y = 0.9803x + 0.7772 0 
Injune field plots 33 0.84 2.05 Y = 0.9086x + 1.7912 7.15e-14 
NE Victorian field plots 22 0.76 3.75 Y = 0.7204x + 4.9137 1.052e-7 
NE Victorian transect areas 21 0.68 5.49 Y = 0.7528x – 0.3480 4.762e-6 

a – y = field data, x = LiDAR value 
b – from Tickle et al., (2006) 

 

The field and LiDAR comparison of top height per plot (circle), and transect area 

(cross) for all NE Victorian field plots indicates that, generally, the plot data has good 

agreement  (r2 = 0.76) between the field and LiDAR data (Table 25, Figure 46a).  There are a 

few plots where the LiDAR maximum height is greater than height recorded in the field data 

(by up to 15 m), with this most evident in plots where individual trees were taller than 30 m.  

The sampling transects for the wider one hectare area have greater variability when compared to 

the LiDAR retrieved heights for the same area.   
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a b 

 
Figure 45:  Comparison of maximum height between field and LiDAR at Injune for; (a) field plots; 

and (b) individual tree height for 100 manually selected, isolated overstorey trees  

 

 
Figure 46: Comparisons field and LiDAR for NE Victorian plots for; a) max plot height for field 

plot and transect areas; and b) frequency distribution of maximum LiDAR height. 

 

The distribution of maximum height for NE Victorian plots (Figure 46b), and at plot 

and landscape scales for Injune (Figure 47), are normally distributed overall, with a slight skew 

to taller forest in NE Victoria.  At Injune there is a slight skew to forests with lower height with 

most associated with regeneration following clearance.  As both distributions appear similar, 

(e.g., in terms of the mean value), it is argued that the height estimates from the field data are 

broadly representative of the wider landscape sample, at least in terms of maximum stand 
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height.  The plot mean was 18.27 m (δ = 5.09, range = 3.0 – 26.8 m, n = 33), with that of all 

SSUs being 18.62 m (δ = 5. 97, range = 0.0 – 39.02 m, n = 4500). 

a b 

 
Figure 47: Frequency distribution of LiDAR maximum height at Injune for: (a) field plots; and (b) 

all 4500 SSUs.  

 

 Predominant canopy height 

Simple linear correlations between the field and LiDAR estimates of predominant 

height for both study sites (Figure 48a, Figure 49a, Table 26), suggested a good correspondence 

overall, but which declined in the taller and more structurally varied forests (> 30 m).  For NE 

Victoria, using the 5 tallest trees within the field plot (50 trees ha-1) generated the strongest 

correspondence with the LiDAR cell samples (r2 = 0.71, Table 26).  The distribution of LiDAR 

derived predominant height indicates a mostly normal form, with most sites around the 26 - 30 

m height range (Figure 48b, Figure 49b).   

At Injune, comparisons of predominant height showed that the field sampling rates had 

correspondence values with LiDAR heights (10 m cells) ranging from r2 of 0 .84 to 0.91 (for 

100 and 50  trees ha-1respectively, Figure 48a, Table 26).  A field sampling rate of 50 trees ha-1 

had less variation than 100 trees ha-1 across the data range, and a slope value close to one, but a 

consistent offset or bias was observed, with LiDAR recording approximately 2 m lower height 

across the observed range.  The field sampling rate of 100 trees ha-1 had greater variation across 

the data range, although the line of best fit was closer to the l:1 line, with a low cover plot 

influencing the slope value.  Frequency distributions of predominant height from field plots 

(Figure 48b) and all 4500 SSUs (Figure 50) shared a similar mode values and shape of the 

distribution for shorter forests, although the distribution from 4500 secondary sampling units 
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did record a proportion of taller forest (20-32 m) that was not observed in the field plot 

distribution. 

a b 

 
Figure 48: Injune field plot predominant height (10m cells) for: (a) from field data and LiDAR at 

different sampling rates, and (b) frequency distribution of LiDAR heights. 

 

 
Figure 49: NE Victoria field plot predominant height (10m cells) for: (a) from field data and 

LiDAR at different sampling rates, and (b) frequency distribution of LiDAR heights. 
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Figure 50: Frequency distributions for predominant height at Injune for 4500 SSUs derived from 

transfer function using 90th percentile LiDAR height. 

 

 

Table 26: Comparisons of predominant height: field and LiDAR for Injune and NE Victoria plots 

Description n R2 RSE Functiona P-value 
NE Victorian plots      
Field 50 trees ha-1- 
LiDAR 10m cell 

22 0.71 3.79 Y = 0.7862x + 3.6123 9.929e-7 

Field 100 trees ha-1- 
LiDAR 10m cell 

22 0.68 3.03 Y = 0.5929x + 5.7684 2.311e-6 

Injune plots      
Field 50 trees ha-1- 
LiDAR 10m cell 

31 0.91 0.984 Y = 0.9688x + 2.2129 1.11e16 

Field 100 trees ha-1- 
LiDAR 10m cell 

31 0.84 1.19 Y = 0.8447x + 2.2536 1.793e13 

a – y = field data, x = LiDAR value 
 

 

4.3.2 LiDAR height results with different assessment areas 

This section compares NE Victorian results at the plot, transect area, and wider stand 

scales for both predominant and maximum height.  Then a continuous assessment from plot to 

stand is made using LiDAR predominant height, for both study sites.   

 

 Multi-scale variation of LiDAR height in NE Victoria 

For NE Victoria, a close correspondence between field plot area and transect area height 

estimates and the wider stand (LiDAR swath width), for both maximum and predominant height 

was observed (Figure 51, Table 27).  Investigation of the individual plots also identified a range 

of scale effects for difference ecozones (Figure 110 - Appendix A).  Overall, there was large 
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variation in predominant height at scales less than 1 ha, when compared with the wider stand 

estimate (Figure 52).  At assessment areas greater than 1 or 2 hectares, variation in predominant 

height is small, compared with the stand estimate.  Across all sites, the mean predominant 

height difference between 0.1 ha (field plot) and 20 ha (stand) scales was -1.45 m (range -10.16 

to 4.56 m, δ = 3.70m). 

Table 27: LiDAR height comparisons at a range of assessment area scales for NE Victoria 

Description n R2 RSE functiona P-value 
Max height - overlap area vs field plot  23 0.74 6.60 Y = 1.1890x + 7.5235 1.396e-7 
Max height - overlap area vs transect area 23 0.89 4.34 Y = 1.1892x + 1.8164 1.929e-11 
Predom height - overlap area vs field plot 23 0.69 3.84 Y = 0.7610x + 5.5589 9.994e-7 
Predom height - overlap area vs transect area 23 0.86 2.61 Y = 0.8350x + 3. 6414 2.748e-10 

a y = overlap area, x = field plot or transect area.  Overlap are is the LiDAR swath width (nominally 400 x 400 m).  
 

a b 

 
Figure 51: Representativeness test for field plot (~0.09 ha) and transect area (~1 ha) versus swath 

overlap area (~25ha) for LiDAR (a) predominant height, and (b) maximum height, in NE Victoria.    

 

The results of the field or transect plot random location test show that the difference in 

the predominant height is minimal, on average (e.g., less than 0.5 m, with a range up to 2.0 m) 

(Figure 53, and Figure 111 (Appendix A) for individual plots).  This holds for both 30 random 

field plots, and 30 random transect plots, when compared to the wider 20 ha stand estimates.  

Further testing would reveal how many random samples are required before the stand estimate 

varies significantly from the stand area result.  If forest type reporting were to rely on just one 

field plot estimate per location, the mean differences between plot and wider stand per ecozone 

were +5 m (Floodplain), +0.1 m (Foothills), -0.5 m (Montane), -1 m (Subalpine) respectively.   
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For woodlands in the Foothills ecozone, the same predominant height (± 4 m) is derived 

regardless of the size or number of samples that were used, or even data source (i.e. field is as 

good as LiDAR).  The Floodplain, Montane and Subalpine environments are more variable 

however, with mid-slopes and ridge-tops having small differences in height (2 - 3 m) with 

changing sample size and number.  In contrast, stream gully bottoms and water course locations 

tend to show height differences of 5 - 7 m on average (with a maximum of approximately 15 

m), depending on the number of samples and, to a lesser extent, plot size (Figure 111 - 

Appendix A).   
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Figure 52: LiDAR predominant height assessment at a range of spatial scales for NE Victorian sites 

where field plots are located. 
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Figure 53: Comparison of sampling strategies for estimating stand (~20ha) predominant height for 

field plots in NE Victoria using (a) single locations (field or LiDAR); and (b) multiple samples 
within stand. 

 

The results presented previously indicate that for any one plot the variation observed 

due to scale or sampling method may be enough to influence national reporting.  However, as 

sampling schemes such as a CFMF generally report at broad (e.g., ecozone) scales, assessment 

of the results at this level was undertaken (Table 28), and using LiDAR predominant height 

with a 10m cell as the assessment unit. 

Table 28: Summary statistics for predominant height at a range of assessment scales, per NE 
Victorian ecozone 

 Assessment area 0.09ha 0.09ha 1 ha ~20 ha 

Ecozone Height Statistic Field plot-field Field plot-
LiDAR Transect area Overlap area 

Floodplain Mean Predominant  20.52 25.38 23.98 21.82 
 Mean Std Deviation 6.92 5.40 6.51 7.80 

Foothills Mean Predominant  17.29 16.82 17.03 17.01 
 Mean Std Deviation 2.56 1.93 2.55 2.85 

Montane Mean Predominant  26.00 27.40 28.67 27.75 
 Mean Std Deviation 7.05 4.77 4.59 5.83 

Subsubalpine Mean Predominant  27.06 26.32 25.69 28.43 
 Mean Std Deviation 6.83 2.68 5.32 7.59 

 

Scale impacts are evident in the Floodplain ecozone, where a trend of declining 

predominant height with an increasing assessment area was observed.  The remaining ecozones 

showed a slight trend for increasing predominant height, on average, with larger assessment 

areas.  However, the differences between assessment areas for mean predominant height were 

small compared to the actual height recorded (between 1 - 7%).  The standard deviation of 

heights also increased for all the ecozones with an increasing assessment area (Table 28).  This 
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indicates that there is greater variation in the heights identified in plots with larger assessment 

areas.  

 

 Multi-scale variation of LiDAR height at Injune 

There was little difference in predominant height between the centre secondary 

sampling unit (0.25 ha) and the primary sampling unit area (7.5 ha), for 12 primary sampling 

units at Injune (Figure 54).  The mean difference across the primary sampling units was 1.08 m 

(range -2.38 – 7.51 m, δ = 2.57 m), with the primary sampling unit recording the taller height.  

Whilst some primary sampling units tended to have taller forest at the primary sampling unit 

scale (often in the order of 2 - 4 m) when compared to secondary sampling units, this was 

balanced by other primary sampling units recording lower heights of the same magnitude across 

assessment scales.  It was observed that the initial starting location for the assessment could 

influence the height at fine scales.  For example, primary sampling unit 131 had larger areas of 

non forest, and the first secondary sampling unit occurred on a patch of non-forest.  Once the 

full primary sampling unit area had been assessed, a more complete understanding of the 

predominant height (and variation) of the forest found at that location was gained.   
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Figure 54: LiDAR predominant height assessment at a range of spatial scales for 12 PSUs at 

Injune. Dominant species codes are given in Chapter 3. 
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4.3.3 Apparent vertical profiles  

This section examines the comparison of growth stage assessed using field data and 

LiDAR apparent vertical profiles, for an initial test site using a single field plot at Injune, and 

then subsequently across a range of plots at both the Injune and NE Victorian sites.  

Assessments are made of a range of forest structural combinations that could be related to 

different growth stage and potential disturbance combinations (e.g., from fire), based on the 

shape of the apparent vertical profile.  Finally, vertical profiles are used to quantify growth stage 

and disturbance across a range of scales, from tree to landscape, at Injune. 

 

 Simulating apparent vertical profiles 

For test plot p124-19, the field data 3D parameterisation matrix had 2,367 cells (1 m2) 

with 27 x 1 m height levels, resulting in 63,909 voxels (m3).  A direct comparison between field 

data and LIDAR revealed a reasonable correspondence between the two datasets when using a 

two dimensional crown map (Table 29).  The comparison showed that 76% of the field 

simulated matrix cells also containing LiDAR, although these were not necessarily at the same 

height above ground, as indicated by the relatively low count of voxels that contained both 

LiDAR and simulated field data.   

Table 29: Summary of matrix results for the field plot area. 

Attribute No. matrix cells No. matrix voxels 
Field modelled crown elements 557 1944 
LiDAR return elements 981 1302 
LiDAR and field elements with same vertical column (cell) 426  
Both field and LiDAR canopy elements within same voxel  175 

 

Comparisons between field and LiDAR profiles for all 31 field plots (Figure 55, and 

Table 59 - Appendix A) show that there was little difference between the two sources of data 

overall.  Two example plots were selected from the accuracy assessment results (Table 3 – 

Appendix A) to illustrate the range of accuracy observed (Figure 56).  For the example plots, 

p142-02 has similar profiles between field and LiDAR modelling (Figure 55a), and a 

correspondingly good correlation between the percentages of foliage cubes at each height 

interval (Figure 56a).  However, p81-11 has the opposite case, where major differences in the 
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profile at certain heights, including the top-height (Figure 55b), result in a poor correlation 

(Figure 56b).  Overall for this plot, the respective shapes of the profiles are similar, but offset 

due to field measurement differences. 

a b 

 
Figure 55: Comparisons between apparent vertical profile from LiDAR and field cubic modelling 

for matches that are: (a) good (p142-02), and (b) not as good (p81-11). 

 

a b 

 
Figure 56: Correlation of percentage of cubes at each 1m height interval, with LiDAR and field 
apparent vertical profiles for matches that are; (a) good (p142-02), and (b) not as good (p81-11).  

 

The results of the Kolmogorov-Smirnov test for selected plots show that most had good 

comparisons (high P-values), thus highlighting the overall similarity between the two apparent 

vertical profiles (Table 58 - Appendix A).  A number of plots had lower P-values for the 
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Kolmogorov-Smirnov test, indicating some difference between the field and LiDAR apparent 

vertical profiles.  The four plots with the lowest P-values (i.e. closest to potentially having a 

significant difference in the height distributions) also had a range of maximum height 

differences between the field and LiDAR data.  LiDAR was found to be higher than field data in 

secondary sampling units 114-12 (9 m), 83-12 (2 m), 111-12 (3 m), and 114-04 (8 m) (Table 58 

- Appendix A).   

 

 Growth stage and disturbance assessment using profiles 

Field data were summarised with a range of structural and floristic attributes (Figure 57) 

for secondary sampling unit 124-19, to assist with the interpretation of the vertical profiles 

modelled from field and LiDAR data (Figure 58).  The field data summary outlines tree growth 

stage and species by relative percentage of basal area, and stocking per D130 class.  Plot growth 

stage could be interpreted as complex with an overstorey canopy of large crowns and secondary 

stratum of trees with more restricted crowns reflecting multiple successional phases (Florence, 

1996).   

Eucalyptus and Angophora species occurred throughout the D130 class and growth stage 

range, and had a mean tree height of 9.1 m (δ = 7.6 m, range 2.5 – 24.0 m).  The taller heights of 

these trees would associate them with the upper bulge (between 15-20 m height) in the apparent 

vertical profile.  Four distinct cohort age groups were evident with these most likely relating to 

major disturbance and regeneration episodes in the past.  The Eucalyptus and Angophora had 

relative few stems (1 - 3 stems per D130 class above 25cm), indicating that they have been on 

this site for possibly hundreds of years and may have self-thinned to a woodland dynamic 

equilibrium.   

Acacia species constitute 67% of all stems, but only 6% of stems were greater than 10 

cm D130, and the mean tree height was 1.1m (δ = 1.5 m, range 0.5 – 12.3 m).  The majority of 

stems greater than 10cm D130 (77 %) were Callitris, with all Callitris measuring less than 20 cm 

D130..  The mean tree height was 7.4 m (δ =  3.1m, range 2.7 – 14.0 m), and there stands were 

associated with the developing growth stage, which is also evident as the large bulge (at 
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approximately 8 m height) in the apparent vertical profile (Figure 58).  Therefore, they would be 

relatively recent recruits to the plot, possibly as a result of past logging and fire suppression; 

given this genus is fire intolerant when young. 

 

 
Figure 57: Field data summary for SSU 124-19, illustrating tree growth stage and genus 

distribution by stem diameter (total Basal Area = 4.30m2) and stocking (n = 603). 

 

 
Figure 58: Apparent vertical profiles from LiDAR (black) and field (grey) cubic modelling for SSU 

124-19. 
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With the examples of indicative apparent vertical profiles per EMC class, the vertical 

profile x-axis represents the percentage of vegetation returns; and the y-axis the height interval 

(m) (Figure 59).  The LiDAR profiles appear to match the descriptions for the EMC or SFRI 

classes, and the photographic illustrations. 

Whilst the field plots were not classed into disturbance categories, it was noted from 

field visits that some of the plots that were burnt in the 2003 fires had a range of fire intensity 

impacts, mainly related to the amount of understorey remaining after the fire.  Some plots have 

no understorey and quite high trunk scorch marks, while other have less obvious trunk 

scorching, and some understorey remaining.  These qualitative assessments that are evident in 

photographs can also be inferred from the LiDAR vertical profiles, in terms of the presence or 

absence of LiDAR returns from understorey strata.  An example provides a qualitative 

assessment of how disturbance might be assessed using the LiDAR (Figure 60).  Visual 

examination of photographs from the field indicate that plot 558 (Figure 60b) was much more 

severely burnt than plot 562 (Figure 60a).   

Extending the growth stage and disturbance analyses, it may also be possible to develop 

a successional sequence using the apparent vertical profiles (Figure 61). A range of physical 

attributes for three field plots from the NE Victoria study is used to show the similarity between 

the plots, apart from the time since last recorded fire (Table 30).  All three plots are dominated 

by mature E. radiata, (according to SFRI assessment) and have a mean annual rainfall between 

1100 - 1300 mm/year, and are found in gully locations near watercourses.  Plot 313 was 

partially burnt in the 2003 fires, with the severity of fire in the other plots unknown.  All sites 

were logged in a similar manner, using either single tree selection or group selection, between 

1983 and 1989.  Therefore it could be assumed that the major structural differences observed in 

the profiles are as a result of the time since the last recorded fire.     
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Class Growth stage  Field plot photo Example LiDAR profile 
1  

Dominant in 
over-mature trees 

with trace 
regeneration/ 

regrowth. 
 

SFRI – late 
mature.  

(Plot 313) 
   

2  
Mainly dominant 
with mature trees 

with some 
shorter regrowth. 

 
SFRI- mature. 

(Plot 554) 
 
 
   

3  
Mainly dominant 

with regrowth 
with some taller 

mature trees. 
 

SFRI – early 
mature  
(Plot 8) 

 
   

4  
Dominant in 
regeneration/ 
regrowth with 

trace 
mature/over-

mature  
(Plot 463) 

 
 
 
   

5  
SFRI 

unevenaged - no 
clear eucalypt 

age class 
dominance  
(Plot 562) 

 
 
 
 
   

Figure 59: Growth stage example using indicative LiDAR vertical profiles from NE Victoria. For 
the LiDAR profiles the x-axis is percentage of canopy returns, y-axis is height above ground (m). 
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a b 

  

  
Figure 60: LiDAR apparent vertical profile showing the potential difference in fire intensity 
between two high country plots on steep slopes.  (a) plot 562, less intensity fire impact, with 

understorey and lower canopy still present.  (b) plot 558, intense fire impact, no understorey or 
lower canopy left and scorched crowns. 

 

If this is the case, then a progression of understorey top height could be inferred from 

the profiles.  In this illustration, it is possible that very little understorey or midstorey has 

recovered in the few months since the 2003 fires, with the small amount evident in the LiDAR 

profile resulting from an unburnt portion of the field plot.  Post fire recovery after 12 years 

seems to produce an understorey at around 10 m, with very little midstorey.  After 64 years 

without fire, multiple strata occur, with a 20 m midstorey and a 10 m understorey in this case. 

Table 30: Plot descriptions for three plots illustrating growth progression with time since fire. 

Attribute Plot 313 Plot 550 Plot 463 
Soils Clay/loam (chromosol) Light clay (dermosol) Light clay (dermosol) 
Elevation (m asl) 689 906 460 
Aspect (degrees) 41 170 45 
Slope (degrees) 3 17 1 
Plot basal area (m2/ha) 25.4 34.2 19.2 
Number of stems* 28 32 17 
Year of last fire 2003 1991 1939 
Year of last logging 1986 1989 1983 

* stems 10cm+ D130 
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a b c 

 
Figure 61: Comparison of LiDAR apparent vertical profiles and plot photos for plots in NE 

Victorian E. radiata forests, illustrating a potential understorey fire recovery sequence, based on 
the last recorded fire within; (a) 1 year (p313), (b) 12 years ago (p550), and (c) 64 years ago (p463). 

 

 

As the LiDAR had been collected and processed over the landscape at Injune, the 

growth stage and disturbance analyses using apparent vertical profiles could then be extended to 

the landscape scale.  The utilisation of LiDAR analysis results at a range of scales for the Injune 

data is illustrated using 7 panels (Figure 62).  Panels 1-5 illustrate LiDAR apparent vertical 

profiles at the different assessment scales.  Panel 6 spatially represents the data (height above 

ground in 1 m2 pixels) shown in the first three vertical profiles – single tree, secondary sampling 

unit (in this case, field plot p81-11) and primary sampling unit 81.  Panel 7 shows the location 

of the primary sampling unit within Transect 9, and then this transect within the study area as a 

whole.  It can be seen that the vertical profiles in panels 1 and 2 are quite similar.  As the tree 

shown in panel 1 is quite large, with a crown diameter of around 20 m, this tree takes up nearly 

half the plot.  Two distinct strata are evident (understorey 1-9 m tall) with the foliage being 

most dense at around 5 m.  The expansive crowns of the mature Angophora trees are evident, 

dominating the overstorey, which is most dense at 24 m.   
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At stand (panels 2-3) and landscape (panels 4-5) scales, it is evident that the rest of the 

stand is composed of trees not as tall as the field plot, with crowns most dense at around 11 m.  

Examination of the profile of Transect 9 (panel 4), which spans 35 km of ground, it can be seen 

that a large proportion of the LiDAR has interacted with vegetation at between 3 – 5 m.  This is 

likely a result of the transect traversing a large area cleared in 1997, and which now has 

significant amounts of regrowth.  This pattern is reflected to a lesser extent in the study area 

profile (panel 5), where approximately 10% of the area has been cleared in the last 10 years. 

Most of the trees in this region appear to be around 10-13 m tall, with very few near 30 m tall.  

This would indicate that secondary sampling unit 81-11 could be an outlier in terms of tree 

height, when compared to the rest of the study area. 
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Figure 62: Assessment of stand structure using apparent vertical profiles at a range of scales, for the Injune study area 
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4.4 Multi-scale Canopy Cover results 

There are three main parts to achieving the cover objective.  As the primary reporting 

metric for the NFI is crown cover, then an assessment of the most accurate measurement of crown 

cover from a range of datasets (e.g., field, API, LiDAR) is required.  Comparisons with other cover 

metrics (FPC) are required as this is used by wall-to-wall sensors such as the Landsat TM.  

Additionally, linkages between Landsat-derived foliage projective cover and LiDAR derived 

foliage measures such as foliage-branch cover are investigated to allow for calibration between 

these data.  Finally, issues of scale are investigated to establish what impacts different assessment 

areas might have on cover results and reporting.  The scale analyses will be used to determine 

whether a minimum area for reporting forest consistently across scales can be identified.   

The following section is structured as follows.  The estimates of cover for each scale of data 

(e.g., field, airborne, satellite) are compared against those obtained in the field plots.  Similarities or 

obvious differences between metrics will be highlighted.  Comparisons are then made between all 

data and metrics, across all measurement scales, to gain a better understanding of the interaction 

between measurement types and scales.  Selected graphs showing key correlations are provided, 

with full comparison graphs found in Appendix A (Figure 114 for Injune and Figure 115 for NE 

Victoria).  Finally, the LiDAR foliage-branch cover metric is used to assess cover at a range of 

scales, from tree to stand.      

 

4.4.1 Plot scale cover results 

Comparisons between cover using field data 

For Injune, the three primary field measurements of plot cover (foliage projective cover, 

foliage-branch cover and crown cover) utilise transects for foliage projective cover and foliage-

branch cover, hemispherical photos for foliage-branch cover, and tree-maps for crown cover.  In NE 

Victoria, hemispherical photos and tree maps are used.  Individual plot data results are given in 

Appendix A - Table 60 for Injune and Appendix A - Table 61 for NE Victoria.  Using field transect 



Chapter 4: Results 
   

177 

data, the difference between foliage projective cover and foliage-branch cover measurements was 

assessed (Figure 63a), where it was observed that with increasing cover, the branch component of 

cover increased more than the foliage only component.  A good correspondence between field 

transect foliage-branch cover from 2000 and hemispherical photos from 2004 (Figure 63b) was 

observed. 

a) b) 

 
Figure 63: Injune field data comparisons for transect FPC versus transect FBC (left), and transect FBC 

(2000) versus field hemi-photo FBC (2004) (right).   

 

Potential temporal change is assessed by comparing field transect measurements from 2000 

and 2004 (Figure 64a).  Measurement method differences were compared using foliage-branch 

cover from transects and hemispherical photo from 2004 (Figure 64b).  An example of the 

estimated view extent of hemispherical photos and transects is provided (Figure 65).  There was 

little change in field-transect foliage-branch cover overall (r2 = 0.83, RSE = 6.75, p-value < 0.001, n 

= 13; Figure 64a), although the cover of two sites reduced (by 12.2 % and 14.8 %) over the four 

years.   
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a) b) 

 
Figure 64: Comparison of FBC field plot measurements:  a) transects in 2000 and 2004; and b) 

transects and hemispherical photo in 2004. 

 

 
Figure 65: Estimated hemispherical photo view extent, based on calibration results for p142-13.  
HSCOI crown delineations are shown for reference.  The field plot boundaries and transects are 

approximately 50m long 

 

For the field plot transect versus hemi-photo comparison using data solely from 2004 (r2 = 

0.57, RSE = 10.60, p-value 0.003, n = 13; Figure 64b), a similar range of scatter was observed as 

that observed in the comparison between 2000 and 2004.  The fewer plots sampled in 2004 may 

make the results less conclusive, compared to those collected in 2000.  Comparisons were made 

between field tree-map crown cover and transects foliage-branch cover (Figure 66a), and with 
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hemispherical photos (Figure 66b) for Injune.  A consistent offset of approximately 8.5% is evident, 

with foliage-branch cover lower than tree-map crown cover.  A number of plots had large 

differences between hemispherical photo foliage-branch cover and tree-map crown cover (r2 = 

0.56), when compared to the transect foliage-branch cover comparison with crown cover.  The NE 

Victorian plots had a variable relationship between field tree-map crown cover and hemispherical 

photo foliage-branch cover (r2 = 0.22, RSE = 16.76, p-value 0.028, Figure 67).   

a) b) 

 
Figure 66: Comparison of field tree-map CC measurements: a) with transect FBC; and b) with 

hemispherical-photo FBC. 

 

 
Figure 67: NE Victorian plot tree-map CC correspondence with hemispherical photo FBC. 
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Crown cover comparison between LiDAR and photography 

Comparisons were made between API crown cover (mid-point of class) and LiDAR crown 

cover for Injune primary sampling units (Figure 68).  When LiDAR crown cover estimate falls 

within the API crown cover range (denoted as a green box - Figure 68), such as with API class 4, 

then there is confidence that the crown cover interpretation has generated estimates that are close to 

the LiDAR value.  However, API results for class 2 and 3 (woodland and open forest) tend to be an 

underestimate when compared to the LiDAR crown cover.  

A summary of the comparison between individual API polygons, associated with 12 

primary sampling units, and LiDAR crown cover utilised the mean and range of LiDAR crown 

cover and the API class mid-point and range (Table 31 and Figure 69).  LiDAR were only available 

within the primary sampling unit whereas the API polygon could extend up to the width of the 

aerial photograph stereo area (~ 600 x 600 m).  Approximately 45 % of the polygons assessed had 

mean LiDAR crown cover values that occurred within the equivalent API interpreted crown cover 

class.  

Table 31: Comparison of relative accuracy of CC estimates between API and LiDAR CC, across 
different LiDAR sampling ranges of the API polygon. 

Category for area of 
polygon sampled by 

LiDAR (%) 

Count of polygons with 
LiDAR CC value 

within same API class 

Total API polygons in 
class 

Percentage of polygons 
with LiDAR in API 

class 
0-10% 1 7 14.3% 

11-20% 10 14 71.4% 
21-50% 5 11 45.5% 
51-80% 2 8 25.0% 

Total polygons 18 40 45% 
 

A further 13 / 40 (32.5 %) had LiDAR crown cover estimates within 10% of the API class 

boundary.  The majority of estimates with a match between API and LiDAR crown cover occurred 

with a LiDAR sample of 11-20% of the area of the API polygon.  A comparison was made between 

overstorey crown cover from SFRI API data with LiDAR crown cover for NE Victoria (Figure 70).  

The crown cover comparison is more variable and poorer with respect to Injune.  Most field plots or 

transect areas have the LiDAR crown cover outside the API crown cover class range.   
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Figure 68: Injune API CC (mid-point of class) correspondence with the LiDAR CC sample within the 

API polygon. 

 
Figure 69: Comparison of individual API polygon CC (mid-point of class) and LiDAR CC (mean, min 
and max) based on 25m cells within the PSU.  Individual polygon IDs have been removed for clarity. 
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Figure 70: NE Victorian API CC (mid-point of class) correspondence with the LiDAR CC field plot and 

transect area sample within the API polygon. 

 

LiDAR foliage-branch cover comparisons with field data 

Comparisons between LiDAR foliage-branch cover at both > 0.5 m and > 2 m height 

thresholds, with field transects (Figure 71a) and hemispherical-photos (Figure 71b) have close 

correspondences, with r2 values ranging from 0.77 - 0.83.  When compared to field transects, the 

LiDAR > 2 m threshold has a slightly better r2 (less variation), but the > 0.5 m threshold selection 

has a best-fit line closer to the 1:1 line.  With hemispherical photo foliage-branch cover, both 

selections have very similar best-fit lines, when compared to the 1:1 line.  Estimates of LiDAR 

foliage-branch cover were ~5 - 10% (depending on height threshold) lower on average than those 

from field transects.  Foliage-branch cover estimates generated from hemispherical photographs 

were similar to LiDAR foliage-branch cover (almost 1:1 correspondence) in plots where cover > 

40%.    

The representativeness of the field plot sample is assessed through comparison of 

distributions of LiDAR foliage-branch cover across the field plots (Figure 72a), and across all 4500 

secondary sampling units in the Injune study area (Figure 72b).  The comparison indicates a skew to 
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the left in the field plots distribution, whereas the study area sample has a more normal distribution, 

with the majority of values in the 35 - 45 % range.  The mean and median LiDAR foliage-branch 

cover values for the field plots are 29 % and 27.9 % respectively, with the landscape sample mean 

and median being 33 % and 34.9 % respectively.   

a) b) 

 
Figure 71: Comparisons of LiDAR FBC at 0.5 and 2 m height thresholds, with a)  field transect FBC; 

and b) FBC derived from hemispherical-photographs.   

 

a) b) 

 
Figure 72: LiDAR FBC distribution from a) Injune field plots; and b) 4500 SSUs across study area. 
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SLATS foliage projective cover comparison with LiDAR cover 

Estimates of foliage projective cover across the Injune study area for 2000 (Figure 112 - 

Appendix A) were generated from Landsat sensor data by the Queensland SLATS program.  A 

summary distribution comparing SLATS foliage projective cover (Figure 73) against LiDAR crown 

cover and foliage-branch cover using all 150 primary sampling units and converted to National 

Forest Inventory cover classes, is provided in Table 32.  The mean SLATS foliage projective cover 

value for the study area was 47 % (range 0-100 %, δ = 25 %), which is higher than the primary 

sampling unit foliage-branch cover sample mean (as described in the previous section).  For each of 

the National Forest Inventory cover classes, both LiDAR primary sampling unit samples and 

SLATS foliage projective cover have similar estimates, with the LiDAR crown cover estimates 

having a closer match (i.e. within ±5.6 %) to SLATS.  The largest difference is for closed forest 

between LiDAR foliage-branch cover and SLATS.  

Table 32: Comparison of NFI forest cover class distribution across the Injune landscape  using SLATS 
FPC for study area, and LiDAR PSU sample (1,125ha) for FBC and CC. 

NFI Cover class LiDAR PSU sample 
CC estimate (%) 

LiDAR PSU sample 
FBC estimate (%) 

SLATS study area 
FPC estimate (%) 

1 – Non forest 11.1 11.1 7.5 
2 – Woodland 15.0 25.9 20.5 

3 – Open Forest 57.6 62.8 52.0 
4 – Closed Forest 16.3 0.2 20.0 
 

 
Figure 73: SLATS Landsat derived FPC distribution for the Injune study area (220,000ha).  NFI forest 

classes are shown. 



Chapter 4: Results 
   

185 

In NE Victoria, based on SLATS foliage projective cover data, forest occupies 41.2 % of 

the area, and non-forest 58.8 % (Figure 74; Figure 113 - Appendix A).  Using National Forest 

Inventory forest classes, comparisons were made at the 20 km systematic sampling sites (field plot 

and transect area) using hemispherical photos, LiDAR foliage-branch cover and National Forest 

Inventory data, with the study area estimate using SLATS foliage projective cover and National 

Forest Inventory data (Table 33).  The 20 km grid sample indicates that forest occurs in 

approximately 42.4 % of the study area (within the Landsat ETM images), which is very close to 

the SLATS estimate.  Overall the forest-non forest split is close (within 10 %) across the different 

datasets and landscape samples.  SLATS foliage projective cover records a lower proportion Open 

forest (and a correspondingly larger woodland estimate), with the largest disparity found with plot 

scale comparisons, for both LiDAR and hemi-photo foliage-branch cover.    

Table 33: NE Victotian SLATS FPC for study area compared to LiDAR and hemi-photo data in field 
plot and transect areas, using percentage of 20km systematic samples in each NFI forest class. 

NFI Cover class 1 – Non forest 2 – Woodland 3 – Open 
Forest 

4 – Closed 
Forest 

Hemi-photo field plot sample (%) 57.6 0.0 42.4 0.0 
LiDAR field plot sample (%) 57.6 0.0 39.4 3.0 
Hemi-photo transect area sample (%) 57.6 0.0 39.4 3.0 
LiDAR transect area sample (%) 57.6 3.0 33.3 6.1 
NFI data transect area sample (%)1 63.7 3.0 33.3 0.0 
NFI study area (%)2 65.1 2.7 32.2 0.0 
SLATS study area (%) 58.8 11.3 26.7 3.2 

1 NFI data is reported at 100m pixels, therefore field plot and transect area estimates are the same.  2 – Note this NFI 
estimate is for the entire study area, so open forest in mountains may be over-represented. 
 

 
Figure 74: SLATS Landsat derived FPC distribution for the NE Victoria study area.  NFI forest classes 

are shown. 
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Correlations between cover metrics and data sources 

All cover estimates have some potential bias in either the sampling, coverage of the 

assessment area, or measurement method.  Therefore, what is defined as the best estimate varies 

depending on the data being compared.  To explore the relationships between cover metrics and 

data combinations, data were aggregated into matrix correlation tables for both Injune (Table 34) 

and NE Victoria (Table 35) (see also Figure 114 and Figure 115 – Appendix A).  Data was sourced 

from field plot transects and tree-maps, hemispherical photos, LiDAR, CASI hyperspectral data, 

Landsat TM foliage projective cover, and API.  Not all the datasets used at Injune were available 

for NE Victoria.  Based on the P-value, all correlations in the Injune data were significantly linear at 

the 0.05 level, although a number in NE Victoria were not significantly linear at 0.05 (Table 36).   

Generally for Injune, LiDAR foliage-branch cover had strong relationships across almost 

all the other datasets (Table 34).  LiDAR derived crown cover had better correlations with other 

data compared to the canopy height model estimates, though the difference between the two models 

is minor, as they are strongly correlated with each other (r2 = 0.86;  Table 34).  For NE Victoria 

generally the comparisons were much less robust than those found at Injune, with many having a 

very poor correspondence (Table 35).  The best LiDAR foliage-branch cover correlation was with 

hemispherical-photo foliage-branch cover (r2 = 0.71; Table 35), followed by Landsat foliage 

projective cover (r2 = 0.59; Table 35).   

These tables are useful to determine the likely results when translating between cover data.  

For example, if only hemispherical photos and Landsat foliage projective cover data were available 

for one site, and there was a need to make comparisons with other sites that only had LiDAR or 

field transect measurements, then the table could be used to indicate the level of correlation and 

potential bias between data and metrics.  In this case, hemispherical photo foliage-branch cover has 

a good correspondence with LiDAR foliage-branch cover (r2 = 0.80, slope = 1.05; Table 34), 

whereas the correlation with foliage-branch cover from field transects is more variable (r2 = 0.66, 

slope = 1.10; Table 34).    
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Table 34: Matrix of correlations for cover metrics across a range of datasets and measurement scales, for the Injune field plots * 

 
a – Landsat FPC value for plot uses mean of 5 pixels 
b – For the LSP API, only Landsat is a complete comparison within the polygon - all other datasets are a sample. 
P-values for all comparisons were significantly less than 0.01.  The mean P-value was 7.22e-6, standard deviation = 2.48e-5, range 5.33e-15 – 1.31e-4. 
* For comparisons that do not include CASI or hemispherical photos n = 30.  Where CASI or hemi-photos are compared to the other data, n = 29.  Where CASI and hemi-photos are 
compared against each other, n = 28. 
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Table 35: Matrix of correlations for cover metrics across a range of datasets and measurement scales, for the NE Victorian field plots  

X  
Field hemi-photo 

FBC Field tree map CC LiDAR FBC (2m+) LiDAR CC (2m+) - 
HSCOI Landsat FPC API CC class mid-

point 
Field hemi-
photo FBC x y=0.2917x + 37.6015      

r2 = 0.22  RSE = 10.42 
y=0.7864x + 7.1867       
r2 = 0.71  RSE = 6.31 

y=0.5076x + 15.6266      
r2 = 0.55  RSE = 7.92 

y=0.8377x + 13.8103      
r2 = 0.80  RSE = 4.80 

y=0.2049x + 40.2527      
r2 = 0.08  RSE = 11.35 

Field tree 
map CC 

y=0.7556x + 17.5120      
r2 = 0.22  RSE = 16.76 x y=0.6126x + 21.8292      

r2 = 0.17  RSE = 17.33 
y=0.6084x + 11.9781      
r2 = 0.30  RSE = 15.84 

y=0.4320x + 36.8720      
r2 = 0.06  RSE = 19.19 

y=0.4262x + 28.6825      
r2 = 0.13  RSE = 17.76 

LiDAR 
FBC (2m+) 

y=0.9079x + 10.7857      
r2 = 0.71  RSE = 6.78 

y=0.2730x + 44.4420      
r2 = 0.17  RSE = 11.57 x y=0.5336x + 19.3657      

r2 = 0.53  RSE = 8.73 
y=0.6249x + 28.1129      
r2 = 0.59  RSE = 6.08 

y=0.2286x + 44.3127      
r2 = 0.08  RSE = 12.15 

LiDAR CC 
(2m+)b 

y=1.0810x + 17.9153      
r2 = 0.55  RSE = 11.56 

y=0.5001x + 47.6758      
r2 = 0.30  RSE = 14.36 

y=0.9842x + 17.5683      
r2 = 0.53  RSE = 11.86 x y=0.7485x + 39.4733      

r2 = 0.27  RSE = 14.25 
y=0.2672x + 58.1821      
r2 = 0.06  RSE = 16.69 

Landsat 
FPCa 

y=0.9572x - 4.2470       
r2 = 0.80  RSE = 5.13 

y=0.1462x + 37.0314      
r2 = 0.06  RSE = 11.16 

y=0.9354x - 7.4855       
r2 = 0.59  RSE = 7.43 

y=0.3586x + 18.9718      
r2 = 0.27  RSE = 9.86 x y=0.3159x + 22.6596      

r2 = 0.16  RSE = 10.59 

Y 

API CC 
class mid 

point 

y=0.3660x + 50.8569      
r2 = 0.08  RSE = 15.16 

y=0.2939x + 53.5968   
r2 = 0.13  RSE = 14.75 

y=0.3537x + 49.5000      
r2 = 0.08  RSE = 15.12 

y=0.2242x + 53.6157      
r2 = 0.06  RSE = 15.29 

y=0.4974x + 49.0894      
r2 = 0.16  RSE = 13.29 x 

a) – Landsat FPC value for plot uses mean of 5 pixels, and uses uncalibrated Landsat FPC data. b) – Derived from HSCOI modelling. 
 

Table 36: Matrix of P-values for cover metric correlations across a range of datasets and measurement scales, for the NE Victorian field plots  

  Field hemi-photo FBC Field tree map CC LiDAR FBC LiDAR HSCOI CC - Landsat FPC 
Field tree map CC 0.02751 x    
LiDAR FBC (2m+) 7.51e-07 0.0588 x   
LiDAR HSCOI CC (2m+) 0.00008047 0.007789 0.0001365 x  
Landsat FPC 5.14e-07 0.3144 0.0002197 0.02763 x 
API CC class mid point 0.2175 0.1061 0.1996 0.2722 0.1034 
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Crown separation method test results 

Crown separation comparisons with field and LiDAR data indicate a close match 

between the crown separation crown cover (zig-zag method) and other crown cover data for 

p142-13, with a maximum difference between the crown cover estimates of 7.3% (Table 37).  

The crown separation crown cover for p81-16 has greater differences with the other crown 

cover data (up to 40.5 %; Table 37).  Both plots have the LiDAR crown cover estimate closer 

(compared to tree-map crown cover) to the crown separation crown cover estimate, with 

differences of 3.1 % and 16.8 % for p142-13 and p81-16 respectively.  Both plots have LiDAR 

and hemispherical photo foliage-branch cover values similar to the crown separation crown 

cover.  A LiDAR HSCOI derived tree stem is found in close vicinity to a field mapped stem in 

most cases (Figure 75 for p142-13; Figure 76 for p81-16), with the HSCOI stem accuracy table 

found in section 4.5.1.  

Table 37: Crown separation test comparison for p142-13 and p81-16. 

Cover or measurement Metric Transect 1 Transect 2 Transect 3 Plot Total 
P142-13 
Number of trees used 8 8 8 24 
Total plot trees 5cm+ D130 (>10cm D130)    63 (43) 
Zig Zag mean field crown diameter (m) 4.3 5.2 5.3 4.9 
Zig Zag mean LiDAR crown diameter (m) 4.4 5.2 5.0 4.9 
Zig Zag mean dist. to next crown (m) 4.2 3.5 2.3 3.3 
Zig-Zag CC % 20.2 28.7 39.4 28.6 
LiDAR CC %    31.7 
Field tree map CC %     35.9 
Field Transect FBC % 19.2 21.2 25.0 21.8 
Photo FBC % a 27.7 

(west-30m) 
35.0 

(cntr-20m) 
29.5  

(east–30m) 
30.7 

LiDAR FBC (2m+) %    16.2 
P81-16 
Number of trees used 14 10 9 33 
Total plot trees 5cm+ D130 (>10cm D130)    117 (67) 
Zig Zag mean field crown diameter (m) 4.7 5.3 8.0 5.8 
Zig Zag mean LiDAR crown diameter (m) 4.1 4.7 7.3 5.2 
Zig Zag mean dist. to next crown (m) 1.7 2.1 2.0 1.9 
Zig-Zag CC % 43.5 41.5 51.9 45.8 
LiDAR CC %    62.6 
Field tree map CC %    86.3 
Field Transect FBC % 51.9 44.2 59.6 51.9 
Photo FBC %a b  45.4 

(cntr-20m) 
 45.4 

LiDAR FBC %    48.0 
a Hemispherical photos used are from the distance along transects from start of transect (southern edge of plot) as 
indicated in table (see also Figure 75). 
b Only 1 photo was processed for this plot. 
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Figure 75: Crown separation transect method for p142-13.  Field mapped stems are solid orange 
circles (proportional to D130) and open circles (proportional to mean crown radius).  LiDAR point 
sampling density (grey) and HSCOI crown delineations (green) are shown. Field plot boundaries 

and transects are 50m long. 

 
Figure 76: Crown separation transect method for p81-16.  Map elements are described in the 

Figure 75 caption.  Field plot boundaries and transects are 50m long. 
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The LiDAR apparent vertical profiles and illustrative photographs (Figure 77) indicate 

the vertical structure of the different plots, highlighting the difference in undertstorey presence, 

and in the range of foliage heights, which could be factors in the results presented in Table 37.  

The apparent vertical profile for p142-13 shows the plot has a single dominant overstorey 

stratum, and is shorter in maximum (14 m) and predominant height (12 m) than p81-16 (23 m 

and 18 m respectively).  From other results the stem density is low (252 stems ha-1 D130 ≥ 5 cm), 

and the trees are well separated, thus making it easier to estimate crown cover, especially as the 

zig-zag transect trees account for 38 % of all trees measured in the field, and up to 56 % of the 

potential overstorey trees (i.e. those with D130 >  10 cm).     

a) b) 

 
Figure 77: Apparent vertical profiles for p142-13 (a) and p81-16 (b), highlight different vertical 

foliage characteristics, which may contribute to the different cover results observed. 
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Conversely, the zig-zag crown cover estimate for p81-16 is much lower than the other 

crown cover estimates, and this may be a function of the stem density (460 stems ha-1 D130 ≥  5 

cm) being almost double that found in p142-13.  Additionally the zig-zag transect trees account 

for a lower proportion of all trees (28 %), and of potential overstorey trees (49 %). 

 

 

4.4.2 Forest cover assessment at a range of scales  

Multi-scale foliage-branch cover comparison between LiDAR and hemispherical photos 

was undertaken using NE Victoria plots at two field measurement scales: field plot and transect 

areas (Figure 78, Figure 79, and Table 38).  All three comparisons were quite similar, with the 

best between LiDAR (>  2 m height threshold) at the transect area scale (i.e. 1 ha) and the field 

plot centre photo (Table 38).  The trial of multi-sensor and multi-scale assessment of foliage-

branch cover at a single location (plot 220) (Figure 80), indicated that the woody area from 

SPOT5 HRV and LiDAR agree at the 2.5 m pixel scale.  With the AGO Landsat layer used, a 

50 % internal pixel coverage has the closest match to the LiDAR foliage-branch cover estimate.  

The hemispherical photo foliage-branch cover estimate was within the range of the other 

datasets used.   

Results of the investigation of how the foliage-branch cover estimates changed with an 

increasing circular assessment area were generated for the following ecozones: Floodplain 

(Figure 81), Foothills (Figure 82), Subalpine (Figure 83), Montane (Figure 84), and for Injune 

(Figure 85).  The results of the NE Victorian analyses, averaged by ecozone, illustrate the 

potential effect of scale, with large mean foliage-branch cover variation (>  10 %) observed for 

floodplains, but less mean variation (<  10 %) for other locations (Table 39). 

Table 38: FBC comparison between field plot and transect area combinations for NE Victoria. 

FBC% parameters (y vs x) r2 RSE function p-value n 
Field plot LiDAR vs field plot photo 0.71 6.78 y= 0.9079x + 10.786 7.507e-7 22 
Transect area LiDAR vs transect photosa 0.65 8.93 y= 0.9605x + 8.1235 5.426e-6 22 
Transect area LiDAR vs field plot photo 0.74 7.75 y= 1.1045x + 1.2794 2.995e-7 22 
a– mean of five photos 
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Table 39: Summary of LiDAR FBC at different scales, averaged per NE Victorian ecozone. 

Reference size field plot transect area LiDAR swath  
Circle area (ha) 0.07 0.8 3.1 12.6   

Radius Distance (m) 15 50 100 200 1Diff (plot-swath) 
Ecozone Cover      # plots 

2FBC % 55.4 55.8 44.1 40.0 15.4 4 Floodplain 
 3SD % 2.5 4.6 9.8 14.2   

FBC % 54.9 51.8 49.9 46.0 8.9 6 Foothills 
 SD % 12.4 17.3 18.3 18.9   

FBC % 71.8 72.2 69.5 68.0 3.8 9 Montane 
 SD % 15.1 11.5 11.4 11.1   

FBC % 73.9 69.8 68.7 67.3 6.7 3 Subalpine 
 SD % 9.7 3.6 4.6 1.8   
Region Mean 64.0 62.4 58.1 55.3 8.7 22 

1 – Difference between the field plot cover estimate and swath (stand) cover estimate  
2 - Mean Foliage Branch Cover percent 
3 - Mean Standard Deviation 

 

A more detailed assessment of the results indicates that field plot area (0.09 ha) foliage-

branch cover estimates are 5-10% higher on average, than with larger assessment areas, with 

some sites having a difference as large as 35 %.  There was a general shift to lower foliage-

branch cover across all plots as the assessment scale increases in area.  Floodplain stands have 

the greatest variability as assessment area increases, while Montane and Subalpine stands have 

little variability, with woodlands in the Foothill zone showing moderate variability, depending 

on landscape context.  For Injune, the results are much more consistent across all locations, with 

the wider primary sampling unit foliage-branch cover estimate generally within ± 5 % of the 

field plot (0.25 ha) foliage-branch cover estimate.   

 

 

 

 

 

 

 

 

 



Chapter 4: Results 
   

194 

 

a) b) 

 
Figure 78: Comparison of FBC from LiDAR and hemispherical photos, in a) field plot area; and b) 

transect area. 

 
Figure 79: Comparison of FBC from LiDAR in transect area and field plot hemispherical-photo. 

 
Figure 80: Comparison of FBC for different data and pixel sizes, within the LiDAR swath for NE 

Victorian plot 220.  
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Figure 81: LiDAR FBC at plot locations with increasing assessment area, for Floodplain ecozone. 

 
Figure 82: LiDAR FBC at plot locations with increasing assessment area, for Foothills ecozone. 

 
Figure 83: LiDAR FBC at plot locations with increasing assessment area, for Subalpine ecozone  
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Figure 84: LiDAR FBC at plot locations with increasing assessment area, for the NE Victorian 

Montane ecozone. 

 



Chapter 4: Results 
   

197 

 

 
Figure 85: LiDAR FBC at plot locations with increasing assessment area for Injune. 
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4.5  Tree Scale Stem and Crown Delineation Results 

This section outlines the results of the tree scale basic geographic entity modelling 

using the Height Scaled Crown Openness Index (HSCOI).  These entities will be used 

subsequently as part of the case studies presented in the following section, to provide evidence 

that the multi-scale LiDAR strategy to link field data with remote sensing is valid and robust.  

This is turn will help to address the primary research question, and determine how LiDAR can 

improve the assessment of forest structure.  Evaluation covers tree level location and plot level 

stem density, and the spatial arrangement of stems based on Ripley's L-function nearest 

neighbour analysis.  Crown cover comparisons were presented in the previous section.  Both 

individual tree height and predominant stem height comparisons are made with field data, along 

with an assessment of D130, as estimated using empirical functions with tree height.  Further 

validation of the methodology for plot stem density is provided for a range of forest types 

within northeast Victoria, a proportion of which were structurally similar to those observed at 

Injune.  The majority of the results for this section are fully described in Lee and Lucas (2007), 

in Appendix C. 

 

 

4.5.1 Tree stem density and location 

Stem mapping at Injune 

Maps of stem locations, together with crown boundaries, were generated using HSCOI 

layers for each of 12 primary sampling units (see example in Figure 86).  Stem density estimates 

from 30 plots contained within the 12 primary sampling units were compared with those 

generated using the HSCOI for the equivalent area and a close correspondence was observed 

across the stem density range (Table 40).  However, for higher densities (n > 700 stems ha-1), a 

larger number of field stems with D130 < 10 cm were not identified using the HSCOI.  To 

evaluate the success of tree location, one field plot from each of the 12 primary sampling units 

was selected, with the addition of all four field plots associated with primary sampling unit 142, 
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as these had been assessed previously for another study (Lucas et al., 2006c).  HSCOI mapped 

trees were matched manually to those identified in the field, with the process considering 

similarities primarily in location, but also height, D130 and estimated crown area. 

Table 40: Tree stem density per plot correspondence for Injune and NE Victoria from HSCOI 
modelling 

y (Field) x (LiDAR) r2 RSE  n Function P-value 
Injune Stem count - 
all 

Stem count 
(HSCOI) 

0.82 133 stems ha-

1 
30 y= 1.539x − 142.63 3.774e-12 

NE Victoria stem 
count - all 

Stem count 
(HSCOI) 

0.19 152 stems ha-

1 
22 y= 0.513x + 73.55 0.04469 

NE Victoria stem 
count – good match 

Stem count 
(HSCOI) 

0.55 62 stems ha-1 7 y= 0.6756x+180.74 0.05681 

NE Victoria stem 
count – poor match 

Stem count 
(HSCOI) 

0.67 74 stems ha-1 15 y= 0.6547x – 90.78 0.000183 

 

 
Figure 86: Crown/clusters and stem locations identified using the HSCOI surface generated for 
PSU 142. Darker areas in the HSCOIstand surface indicate crowns that are taller and contain a 

greater density of canopy elements. Internal squares are SSU field plot locations numbered (from 
left to right) as 02, 13, 18 and 20. 
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Tree scale stem diameter derived from height 

The comparison of D130 between field data and that estimated using LiDAR height and 

empirical functions was similar to the field tree height-to-D130 validation result (r2 = 0.65, RSE 

= 6.89 cm, n = 119, P-value = 0, regression function y = 0.7933x + 4.3875) (Figure 87).  Some 

scatter was observed for trees with 20 - 30 cm D130, which was attributed to height errors as 

described in section 4.6.4, although the mean difference between LiDAR and field was -1 cm 

(LiDAR diameter less than field).  The two large-diameter stems may also influence the 

comparison unduly, and if removed then the correlation would be less than currently observed.  

Whilst scatter in the correlation is evident, approximately 61 % of the validation set of HSCOI 

mapped stems had a D130 estimate within 5 cm of the field estimate, and 87 % were within 10 

cm of the D130 estimate.   

 
Figure 87: Correspondence between field-measured D130, and height derived D130 from HSCOI 

derived stems. 

 

The basal area estimated from D130 measurements of field trees and HSCOI stems was 

also compared for 30 field plots (Figure 88), with the relationship showing that the variability 

observed at the tree level also occurred at the plot level (r2 = 0.61, RSE = 2.69 m2 ha-1, n = 30).  

At the plot level, the comparison for plots with a basal area of up to 10 m2 ha-1 (n = 13) had a 

mean difference between field and LiDAR of -1.3 m2 ha-1 (δ = 1.22, min = -3.66, max = 0.61) 

with LiDAR recording the lower basal area estimate.  For plots with basal area > 10 m2 ha-1 (n = 



Chapter 4: Results 
   

201 

17) the relationship was much more variable, with a mean difference of -0.62 m2 ha-1 (δ = 4.65, 

min = -7.49, max = 9.4).   

 
Figure 88: Correspondence between plot-level basal area, for stems measured in the field and 

estimated from LiDAR HSCOI modelling. 

 

 

4.5.2 Tree crown delineation results 

Of the 119 randomly selected trees from across all Injune field plots, 90 were selected 

for validation of the individual crown delineation methods.  These trees were generally (though 

not exclusively) in the overstorey, and the mix of mainly overstorey and some sub-canopy trees 

allowed an objective assessment of the crown delineation methods.  This also allowed an 

indication of the feasibility of mapping crowns in the sub-canopy (in addition to stems) to be 

made.  Six different types of comparison between field and LiDAR crowns were identified in 

the validation set (Table 41).  The summary results outline the mean area of each aggregated 

class and statistics of the difference between field and LiDAR crown area estimates (Table 42).  

Specific examples from different field plots (Table 43) are used to inform the summary and 

correspondence between the two sets of data (Figure 89).  The LiDAR derived crowns which 

were not found within clusters (i.e. dominant, single and isolated - Table 41) had a close 

correspondence with the associated field stems on average, with crown area differences in the 

order of ± 4 m2 (Table 42).    
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Table 41: Description of LiDAR crown delineation validation classification types.  

Type Description 
No. of 
sample 
crowns 

% 

Cluster 

LiDAR crown encompasses a number of field stems of 
generally similar size.  Segment includes interlocking 
crowns in overstorey and/or with sub-canopy stems 

underneath overstorey crowns.  HSCOI mapped stem 
count may be similar to field stem count. 

50 55.6% 

Segment_1m 

Match between field crown and HSCOI segment_1m 
polygon, but merged with adjacent polygons in final 

segmentation.  This usually occurs when a sub-dominant 
stem is adjacent to a larger crown or where there are many 

smaller crowns in close proximity. 

5 5.6% 

Dominant 

One or two field stem(s) are the dominant stems within a 
cluster polygon, with the final LiDAR segment and field 

crowns generally equivalent.  Additional field stems occur 
in the sub-canopy, and can be identified with HSCOI 

stems and/or segment_1m polygons. 

10 11.1% 

Single 

A field stem is related to a single HSCOI stem, within a 
LiDAR delineated crown, but which are adjacent to other 

crowns.  Generally this type occurs when interlocking 
crowns are present within a larger stand of trees 

17 18.9% 

Isolated Field stem is related to a single HSCOI stem within a 
LiDAR crown that is isolated from other trees 6 6.7% 

Oversegmented 

The LiDAR crown delineation for a single field stem was 
over segmented into a number of polygons (i.e. 

segments_1m not merged to larger crown).  This generally 
occurs when a field tree varies greatly from the height to 
crown area function (e.g., tree has a much larger crown 

for its height), or has a number of large and distinct 
branch clumps 

2 2.2% 

Total  90 100% 
 

Table 42: Summary of crown delineation validation comparison of 90 trees aggregated by type. 

Crown type Cluster / 
segment_1m Dominant Single Isolated 

Field crowns mean area (m2) 13.0 53.0 15.3 16.4 
Field standard deviation (m2) 10.5 119.7 11.7 7.3 
Field range (min-max) (m2) 0.4 - 53.4 5.7 - 393.2 1.5 - 50.0 9.0 - 29.2 
     
LiDAR crowns mean area (m2) 40.5 52.2 18.5 12.6 
LiDAR standard deviation (m2) 25.9 100.1 16.0 5.6 
LiDAR range (min-max) (m2) 2.9 - 177.8 9.0 - 336.8 4.2 - 73.0 6.2 - 22.5 
     
Mean difference (m2) 27.4 -0.9 3.2 -3.8 
Standard dev. of difference (m2) 27.5 20.1 7.0 4.6 
Smallest - largest error range - (m2) -2.1 – 173.3 3.3 - -56.4 0.1 – 23.0 0.3 - -10.7 
Min - Max difference range (m2) -25.7 - 173.3 -56.4 - 12.2 -8.3 - 23.0 -10.7 - 1.9 
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Table 43: Examples of LiDAR crown delineation classification types found in the validation.  

Type  
(field plot)  

Field crown 
area (m2) 

LiDAR crown 
area (m2) Figurea 

Cluster 
(p142-13) 

Total crown 
area from 

the 4 stems 
= 31.5 m2 

23.8 m2 

 

Segment_1m 
(p23-16) 

Smaller tree 
= 15.8m2 

 
Larger tree 
= 54.1m2 

Smaller tree   
= 22.2 m2 

 
Larger tree     
= 48.3 m2 

 

Dominant  
(p81-11) 393.2 m2 336.8 m2 
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Single  
(p142-13) 14.8 m2 18.0m2 

 

Isolated  
(p142-02) 29.0 m2 22.5 m2 

 

Oversegmented 
(p83-12) 59.8 m2 

Three 
segments total: 
20.0 + 21.2 + 

15.3 = 56.5 m2 

 
a – Legend for figures:  
thick light blue line - LiDAR crown type being illustrated when adjacent to other crown polygons 
thick red line - LiDAR crown when not adjacent to other crown polygons 
thin dark blue line - HSCOI segments_1m polygons 
red text-  LiDAR polygon crown area 
black underlined text - estimated field crown area 
solid orange circles - field stems proportional to D130, 
open black circles- field stems proportional to crown radius (mean of crown north-south and east-west measurements) 

 

The correlation result for all crowns not found within a cluster present an r2 of 0.99 

(RSE = 8.4 m2, P-value = 0, n = 32, Figure 89).  With the large crown outlier (field = 393 m2 

and HSCOI segment = 337 m2) removed, the r2 decreases to 0.71 (RSE 5.4 m2, P-value = 

3.055e-9, n = 31, Figure 89).  The correlation (large outlier removed) may be a more realistic 

assessment of the crown mapping accuracy, within the limits of the sample used and available 
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field data.  It should be noted that there is a good correlation (along the 1:1 line) between 

LiDAR and field estimates up to around 40 m2, but that a second outlier crown (a LiDAR 

estimated area of 75m2) still influences the correlation. 

Cluster + segments_1m

y = 0.0189x + 12.253
R2 = 0.0022

Dominant-Single-Isolated
outlier excluded

y = 0.653x + 3.7581
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Figure 89: Correlation between field estimated crown area and area derived from LiDAR HSCOI 

crown delineations, aggregated into broad class types. 

 

The genus probability modelling for the segments_1m, used the 90 randomly selected 

trees (and associated segments) from all field plots, as described previously.  The overall 

accuracy is 52 % across all delineated crown types (Table 44), though 80 % of dominant and 65 

% of single assessed segments had a correct genus probability assigned.  Approximately 30 % 

(n = 27) of the validation set were correctly modelled at both 1 m and 5 m scales, with the 

majority of these being a Eucalypt-Angophora genus (Table 44).  Approximately 44 % (n = 40) 

were correct at the segment_1m, scale, even though the final genus allocation may have changed 

the initial assessment.  A changed final allocation only occurred for 9 % (n = 8) of the validation 

set (Table 44).  The main sources of error were Eucalypt-Angophora examples having a 
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Callitris form, for example with young or regenerating stems, or where Callitris types occurred 

within clusters with interlocking crowns, thus (as identified previously) making it difficult to 

resolve individual crowns.   

Table 44: Genus probably modelling accuracy assessment by delineation type, using 90 randomly 
selected trees 

Genus 
score1 

Cluster Segment-
1m 

Dominant Isolated Single Over 
segmented  

Total 

1111 1  3  3 1 8 
1122 5 1   2  8 
1212 1      1 
1222 15 1 1  2  19 
2111 5 1 1 5 2 1 15 
2122 9  1  5  15 
2212 3  1  1  5 
2222 11 2 3 1 2  19 
Total 50 5 10 6 17 2 90 

Correct 24 2 8 1 11 1 47 
% 48% 40% 80% 17% 65% 50% 52% 

1 – Four digit code as follows: 1 = Callitris-Acacia. 2 = Eucalypt-Angophora.  1st position = field data, 2nd position = 
segment_1m estimate. 3rd position = segment_5m estimate. 4th position = final allocation after multi-scale 
assessment.  Correct is where 1st and 4th positions are equal. 

 

Comparisons were also made between LiDAR crown diameter and field data using the 

trees from the crown separation trial (Section 4.2.3).  The correspondence was r2 = 0.63 (RSE 

1.71 m, P-value = 2.056e-013, n = 57, Figure 90a), with a good match between the line-of-best fit 

and the 1:1 line.  This indicates that LiDAR and field crown diameter measurements were 

equivalent, on average, for the trees assessed.  For comparison with Figure 89, the largest crown 

(~16 m diameter) would equate to a crown area of approximately 200 m2, assuming a circular 

shape.  Most crowns have an area between 3 m2 and 50 m2, which is the same range for the 

crowns used in Figure 89.  
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a) b) 

 
Figure 90: Comparison of crown diameter for; a) field and HSCOI trees from plots 142-13 and 81-

16, and b) NE Victorian plot CC comparison between field tree-map buffer and HSCOI crowns. 

 

For NE Victoria, the LiDAR individual crown delineation comparison with field tree-

map data (generated using a circular buffer from the mean of the crown diameter) had a poor 

correspondence (Figure 90b and Table 40).  The field estimated plot crown cover data was 

generally less than that of the LiDAR plot crown cover, in the order of 10 - 40%.  However the 

P-value was significant, indicating a general linear trend overall.  As examples of the NE 

Victorian application, contrast the plot (p382) with a good correspondence between LiDAR and 

field tree map for stem density and crown cover (Figure 91a), with a plot (p562) with poor 

correspondence between the data (Figure 91b).   
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a) b) 

 
Figure 91: NE Victorian LiDAR crown delineation examples and associated field plot centre 

photos.  (a) Plot 382 with a good match between plot level crown cover and stem density; and (b) 
Plot 562 with a poor match for plot level crown cover and stem density. 
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4.6 Multi-Scale Calibration Results  
 

This section presents results from the LiDAR calibration examples for a range of height 

and cover metrics, undertaken at a range of scales.  Specifically, transfer functions are 

developed that can translate between foliage and crown cover, thus allowing a consistent 

comparison and reporting of crown cover.  Estimates of crown cover, foliage-branch cover and 

stem density derived from LiDAR are used to calibrate Landsat data at the pixel scale to 

minimise any inherent issues associated with differences in scale (e.g., with field data collected 

at difference plot sizes).  Estimates of crown cover and foliage-branch cover are compared to 

those derived from ICESat data, to establish which metrics might be retrieved and the level of 

confidence expected.  The relative accuracy of the LiDAR tree and component modelling used 

for the SAR simulations is assessed, with reference to the field plot data from primary sampling 

unit 142.  

 

4.6.1 Landsat pixel scale LiDAR cover calibration  

Correlations between Landsat derived foliage projective cover and structural metrics 

derived from LiDAR (Table 45), using 25 x 25 m pixels include foliage-branch cover (Figure 

92) crown cover (Figure 93), and stem density (Figure 94, Figure 95).  Overall there is a good 

correspondence between Landsat TM foliage projective cover and LiDAR foliage-branch cover 

and crown cover with foliage-branch cover having the stronger relationship.  Both LiDAR 

foliage-branch cover and crown cover correspondences are slightly less that what was observed 

at the field plot level, as reporting previously.  Stem density can be readily estimated using 

either Landsat foliage projective cover, or LiDAR derived cover estimates, with LiDAR foliage-

branch cover at the 0.5 m height threshold giving the better result.  
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Figure 92: Comparisons of SLATS FPC and LiDAR FBC at 0.5m (left) and 2m (right) thresholds. 

 
Figure 93: Comparison of SLATS FPC and LiDAR CC. 

 
Figure 94: Comparisons of LiDAR stem density and FBC at 0.5m (left) and 2m (right) thresholds. 

 
Figure 95: Comparisons of LiDAR stem density and Landsat FPC (left), and LiDAR CC (right). 
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Table 45: SLATS FPC comparisons with LiDAR derived cover and stem density metrics for Injune 

Description n R2 RSE Functiona P-value 
LiDAR FBC% (2m+) vs FPC 1161 0.73 7.62 Y = 1.0179x – 10.2468  0 
LiDAR FBC% (0.5m+) vs FPC 1161 0.72 8.36 Y = 1.0907x – 9.2841 0 
LiDAR CC% (2m+) vs FPC 1161 0.65 13.62 Y = 1.5066x – 11.0591 0 
      
LiDAR stem density ha-1 vs FPC 1161 0.59 127.1 Y = 12.3889x – 83.0886 0 
LiDAR stem density ha-1 vs CC% (2m+) 1161 0.67 114.4 Y = 7.0511x + 64.7034 0 
LiDAR stem density ha-1 vs FBC%(0.5m+) 1161 0.73 102.6 Y = 10.7423x + 43.2175 0 
LiDAR stem density ha-1 vs FBC%(2m+) 1161 0.69 110.8 Y = 11.2293x + 69.8910 0 
a y = LiDAR metric, x = SLATS FPC, unless otherwise indicated. 

 

 

4.6.2 Crown and foliage cover translation function 

The development of a function to translate between foliage-branch cover or foliage 

projective cover and crown cover involved comparing LiDAR crown cover with LiDAR 

foliage-branch cover, and with Landsat foliage projective cover (Table 46).  Landsat pixel (25 

m) sized sample areas within 12 PSUs (that contain field data) were utilised to initially compare 

foliage projective cover and LiDAR crown cover (see Figure 93 previously).  Calibration of 

Landsat foliage projective cover first required the selection of cells with foliage projective cover 

< crown cover (Figure 96).  The derivation of the translation function then used regression of 

80% of randomly selected cells (Figure 97).  Finally, validation of the regression function used 

the remaining 20% of randomly selected cells (Figure 98). 

Table 46: LiDAR CC comparisons with SLATS FPC and LiDAR FBC, for Injune and NE Victoria. 

Description n R2 RSE Functiona P-
value 

LiDAR CC% (2m+) vs FPC 1161 0.65 13.62 Y = 1.5066x – 
11.0591 

0 

LiDAR CC% (2m+) vs FPCb (all calib cells)  855 0.62 10.38 Y = 1.302x + 2.9647  0 
LiDAR CC% (2m+) vs FPCb (80% cells) 683 0.63 10.47 Y = 1.298x + 3.5609  0 
LiDAR CC% (2m+) vs FPCb (20% cells)  172 0.63 9.88 Y = 1.0255x – 3.6281 0 
LiDAR CC% (2m+) vs LiDAR FBC (2m+)c 1161 0.80 10.35 Y = 1.4014x + 6.4695 0 
LiDAR CC% (2m+) vs LiDAR FBC (2m+) – 14 
outliers 

1147 0.83 9.6 Y = 1.4278x + 6.1073 0 

LiDAR CC% (2m+) vs LiDAR FBC (2m+) d 128 0.86 11.1 Y = 1.3205x + 8.3506 0 
a y = LiDAR metric, x = SLATS FPC, unless otherwise indicated.   
b – Cells (25 x 25 m ) where CC > FPC only.   
c – Using Landsat assessment cells (25 x 25 m) across the Injune PSU’s 
d – Using field plots from Injune and NE Victoria, and ICESat footprints from NE Victoria 
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Figure 96: Comparison between LiDAR CC and SLATS FPC within 12 PSU’s using all 25 m cells 

where CC ≥  FPC (n = 855). 

 
Figure 97: Derivation of translation function between SLATS FPC and LiDAR CC within 12 

PSU’s, using 80% of 25 m cells where CC ≥  FPC (n = 683). 

 
Figure 98: Validation of translation function between SLATS FPC and LiDAR CC within 12 

PSU’s, using 20 %f 25 m cells (n = 172) where CC ≥ FPC.  
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Based on the Landsat foliage projective cover calibration and validation results (Table 

46, Figure 98), a generalised translation function is suggested (primarily for environments 

similar to Injune) where CC = 1.3 x FPC.   

The 25 m pixels in the 12 Injune primary sampling units were also used to compare 

LiDAR foliage-branch cover to LiDAR crown cover (Figure 99), with a good correspondence 

observed (Table 46).  To assess the potential impact of scale on a foliage-branch cover 

translation function, LiDAR data from field plots at both  Injune and NE Victoria were 

combined with LiDAR from NE Victorian ICESAT footprint areas (Figure 100) (see also 

Section 4.6.3 for ICESat results).  The existing class boundaries for foliage projective cover to 

crown cover translation as published by the NFI are indicated as red arrows (Figure 100).   

Foliage-branch cover is assumed to be equivalent to FPC as the NFI has not published a 

translation between foliage-branch cover and FPC.  Using the LiDAR foliage-branch cover to 

crown cover comparison data from a range of sources (Table 46) and forcing the intercept 

through zero, a generalised translation function is suggested, where CC = 1.5 x FBC.  The 

difference in crown cover translation factors for foliage-branch cover and FPC could be 

attributed to the conceptual difference between measurements, which will be discussed in the 

next chapter. 
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Figure 99: Comparison between LiDAR CC and FBC within 1161 x 25 m pixel sized areas from 12 

PSU’s. 

 

 
Figure 100: Comparison between LiDAR CC and FBC for Injune SSU’s (50 m), NE Victorian  field 

plots (30 m), and selected ICESat footprints from NE Victoria (50 - 100m).  Red arrows indicate 
current NFI CC-FPC translation thresholds. 
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4.6.3 ICESAT case study calibration using LiDAR height and cover 

A case study is presented to assess the potential effects of slope, terrain position and 

vegetation density on the extracted ICESat attributes.  The case study highlights several issues 

that combine to cause difficulties for attribute extraction and calibration.  The footprints were all 

imaged in October 2003, resulting in the same footprint size and processing, but with differing 

terrain and vegetation at the three footprint locations (Figure 101 and Figure 102).   

The case study has identified that ICESat can extract attributes for height and cover that 

are similar to the LiDAR derived estimates; however there are issues with the consistency of the 

extraction.  For vegetation height, the riparian footprint has a close correspondence was 

observed for both ICESat 'Fit_ht' with LiDAR maximum height (~ 1 m difference), and ICESat 

'centroid_ht' with LiDAR predominant height (~ 2 m difference).   

For forest cover estimation, the ridge-top footprint correctly estimates foliage-branch 

cover, whereas the riparian footprint correctly estimates crown cover.  At both of these locations 

the intra-crown foliage density (including branches) is approximately 60 % (i.e. foliage-branch 

cover / crown cover), with remainder being “gap”, so the inter-crown density (i.e. crown cover 

or foliage-branch cover) is the primary factor in determining the cover value reported by 

ICESat.  In the case study example the riparian stand has a higher LiDAR foliage-branch cover 

(43 %), and the ICESat value extracted is closer to LiDAR crown cover (~70 %), whereas the 

ridge-top LiDAR foliage-branch cover is lower (28 %), with the corresponding ICESat cover 

value being similar to LiDAR foliage-branch cover.   

The mid-slope ICESat footprint cover estimate is much higher than either LiDAR 

foliage-branch cover or crown cover, with the combination of steeper slope (up to 13º) and lack 

of tree cover (LiDAR crown cover = 8 %) as potential factors in the difference observed.  For 

vegetation height, the riparian footprint a close correspondence was observed for both ICESat 

‘Fit_ht’ with LiDAR maximum height (~ 1 m difference), and ICESat ‘centroid_ht’ with 

LiDAR predominant height (~ 2 m difference).  This contrasts with the mid-slope and ridge top 

footprints, which recorded poorer height correspondences overall (differences in excess of 5 m).   
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Figure 101:  Airborne LiDAR from three ICESat footprints from ALS tile 26 displayed on a 1 m 

LiDAR derived DEM.  

 
Figure 102: Perspective view of LiDAR within ICESat footprint areas. See Figure 101 for legend. 
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The exception was for mid-slope ICESat ‘Fit_ht’ and LiDAR maximum height, where 

the difference was < 1 m.  The poorer correspondences observed for height and cover in the 

mid-slope and ridge top footprints were attributed to a combination of higher slopes and 

relatively sparse vegetation within the respective footprints (Table 47, Table 48, and Table 49). 

Table 47:  LiDAR and ICESat attributes from the riparian strip footprint f (ICE-id = 484 ) 

Attribute LiDAR ICESat Comment 
Vegetation foliage cover (%) 45.68  

Forest foliage cover (%) 43.39  

Forest crown cover (%) 73.66 78.8 

The ICESat cover value is close to the 
LiDAR crown cover value.  There is a 

greater amount of vegetation present in the 
riparian strip. 

Elevation range (m) 1 36.51 49.80 ICESat ‘veg height’ exceeds LiDAR by 13 
m. 

Max vegetation height (m) 34.80 33.87 Fit height is very close to max tree height 
Predominant height (m) 3 22.92 25.01 Centroid height is close to mean height 

Mean slope(degrees) 4.93  

Absolute slope (degrees) 4.73  

Slope is relatively flat with steeper river 
bank sections only accounting for a small 

proportion. 
Icesat attributes ~ 1 “veg_height”, 2 “fit_height”, 3 “centroid_height” 

 

Table 48: LiDAR and ICESat attributes from the mid-slope footprint (ICE-id = 480) 

Attribute LiDAR ICESat Comment 
Vegetation foliage cover (%) 15.54 60.8 
Forest foliage cover (%) 8.95  
Forest crown cover (%) 8.22  

ICESat cover is too high.  The steeper slope and 
shorter vegetation could cause ‘ground’ portions 
of footprint pulse to be classed as foliage. 

Elevation range (m) 1 27.82 42.10 ICESat ‘veg height’ exceeds LiDAR by 14 m. 
Max vegetation height (m) 2 22.01 21.10 Fit height is very close to max tree height 
Predominant height (m) 3 5.52 13.25 Centroid height exceeds LiDAR by 8 m 
Mean slope(degrees) 5.94  
Absolute slope (degrees) 13.04  

While mean slope is relatively flat the absolute 
slope may be an issue for cover and mean height. 

Icesat attributes ~ 1 “veg_height”, 2 “fit_height”, 3 “centroid_height” 
 

Table 49: LiDAR and ICESat attributes from the ridge top footprint (ICE-id = 475) 

Attribute LiDAR ICESat Comment 
Vegetation foliage cover (%) 33.82 31.7 
Forest foliage cover (%) 28.36  
Forest crown cover (%) 51.21  

The ICESat value is close to the LiDAR foliage 
cover value.  The vegetation is sparser on the 
ridge top, compared to riparian strip. 

Elevation range (m) 1 28.95 55.30 ICESat ‘veg height’ is too high by 26 m. 
Max vegetation height (m) 2 24.87 13.60 Fit height is too low by 11 m 
Predominant height (m) 3 14.51 9.54 Centroid height is too low by 5 m 
Mean slope(degrees) 5.54  
Absolute slope (degrees) 8.74  

The mean slope is similar to footprint ID 480 but 
there is a slightly higher absolute slope. 

Icesat attributes ~ 1 “veg_height”, 2 “fit_height”, 3 “centroid_height” 
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4.6.4 Stand reconstruction results using tree components  

The inputs generated from the LiDAR modelled data for primary sampling unit 142 

were used to reconstruct the stand within the Defence Science and Technology Organisation 

(DSTO) simulation environment.  The success of the actual SAR simulation is outlined in Lucas 

et al., (2006c) (Appendix C).  The relative accuracy of the LiDAR stand modelling is described 

with reference to the field data using structural and biomass comparisons.  Assuming that the 

four field plots in the primary sampling unit were a representative sample of the primary 

sampling unit, comparison with plot-based measurements indicated a good level of agreement 

across the different structural attributes (Table 50).  Therefore, there is confidence in the 

identification and attribution of stems across the primary sampling unit, as they are within 15 % 

of mean field plot data estimates for stem density and within 12 % for stem attributes, and the 

range of values observed is very similar (Table 50). 

Table 50: Comparison of structural attributes between field data (4 plots) and LiDAR stand 
modelling for PSU 142  

Attribute Count Mean Standard deviation Range (min-max) 
Total branches in PSU 20 295    
Primary branches in PSU 3,616    
Branch length  2.9 m 1.9 m 0.01 − 14.8 m 
Branch start radius  0.02 m 0.008 m 0.0001 − 0.075 m 
Canopy voxels > 1 m height 21,709 28.0 %   
Mean field plot FBCa 4 29.9 % 6.83 21.8 – 38.5 % 
LiDAR HSCOI stems in PSU 1,872 250 stems ha-1   
Field live stems D130 ≥ 5 cm 277 277 stems ha-1 58 stems ha-1 212 - 348 stems ha-1 
LiDAR stem top height  9.6 m 3.8 m 0.20 − 20.2 m 
Field stem top height  8.8 m 1.6 m 2.5 − 18.0 m 
LiDAR stem D130  17.3 cm 6.7 cm 1.0 − 35.4 cm 
Field stem D130≥ 5 cm  15.5 cm 4.2 cm 5.0 − 38.8 cm 
a using field transects 

 

An example of the modelling uses a portion of primary sampling unit 142 to illustrate 

the primary and secondary branch distributions (Figure 103), and a 3D view showing tree stems, 

crowns, and voxels that contain LiDAR returns (Figure 104).  These representations are 

considered realistic, with the primary branches associated with single trees emanating in all 

directions with those of adjoining objects trending toward the outer edge of the crown.  The 

reconstruction was also evaluated by visualizing the simulated stand using software specifically 

developed for this by DSTO.  This allowed errors relating to branch locations, dimensions, and 

orientations to be identified.   
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Figure 103: Sample of mapped tree stems, crowns, and primary (thicker lines) and secondary 
(thinner lines) branch distributions in PSU 142 derived from the LiDAR data. Inset extent is 

marked as a dashed box. 

 
Figure 104: Perspective view of a portion of PSU 142 showing mapped tree stems, crowns, and 
voxels derived from the LiDAR analyses.  The view extent of Figure 103 is in the foreground. 
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Figure 105: (a) E. populnea-dominated forest at PSU_142. (b) Graphical output of part of the 

reconstructed canopy from the DSTO radar simulation (Lucas et al., 2006c). 

 

The final reconstruction of the forest sampled within primary sampling unit 142 (Figure 

105) was considered to be a valid representation of the distribution of trees and elements (i.e., 

leaves, primary, and secondary and terminal branches and trunks), both visually and 

quantitatively.  Component biomass was developed in primary sampling unit 142, and used to 

assess the relative accuracy of the LiDAR component modelling for calibration of the SAR 

simulation.  The data from the four field plots was used to validate the results.  From the four 

field plots, 200 live field stems were a direct match to a HSCOI stem, which subsequently were 

used for validation.  Two LiDAR biomass estimates were compared: a) from species-specific 

allometrics applied to HSCOI stems using D130 derived from height; and b) from species-

specific wood density multiplied by the wood or leaf volume from stems, branches, and canopy 

voxels.  A summary of the three biomass estimates (field, and the two LiDAR) is provided in 

Table 51.   
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The data were divided into three sets to provide an indication of the strengths and 

weaknesses of the component modelling:  (a) all assessed stems (n = 200) (Figure 106); (b) 

assessed stems minus outlier stems that had LiDAR modelling errors (n = 185) (Figure 107);  

and (c) assessed stems minus LiDAR modelling error stems, and LiDAR stems associated with 

field trees whose actual D130 differed greatly from that predicted using the height-to-D130 

function (n = 170) (Figure 108).  With outliers progressively removed from the comparison sets 

of (b) and (c), as expected the biomass correspondence between LiDAR and field biomass 

increased respectively (Table 52), though there were greater improvements from the LiDAR 

component modelling.  Comparison between the two LiDAR biomass estimation methods 

resulted in a close correspondence (Figure 109 and Table 52), though there was some bias in the 

slope of the best fit line for stems with biomass > 400 Mg ha-1, where increasing component 

biomass is observed.   

 
Figure 106: Injune correspondence between field data and LiDAR allometric and component 

estimated biomass – all assessed stems (n = 200) 
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Figure 107: Injune correspondence between field data and LiDAR allometric and component 

estimated biomass – LiDAR modelling outlier stems removed (n = 185) 

 
Figure 108: Injune correspondence between field data and LiDAR allometric and component 

estimated biomass – LiDAR modelling and highly different field outlier stems removed (n = 170) 
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Figure 109: Injune correspondence between LiDAR allometric and LiDAR component estimated 

biomass – all assessed stems (n = 200) 

 

 

Table 51: Summary of biomass estimates for PSU 142 plots from field, LiDAR stem allometric, and 
LiDAR component sources.  

Attribute Field plot     
 P142-02 P142-13 P142-18 P142-20 Total 

Field trees      
Count of matched and assessed stems 
per plot 

50 49 44 57 200 

Total plot biomass (Mg ha-1) 26.1 31.5 56.2 39.2 153.1 
Mean field tree biomass (Kg) 130.5 160.7 319.5 172.1 191.4 
Standard dev. tree biomass (Kg) 97.8 105.0 179.6 191.6 165.0 
Tree Biomass range (min-max) (Kg) 5.2 – 

475.5 
10.0–
363.4 

24.4–
882.7 

2.1–766.9 2.1- 
882.7 

LiDAR allometric biomass      
Total plot biomass (Mg ha-1) 25.4 36.8 52.0 42.8 156.9 
Mean field tree biomass (Kg) 126.9 187.6 295.3 187.6 196.1 
Standard deviation tree biomass (Kg) 75.9 73.1 101.0 144.7 119.3 
Tree biomass range (min-max) (Kg) 15.3–

308.3 
40.8–
316.0 

67.5–
461.1 

5.4–502.4 5.4–502.4 

LiDAR component biomass      
Total biomass (+ hollows) (Mg ha-1) 24.0 40.7 63.5 45.8 174.0 
Mean field tree biomass (Kg) 120.2 207.5 361.0 200.8 217.5 
Standard deviation tree biomass (Kg) 96.9 140.1 189.7 201.4 182.4 
Tree biomass range (min-max) (Kg) 14.3 – 

438.1 
13.3 – 
595.6 

28.4 – 
755.2 

3.6 – 
796.8 

3.6 – 
796.8 
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Table 52: Summary of biomass functions using field data and LiDAR stem and components 

Biomass comparison description n R2 RSEb Functiona P-value 
Field allometric vs LiDAR component sum 
– all matched stems 

200 0.55 111.0 Y = 0.6705x + 45.5079 0 

Field allometric vs LiDAR stem allometric 
– all matched stems 

200 0.52 114.4 Y = 0.9986x – 4.4777 0 

Field allometric vs LiDAR component sum 
– minus LiDAR model outliers 

185 0.65 99.9 Y = 0.7685x + 40.2437 0 

Field allometric vs LiDAR stem allometric 
– minus LiDAR model outliers 

185 0.59 109.2 Y = 1.0758x – 8.2568 0 

Field allometric vs LiDAR component sum 
– minus LiDAR + field outliers 

170 0.81 68.3 Y = 0.9346x + 7.2585 0 

Field allometric vs LiDAR stem allometric 
– minus LiDAR + field outliers 

170 0.66 92.9 Y = 1.1482x – 28.3217 0 

LiDAR stem allometric vs LiDAR 
component sum – all matched stems 

200 0.82 50.3 Y = 0.5933x + 67.0691 0 

a y = field allometric stem, x = LiDAR component or LiDAR allometric stem. b  values in Mg ha-1 
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4.7  Summary 
This chapter described the results of the research design and methodology, and 

demonstrated that LiDAR can improve the assessment of forest structure in Australia.  The 

application of a multi-scale hierarchical research design strategy has enabled a wide range of 

forest structure assessments to be made.  For example, good correlations have been observed 

between height and cover metrics at the plot scale, for both study sites.  The Injune site had the 

best comparisons between field and LiDAR, with greater variability found in NE Victoria due to 

differences in field measurement and more complex forests.  Errors in the comparisons have 

been quantified, and will be discussed further in the next Chapter.  A translation matrix of 

continuous transfer functions for cover related structural metrics has highlighted the range of 

results that are generated from different datasets.  LiDAR collected within integrated sampling 

schemes has allowed the landscape variability to be quantified at fine scales, and the 

representativeness of the field plot sample to be tested.  This has shown that, in general, the 

plots are representative, but that there is some bias towards woodland cover at the Injune site.   

The multi-scale assessments of structure have shown that different estimates can occur 

between plot sized areas and the wider stands in heterogeneous environments, such as 

floodplain riparian zones.  The multi-scale analyses have also identified that one hectare is an 

efficient minimum area for reporting forest, for some purposes.  In general there is higher 

variability in the structural attribute comparison between plot and stand at sizes less than 1 ha,  

with little variation at sizes larger than 1 ha.  In some cases with heterogeneous forest 

environments, a different national level cover class can be reported for the same location, 

depending on whether a plot or stand-scale assessment is made.  More sites are required 

however, for a statistically robust conclusion to be made across all ecozones. 

The generation of basic geographic entities (e.g., trees) though the Height Scaled Crown 

Openness Index modelling was feasible and practical.  The model outputs were validated to 

acceptable levels of accuracy for a range of forest structural attributes using field data.  For 

example, good results for stem density (up to 700 stems ha-1), crown cover, individual stem 

height, and plot predominant stem height are observed.  More variability is observed in 
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correlations with individual crown area and stem diameter.  Correlation variability was 

attributed partly to natural variability in field data derived empirical transfer functions. Also 

factored into the variability were limitations in field measurements of some structural attributes, 

and issues with the LiDAR modelling not accurately representing some complex forest types.   

The wide range of case studies presented has shown the utility of LiDAR as an effective 

calibration and validation tool.  Field cover measurement methods and theory were validated 

using the LiDAR crown delineation and stem data.  Correlations between Landsat TM derived 

foliage projective cover and LiDAR crown cover, stem density, and basal area show that foliage 

projective cover could be used for national level structural assessment and modelling, after 

further calibration in other forest types.  A multi-scale foliage projective cover to crown cover 

translation function was developed, which allows for effective translation between continuous 

values from a range of datasets.   

The ICESat calibration case study has shown that structural attributes extracted from 

ICESat can be compared to those derived from airborne LiDAR.  However, the ICESat attribute 

extraction appears to be dependant on the density of the forest and terrain slope within the 

footprint, thus making the extraction inconsistent between structural metrics.  More ICESat sites 

are required for conclusive statements.  The stand reconstruction using LiDAR modelled tree 

components has produced reasonable results, with both the biomass comparisons and actual 

SAR simulations derived from the modelled data showing promise.  Variability in the 

component modelling was identified as a combination of the modelling assumptions and 

limitations, mainly due to LiDAR vertical foliage sampling issues, natural variability in the field 

data empirical transfer functions relating to stem diameter from height, and measurements of 

tree branches. 

The next chapter discusses the implications of the results presented in this chapter.  This 

will enable the primary thesis research question to be addressed, and thus make conclusions on 

the usefulness of LiDAR for improving forest structure assessment in Australia.  
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CHAPTER 5. DISCUSSION 

5.1 Introduction 

This chapter discusses the theoretical and practical implications of using LiDAR to 

improve the assessment of forest structure in Australia.  A review of the literature in Chapter 2 

revealed a number of research gaps or limitations in current or proposed national monitoring of 

forest structure.  Specifically, better understanding of how different datasets report forest across 

a range of structural metrics is required, and the potential impacts of scale on forest data 

reporting need clarification (Table 53).  In this chapter Section 5.2 discusses how forest 

structure assessment was improved using airborne LiDAR.  Section 5.3 outlines the practical 

implications of the research, its limitations, and recommendations for future research effort.   

Table 53: Major knowledge limitations for LiDAR utilisation in multi-scale sampling schemes 

Knowledge limitation Extent to which it has been addressed prior to thesis 
Plot scale assessments 
Relationships between structural metrics 
when using different datasets across a range 
of Australian forest types. 

Most studies limited to field data and single sensor at a 
location. 

Tree scale modelling 
Algorithms for crown delineation and stem 
mapping, including sub-canopy, in 
Australian forests 

Few, if any, LiDAR crown delineation routines 
published for Australian forests.  Most Australian 
crown delineation methods use fine spatial resolution 
hyperspectral or aerial photo data.  Few, if any, 
published stem mapping routines. 

The use of basic geographical entities within 
a hierarchial multi-scale framework to 
investigate effects of scale on forest reporting 
from different datasets.  

Early studies investigated scale effects for medium 
scale imagery (AVHRR, Landsat MSS, TM, SPOT).  
Studies have used circles in simulations, rather than 
explicitly mapped realistic tree crowns or crown 
components scaled to different sensor sizes or shapes. 

Multi scale assessments and calibration 
A continouous transfer function between 
FPC, FBC and CC for report forest from a 
range of data sources (e.g., Landsat). 
 

Field data translation relies on subjective interpretation 
of crown openness, which is less suited to automated 
remtoe sensing.  Only very broad categories published 
by NFI, and not a continuous function.  Queensland 
SLATS investigating translation functions, but have 
only published FPC to basal area function. 

Development and use of a minimum area to 
define forest 

AGO utilises 0.2 ha, which is slightly less than 4 
Landsat pixels.  FAO uses 0.5 ha, whilst the Marrakech 
rules for the Kyoto Protocol use a range from 0.05-1.0 
ha.  NFI is currently investigating this issue. 

Calibration of ICESat data for height and 
cover sampling across Australia. 

Unpublished pilot studies only. 

SAR simulation modelling utilisng LiDAR 
derived 3D tree components across stands. 

Not previously done in Australia, limited development 
internationally. 
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5.2 Improving the Assessment of Forest Structure using LiDAR 

 

This overview section discusses the improvements that can be undertaken to forest 

structure assessment when using LiDAR, and is divided into 5 sections.  An overview of the 

application of the multi-scale strategy is given in Section 5.2.1.  The extent to which LiDAR 

provided enhancement for forest height assessment is given in Section 5.2.2, and for forest 

cover in Section 5.2.3.  The results of the tree scale modelling using the Height Scaled Crown 

Openness Index are discussed in Section 5.2.4.  The outcomes of the multi-scale LiDAR 

calibration and application to medium scale data are given Section 5.2.5. 

 

5.2.1 Improving forest structure measurement using LiDAR 

A key component in determining the utility of LiDAR is the development of a multi-

scale hierarchical research design strategy that used LiDAR to link fine scale field 

measurements with medium scale remotely sensed data.  Chapter 4 demonstrates successful 

development of such a strategy, with a number of important results generated.  The strategy 

allowed for fine scale height measurements over larger areas than could be undertaken with 

field data or API, and the representativeness of the field plot sample to be tested.  This has 

demonstrated that, in general, the plots were representative but that there is some bias towards 

woodland cover at the Injune site. 

In Chapter 3, a number of assumptions were postulated about the advantages and 

disadvantages of using a three-level hierarchical modelling strategy.  When examining these 

assumptions with respect to the research findings, it was found that the assumptions were all 

generally valid.  The plot scale (hierarchical Level +1) computational process was indeed rapid.  

For example, the whole 1,100 ha of LiDAR at Injune was processed for height, cover and 

apparent vertical profiles within 1 hour.  The calibration with field data illustrated that the 

LiDAR plot estimates of height and cover metrics can be measured to the same accuracy as 

current methods, for both study sites.  The magnitude and bias of differences when compared to 

field data were similar to that published in the literature.  The research has improved forest 
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structure measurement by achieving a greater understanding of how a range different forest 

cover data sources interrelate at the plot scale.  This has facilitated the development of new 

transfer functions that allow prediction of cover metrics from a wide variety of data and for the 

forest types found within the study sites.  Plot boundary location issues were found to affect 

maximum height estimates through the inclusion of LiDAR from tree canopies originating from 

stems outside the plot. Importantly, this did not impact on predominant height or cover 

estimates in an obvious way.   

Additionally, there were no apparent impacts of different footprints sizes (7.5 cm in 

Queensland, 22 cm in NE Victoria) on the forest attributes extracted from the LiDAR.  Given a 

similar post-spacing, it may have been assumed that a smaller footprint may give cover and/or 

height results that are slightly less than those from slightly larger footprint sensors, as the 

returns may travel through more canopy gaps than reflect off foliage material.  However the 

comparison with field data showed that the Queensland study site (with a smaller footprint) 

generally had a greater correlation, as opposed to the sites from NE Victoria.  Based on the 

findings of this study, it is likely that other factors, such as forest type/structure and field 

measurement error, give rise to greater variability in comparisons with field data, than footprint 

size.     

The assumption that it might be hard to explain inter-plot variability when using just 

mean forest structural values was validated for a number of plots that recorded similar height 

and cover values, but had quite different structures when examined at the tree scale.  However, 

one assumed disadvantage in this respect did not eventuate.  When plot scale assessments of the 

apparent vertical profiles were used in conjunction with the mean plot values, then 

differentiation of plots with similar mean structural values was possible.  In addition, the 

investigations of apparent vertical profiles in forest types that have not been examined before 

provides a new contribution to forest structure assessment in Australia.  The vertical profiles 

provided unique insight into different forest growth stage and disturbance assessments, and 

appeared to reflect accurately (though subjectively) the prevailing conditions on the plot.  More 

sites are required however, before quantitative and objective growth stage assessments can be 
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routinely made.  Modeling of field data to produce equivalent apparent vertical profiles resulted 

in good correlation across most plots assessed, with differences mainly attributed to potential 

error in the field measurement of tree heights.  These results reflect investigations made in other 

forest types presented in the literature, and advance the research and application of LiDAR for 

height assessment across the landscape, for example when investigating potential scale impacts 

on forest reporting, or calibrating ICESat data for continental application. 

At the tree scale (hierarchical Level 0), generation of basic geographic entities though 

the Height Scaled Crown Openness Index modelling was successful.  Most of the assumed 

advantages were found to be true, including the ability to examine within plot variability, and 

up-scaling tree entities for calibration of other data at a range of scales.  However, the 

assumption on reasonably quick computational processing was found not to be the case.  It did 

take longer than expected to process some of the more complex forest stands, especially when 

there was a high number of smaller stems identified.  This was attributed largely to the extra 

processing required to determine if the additional stems were either from the understorey or 

were large tree branch clusters.  In some cases, complex stands could take a few days to map 

and attribute (though, as with most computations, this was influenced by hardware memory 

configurations).  The disadvantages with tree scale modelling were all identified, especially in 

relation to field GPS locations and individual tree measurements.  This issue is likely to be 

common to most calibration studies where field data are collected for a variety of purposes, 

rather than exclusively for LiDAR calibration at a tree scale.    

The multi-scale strategy has facilitated the use of a range of forest structural metrics, 

including delineated crowns and modelled stems, to examine relationships with structural 

measures from other medium scale data.  For example, LiDAR derived crown cover and stem 

density was compared to Landsat TM derived foliage projective cover for each pixel, resulting 

in a comparison sample of over one thousand pixels from 12 primary sampling units at Injune.  

Robust relationships were observed, the range of variability in the landscape was quantified, and 

locations of apparent error were identified, such as where the medium scale data may be 

recording non-forest (shrub/grass) foliage as well as forest.  The major advantage of this is that 
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it provides a statistical rigour not available when just using field measured plots, combined with 

the fact that it is very difficult to align field data with Landsat pixels.  The use of basic 

geographic entities means that almost any relevant scale can be tested (up to the limit of the 

LiDAR data).  For example a future research option could be the examination of the influence 

of foliage outside the pixel on the foliage cover estimates.   

New contributions to national forest assessment using LiDAR were made with the 

investigation of a function to translate between foliage projective cover to crown cover, and 

structural comparisons with ICESat data.  The foliage projective cover-to-crown cover function 

provides a valuable first step in being able to objectively translate between continuous cover 

variable datasets, thus increasing the sensitivity for monitoring subtle forest change at 

continental scales.  These functions also assist in the calibration of other data to determine 

suitability for application in national forest monitoring, for example with ICESat data.  The 

ICESat case study example found that reliable estimates of forest attributes could be extracted, 

but that this is not consistent across different environments (e.g., due to combinations of slope, 

cover and height).  Therefore further research is required to better define the thresholds where 

ICESat does not produce reliable results.  Whilst the results presented in this thesis would tend 

to indicate that ICESat may be unsuited to continental application for national reporting, there is 

ongoing national and international effort into improving the calibration across a greater range of 

forested environments, which may yet provide a significant data source for national forest 

monitoring. 

At the component scale (hierarchical Level -1), much greater detail could be modelled, 

which successfully fed into SAR simulation models.  With the stand scale reconstruction using 

tree component entities, the SAR simulations derived from the LiDAR outputs closely 

resembled that of the actual AIRSAR data (Lucas et al., 2006c).  Given the complexity of the 

forests, the results generated gave confidence that the approach to forest reconstruction from the 

LiDAR data was a realistic representation both visually and quantitatively.  Variability in the 

component modelling was identified as a combination of the modelling assumptions and 

limitations, mainly due to LiDAR vertical foliage sampling issues and natural variability in the 
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field data empirical transfer functions relating field measurements of stem diameter to height, as 

well as measurements of tree branches.  The assumptions on the disadvantages of processing at 

this scale were borne out however, with some stands taking up to a week to process, largely 

because of the large number of individual components to be mapped.  Effective validation at the 

scale of modelling was also found to be an issue requiring further research (or more detailed 

field work).   

Another key finding with respect to the utilisation of LiDAR in a multi-scale strategy is 

that measurement scale can affect the structural values reported for some heterogeneous forests 

(e.g., woodland and open forests on floodplains).  In these forests, the MAUP is evident, 

resulting in different height and cover estimates when different assessment areas are utilised.  

This has implications for national level forest reporting if remotely sensed data collected at 

different scales are utilised (e.g., LiDAR, API, ICESat and MODIS).  Additionally, it was noted 

that an assessment scale of one hectare is an appropriate size for sampling the predominant 

height and foliage-branch cover of the wider stand.  Plot sizes smaller than this tend to have 

greater variation when compared to the wider stand assessment, though the magnitude of the 

impact is dependent on the structural heterogeneity of the forest.  These results confirm the 

findings published in the current literature, and advance the utility of LiDAR in Australian 

forests and woodlands for forest structure estimation. 

The previous section has provided an overview of the successful multi-scale LiDAR 

modelling strategy.  The next sections discuss issues with the individual structural elements that 

were generated from the LiDAR strategy.  These include height, cover, apparent vertical 

profiles, stand and landscape multi-scale sampling, and tree scale modelling with respect to 

stem density and crown delineation.  The outcomes of the case studies are discussed for Landsat 

TM structural comparisons, cover transfer functions, ICESat calibration and stand 

reconstruction using tree component scale modelling for SAR simulation.  
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5.2.2 Improving forest height assessment using LiDAR 

To determine the utility of LiDAR to improve forest height measurements, comparisons 

were made between LiDAR and other data, to identify how well LiDAR asssessments of forest 

height matched estimates from field data.  This allowed assessment of the relative accuracy of 

LiDAR for measuring the metric of interest.  Then the potential impact of scale was assessed, to 

facilitate the derivation of a minimum area for reporting, the representativeness of field plots 

with respect tot the wider stand, and to provide guidence on what medium scale sensors with 

different assesment scales may report as forest.   

 

Maximum canopy height 

At Injune, the mean difference between LiDAR and field-based measurements for the 

field plots was 0.12 m, with LiDAR recording a slightly lower value.  The mean difference for 

the 100 isolated trees used in Tickle et al., (2006) was 0.5 m, again with the LiDAR recording 

the lower height.  These results confirm previous results (e.g., Lim et al., 2003b; Gaveau and 

Hill, 2003), and other LiDAR measurements in Australian forests, where differences were in the 

order of 1.6 – 3 m (Goodwin et al., 2006), with LiDAR recording lower values.  However the 

apparent bias for the forests at Injune is much less than that reported for other forests, and this 

could be related to the Injune forests being generally shorter with more open canopies, and 

dominated by species with a broad upper crown form (Jacobs, 1955), thus being easier to 

measure from both the ground and with LiDAR.   

For NE Victoria, there is good agreement between the field and LiDAR plot data, with a 

mean difference of 3 m but with field data recording the lower mean value, which contrasts with 

published findings.  In these Floodplain and Montane locations, the forests are denser and taller 

(reaching heights of 70 m and above), with an average LiDAR maximum height of 36 m, and 

the mean difference with field data of 7 m.  As all field plots had LiDAR that was able to 

penetrate the vegetation to the ground, this allowed reasonably accurate DEM generation, and 

therefore there is confidence in the LiDAR height above ground estimates.   
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For the plots with a field data top height data lower by more than two metres compared 

to the LiDAR (10/22 or 45 %), it is likely that the field observations were not always able to 

identify the highest point of the tree.  Additionally, it was noted that different observers gave 

estimates that varied by several meters (Zhou et al., 1998).  Errors in field estimates compared 

to LiDAR are noted by Lim et al., (2003a) and Todd et al., (2003).   

Another source of error was when the tallest LiDAR return recorded for the plot was 

not actually from any of the trees measured in the field data, but from taller trees outside the 

plot with canopies that spread across the boundary.  This effect was noticed in plots from both 

study sites.  When using field plots of an arbitrary shape, the boundary is a practical 

requirement for efficient field measurement (McDonald et al., 1998), although has primarily 

been designed to measure tree stems (e.g., in a forestry context) (West, 2004).  However, there 

is a conceptual difference with airborne LiDAR measurements, as it primarily interacts with 

overstorey crown foliage.  Therefore when making automated ‘plot’ comparisons with LiDAR 

within a GIS, especially in heterogeneous forests, there may be a need to reflect the relative 

importance of tree crowns, and modify the plot boundary to an irregular form.  This would 

provide a better match to the crown extent of the field measured trees, and exclude the crown 

area from unmeasured trees whose stems are external to the plot.  To be effective, this would 

require crown delineation and stem mapping (Hyyppä et al., 2001; Bunting and Lucas, 2006; 

Lee and Lucas, 2007).   

 

Predominant canopy height 

For Injune, the comparison between LiDAR derived plot canopy predominant height 

(using 10 m cells) and field measurements (with a sampling rate of 50 trees ha-1) resulted in a 

mean underestimate of approximately two metres by the LiDAR.  When using a field-sampling 

rate of 100 trees ha-1, there was almost no bias, but greater variability in the correlation.  In NE 

Victoria the best comparison was between the 5 tallest trees (~50 trees ha-1) and the LiDAR 

predominant height (a mean difference of 1.4 m), with LiDAR recording slightly greater 

heights.  This may be related to the observation that the mean crown diameter across all NE 
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Victorian plots for the 5 tallest trees per plot was 10 m.  When compared by ecozone, field plot 

and LiDAR data agree to within 1.5 m for Foothills, Montane and Subalpine zones, but there 

was a 5 m difference for Floodplains.  It should be noted that only four field plots were assessed 

in the Floodplain ecozone, so additional plots would be required before conclusive statements 

could be made.    

The magnitude of difference in predominant heights from both study sites confirms 

existing literature (e.g., Magnussen, and Boudewyn, 1998; Suarez et al., 2005), and results 

observed in similar environments (e.g., Lovell et al., 2003; Goodwin et al., 2006).  However, 

the NE Victorian plots were contrary to the literature in that there was a tendency towards 

higher LiDAR values rather than lower, when compared to field data.  A possible explanation 

for this is the conceptual difference between canopy and stem predominant height.  When 

comparing the actual number of height observations per plot, field data has n = 5 for, and 

LiDAR up to n = 9 (i.e. 10 m cells within a 30 x 30 m plot).  Therefore, any shorter trees will 

have a larger influence on the field estimate, reducing the plot height value.  Conversely, with 

LiDAR estimates the inclusion of cells from tree crown shoulders, which all tend to record 

similar heights due to mature eucalypt flat-topped crown form (Boland et al., 1992), will 

increase the mean plot height.  As with maximum height, it may be that the LiDAR is giving a 

more precise estimate of the overall canopy height (Lim et al., 2003a), however further 

simulation modelling, such as that undertaken by Lovell, et al., (2005), and Goodwin et al., 

(2007), would be required to better understand LiDAR-tree crown interactions in eucalypt 

dominated forests.  The need for an improved distinction between predominant canopy and 

predominant stem height for national level reporting is a logical conclusion of these results, with 

the metric to report dependent on the final use of the data (e.g., stem volume versus LAI 

modelling) (Means et al., 1999). 

For Injune, landscape height comparisons between National Forest Inventory data and 

the different datasets broadly agree, but with some apparent underestimation of non-forest by 

the LiDAR estimate.  The distribution graphs comparing height metrics from field plots against 

the 4500 secondary sampling units also support a representative sample.  Where 
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underestimation occurs, it is likely that the LiDAR is identifying trees taller than the forest 

threshold of 2 m, yet the cover in the secondary sampling unit is below the forest density 

threshold, so the unit is classed as non-forest.  The total non-forest estimate from LiDAR is very 

close (within 1%) to the National Forest Inventory estimate.  For NE Victoria, the height 

comparisons of the field plot sample against landscape-wide National Forest Inventory data 

broadly agree.  The plot LiDAR records slightly less tall forest, and a greater proportion of 

medium forest, than the National Forest Inventory data.   

 

Apparent Vertical Profiles 

Apparent vertical profiles were assessed to determine their utility for describing 

different forest types and growth stage configurations.  For Injune plots, LiDAR apparent 

vertical profiles were compared with those simulated using field data in a 1 m3 reference matrix.  

With the initial test plot (p124-19), more 2D cells recorded LiDAR returns than field data 

simulated canopy elements, possibly indicating that there were additional canopy elements not 

recorded in the field measurements (i.e. small shrub elements, or irregularly shaped crowns).  

However, more 3D voxels were tagged with field canopy elements than with LiDAR returns, 

indicating that LiDAR was occluded from the lower portions of the simulated crowns and trunk 

voxels, confirming the findings in the literature (e.g., Harding et al., 2001; Lovell et al., 2003; 

Todd et al., 2003; Chasmer et al., 2006b).  Alternatively, this could indicate that the crown 

simulations were too dense, and that the openness factor applied was too low.  Investigation of 

individual trees in hemi-photos would be required to confirm this hypothesis (e.g., Brown et al., 

2002). 

Some bias was evident in the LiDAR apparent vertical profiles when compared to 

simulated field plot data for all 31 Injune plots (Table 59 - Appendix A), a result also observed 

in simulations developed by Holmgren et al., (2003), and Goodwin et al., (2007).  However, in 

contrast to the findings in the literature, the bias was less, which suggests that the LiDAR 

profiles are providing an adequate representation of overstorey and understorey distributions in 

the more open canopy woodland environments of Queensland.  The Injune profiles also 
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compare well against existing vertical foliage profiles for this environment (e.g.,, Walker et al., 

1986).  Where differences occur, these often result from a mismatch between field and LiDAR 

estimates of tree top height, such as (as noted previously) when taller canopies from trees 

outside the plot overhang the plot area.  Additionally, error in the comparison could result from 

the simulation of field data, with foliage cover not being representative for plots containing 

short regrowth with a high stem density.  With these structural conditions, there is a likely 

overestimation of the number of canopy cubes in the understorey.  Improving the simulation, for 

example, by reducing the matrix spatial resolution to 0.5 m3 and improving the spatial accuracy 

of field tree locations and crown dimensions (including small stems), are future research 

options.  Additionally, the use of terrestrial laser scanning combined with more sophisticated 

analyses of profiles and simulations would assist better representing the lower canopy layers 

(e.g., Lovell, et al., 2003; Chasmer et al., 2006b; Goodwin et al., 2007). 

Investigation of LiDAR vertical profiles from different forest types and growth stages in 

the NE Victorian field plots provide illustrative evidence of the match with both plot photo 

assessments and field data.  The different growth stage interpretations show similar form and 

complexity in vertical structure as that found in the literature (e.g., Walker et al., 1986; Lefsky  

et al., 1999; Parker and Russ, 2004, Kao et al., 2005).   

However, the interpretation accuracy is still largely subjective and (as described 

previously) further research is required to develop simple and efficient quantitative assessments 

of growth stage from small footprint LiDAR vertical profiles.  For example, this could include 

delineating potential strata breaks using mathematical descriptors such as a Fisher-Jenks 

“natural breaks” or “optimal classification” type algorithm (Fisher, 1958; Jenks, 1977), as 

described in Slocum (1999), or Weibull functions (Lovell et al., 2003) if the general form is 

appropriate (i.e. not multi-modal).  Coops et al., (2007) fitted multiple Weibull functions to 

clearly defined overstorey and understorey strata from LiDAR profiles, and were able to 

quantify the relative amounts of foliage per strata, and crown area dominance per strata.   There 

may be some uncertainly in these applications when no obvious strata breaks occur, especially 

for automated processing.  Structural descriptors derived from strata analyses could be then be 
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linked to stem density and the ecological maturity classes (as in Eyre et al., 2000) derived from 

field data, or used to assist with habitat complexity measurements and modelling, especially in 

relation to recovery following fire (e.g., Coops and Catling, 2000).   

Issues for growth stage assessment using LiDAR profiles could occur with recent 

disturbance.  Based on the results, this was demonstrated to modify the profile signature, with 

the amount of difference dependent on the magnitude of the disturbance.  Documenting more 

LiDAR profiles in forests at a range of growth stages and disturbance regimes is required to 

advance the use of LiDAR profiles for these assessments. For example, with disturbance 

assessments in NE Victoria, it appears that a fire severity index could be developed when using 

the apparent vertical profiles, as part of forest structure measures to support wildfire 

management (e.g., Riano et al., 2003; Morsdorf et al., 2004; Andersen et al., 2005).   

From the plots burnt in the 2003 fires, plot 558 appears to have been more severely 

burnt, based on the lack of understorey and scorched trunks and canopy, with this reflected in 

the LiDAR profile by a lack of returns below 10 m.  Plot 562 retains a relatively even 

distribution of vegetation returns at all height levels in the LiDAR profile, and the plot photos 

show that some understorey remains, with a few scorched trees and canopy.  The difficulty with 

disturbance assessment using structural descriptors is that plots that have a burnt understorey 

have a similar profile signature to an unburnt plot with a short grassy (e.g., grazed) understorey 

(e.g., compare p119 in Appendix B).  In an automated process at the landscape scale, additional 

optically derived image information on burn intensity or condition would be needed to fully 

exploit LiDAR profiles for disturbance assessment.  It may be possible to use the near-infrared 

intensity of the LiDAR return (e.g., Moffiet et al., 2005) to show a difference between non-

burnt green leaves, and scorched or dead brown leaves.  Since the intensity values were 

uncalibrated for the LiDAR data available (Lovell et al., 2003), this was not investigated 

further.   
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Maximum stand height at a range of assessment scales 

At Injune, the field plots consistently recorded lower LiDAR maximum heights when 

compared to the wider 7.5 ha stand (primary sampling unit), in the order of 2.5 m on average 

(difference range –7.6 to 0 m, δ 2.14 m).  Only one field plot (out of the 29 plots in 12 primary 

sampling units assessed) recorded the same maximum height as the wider primary sampling 

unit.  There was no clear trend of forest types recording greater or lesser differences, with the 

primary sampling units with the tallest forest recording both the highest and lowest difference 

between estimates.  With between 1 – 4 plots per primary sampling unit, the plot sample is 3 to 

13% of the primary sampling unit, which should be statistically sufficient (Scott, 1998).  It may 

be that the primary sampling units of the Injune forest environment are quite heterogeneous for 

maximum height, thus implying that the secondary sampling unit sampling is not enough to 

capture the variability found in the wider stand area.  It should be noted that the field plots were 

designed to be representative of the landscape, rather than the specific primary sampling unit in 

which they were found (Tickle, et al., 2006).  However, it is logical to assume that, generally, a 

plot should be similar in structure to its immediate surroundings (after Tobler, 1970; Jupp et al., 

1989).  With 75% of primary sampling units having a difference of 3 m or less, this could be 

considered the typical bias that would be present in this forest type, when using the type of 

sampling strategy described in Chapter 3. 

In NE Victoria, both field plot and transect assessment areas consistently 

underestimated the maximum height with respect to the wider stand (~16 ha).  Field plots 

recorded lower heights by around 6.5 m on average in shorter forests (< 30 m), and 15.3 m on 

average in taller forests (an overall mean difference for all plots of 13 m).  Sampling a stand 

using a one-hectare assessment area reduces the apparent mean bias to 4.4 m for shorter forests, 

and 9.6 m for taller forests (overall mean difference of 8.2 m).   

The mean difference between the field tree measurements along the NE Victorian 

transects and the whole transect area (90 m x 90 m) was 8.7 m (field lower than wider area).  

The mean difference was 10.3 m and 4.5 m for taller and shorter respectively.  It is likely that 

longer transects, or transects used in a different configuration (e.g., parallel transects like those 
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used at Injune), may be required to achieve better results.  These results indicate that there are 

often taller trees in the wider area and that it is difficult to consistently report maximum height 

for the wider stand when using field plots or transects as described in Chapter 3.     

 

Predominant Height at a range of assessment scales 

At Injune across the 12 primary sampling units assessed, there is little difference in 

predominant height between the centre secondary sampling unit (0.25 ha) and the primary 

sampling unit area (7.5 ha), with the wider stand recording the higher mean value (~ 1 meter).  

When using a one hectare sized assessment area within the primary sampling unit, the 

comparison with the full primary sampling unit height has a 0.2 m difference (the full stand was 

taller).  This indicates a relatively homogeneous structure when using predominant stand height.  

As would be expected, there is greater variability where clearing or heavy grazing has occurred 

within a primary sampling unit, and forest regeneration is present.  

 In NE Victoria, stand predominant height can be estimated to acceptable levels of 

accuracy (i.e. within 10%) using plot and transect areas, though, as expected, more structurally 

heterogeneous environments (e.g., floodplain riparian areas) are more difficult to predict.  

Across all sites, the mean predominant height difference between 0.1 ha (field plot) and 20 ha 

(stand) scales is -1.45 m (range -10.16 to 4.56 m, δ = 3.70 m).  When using a one-hectare 

assessment scale, the mean difference from the wider stand is –0.4 m (range –6.3 to 7.4 m, δ = 

2.8 m).  This indicates that field and 1 ha plot sized areas tend to record slightly taller forest 

than the wider stand, which is in contrast to the maximum height results.  These results confirm 

the literature for similar forest types and scaling methodology (Jupp et al., 1989; Lovell et al., 

2003), though tabular results were not provided in Lovell et al., (2003) so the magnitude of the 

confirmation cannot be given.  With the random location test, the average difference in the 

predominant height between 30 random field plots and 30 random transect plots, with the wider 

20 ha stand is minimal across all plots assessed (i.e. less than 0.5 m, with a range up to 2.0 m).  

This result therefore complies with basic statistical theory, in that with an adequate number of 
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samples, the actual size of the sampling unit does not impact on the overall stand estimate 

(Thompson, 2002). 

 

National Forest Inventory Reporting 

Both Floodplain and Foothill sites within the NE Victorian study area remain within the 

National Forest Inventory medium height class at all assessment scales, when using 

predominant height.  However, in the taller Montane and Subalpine forests some locations 

would change between the medium and tall height classes if different assessment areas were 

used.  Here two plots went from tall to medium forest with an increasing assessment scale, and 

one plot had the opposite trend.  A further two plots were within 40 cm of the 30 m height 

threshold at either the plot or stand scales.  Injune predominant height results show minimal 

difference at a range of scales, and that this would not impact on the National Forest Inventory 

height class that would be reported for the primary sampling unit location.  The overall impact 

of these results would depend on the sampling density of plots within ecozones (Scott, 1998), 

and assumes that results are comparable between different data sources or measurement 

methods.   

 

5.2.3 Improving forest cover assessment using LiDAR 

In this section the relative accuracy of utlising LiDAR for measuring forest cover is 

discussed with respect to comparisons with field and other remotely sensed data.  As with the 

height assessments, the potential impact of assessment scale was investigated.  This is intended 

to help guide decisions on working towards a useful reporting area (or minimum mapping unit 

equivalent), and whether field plot areas are representative of the wider stand in which they 

occur.  This section considered four main components: how the different field measured datasets 

compare against each other; how the LiDAR estimates compare to field measurements; how 

LiDAR compared to CASI and API polygon estimates; and how LiDAR and field compared to 

Landsat TM derived data.   
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Field data comparisons 

For the Injune, the three field datasets available for comparison with LiDAR and other 

remotely sensed data were field transects (foliage projective cover and foliage-branch cover), 

hemispherical photos (foliage-branch cover), and tree map data (crown cover).  There was some 

variation between transect and hemispherical photo estimates of foliage-branch cover, resulting 

from two potential sources of error.  First, the four-year time difference between data, though 

temporal change was found to be minimal (apart from two plots) when transect measurement 

from both years were compared.  Second, the two methods were sampling a different area and 

volume within the plot, with the variation observed indicating that either the transect 

measurements did not sample the plot area as well as hemispherical photographs (especially in 

more heterogeneous forests), and/or the hemispherical photos were observing additional canopy 

elements both inside and potentially outside the plot.  Overall though, the line of best fit for the 

relationship followed the 1:1 line, which could indicate that the two methods give comparable 

foliage-branch cover results on average.  A future research option is to undertake more detailed 

processing of the hemispherical photos, to better match the sampled area between transects and 

photos, which may improve the correlation between these data.  

The hemispherical photos were considered to be a robust estimate of foliage-branch 

cover within the plot, with the cover calibration results corresponding with those found in the 

literature (Lim et al., 2003a; Lovell et al., 2003; Riano et al., 2004).  Calibration assessment of 

the subjective assessment for a foliage discrimination threshold followed established methods 

(e.g.,, Frazer et al., 2001; Cescatti, 2007).  The assessment of the effective view area with 

respect to the plot, which, when using a radius of 50 m, was significantly greater than the 15 - 

25 m radius utilised in Hanssen and Solberg, (2007), and it was noted by Riano et al., (2004), 

that an effective radius was equal to the tree height.  The different forest types (eucalypt vs 

conifer), may have influenced the calibration, with eucalypt forests being much more open, with 

larger gaps between trees, resulting in more foliage being viewable at greater distances and 

hence the use of larger assessment areas by this study.   
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It should be noted that the photo processing methods used in this research were not as 

sophisticated as those used in dedicated hemispherical photographic studies, which tend to 

primarily focus on Leaf Area Index or similar foliar measures.  The primary focus for using 

photography in this research was to investigate if simple and rapid digital hemispherical 

photography collection could be utilised to provide foliage-branch cover estimates that are 

similar to those generated from traditional field transect and LiDAR data.  Whilst this was 

successfully achieved with respect to the aims of the research, further processing of the 

hemispherical photography would be useful to account for: leaf clumping (Walter et al., 2003), 

slope in the assessment of cover in heterogeneous forests (Walter and Torquebiau, 2000), and 

for tree stems, larger branches, and different gap fractions (Macfarlane et al., 2007).  These 

additional analyses may improve the correlations with other data.  The photography also 

provides a permanent record that can be subsequently analysed using different techniques 

(Coops et al., 2004), for example measuring individual crown area (e.g., Brown et al., 2000) 

and then comparing to LiDAR derived crown dimension estimates. 

When predicting field crown cover from field foliage-branch cover, the transect 

measurements have a good relationship, with a mean bias (as expected) towards crown cover of 

7.4 %.  The relationship between field crown cover and hemispherical photos was more 

variable, and the mean difference was 8.4 %.  With both comparisons, conceptually it should 

not be possible to have a foliage-branch cover value greater than crown cover, if crown cover 

using opaque crowns is assumed (McDonald et al, 1998).  However foliage-branch cover > 

crown cover was observed for a number of plots from both transects and hemispherical photos, 

and was most likely from additional foliage elements recorded from trees (i.e. irregular shaped 

crowns poorly represented with two measurements) or shrubs not mapped during the plot 

survey.   

 

LiDAR cover comparisons with field and CASI 

For LiDAR foliage-branch cover and crown cover, comparisons with field data at both 

study sites generally resulted in very good relationships, with r2 values ranging from 0.78 to 
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0.82 for equivalent cover metric comparisons.  The results are in the same range as those found 

in the literature (Lim et al., 2003a; Jensen et al., 2006), and magnitude for forest types similar to 

the NE Victorian locations (e.g., Lovell et al., 2003; Goodwin et al., 2006), with residual 

standard errors all less than 10%.  LiDAR and CASI crown cover results agreed with each 

other, reflecting the similar scales of assessment.  LiDAR crown cover had the stronger 

correlation with field crown cover, compared to CASI crown cover.   

Variation in the crown cover comparison between LiDAR and CASI was attributed to 

the assumptions and methodology used for the respective crown delineations (e.g., Bunting and 

Lucas, 2006; Lee and Lucas, 2007), and error in the spatial registration of the two datasets, both 

to each other and to field tree-map data.  Additionally, it was considered that the lower accuracy 

of field stem locations, especially for very small stems, combined with field-mapped crowns 

being measured only in the north-south and east-west directions, would influence the correlation 

results.  Whilst the field crown measurements facilitated a rapid survey and estimate of crown 

area based on an ellipse (McDonald et al., 1998), the irregular shape of many mature eucalypts 

meant that field estimates were less representative when compared to the LiDAR crown 

delineation.  To resolve crown estimation issues, more detailed measurements would be 

required, although the cost effectiveness of improving the (already good) accuracy would need 

to be balanced against the cost of more time spent in the field (Means et al., 2000).  Because of 

the higher LiDAR sampling rate per crown compared to actual field measurements, the LiDAR 

results were considered to give the better (i.e. more precise) estimate of crown cover (Lim et al., 

2003a).  

The results observed in the crown separation (zig-zag transect) trial confirm those in the 

literature (e.g., Walker et al., 1988; Penridge and Walker, 1988; McDonald et al., 1998).  The 

success observed with p142-13 is a consequence of the structural similarity to the forests used to 

initially develop the method.  The presence of the understorey and consistent foliage presence 

all the way up the vertical profile for p81-16 (see Figure 77), combined with a higher stem 

density, would appear to make the cover estimates more variable from the difference sources.  

Therefore there is a need to address the disparity between LiDAR crown cover (with a 2 m 
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threshold) compared to the zig-zag transect which favours dominant overstorey trees.  This 

could be resolved by a second zig-zag transect measurement for the understorey, which is added 

to the first to generate total plot crown cover, as indicated in McDonald et al., (1998).  

However, the limitation with the current field and LiDAR data is that there is no clear indication 

of which trees are in the overstorey or understory, and therefore which trees should be chosen 

for the respective transects.  The LiDAR vertical profile gives an indication of a potential 

stratum break (e.g., possibly at around 12 m), which could be used to define a threshold for tree 

allocation to strata.   

Whilst the NE Victorian plots had a poor correlation between LiDAR and field tree-

map crown cover, overall the relationship is significantly linear.  The poor result is likely to be 

from the field survey recording stems with D130 > 10 cm, whereas the other datasets would be 

observing foliage from all stems and understorey greater than one metre height.  Other factors 

such as recent disturbance (e.g., fire) and site conditions (e.g., steep slopes) could make field 

estimation of tall crowns more difficult (Lim et al., 2003a), and so contribute to the observed 

differences.  For example, the outlier plot p562 (see Figure 67) occurs on a steep slope and was 

burnt in the 2003 fires, resulting in field estimated crown dimensions that do not match the 

extent of the LiDAR returns from the crowns.  

 

LiDAR to API comparisons 

Given the arbitrary nature of API cover class thresholds, and the difficulty of assigning 

a class near a threshold, the results generated in the comparison of LiDAR crown cover 

estimates at Injune are encouraging.  It is initially concluded that fine scale API and LiDAR 

crown cover estimates can be cross-validated to some extent (i.e. within the limits of 

interpretation scale and classification methods), for the woodland and open forest environments 

found at the Injune study site.  However, a lack of samples across all polygon classes combined 

with the issue of comparing continuous data (LiDAR) with categorical data (API), limits the 

ability to make more definitive statements.   



Chapter 5: Discussion 
   

246 

Based on the Injune research findings, there is no major link between the percentage 

sample of API polygon by LiDAR and the correlation between the two cover estimates.  This is 

not surprising, given an interpreted polygon is, in theory, supposed to be a relative 

homogeneous area of similar cover, at the scale of assessment (Fensham and Fairfax, 2002).  

Therefore, any reasonably sized sample of the polygon (by LiDAR for example) should produce 

a similar cover value (Thompson, 2002).  Comparison results could also be affected by the 

LiDAR sample not being randomly distributed within the API polygon, and with potential for 

spatial autocorrelation in the 25 m sized assessment units, as they are arranged in a contiguous 

7.5 ha block (Tickle et al., 2006).  API polygons with 10-20% LiDAR coverage had the greatest 

number of observations, which could have influenced the improvement in the results observed. 

The increased variability observed in the NE Victorian LiDAR and API comparison 

reflects the relative data sources, interpretative methods and assumptions, and therefore 

limitations with both sets of data.  The SFRI crown cover estimate was for dominant eucalypt 

overstorey, and does not consider any understorey, whereas the LiDAR considers all canopy 

foliage above 2 m height.  These conceptual differences are reflected in the results; the LiDAR 

estimates were consistently greater than the API.  Applying a height threshold to the LiDAR for 

the dominant overstorey would be one way to better compare the two datasets.  However, if 

there are no clear indications of the height of the upper stratum, then this could be difficult to 

implement or automate consistently.  Using individual crowns and spatially determining (in 3D) 

the dominant overstorey crowns would address this issue.  To achieve this accurately using the 

HSOCI strategy, the current crown delineation methodology would need further calibration for 

it to be more accurate across the range of forest structures found in NE Victoria. 

Future research options are generally focused on integrating or fusing LiDAR and high 

spatial resolution data such as aerial photography, such that the strengths of each data are 

utilised: LiDAR for structure, spectral for floristics (e.g., McCombs et al., 2003).  Analyses are 

now also progressing from interpreted polygons of relatively homogeneous floristics and 

structure, which were the practical operational limit of API (Stone, 1998; Fensham and Fairfax, 

2002), to tree level estimates of the ancillary variable of interest.  However, it is still important 
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to be able to translate between past and current API derived data and newly acquired LiDAR, as 

the historical archive of aerial photography provides a valuable (and often unique) record from 

which to monitor change (e.g., St-Onge et al., 2004).  For example, major discrepancies in 

estimates of temporal biomass change from independent ground plots versus API were found by 

Fensham et al., (2007).  The authors concluded that the discrepancies were a result of scale 

effects on the API calibration with ground reference data, combined with uncertainties in the 

landscape representativeness of the two independent estimates.  Therefore, utilising explicit 

crown delineations in API calibration that can be up-scaled as required, as highlighted in this 

thesis, can provide a powerful tool to quantify error between different measurements.  

 

LiDAR to Landsat TM comparisons 

At Injune, LiDAR foliage-branch cover has a very good relationship with Landsat TM 

foliage projective cover across the assessed field plots.  This relationship is even more robust 

than that found between field foliage projective cover (or foliage-branch cover) and Landsat TM 

foliage projective cover, with the hemi-photo foliage-branch cover relationship slightly better 

than the field transect relationships.  SLATS field transect methodology has subsequently been 

updated (as described in the methods chapter) and now differs from the original three transect 

layout (Lucas et al., 2006b).  The updated transect method improved the correlation with 

Landsat TM foliage projective cover for six test transects measured during the 2004 survey 

(mean difference of +5.4 % with parallel transects, and -2.1 % difference with star transects).  

Conceptually, it is noteworthy that both LiDAR and hemispherical photo foliage-branch cover 

are have a better correlation to Landsat TM foliage projective cover, compared with the field 

transect data foliage projective cover.  This may indicate that, at a plot scale, the more 

comprehensive sampling by LiDAR and hemispherical photography, as compared to the three 

parallel transects, more closely matches the imaging of cover within a Landsat TM pixel.  Also, 

based on the findings described above and depending upon the tree canopy structure, field 

branch observations should perhaps be considered as foliage observations when used for remote 

sensing calibration.  Based on the results, LiDAR could easily supplement field transects for 
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calibrating Landsat TM foliage projective cover, and even replace field survey in more 

inaccessible locations where cost and safety issues make field survey difficult (Tickle et al., 

2006).   

 

Landscape sampling 

At Injune, the field plot sampling strategy was designed to be broadly representative of 

the landscape (Tickle et al., 2006).  However, even though the shapes of the LiDAR and 

SLATS cover distribution graphs (for plot and landscape scales) were broadly similar, there 

were obvious differences in the mean values.  For example, the mean Landsat TM foliage 

projective cover value is 47 %, whereas the mean LiDAR foliage-branch cover is 29 % (field 

plots) and 33 % (4500 secondary sampling units) respectively.  The difference in mean values 

indicates some bias towards woodland from LiDAR in the field plots, but less so in the 4500 

LiDAR sample, where a mode value of 40% is shared with Landsat TM cover.  A number of 

factors may interact to produce the results observed.  First, there is the difference between cover 

metrics, as demonstrated in the Landsat calibration case study, with SLATS foliage projective 

cover consistently reporting values approximately 10 % higher than LiDAR foliage-branch 

cover values.  Second, the SLATS cover distribution is very broad, with similar frequency 

values across the cover range, and which includes more values from denser / closed forest.  In 

contrast, the LiDAR landscape sample has a definite peak to the distribution, with fewer 

secondary sampling units having denser or closed forest.  Additionally, there is the influence of 

the non-forest secondary sampling units on the LiDAR distribution, which would shift the mean 

value towards the woodland density. 

When compared to National Forest Inventory cover data, there is a large discrepancy 

between the woodland and open forest class comparisons.  It appears that there was a 

definitional change to the supplied source data, as the LiDAR assessment indicates that the 

forest is dominated by an open forest density, rather than woodland as demonstrated by the 

current National Forest Inventory data.  Another issue with the National Forest Inventory 

application of forest class definitions is with closed forest.  At Injune, the 4500 secondary 
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sampling units identified 16 % of the area as closed forest, but the data available from the 

National Forest Inventory at the time did not record any of this density, due to the class being 

reserved for rainforest only, and any forest that has a density greater than 80 % is included in 

the open forest class.  As of the 2003 State of the Forests report, a closed eucalypt class has 

been populated with data by the NFI, where this information was available (National Forest 

Inventory, 2003). 

For NE Victoria the field plot data were broadly representative (within 10 %) for non-

forest and woodland when compared to the National Forest Inventory data, however the field 

plots appear to under-estimate open forest and over-estimate closed forest.  The 20 km grid node 

intersections are broadly representative of the study landscape at a forest-non forest level, with 

the field plot locations giving results within 10% cover of the landscape wide estimates.  With 

only 17 plots, there are issues with the statistical robustness of the sample with respect to the 

wider landscape (Scott, 1998).  LiDAR cover assessment may differ from the National Forest 

Inventory data (derived mainly from API) derived due to differences in mapping scale, 

interpretive methods, and measurement assumptions, definitions or thresholds.  For example, 

the discrepancy observed is partly due to the National Forest Inventory data not recognising 

closed forest for non-rainforest types (as mentioned previously).  Also, examining more LiDAR 

data within the continuous transects across the landscape would go some way to address 

potential issues with the sampling.  Completing the Landsat TM foliage projective cover 

calibration process to reduce the overestimate of “forest” from high reflectance irrigated 

pastures would improve the comparisons between foliage projective cover and current National 

Forest Inventory data at the landscape scale. 

 

Multi-scale sampling and reporting of cover  

In NE Victoria there is a good comparison of foliage-branch cover between 

hemispherical photography and LiDAR at both field plot and transect scales, and the results 

confirm the calibration presented in Chapter 3, with the best correlation from a single photo at 

field plot centre against the transect area LiDAR.  This result means that when using 
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hemispherical photography, cover estimates are most appropriate for an area of approximately 

one hectare, depending on the density of the forest.  For plots smaller than this, the photo 

estimate of cover may be more variable when compared to other data, which is constrained to 

the field plot area, especially in heterogeneous forest stands. 

For the multi-scale trial at NE Victorian plot 220, an internal Landsat TM pixel 

coverage of 50 % AGO woody cover produced the strongest correlation with LiDAR crown 

cover.  The crown cover per pixel analysis contrasts to the 20 % crown cover threshold to 

determine forest as claimed by the AGO (Furby, 2002).  Later versions of the AGO woody and 

density layers are supposed to be more sensitive to lower cover in woodland environments, so 

this discrepancy may have been partially resolved (e.g., Caccetta and Furby, 2004; Chia et al., 

2006).  However the updated data was not available for comparison with LiDAR derived crown 

cover estimates.   

For the multi-scale cover assessment using all field plot locations across both study 

sites, and aggregated by ecozone, there are a number of notable results.  First, Floodplain stands 

have the greatest variability as assessment area increases, while Montane and Subalpine stands 

have little variability, with Foothill woodlands showing moderate variability, depending on 

landscape context (e.g., riparian or fence-line strips have high variability, contiguous woodland 

has low variability).  These results reflect the natural patch-gap stochastic complexity, or lack 

thereof, for the different environments.  The results have also demonstrated that reporting cover 

at a one-hectare scale is the most effective when representing the wider stand.  Effectiveness is 

based on the observation that there is little additional predictive ability gained with larger 

assessment sizes, yet areas smaller than one hectare can be highly variable, compared to the 

stand estimate.  These results confirm the conclusion reached though simulation modelling for 

patchy forests and woodlands by Jupp et al., (1989), where it was found that plot sizes up to 100 

m in diameter may be required for consistent cover estimation between pixels.   

Across both study sites, for most plot locations there would be no impact on the 

National Forest Inventory cover class reported when using different assessment scales.  

However for 5 / 22 sites in NE Victoria, and 2 / 12 sites at Injune there is a difference in 
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National Forest Inventory cover class between plot scale and stand scale cover estimates.  The 

impact of this on final reporting of cover within a sampling scheme would depend on the total 

number of plots that were affected in this way, as a proportion of the total plots within the broad 

reporting ecozone (Williams, 2001).  If it is assumed that the proportion of plots affected by 

scale at the two study sites is representative for the majority of Australia’s forests, then it could 

be expected that approximately 20% of plots within a continental sampling scheme will 

potentially give different cover estimates (in terms of a National Forest Inventory cover class) at 

different assessment scales (e.g., from different sensors), for the same forest stand.   

 

5.2.4 Assessment of the Height Scaled Crown Openness Index (HSCOI)  

An ideal calibration dataset would not be limited to any one pixel size or assessment 

area (e.g., field plot), thus making it effectively sensor independent for calibration purposes.  To 

achieve this, basic geographic entities (such as trees, or tree components) are required.  

Therefore a LiDAR derived basic geographic entity calibration dataset was developed, and the 

application of the LiDAR derived basic entity data to provide enhanced calibration of structural 

attributes was investigated.  This section discusses the accuracy assessment of the tree and 

component scale modelling outputs by comparing tree stem density, location, height, D130 and 

crown area with field plot data.    

 

HSCOI derived stem density 

The HSCOI is a new multi-spatial resolution method developed to generate tree scale 

basic geographic entities.  The information derived from the modelling can then be rescaled as 

required to enhance the retrieval, mapping, and reporting of key forest structural attributes, and 

calibration of other data.  The HSCOI modelling strategy utilises small footprint discrete return 

LiDAR data, in semi-automated algorithms that integrate height and cover parameters to 

generate accurate tree assessments, and sought to compliment existing CHM based methods 

(e.g., Chasmer et al., 2004; Popescu, and Zhao, 2007).  At Injune, the HSCOI facilitated the 
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location of tree stems associated with both the overstorey and sub-canopy strata, and 

differentiation of individual crowns and/or crown clusters.   

At a plot scale the stem density results had a mean standard error of approximately 100 

stems ha-1, and a mean stem density prediction accuracy of approximately 81 % (for stems D130 

≥ 5 cm).  The accuracies achieved (see also Lee and Lucas, 2007) are of the same magnitude as 

found in comparable LiDAR stem mapping studies (Persson et al., 2002; Maltomo et al., 2004).  

Stem density retrieval accuracy was lower in stands with higher stem density and/or those with 

a complex mixture of stems in overstorey and understorey strata; conclusions also made in 

Rowell et al., (2006).  The lower accuracy was attributed to the inability of the one metre spatial 

resolution model to resolve all stems in higher density clusters, and/or when overtopped by 

larger individuals.  Further improvements are achievable with refinements of the method to 

better model LiDAR penetration (e.g., Goodwin et al., 2007).  Height variation in suppressed 

individuals could be improved through additional field sampling (Florence, 1996).  Higher 

density LiDAR data could also be trialled (Brandtberg et al.,2003), especially for more complex 

mixtures of overstorey and sub-canopy stems.   

When the Injune calibrated HSCOI model was applied to the NE Victorian plots, the 

overall stem density correlation was relatively weak.  Two distinct clusters of plots were 

identified in the correlation: those that had a good match (32 % of plots) between field and 

HSCOI stem count (i.e. difference < 10 stems per plot), and those with a poorer match (i.e. 

mean difference approximately 25 stems per plot, or ~ 275 stems ha-1).  The poor correlation 

was primarily a result of the different forest structures found in the NE Victorian environments, 

namely taller forests, multiple strata, and larger crowns (Lee and Lucas, 2007).  The stem 

density prediction bias for plots with a poor match was reasonably consistent across the 

observed stem density range, suggesting that greater accuracy is achievable with further region-

specific (e.g., soils, slope, elevation) forest structure calibration.     

 



Chapter 5: Discussion 
   

253 

HSCOI derived stem height and diameter 

Prediction of tree top height and diameter using the HSCOI modelling was found to 

improve the results compared to more traditional CHM focused methods.  This was largely due 

to the use of all the LiDAR returns, especially those found below the top of the canopy, which 

are ignored in most CHM methods.  The accuracies achieved for individual tree height and 

diameter generated from automated analyses are comparable to those found in the literature 

(Naesset and Okland, 2002; Morsdorf et al., 2004), even though most studies usually only 

report correlation results for dominant overstorey stems, and not usually with sub-canopy stems.  

There are still a number of calibration issues to resolve, for example smaller diameter sub-

canopy stems were more difficult to correctly identify the top height, especially when occurring 

beneath larger crowns.  Difficulties with the estimation of smaller trees are common in similar 

studies (e.g., Clark et al., 2004; Suárez et al., 2005).  Based on the validation sample, and for 

the forest types found at Injune, the accuracies achieved with the individual tree location and 

attribution results show that the research objective for the generation and attribution of tree scale 

basic entities was achieved.   

 

HSCOI crown delineation 

A HSCOI surface can be used to map and attribute the forested area, and delineation of 

individual crowns or clusters within the mapped area.  Two primary tree genus forms (i.e. either 

decurrent or excurrent; Lucas et al., 2004) are identified for each crown segment using 

structural measures derived from the apparent vertical profiles and HSCOI layers; methods 

similar to that used by Ishii et al., (2004) and Chen et al., (2006) as part of their respective 

crown delineation modelling.  An overall accuracy of 52 % for the genus probability assessment 

may not be much better than chance, but it was comparable with another investigative study 

undertaken the study site Moffiet et al., (2005), whom also found similar limitations on 

species/genus accuracy.  It should be noted that 70 % of dominant and single crown delineations 

were correctly classified, which is comparable to results reported in the literature (e.g., Tormä, 

2000; Holmgren and Persson, 2004), however Holmgren and Persson (2004) had LiDAR at 
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twice the sampling rate and in less complex forests, which would assist in a better 

representation of the crown structure, and therefore likely genus.  The height-to-crown area 

functions gave similar results for tree heights less than 15 m, with a 9 m2 difference observed 

for crown area at 15 m  height (i.e. Callitris = 15.2 m2, Eucalypt = 24.1 m2), or equivalent to a 

crown diameter of 3.4 m.  Therefore, as 88 % of those incorrectly classed had a height less than 

15 m, in almost all cases either the correct genus was used, or the expected crown area 

estimated for the observed height was similar to what would have been calculated had the 

correct genus probability been assigned.   

The individual crown delineations for dominant overstorey crowns proved to be 

generally accurate when compared to field data, with an r2 in the order 0.63 – 71 across the 

different crown types identified.  The mean difference in estimated crown area between LiDAR 

dominant (including single and isolated crowns) crowns and field estimates was less than 4 m2, 

for the validation sample.  The crown area results are comparable to those found in the literature 

for similar LiDAR based studies (e.g.,, Leckie et al., 2003; Popescu et al., 2003).  Additionally, 

the individual crowns were spatially comparable to those generated from high-spatial resolution 

hyperspectral data collected in the same primary sampling units, with both sharing similar 

accuracies when compared to field data (Bunting and Lucas, 2006).   

Variation in the correlation is a combination of factors.  One factor is the error in the 

estimation of crown diameter from field data, resulting in less accurate area estimates for more 

irregularly shaped crowns or those found within clusters.  Also, there was some uncertainly in 

the GPS locations of the field data stems, potentially causing a mismatch between the LiDAR 

crown/stem and most likely field stem.  The mismatch could then influence the correlation 

especially when using semi-automated processes, as noted in Popescu, and Zhao, (2007).  

Conversely, where crowns overlap horizontally, but are in separate strata, the LiDAR crown 

delineation for the sub-dominant tree will underestimate diameter and area compared to field 

estimates.  Under estimation occurs when the taller or dominant crown area ‘occupies’ a portion 

of the sub-canopy crown area, when represented in a 2D GIS vector model (Popescu et al., 

2003).  When this occurs with many trees, the cluster crown type is generated, which is 
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generally made up of small crown sizes and/or interlocking crowns.  With clusters, the HSCOI 

modelling is not able to resolve individual crowns at the finer scale.  However, within the 

HSCOI crown clusters it was observed that the HSCOI stem mapping does correctly identify (to 

within a few stems) the main stems in most cases (within the validation set).  Where a one-to-

one comparison between a LiDAR crown cluster and field stem may have produced large 

differences, this was substantially reduced in many cases if the total crown area of all field 

stems within the LiDAR segment were compared, as also noted in Morsdorf et al., (2004).   

Unlike some other crown delineation methods (generally optical image based), the 

LiDAR HSCOI strategy can identify crowns across a wide range of crown cover densities, and 

gaps between crowns were not misclassified as potential crowns (e.g.,, Culvenor, 2002).  The 

ability to use height thresholds to automatically separate tree crown segments from non-crown 

areas is a significant advantage of LiDAR over other optical data (Hyyppä et al., 2001; Leckie 

et al., 2003).  However, the best results were obtained when both high spatial resolution optical 

(especially hyperspectral) and LiDAR data were integrated (see Lucas et al., 2008 – Appendix 

C), and the relative strengths of each sensor are utilised (e.g., LiDAR for structure, spectral for 

floristics).  The strengths of integration have also been demonstrated in a number of studies 

(e.g.,, Coops et al., 2004; Hill and Thomson, 2005).  One future research option to improve the 

crown mapping accuracy of sub-canopy trees would be to establish a multi-scale hierarchy of 

delineated crowns, where the same crown sub-segments could be used to generate different final 

tree crowns, depending on whether the tree occurs in the upper or lower stratum.  Separate 

overstorey and understorey crown maps could then be generated.  The use of different strata 

heights (if present) retrieved from a LiDAR apparent vertical profile from the tree or tree cluster 

would also facilitate this option.  Further discussion on the HSCOI modelling and crown cover 

results is given in Lee and Lucas (2007) (Appendix C). 
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5.2.5 Calibration case study examples using LiDAR  

This section discusses how generating basic geographic entities enhanced the multi-

scale calibration of other data.  The main type of calibration undertaken was to rescaled LiDAR 

derived basic enttites to match the sensor spatial resolution for; a) Landsat TM cover, and 

including the devleopment of a foliage to crown cover translation funciton, b) ICESat height 

and cover data, and c) stand reconstruction for input into SAR simulations.   

 

Landsat TM calibration using LiDAR structural output 

LiDAR foliage-branch cover is a close match to SLATS foliage projective cover, 

though there is some scatter in the relationship, arising from the heterogeneous landscape and 

different sensing parameters and scales.  There is an approximate 10% bias in the relationship 

between foliage projective cover and LiDAR foliage-branch cover when using a 2 m “forest” 

threshold.  The bias is much less evident when using the 0.5 m threshold for LiDAR foliage-

branch cover, especially at the denser end of the cover range.  This would tend to confirm the 

AGO proposition that SLATS foliage projective cover measures all tree/shrub canopy foliage, 

rather than “forest” foliage as would be the case if a 2 m height threshold were to be strictly 

applied (AGO, 2003).  It should be noted that SLATS do not claim to measure exclusively 

“forest” at 2 m and above, and have different working definitions of forest to those used by the 

National Forest Inventory (QDNRM, 2003). Also, SLATS are currently investigating using 

SAR to improve discrimination of regrowth in response to these issues (Lucas et al., 2006b).  

As the AGO also predominantly rely on Landsat TM imagery, it could be said that the apparent 

bias noted in this study could also present in the AGO estimates of “woody”.  This is due to 

height information not being explicitly accounted for from Landsat TM data alone (Donoghue 

and Watt, 2006), even with temporal analyses combined with growth modelling (Richards and 

Brack, 2004).  There is a less robust relationship (i.e. more variability across the observed cover 

range) between Landsat TM derived foliage projective cover cover and LiDAR crown cover.  

Therefore, when using crown cover as the reporting metric (e.g.,, Furby 2002), there is more 
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potential error within any one pixel than if the foliage projective cover (or even foliage-branch 

cover) metric is used.   

Stem density can be estimated from cover information with reasonable accuracy, with 

best results achieved when using LiDAR foliage-branch cover with a 0.5 m height threshold.  

This is due to the 5 cm + D130 threshold used for the stem density assessment, as small trees and 

shrubs would also be accounted for.  Based on the modelled HSCOI stems, basal area per pixel 

was calculated and compared to Landsat TM foliage projective cover, with the resulting 

correlation (Figure 5 – Appendix A) providing additional independent confirmation of the 

results published by the SLATS program (QDNRM, 2005; Lucas et al., 2006b).  

 

Foliage-branch cover-to-crown cover translation function 

The results of the investigation into the development of a generalised translation 

function suggest that, as a quick rule-of-thumb, crown cover = 1.5 x foliage-branch cover (or 

1.3 x foliage projective cover). Improvements to the functions would include using a sigmoid 

shape to better account for potential saturation of crown cover near 100% whilst foliage or 

foliage-branch cover still increases (P. Scarth, pers. comm.).  However, it is noted that the 

apparent saturation of crown cover at higher foliage-branch cover does not appear in the Injune 

data when using 25 m sized assessment areas.  In this case, it appears that almost 100% crown 

cover results in less than 70% foliage-branch cover.  This may reflect the quite open canopy 

foliage habit and form of the semi-arid forests found at Injune.  The difference in scaling factors 

is small between foliage-branch cover and foliage projective cover, indicating that either: the 

forests at Injune (primarily) have sparse canopies, such that foliage or foliage-branch cover 

estimates are generally similar; and/or that Landsat TM foliage projective cover estimates are in 

fact quite similar to LiDAR foliage-branch cover estimates.  This could imply that, when 

compared with Landsat TM SLATS derived foliage cover, there is little difference between the 

foliage and foliage-branch cover metrics.  The field data results in the matrix of cover 

correlations table across the different field estimates supports this hypothesis.  Further 

development of the foliage projective cover to crown cover translation function, especially for 
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forests that are different from those found at Injune (e.g., rainforest) is recommended, to 

broaden the applicability of the function.  

When examining the crown cover to foliage-branch cover relationship, it was noted that 

there were a number of pixels with a logical consistency issue where foliage or foliage-branch 

cover was greater than crown cover.  Examination of these pixel areas showed that the 

inconsistency was caused by two conditions.  Either the pixel area had some portion with 

LiDAR returns missing due to irregularities in the helicopter flight path, or the return density 

was much less that what was found in other pixels.  In the outlier pixels, the return density was 

up to 1/3rd of the overall mean density on average, where the mean standard density was equal 

to 1 return per 0.54 m2, whereas the low-density pixels had a mean of 1 return per 1.25 m2.  

Across the Injune field plots, the mean return density was 1 return per 0.57 m2, with a range of 1 

return per 0.30 m2 to 0.99 m2, and for NE Victoria it was 1 return per 0.59 m2, with a range of 1 

return per 0.35 m2 to 0.95 m2 (see also Table 65 and Table 66 – Appendix A).  The plot return 

density for forest canopy foliage (2 m + height) was 1 return per 1.86 m2 at Injune, and 1 return 

per 1.37 m2 in NE Victoria.  When plot return density was compared to error in height or 

canopy cover estimates between LiDAR and field data at both study sites, there was no clear 

trend for a lower return density producing more variable results.  Greater variability with lower 

return density certainly occurred in some plots (as with the Landsat TM pixel sizes 

assessments), but variability in the comparison also occurred in high return density plots.  These 

results support most of the findings of Thomas et al., (2006) and Goodwin et al., (2006).     

 

ICESat calibration for continental monitoring 

Whilst initial comparisons between ICESat and LiDAR structural metrics were variable, 

ICESat did appear to extract reasonable estimates when compared to the LiDAR, with an 

apparent threshold of improved accuracy when foliage-branch cover was higher than 30%.  The 

differences observed in the case study were comparable (in terms of RSE for height) with those 

found in other pilot studies (e.g., Harding and Carabajal, 2005; Lefsky et al., 2005a; Sun et al., 

2008), although more comparison sites are required to generate proper correlations (see Lee et 
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al., 2006).  The case study also highlighted the utility of small footprint discrete airborne 

LiDAR, because the point data could be clipped to any size required (within the swath width).  

This allowed elliptical shapes of various sizes to be extracted and compared explicitly with the 

modelled waveform footprint: no other calibration data can do this as precisely.  Once the 

ellipses area generated, crown delineations can be clipped to the modelled footprints, and so 

within footprint analyses of height, foliage and crown cover estimates can be easily made.  This 

methodology is an advance on the current literature for small scale calibration case studies. 

Further research is required to address the range of issues identified in the case study 

example presented, which is needed before reliable continental application can be undertaken.  

One option is to use a modelled ICESat footprint area that is half the size used in the case study.  

The intensity of the waveform is greatest at the centre of the footprint, and potentially quite low 

at the edges (as illustrated in Harding and Carabajal, 2005).  Therefore it would be expected that 

the sensitivity of the waveform vegetation response would be greatest in the centre portion of 

the footprint (Lefsky et al., 2005a).  By halving the major axis value, a smaller footprint size 

could be simulated in the airborne LiDAR, and attributes extracted and compared.  This may 

result in improved correlation for height and cover in some cases (e.g., areas with sparse 

vegetation and on steeper slopes, Harding and Carabajal, 2005).  Second, further investigation 

and refinement of foliage projective cover and three height metrics currently extracted from the 

waveform.  There is a need to better understand how terrain and vegetation structure interact 

with the waveform response, and what is the most appropriate value to extract (which may not 

be the metrics currently used).  Also, the impact of smoke, high cloud, haze, and fog/mist on the 

ICESat response needs to be considered, especially in riparian areas, where these conditions 

may occur more frequently.  Hazy conditions may result in greater scattering of the laser pulse, 

so resulting in less sensitivity to the vegetation, and incorrect assessment of height and cover.   

 

Stand reconstruction modelling for SAR simulation 

As described in Lucas et al., (2006c) (Appendix C), a recognized limitation of previous 

studies aimed at SAR backscatter modelling using 3D coherent simulations was the reliance on 
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field data for parameterization.  However, the reliance on field plots has resulted in a less 

complete representation across the stand of the spatial variability in the distribution of tree 

components (stems, branches, leaves etc.) of varying sizes and orientations in either 2D or 3D.  

Furthermore, such data have often proved inadequate for providing sufficient validation for 

model outputs.  By calibrating the fine spatial resolution data  (LiDAR, CASI, LSP) using field 

data relating to their size (volume), geometry and dielectric properties (including those from 

destructive harvesting measurements), a more realistic representation of the forest stand and the 

ground surface was constructed.  This in turn has allows a better explanation of the variation 

observed within simulated and actual SAR data.  Such research has and continues to be 

undertaken independently by the co-authors (Lucas and Williams).     

The LiDAR tree component biomass results indicate that the modelled distributions and 

dimensions of components were reasonable, given the implicit assumptions.  Examination of the 

stems with poor correlation (n = 30) identified a number of issues, summarised in Table 54.  

First, the height allocation to subcanopy stems was incorrect, largely because the influence of 

the overstorey canopy resulted in a large disparity between D130 and therefore allometric 

biomass estimates.  In a few cases, the dimensions of the modelled branches (in terms of either 

length or radius) were too great, which generated a disproportionately large estimate of branch 

biomass.  Some stems located in the field were of a size and form that was outside of the mean 

predictive functions used for deriving D130 and D30 as described in the Methods chapter.  In 

these cases, the stems had a much larger D30 for the equivalent D130 based on the prediction 

model, or stems were shorter than average for the predicted D130.   

The reconstruction of the 3D structure of the forest through integration of field, LiDAR 

and CASI/LSP data is itself a new approach to forest characterization.  By seeking to 

parameterize the coherent SAR model, new techniques were developed for locating tree trunks 

based on the HSCOI, retrieving height and stem diameters of sub-canopy trees, and delineating 

tree crowns in complex forest environments (Lee and Lucas, 2007).  

The stem and crown products have provided for improved mapping of total and 

component (leaf, branch and trunk) biomass through integration of LiDAR, CASI and LSP, and 
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defining leaf and terminal branch distributions based on LiDAR voxels (Lucas et al., 2008).  

Anomalously bright regions in the initial SAR simulations also provided useful feedback 

allowing modifications to the LiDAR modelling of stems and branches to be targeted, especially 

where forest structures found outside the field plot locations were encountered (Lucas et al., 

2006c).   

Table 54: Description of different types of LiDAR and field error with stand reconstruction using 
component modelling, for SAR simulation. 

Broad type Error / Issue description No. of 
trees 

LiDAR tree 
height error  

The height allocation to these sub-canopy stems needs further refinement, 
with an average height overestimate of 5.7m observed (as compared to field 

data).  This then causes the D130 and biomass to be overestimated. 

11 

LiDAR 
branch 

modelling 
error  

The error appears to be a result of branches being too large for these sub-
canopy stems.  This is caused by the trunk being at one end of cluster, and 

some branches extending out to the other edge of the cluster, with an average 
length of 8 m. The branches also join near base of trunk, so a branch can be 

around 52 kg on average.  A potential solution would be to restrict number of 
branches to a stem, and have them join higher up the stem.  

4 

Field tree 
volume 

estimates 

Stems are within a cluster.  It appears that the modelled trunk volume is larger 
than it might actually be in the field.  The D130 and height values between 

field stem and HSCOI stem are close. 

6 

Field D130 to 
height 

relationship  

Four of the stems were dominant within the cluster, and they appeared to be 
shorter trees with a relatively large D130.  The height and D130 observed in 

field data were well outside the general predictive function.  Height 
comparisons between field and LiDAR were within 1 m.  The mean 

difference between field D130 and the empirically derived D130 were 12.9cm 
(field had larger D130). One stem was the opposite – the field measured D130 

was smaller than the predicted value from the height empirical function. 

5 

Field D30 to 
D130 

relationship  

Three of the 4 stems in this category were found to have larger D30 values 
than what the prediction was from the empirical function with D130.  The 

mean difference was 10.8cm, with the field estimate being higher. One stem 
was the opposite – the field measured D30 was smaller than the predicted 

value from the D130 empirical function. 

4 

 

This process has already led to improvements in the SAR simulations and highlights the 

synergies that are possible when integrating data from a range of sources and across scales.  As 

an extensive LiDAR dataset is available for a range of forests near Injune, future research 

options are available to further develop the automated algorithms, SAR simulations, and 

validation of outputs.   
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5.3 Practical Implications, Limitations and Recommendations  

 

5.3.1 Practical implications 

There are a number of practical implications with the successful outcomes of the multi-

scale hierarchical strategy.  LiDAR was demonstrated to be a very useful dataset for improving 

the assessment of forest structure, by providing a unique, spatially accurate, extensive 

(compared to field plots) and precise tool for estimating a range of forest structural attributes at 

multiple scales.   

Ideally LiDAR, utilised within a multi-scale hierarchical framework, would form part of 

any continental forest sampling or monitoring strategy as a strategic rather than operational tool.  

Strategic application would limit the impact of high initial cost of data collection, especially if 

collection could be part of a ‘standing order’ with data providers who would gather data over 

key sites during transit for normal operations.  The strategic application could be optimised by 

developing a nationally consistent set (or library) of LiDAR “signatures” for key attributes 

across a wide range of environments, and perhaps seamless integration with aerial photography 

(ideally hyperspectral) collected at the same time/platform as the LiDAR.  A model based 

sampling strategy would be an efficient way to determining the key sites across the country.  

The key strategic monitoring sites would then be flown with LiDAR to establish baselines for 

the regression models.  For example, the NFI in its CFMF design report (Wood, et al., 2006) 

indicate that sites could be re-flown with LiDAR every 15 or 20 years.  It is assumed that this 

allows sufficient time for significant growth (how ever this is defined ecologically) to occur, 

and which would allow the identification, quantitative description, and monitoring of subtle 

change (both horizontal and vertical) at fine scales over areas larger than a field plot.  The 

strategy would also have the advantage of spreading the high collection cost over a longer time 

period.   

The research presented in this thesis has shown that LiDAR can be a very useful tool for 

forest assessment at a range of scales.  One of the major impediments to the operational 

implementation of LiDAR for forest assessments is the perceived high cost of data collection, 
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storage and processing software requirements (often compounded by a lack of commercially 

available forest analysis specific software).  As an example, the supply of data that was utilised 

by this research was $53 ha-1 in Queensland (~A$40,000 for one week of flying and ~2Gb of 

data), and $1.50 ha-1 in Victoria (i.e., ~A$90,000 for two days flying (plus transit) and supply of 

90 Gb of data; Wood, et al., (2006)).  The major initial cost component of data acquisition is 

aircraft deployment, especially if standby costs are included.  Data storage costs these days are 

generally minimal compared to the overall project value; however software development (time 

and staff) and hardware costs are usually internalised within the organisation(s).  It is beyond 

the scope of this thesis to enter into a detailed cost/benefit analysis for LiDAR use; though a 

summary of the major benefits is outlined below.  A detailed cost breakdown of LiDAR usage 

for forest assessment is provided in Rombouts, (2007), and comparison with other data sources 

in Wood, et al., (2006).   

Whilst the initial cost of data acquisition may appear high, if the range of data that can 

be supplied and applications it can be used for are properly accounted for, then costs have been 

shown to be readily recouped (Rombouts, 2007).  Major benefits of LiDAR usage for forest 

assessment include (Rombouts, 2007):  

• the information can be used for strategic as well as operational planning, and 

highlight areas where costs could be reduced, such as with down-stream cost 

savings as a result of better decision making (i.e. cost-loss analysis);  

• can reduce costs per hectare (e.g., timber harvesting or national monitoring) owing 

to improved topographic, road and stream network maps, better stand delineation 

and inventory, thus improving the accuracy of resource estimates compared to 

conventional methods;  

• significantly reduced time spent collecting data in the field; and 

• when applied in a monitoring scheme can utilise dynamic rather than static stand 

boundaries increasing the ability to track change and update resource estimates. 
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The use of LiDAR within a multi-scale strategy also provides efficient methods for 

understanding how scale may impact on local to regional estimation of forest attributes. The 

results indicate that scale must be explicitly defined in reporting, as different values can be 

obtained for height and cover metrics at different assessment scales, for some heterogeneous 

forests.  As the proposed Continental Forest Monitoring Framework seeks to utilise multi-scale 

strategies, then the effect of scale from different data sources on summary results and inferences 

about trends needs to be further investigated for each broad reporting unit (e.g., ecozone). 

Unlike Landsat TM data, ICESat laser data does not provide complete coverage of 

structural information across the continent.  If appropriate calibration for the range of forest 

types and environments across Australia can be developed using LiDAR (for example), then it 

may be possible to generate a large sample (> 1 million points) that is consistently collected 

across the continent.  The continental sample could then provide statistical and tabular 

information on the forest height distribution per ecozone, for the life of the sensor.  This would 

also overcome some of the current limitations with relying on a compilation approach from the 

States and Territories, where data was collected, interpreted, and classified in a variety of ways.  

Additionally, the continental sample would present an opportunity to update the existing 

mapped forest polygons (e.g., from the National Vegetation Information System) with more 

accurate height information.  Alternatively, suitably calibrated ICESAT data could help refine 

current process models to better predict tree height based on environment, species, cover and 

disturbance history (Coops et al., 1998; Turner et al 2004; Brack et al., 2006).  The outputs of 

the process models could then be combined with existing National Forest Inventory data to 

improve national forest height mapping, and feed into the national carbon accounting system.   

 

5.3.2 Limitations and recommendations for future research 

In the course of developing a multi-scale hierarchical strategy to determine how LiDAR 

can improve the assessment of forest structure, a number of research limitations were identified.  

These can be categorised into four general topics: field data limitations, LiDAR data limitations, 

modelling limitations, and calibration strategy limitations.  Overall, rather than detracting from 
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the research findings, the limitations identified here represent opportunities for model 

enhancements and future research avenues. 

Field data limitations are those where the measurements taken in the field had 

uncertainty because of the measurement method, recording device, or operator error.  When 

field calibration data have greater than expected uncertainty, it can be difficult to identify where 

or why error has occurred in the remotely sensed data source.  In this research, uncertainly in 

field estimates was noted for stem location because of issues associated with poor GPS signals 

under canopy, in steep terrain and different times of day.  Tree measurement method limitations 

for LiDAR calibration purposes included not being able to identify the actual top of the tree, 

variation in estimates between observers, not recording all stems within a plot due to time 

constraints or sample design, and poor estimation of crown dimensions, especially for irregular 

crowns.  It is recommended that field measurements of individual tree crowns be taken along 

the longest and shortest axes with the longest axis angle from north also recorded, if they are to 

be compared with LiDAR results.  Other issues were not sampling all major forest types across 

the landscape, and natural variability in structural empirical transfer functions such as between 

height and stem diameter.  Finally, plot shape and plot sampling techniques (e.g., transects or 

hemispherical photos) need further research to determine the actual spatial extent they represent 

with respect to the overstorey canopy, when compared to fine scale remotely sensed data such 

as LiDAR.   

LiDAR data limitations are those related to the data and its collection.  Whilst it may 

not always be practical or affordable, collecting data at higher sampling densities would 

overcome some of the limitations identified in the literature and by this thesis.  When higher 

sampling densities were collected, tree crowns were easier to identify, and greater definition of 

the sub-canopy was achieved (and less evidence of sensor lag issues; e.g.,, Lovell et al., 2003).  

Aiming for consistent data collection is also recommended, though often difficult to achieve in 

practise.  For example, the effects of wind and/or steep terrain on aircraft height above ground 

were noted, and resulted in varying sampling density within short distances.  This can introduce 

unintended variability into correlations when comparing extracted structural attributes with field 
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data.  Further research and more calibration sites are needed to validate the current assumptions 

when using LiDAR profiles for growth stage and disturbance assessment, and to allow accurate 

interpretation for a wider range of forest types and environmental, site, and disturbance 

conditions.  

The primary LiDAR modelling limitation is the need for a complex set of processes to 

be able to model structurally complex forest environments, and therefore accurately attribute 

tree entities.  This can lead to results that are specific to a site or region, which leads to limited 

applicability in new areas (as observed in the NE Victorian application).  The proof-of-concept 

component modelling showed promise, but does need further improvements so the SAR 

simulations and biomass estimates can achieve better validation with field data.  However, to do 

this it is likely that more detailed field measurements and/or terrestrial LiDAR is required.  A 

future research option to enhance the Height Scaled Crown Openness Index (in addition to 

higher LiDAR return densities) is the use of time-sequential data, so that greater detail on the 

actual penetration ability for LiDAR pulses can be calculated, rather than just inferred.  Finding 

ways to reduce the inherent variability of field derived empirical functions is also 

recommended.  This could involve further stratification into different forest types based on 

environment or genus. 

There are a number of limitations with the calibration strategy with respect to national 

application.  Both the cover transfer functions and impacts of assessment scale modelling need 

further calibration across a wider range of forest types (e.g., tropical and temperate rainforests), 

and across environmental, ecotonal, and disturbance (e.g., fire intensity) gradients before they 

can be applicable across the continent.  Similarly, a greater number of ICESat footprints across 

a wider range of forest types are needed, including the development of calibration functions and 

determination of waveform response thresholds to terrain and forest structure.  It is 

recommended that additional data, both LiDAR where available (e.g., process all the NE 

Victorian data), and other data (e.g., MODIS, SPOT5) be compared at the appropriate scales, to 

increase the range of data available for national monitoring schemes.   
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CHAPTER 6. CONCLUSION  

6.1 Thesis Conclusion 

This thesis posed the seemingly simple question ‘how can LiDAR improve the 

assessment of Australian forest structure?’  From the research presented, the simple answer is 

‘by deriving tree scale entities within a multi-scale calibration strategy’.  However, when 

consideration is given to what is meant by the terms ‘improve’, ‘forest structure assessment’, 

and ‘scale’, the actual answer is more complex.   

When considering ‘improvements’ to forest structure assessment using LiDAR, results 

can be generated for structural metrics with a similar accuracy as current methods but over 

larger areas, or generate better results by highlighting limitations in field calibration estimates. 

Alternatively, new measures can be generated that produce the information required for national 

scale inventory.  Examples of all three ‘improvements’ to the assessment of forest have been 

presented in this thesis.  These include accurate estimates of crown and foliage-branch cover, 

and predominant height at plot, stand and landscape scales.  The use of individual crown 

delineations and stem mapping has improved the validation of field estimates and calibration of 

medium scale data such as Landsat TM, ICESat and radar.  Finally, the use of apparent vertical 

profiles across different forest types provides new insight into the assessment of stand growth 

stage and disturbance history.  Whilst good results have been demonstrated across most metrics, 

a number of limitations have been identified; such as in the collection of field data to support 

LiDAR calibration, the LiDAR data sampling of the forest volume, modelling assumptions and 

complexity, and the representativeness of calibration strategy across different forest types.  

These limitations provide opportunities for further research to improve the assessment of forest 

structure using LiDAR. 

‘Forest structure’ is a broad term, which can encompass a wide range of metrics and be 

valid at a range of scales.  Essentially forest structure is a measure of density; that is, the density 

of tree stems within a unit area, the density of crown branches and foliage originating from 

those stems, and the density of foliage at different heights throughout the forest volume.  
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Structural measurements can range in ‘scale’ from an individual leaf, the branches and stems 

that make up a single tree, through to groups of trees, to stands, forest landscapes, and 

ultimately, forested biomes across continents.  Therefore the ability to be able to measure forest 

‘structure’ across a range of scales, and importantly, understand how metrics are related 

between scales and datasets (through continuous transfer functions), provides a significant 

contribution to national forest inventory and monitoring.  By utilising a hierarchal multi-scale 

strategy to address the primary research question and objectives, this thesis has demonstrated 

that small footprint LiDAR can improve the assessment of forest structure at a range of scales, 

from tree components up to landscape elements.  Few other remotely sensed datasets can 

provide information on the same range of structural metrics (i.e. height, cover, and stem 

density) and across the range of scales that are increasingly required for sustainable forest 

management, national reporting and environmental research.    

The multi-scale strategy and modelling developed in this thesis was found to perform 

best in forests and woodlands of medium height (≤ 30 m) with a canopy cover up to 80 %, 

reducing in accuracy in taller forests or those with multiple strata.  Whilst open forest and 

woodland formations of medium height are typical to almost 90 % of Australia’s forests, further 

evaluation of the tree-scale modelling is required at other sites to better represent the range of 

forest types and structural forms found in Australia.  The multi-scale modelling techniques 

developed in this research have contributed to the NFI Continental Forest Monitoring 

Framework pilot project and its potential application across Australia, (e.g., by providing the 

LiDAR chapter in Wood et al., 2006).  For example, the results provide guidance on the most 

cost effective use of remotely sensed data across a range of scales, and especially for areas 

where field plot visits are impractical or too expensive.  Scale effects have been identified in 

woodlands and heterogeneous forests, for example in riparian floodplains.  The suggestion of an 

empirically derived one hectare minimum forest area for reporting, progresses the NFI research 

in this area.  The research presented in this thesis therefore offers support to Australian State 

and Federal Government commitments to national and international forest monitoring and 

reporting agreements. 
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APPENDIX A 

Ancillary Results 

 

Appendix A contains a range of Tables and Figures which support the results presented 

in Chapter 4.   

 

Table 55: Species name and API codes for Injune trees 
Code Scientific name Common Name  
BGL Acacia harpophylla Brigalow 
BLH Casuarina cristata Belah 
BRI Eucalyptus fibrosa spp. fibrosa Broad-leaved red ironbark 
BOK Allocasuarina luehmanni Bull oak 
CP- Callitris glaucophylla White cypress pine 
ECH Eucalyptus dealbata var chlorodata Tumbledown red gum or Baradine gum 
FMP Callitris preissii Family pine 
GTI Eucalyptus decorticans Gum top ironbark 
NRI Eucalyptus crebra Narrow-leaved red ironbark 
PBX Eucalyptus populnea Poplar box 
RBA Angophora floribunda Rough barked apple 
SBA Angophora leiocarpa Smooth barked apples 
SLI Eucalyptus melanaphloia Silver-leaved ironbark 

SWB Eremophila mitchelli Sandalwood box 
WIL Gejeira parviflora Wilga 
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Table 56: Injune field plot height results from field and LiDAR data for max and predominant height, and at different measurement scales. 

Plot ID Field Max ht 
(m) 

LiDAR max 
ht (m) 

Field mean tallest –   
50 trees ha -1 (m) 

Field mean tallest – 
100 trees ha -1 (m) 

LiDAR predom. Ht - 
10m cells ~ 100 trees 

ha-1 (m) 

LiDAR HSCOI stem 
mean tallest - 50 trees ha 

-1 (m) 

API height range (m) 

23-15 16.7 17.52 15.13 14.22 14.23 15.91 12-30 

23-16 19.0 18.61 15.59 13.83 13.82 16.20 12-30 

23-20 20.7 22.86 14.94 12.43 14.49 17.75 12-30 

23-24 22.0 21.48 19.81 17.49 15.76 19.79 12-30 

58-24 19.0 19.8 16.08 14.08 12.40 16.92 12-30 

58-29 22.0 17.2 16.08 14.59 14.04 15.53 12-30 

59-27 4.0 3.4 3.74 3.74 3.04 -1 0 

81-11 30.8 26.75 21.48 17.11 19.09 23.35 12-30 

81-16 23.0 22.41 17.97 15.74 16.57 18.57 12-30 

83-12 18.5 17.50 12.31 10.23 10.23 13.23 12-30 

83-20 20.0 20.80 15.64 14.18 13.76 16.75 12-30 

111-12 20.4 20.38 17.46 16.36 14.61 17.29 12-30 

111-18 23.0 21.80 19.73 18.61 17.78 19.57 12-30 

114-04 20.0 18.80 18.29 17.40 15.33 16.42 12-30 

114-12 16.2 22.50 14.15 12.76 14.10 14.203 12-30 

124-06 18.0 18.90 16.20 15.18 13.93 15.45 <12 

124-19 24.0 26.30 18.23 15.36 17.85 18.47 30+ 

131-18 13.0 12.69 11.06 8.42 8.99 11.34 12-30 

138-16 20.0 18.00 15.02 13.30 12.17 15.41 12-30 

138-21 17.8 16.83 14.52 12.78 12.11 14.64 12-30 



Appendix A: Ancillary Results 
   

291 

142-02 20.8 13.03 10.93 10.00 7.99 10.33 12-30 

142-13 14.0 13.22 12.35 11.56 10.52 12.27 12-30 

142-18 14.0 16.38 15.11 14.08 14.10 15.27 12-30 

142-20 16.0 17.19 14.68 13.09 12.66 14.74 12-30 

144-13 18.0 21.61 16.86 15.10 15.37 17.95 12-30 

144-19 22.0 22.50 14.07 12.88 12.11 14.32 12-30 

148-01 18.8 15.70 13.55 12.26 11.19 13.91 12-30 

148-16 15.5 21.97 16.15 13.56 15.99 17.31 12-30 

148-21 20.0 18.98 16.38 14.20 14.84 15.75 12-30 

148-29 19.0 17.74 13.76 12.70 13.43 15.32 12-30 
Notes to table headings: 1)Due to the small  number of returns above 2m height observed in this regrowth plot, no stems were generated from the HSCOI  modelling.  
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Table 57: NE Victorian field plot height results across a range of datasets and measurement scales.  All values are in metres. 

Plot ID1 Field plot 
field max 

Field plot 
LiDAR 

Max 

Field plot 
field 

predom (5 
tallest) 

Field plot 
LiDAR 
predom 
(50 trees 

ha-1) 

Field plot 
LiDAR 
predom 

(100 trees 
ha-1) 

Transect 
field max2 

Transect 
LiDAR 

max 

Transect 
field 

predom (5 
tallest) 

Transect 
LiDAR 
predom 
(50 trees 

ha-1) 

Transect 
LiDAR 
predom 

(100 trees 
ha-1) 

SFRI class 
max API 
height3 

NFI 
height 
class 

008 20.20 36.08 19.92 26.26 24.45 21.4 37.49 17.70 29.26 27.30 22.0 - 27.9 Medium 

212 31.50 37.21 17.94 34.69 32.00 36.0 39.58 21.60 28.86 27.01 28.0 - 33.9 Tall 

119 29.30 33.02 28.26 30.58 29.40 29.3 35.64 25.50 28.61 27.48 - Medium 

099 20.40 20.45 15.94 13.60 15.67 22.0 23.51 16.70 15.12 14.13 - Non forest 

186 21.60 22.09 20.02 20.46 20.09 21.6 22.91 17.10 19.74 19.13 - Medium 

309 17.30 17.41 12.02 13.74 14.81 17.5 17.87 13.40 13.00 13.84 - Non forest 

169 24.50 23.50 21.14 19.69 19.39 24.5 25.13 18.50 20.46 19.53 - Medium 

216 10.60 12.00 9.78 10.92 10.15 11.4 16.12 7.60 11.65 10.79 - Medium 

220 18.10 19.61 17.12 16.77 16.72 20.0 22.21 15.50 17.69 17.07 - Medium 

382 25.80 22.84 23.64 20.75 19.76 25.8 27.25 19.20 22.59 21.82 - Medium 

463 39.20 39.92 29.40 32.62 28.02 39.2 48.75 25.50 38.03 35.48 28.0 - 33.9 Tall 

554 22.30 27.83 21.20 23.75 24.41 22.3 35.90 19.80 25.72 24.33 - Tall 

459 22.00 21.28 21.30 20.26 20.27 22.0 24.40 18.50 20.62 19.99 - Medium 

573 30.80 29.73 27.60 27.23 25.24 30.8 39.58 18.30 28.24 26.74 - Medium 

313 31.10 34.78 29.70 31.47 30.40 36.5 39.91 26.40 31.49 30.53 - Tall 

391 29.10 32.85 24.00 29.31 29.68 32.9 40.03 21.60 32.29 30.94 22.0 - 27.9 Medium 

467 25.60 34.64 21.60 28.50 27.93 25.6 38.92 19.00 29.71 28.37 34.0 - 39.9 Tall 

550 40.80 44.60 36.20 33.93 32.91 50.0 51.46 27.10 38.67 36.20 34.0 - 39.9 Tall 

562 24.00 34.01 23.00 27.39 27.78 24.0 34.01 18.00 27.33 25.48 15.0 - 21.9 Medium 



Appendix A: Ancillary Results 
   

293 

6054 36.40 38.13 33.40 32.75 32.01 36.4 42.91 23.10 31.42 30.02 34.0 - 39.9 Tall 

603 35.70 43.58 35.00 39.54 39.02 35.7 49.38 27.00 37.67 36.53 34.0 - 39.9 Tall 

558 28.00 29.06 26.00 27.83 26.93 28.0 37.46 21.80 27.68 26.64 - Medium 

471 15.40 15.33 13.82 13.38 13.00 15.4 29.80 13.82 14.61 13.90 - Low 
Notes to table headings: 1) Plots are ranked (lowest to highest) by elevation. 2) Maximum height of all plot trees and trees found on transects. 3) SFRI overstorey heights only measured within State 
Forest managed areas. 4) Field and LiDAR data are not co-incident for plot 605, so comparisons cannot be made between these data.  LiDAR, SFRI, and NFI are coincident for p605. 



Appendix A: Ancillary Results 
   

294 

 
Figure 110: Summary of predominant and max height for each CFMF field plot, by ecozone. 
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Figure 111: Comparison of stand sampling strategies for estimating stand (~20ha) predominant height by ecozone. 
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Table 58: Results from correlation and Kolmogorov-Smirnov test comparisons between LiDAR 
and field cubic modeling derived apparent vertical profiles for Injune.  

Kolmogorov-Smirnov test  Correlation comparison at each height interval 

Plot KSa statistic p-value  r2 RSE p-value functionb 

p11112 0.3333 0.1963  0.54 3.39 0.00010 y= 0.6400x + 1.7143 

p11118 0.1923 0.7327  0.32 2.91 0.00300 y= 0.5919x + 1.5668 

p11404 0.2857 0.2053  0.40 2.25 0.00030 y= 0.3587x + 2.2902 

p11412 0.3600 0.0779  0.70 1.42 2.266e7 y= 0.4128x + 2.3487 

p12406 0.2857 0.3650  0.12 2.78 0.13050 y= 0.1715x + 3.9451 

p12419 0.1852 0.7537  0.68 1.50 1.207e7 y= 0.6584x + 1.2651 

p13816 0.3000 0.3356  0.14 3.41 0.09965 y= 0.2448x + 3.7758 

p13821 0.1667 0.9715  0.61 2.71 0.00010 y= 0.7546x + 1.3631 

p14202 0.1429 0.9996  0.87 2.41 1.29e6 y= 0.9690x + 0.2218 

p14218 0.1765 0.9631  0.56 3.29 0.00060 y= 0.7613x + 1.4043 

p14220 0.1667 0.9715  0.44 2.34 0.00280 y= 0.5777x + 2.3460 

p14413 0.2727 0.3937  0.22 2.59 0.02720 y= 0.7672x + 1.0583 

p14419 0.2609 0.4218  0.58 2.27 0.00002 y= 0.6102x + 1.6949 

p5824 0.2381 0.6028  0.59 1.56 0.00005 y= 0.5864x + 1.9697 

p5829 0.2632 0.5379  0.26 3.14 0.02565 y= 0.3173x + 3.5938 

p8111 0.1613 0.8235  0.03 2.13 0.40000 y=-0.1462x + 3.6974 

p8116 0.2174 0.6601  0.76 1.17 6.251e8 y= 1.3673x – 1.5970  

p8312 0.3810 0.0948  0.70 2.53 2.422e6 y= 0.4135x + 2.7931 

p8320 0.0909 1.0000  0.55 1.93 0.00007 y= 0.6746x + 1.4791 
aKolmogorov-Smirnov test statistic, b y= LiDAR value of percentage cubes per height interval, x = field value  
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Table 59: Injune field plots apparent vertical profiles using modelled field data (red) and LiDAR 
returns (blue), and plot centre hemispherical photo.  
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124-19 
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142-02 Cubic vertical profiles LiDAR vs Field p142-02
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144-13 

  
144-19 Plot 144-19 return vertical profile 
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148-01 Plot 148-01 return vertical profile 

0 2 4 6 8 10 12 14 16 18 20

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

H
ei

gh
t a

bo
ve

 g
ro

un
d 

(m
)

Percentage of returns (%)   
148-16 Plot 148-16 return vertical profile 
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148-21 Plot 148-21 return vertical profile 
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148-29 Plot 148-29 return vertical profile 
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Figure 112: SLATS Landsat FPC (2000) spatial distribution at the Injune study site.  
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Figure 113: NE Victorian SLATS FPC (uncalibrated) from two Landsat scenes.  Systematic field plots are yellow, additional calibration plots are pink. 
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Table 60: Injune field plot percentage cover results across a range of datasets, cover metrics, and measurement scales. 

Plot ID Field FPC Field 
FBC 

Field 
FBC 

(2004) 

Photo 
FBC 

(2004) 

Tree map 
CC 

(>5cm) 

LiDAR 
FBC 

0.5m+ 

LiDAR 
FBC 2m+ 

HSCOI 
CC 

CHM CC CASI CC API CC 
range 

mid-point 

Landsat 
FPC 

23-15 37.82 68.6 n/a 41.78 72.17 44.82 40.63 67.56 78.38 76.29 65 48.8 

23-16 28.85 41.7 n/a 37.25 37.20 29.60 27.85 48.66 61.94 55.65 20 40.6 

23-20 23.08 28.8 n/a 22.86 35.87 24.60 22.97 34.93 47.78 39.59 20 32.4 

23-24 37.18 48.7 n/a 45.67 44.94 41.93 35.22 59.41 58.01 62.68 40 50.4 

58-24 21.79 28.8 33.97 25.35 37.93 17.54 15.90 35.53 42.95 35.38 20 31.8 

58-29 27.56 43.6 47.44 33.24 41.97 28.94 24.87 47.17 53.85 45.82 40 38.6 

59-27 0 0 n/a 21.06 3.54 5.00 1.82 5.13 13.00 24.00 5 27.0 

81-11 35.90 57.7 59.6 57.82 78.79 54.74 52.62 62.68 72.74 82.45 40 55.6 

81-16 35.48 51.9 n/a 45.4 86.33 49.14 47.97 62.63 77.17 82.40 40 52.2 

83-12 11.54 12.8 n/a n/a 22.81 26.29 18.53 25.60 32.10 29.06 20 34.0 

83-20 19.87 28.8 35.3 36.98 38.90 30.16 28.80 43.20 50.89 45.39 65 35.4 

111-12 42.95 64.7 n/a 59.69 80.10 65.69 63.85 77.07 91.99 83.56 65 60.6 

111-18 50.00 62.2 n/a 52.00 73.10 45.02 44.37 68.52 82.49 79.46 65 54.0 

114-04 27.56 44.2 n/a 45.26 29.64 36.49 32.46 40.46 62.21 68.42 40 44.2 

114-12 21.15 26.3 n/a 39.10 19.69 25.73 19.69 28.58 31.77 45.53 40 38.6 

124-06 21.15 40.4 n/a 45.52 50.07 38.66 35.70 52.93 60.19 60.64 40 42.2 

124-19 24.36 49.4 n/a 42.59 53.65 34.67 32.71 49.85 58.62 60.77 65 50.4 

131-18 7.69 14.7 12.42 18.32 17.16 15.14 14.88 18.64 24.53 23.53 20 22.4 

138-16 29.49 44.9 n/a 41.04 38.93 37.43 32.91 56.02 61.49 44.38 40 35 

138-21 27.56 40.4 60.9 45.35 47.50 31.52 30.81 47.28 62.14 54.83 40 40.4 
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142-02 22.40 30.0 30.1 29.84 32.71 16.95 16.57 23.76 32.74 25.45 20 20.6 

142-13 17.95 21.8 9.62 30.8 35.89 16.48 16.16 31.70 39.88 35.44 20 25.6 

142-18 25.00 29.5 n/a 30.38 43.43 19.36 19.15 40.03 52.29 30.71 40 29.6 

142-20 10.26 38.0 38.5 27.64 51.24 27.25 26.34 42.21 48.22 32.15 40 33.8 

144-13 19.87 37.8 n/a 48.75 50.36 30.11 29.33 31.16 64.11 41.00 40 40.4 

144-19 15.38 26.3 n/a 34.67 45.00 26.85 24.84 36.13 44.62 32.57 40 31.4 

148-01 34.62 63.5 76.3 61.63 73.81 59.94 56.67 70.29 83.80 74.04 65 48.2 

148-16 29.49 44.2 50.6 53.01 55.59 54.58 37.53 57.98 60.68 77.08 40 49.4 

148-21 19.87 35.9 n/a 33.22 42.14 24.86 23.44 42.19 54.19 n/a 20 35.2 

148-29 30.77 49.4 56.41 48.14 52.98 40.41 35.23 52.22 63.79 51.74 40 42.4 
Notes to table headings: 1) Field is field transects.  2) Photo FBC is from hemispherical photos.  3) LiDAR FBC is the percentage of returns above threshold height.  4) HSCOI CC is crown 
cover from LiDAR HSCOI modelling.  5) CHM CC is crown cover from canopy height modelling.  6) CASI CC (1 m pixels) data were supplied from Bunting and Lucas, (2006).  7) API CC 
mid point is from the aerial photography crown cover class mid-point of the range.  8) Landsat FPC was supplied from SLATS analyses, using a 2000 baseline product. 9) All data measured in 
2000 unless otherwise indicated. 10) n/a indicated data was not collected for the field plot. 
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Table 61: NE Victorian field plot percentage cover results across a range of datasets, cover metrics, and measurement scales.  All values in percentage cover. 

Plot ID1, 4 Field plot 
Tree map 

CC (>10cm) 

Field plot 
Photo FBC 

Transect 
Photo FBC 

Field plot 
LiDAR 

FBC 2m+ 

Transect 
LiDAR 

FBC 2m+ 

Field plot 
HSCOI CC 

(2m+) 

Transect 
HSCOI CC 

(2m+) 

NFI data 
cover class 

SFRI API 
CC range  

Landsat 
FPC2 

008* 72.80 55.62 52.20 54.59 54.1 85.10 91.60 Open 70-84 39.00 

212 62.91 60.36 65.51 55.73 54.1 88.00 79.39 Open 50-69 46.50 

119 49.30 55.27 67.09 54.98 56.2 78.10 83.16 Woodland - 52.50 

099 30.15 40.11 50.59 47.47 50.6 57.90 50.43 Non forest - 35.75 

186* 82.51 47.04 45.50 60.40 58.0 79.70 68.73 Open 85-100 38.25 

309 25.62 30.99 31.04 39.35 19.3 36.30 19.48 Non forest - 27.67 

169* 68.39 49.22 53.70 48.00 68.0 81.70 82.72 Open 70-84 40.00 

216 51.65 30.58 30.80 44.92 38.6 66.80 61.54 Open 50-69 26.50 

220 76.43 44.18 42.93 50.37 52.1 50.80 96.86 Open 70-84 40.00 

382* 55.21 53.22 51.02 60.52 65.7 51.80 78.62 Open 70-84 38.50 

463 31.09 55.69 58.85 49.74 67.3 54.30 88.78 Open 70-84 53.00 

554 61.64 67.01 67.20 84.86 81.4 91.80 97.42 Open 85-100 - 

459 72.80 52.40 51.08 51.42 53.6 85.60 95.24 Open 70-84 40.25 

573* 76.85 67.17 65.24 71.88 74.8 87.80 91.50 Open 70-84 - 

313 81.17 66.04 64.02 75.18 72.0 88.50 86.54 Open 70-84 63.50 

391 63.32 66.42 72.07 65.83 69.9 85.80 99.35 Open 70-84 64.00 

467 62.03 64.44 65.47 67.43 72.0 83.90 98.89 Open 70-84 63.00 

550 60.78 70.04 78.62 83.64 88.8 98.50 97.37 Open 50-69 - 

562 18.85 50.13 48.55 61.55 58.2 76.60 69.33 Open 70-84 42.67 
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6053 62.17 71.89 77.09 82.75 78.74 - - Open 70-84 - 

603* 80.78 69.57 67.24 75.72 71.4 98.20 96.38 Woodland 30-49 - 

558 59.38 59.32 52.21 63.18 65.6 80.10 78.85 Open 70-84 57.25 

471 52.23 50.37 48.10 64.70 67.7 89.60 85.45 Open 70-84 43.75 
Notes to table headings: 1) Plots are ranked (lowest to highest) by elevation. 2) Landsat FPC estimate is uncalibrated for NE Victorian environments; plots without values were outside available 
images. 3) Field and LiDAR data are not co-incident for plot 605, so comparisons cannot be made.  HSCOI CC modelling was not undertaken. 4) Plots marked with * are remote sensing 
calibration plots.  
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Figure 114: Injune cover 
matrix graphs.  All scales 

are percent cover. 
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Figure 115: NE Victoria 
cover matrix graphs.  All 
scales are percent cover. 
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Table 62: Crown Separation ratio calculation test for p142-13 

Transect Tree No Field 
Crown 

Diameter 
(m) 

LiDAR 
Segment 
diameter 

(m) 

Distance 
to next 
crown 

edge (m) 

Transect 
estimated 

CC% 

Field 
transect 
FBC% 

Photo 
FBC%* 

1 3 8 6.5 4.8    
1 5 5 4.7 1.9    
1 9 0 2.9 9.9    
1 10 5 4.3 2.0    
1 11 4 5.7 7.5    
1 17 5 4.6 2.6    
1 506 3 2.3 3.2    
1 16 4 4.1 2.0   west-30m 

Mean n = 8 4.3 4.4 4.2 20.2 19.2 27.7 
2 23 5.5 5.4 2.8    
2 507 3.5 3.5 6.4    
2 29 5.5 5.7 6.1    
2 22 5.5 5.2 2.0    
2 33 4.5 4.7 0.0    
2 19 5.5 6.5 0.5    
2 34 6 5.7 3.2    
2 36 5.5 5.0 7.0   cntr-20m 

Mean n = 8 5.2 5.2 3.5 28.7 21.2 35.0 
3 24 6 6.1 5.4    
3 44 3 3.4 2.6    
3 27 6 5.0 -1.0    
3 43 4 3.0 2.5    
3 42 7 5.3 7.8    
3 40 7 6.4 0.5    
3 39 3.5 4.5 0.5    
3 38 6 6.0 0.0   east-30m 

Mean n = 8 5.3 5.0 2.3 39.4 25.0 29.5 
Plot Mean n = 24 4.9 4.9 3.3 28.6 21.8 30.7 

* Hemispherical photos used are from the distance along transects from start of transect (southern edge of plot) as 
indicated in table (see also Figure 75). 
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Table 63: Crown Separation ratio calculation test for p81-16 

Transect Tree No Field 
diameter 

(m) 

LiDAR 
diameter 

(m) 

Distance to 
next crown 

edge (m) 

Transect 
CC% 

estimate 

Transect 
FBC% 

estimate 

Hemi-
photo 

FBC%* 
1 26 4.2 4.5 1    
1 24 4.1 6.2 2.1    
1 2 3.1 4.6 4.1    
1 22 8.3 3.2 2.7    
1 7 3.2 2 2.7    
1 21 4.2 3.3 4    
1 10 3.9 4.5 1    
1 28 2.3 3.2 0.5    
1 32 4.4 4.6 2    
1 16 10 7.5 3.6    
1 33 3.6 3.3 0    
1 34 4.1 3.3 0    
1 35 4.7 3.4 0    
1 36 5.6 3.6 0    

Mean n = 14 4.7 4.1 1.7 43.5 51.9  
2 55 3.7 2.7 0    
2 54 3.2 4 3.9    
2 59 4.5 4.5 3    
2 50 7.6 7.6 -2    
2 49 10.4 5.9 6    
2 45 5.2 3.7 3.5    
2 41 4.9 3.6 1    
2 73 1 4.3 3.3    
2 39 6.4 6.1 2    
2 74 5.8 4.9 0    

Mean n = 10 5.3 4.7 2.1 41.5 44.2 45.4 
3 115 3.2 3.2 6    
3 51 10.3 11.8 -3    
3 96 14.8 8 2.5    
3 63 5.7 3.2 -2.3    
3 64 16.3 16.2 0    
3 83 6.3 5.5 4.2    
3 70 6.3 7.4 5.5    
3 79 5 5.6 4.7    
3 76 3.7 5.1 0    

Mean n = 9 8.0 7.3 2.0 51.9 59.6  
Plot Mean n = 33 5.8 5.2 1.9 45.8 51.9 45.4 

* Photo used if from centre transect and 30m from start of transect (southern edge of plot). 
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Table 64: Slope and intercept significance values for calibration and validation functions  

Description Function Slope 
SE 

Slope P-
value 

Intercept 
SE 

Intercept 
P-value 

Landsat pixel comparisons in 12 PSUs 
LiDAR CC vs LiDAR FBC 

in 1161 25 m cells 
Y = 1.4014x + 6.4695 0.0207 0 0.6922 0 

LiDAR CC vs SLATS FPC 
in 855 25 m cells 

Y = 1.302x + 2.9647 0.0346 0 1.5069 0.0495 

LiDAR CC vs SLATS FPC 
calibration (683 cells - 80%) 

Y = 1.298x + 3.5609 0.0384 0 1.6708 0.0334 

LiDAR CC vs SLATS FPC 
validation (172 cells - 20%) 

Y = 1.0255x – 3.6281 0.0608 0 3.6692 0.3242 

PSU 142 stem and component biomass comparisons 
Field allometric vs LiDAR 

component sum – all 
matched stems 

Y = 0.6705x + 45.508 0.0431 0 12.2317 0.0003 

Field allometric vs LiDAR 
stem allometric – all 

matched stems 

Y = 0.9986x – 4.4777 0.068 0 15.6 0.7744 

Field allometric vs LiDAR 
component sum – minus 
LiDAR model outliers 

Y = 0.7685x + 40.244 0.0413 0 11.1238 0.0004 

Field allometric vs LiDAR 
stem allometric – minus 
LiDAR model outliers 

Y = 1.0758x – 8.2568 0.0667 0 14.98 0.5822 

Field allometric vs LiDAR 
component sum – minus 
LiDAR + field outliers 

Y = 0.9346x + 7.2585 0.0345 0 8.1587 0.3749 

Field allometric vs LiDAR 
stem allometric – minus 
LiDAR + field outliers 

Y = 1.1482x – 28.322 0.0642 0 13.4868 0.0372 

LiDAR stem allometric vs 
LiDAR component sum – all 

matched stems 

Y = 0.5933x + 67.069 0.0195 0 5.5426 0 

LiDAR to field data comparisons – Injune 
Plot Field stem pred. Ht vs 

Stem pred. Ht (HSCOI) 
y= 0.8049x + 2.7633 0.0389 0 0.6199 0.0001 

Plot Field stem pred. Ht vs 
Stem pred. Ht (CHM) 

y= 0.7137x + 3.8844 0.0458 0 0.7519 0 

Plot Field stem pred. Ht vs 
canopy pred. Ht (HSCOI) 

y= 0.9712x + 2.1795 0.0594 0 0.8189 0.0127 

Field stem Ht vs LiDAR 
stem Ht (CHM) 

y= 0.5868x + 3.6323 0.0641 0 0.8144 0 

Field stem Ht vs LiDAR 
stem Ht (HSCOI/CHM) 

y= 0.8237x + 1.8197 0.0486 0 0.5569 0.0014 

Field stem Ht vs LiDAR 
stem Ht (CHM) - outliers 

y= 0.9391x + 0.2727 0.0466 0 0.5514 0.622 

Field stem Ht vs LiDAR 
stem Ht (HSCOI/CHM) - 

outliers 

y= 0.8797x + 0.9877 0.0408 0 0.4728 0.039 

Field stem count vs LiDAR 
stem count  

y= 1.539x − 142.63 0.1361 0 57.6225 0.0194 

Field 50 trees ha-1- LiDAR 
10m cell 

Y = 0.9688x + 2.2129 0.0557 0 0.7751 0.0079 

Field 100 trees ha-1- LiDAR 
10m cell 

Y = 0.8447x + 2.2536 0.0673 0 0.9377 0.0229 

Field max height vs LiDAR Y = 0.9086x + 1.7912 0.0712 0 1.3498 0.1942 



Appendix A: Ancillary Results 
   

316 

max height (field plots) 
Field D130 vs LiDAR D130  Y = 0.7933x + 4.3875 0.0544 0 1.0923 0.0001 
Field FPC vs LiDAR FBC y= 0.6418x  + 5.7556 0.0863 0 2.8585 0.0538 
Field FBC vs LiDAR FBC y= 1.1285x  + 4.057 0.0942 0 3.0633 0.195 
Field photo FBC vs LiDAR 

FBC 
y= 0.7617x  + 16.5086 0.0711 0 2.3791 0 

Field tree map CC vs LiDAR 
CC (HSCOI) 

y= 1.0377x  - 0.5787 0.1028 0 4.9559 0.9079 

      

LiDAR to field data comparisons – NE Victoria 
Field plot photo FBC vs field 

plot LiDAR FBC 
y=0.7864x + 7.1867 0.1113 0 6.8689 0.3079 

Transect area photos FBC vs 
transect LiDAR FBC 

y= 0.6796x + 13.8757 0.1108 0 7.0323 0.0625 

Transect area LiDAR FBC 
vs field plot photo FBC 

y= 1.1045x + 1.2794 0.1469 0 8.2142 0.8778 

Field max height vs LiDAR 
max height (field plots) 

Y = 0.7204x + 4.9137 0.0895 0 2.6911 0.0828 

Max.htPredom. Ht - Field 50 
trees ha-1- LiDAR 10m cell 

Y = 0.7862x + 3.6123 0.1134 0 2.84 0.218 

Predom. Ht - Field 100 trees 
ha-1- LiDAR 10m cell 

Y = 0.5929x + 5.7684 0.0908 0 2.2737 0.0196 

Field stem count vs LiDAR 
stem count (NE Victoria) 

y= 0.513x + 73.55 0.2396 0.0447 130.5565 0.5794 
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Table 65: LiDAR return density at different height thresholds for Injune plots. 

PLOT 
ID 

Plot 
Area 
(m2) 

All 
Returns 

All 
returns 
density 
(m2/ret)a 

Ground 
returns 

Ground 
return 
density a 

Canopy 
returns 
0.5m+ 

Canopy 
returns 
2m+ 

Canopy 
2m+ 
return 
density a 

23-15 2,568 4,041 0.64 2,230 1.15 1811 1642 1.56 
23-16 2,604 3,760 0.69 2,647 0.98 1113 1047 2.49 
23-20 2,428 3,622 0.67 2,731 0.89 891 832 2.92 
23-24 2,402 3,489 0.69 2,026 1.19 1463 1229 1.95 
58-24 2,401 4,195 0.57 3,459 0.69 736 667 3.60 
58-29 2,370 6,051 0.39 4,300 0.55 1751 1505 1.57 
59-27 100 220 0.45 209 0.48 11 4 25.00 
59-28 100 156 0.64 108 0.93 48 8 12.50 
81-8 1,544 2,906 0.53 1,653 0.93 1253 1221 1.26 

81-11 2,615 4,996 0.52 2,261 1.16 2735 2629 0.99 
81-16 2,403 4,699 0.51 2,390 1.01 2309 2254 1.07 
83-12 2,496 4,759 0.52 3,508 0.71 1251 882 2.83 
83-20 2,456 4,393 0.56 3,068 0.80 1325 1265 1.94 

111-12 2,756 5,406 0.51 1,855 1.49 3551 3452 0.80 
111-18 2,465 5,335 0.46 2,933 0.84 2402 2367 1.04 
114-04 2,501 3,130 0.80 1,988 1.26 1142 1016 2.46 
114-12 2,411 4,750 0.51 3,528 0.68 1222 935 2.58 
124-06 2,507 4,392 0.57 2,694 0.93 1698 1568 1.60 
124-19 2,371 6,887 0.34 4,499 0.53 2388 2253 1.05 
131-18 2,602 8,704 0.30 7,386 0.35 1318 1295 2.01 
138-16 2,501 4,643 0.54 2,905 0.86 1738 1528 1.64 
138-21 2,483 5,212 0.48 3,569 0.70 1643 1606 1.55 
142-02 2,399 7,724 0.31 6,415 0.37 1309 1280 1.87 
142-13 2,549 6,886 0.37 5,751 0.44 1135 1113 2.29 
142-18 2,528 6,313 0.40 5,091 0.50 1222 1209 2.09 
142-20 2,535 3,948 0.64 2,872 0.88 1076 1040 2.44 
144-13 2,439 2,458 0.99 1,718 1.42 740 721 3.38 
144-19 2,527 6,593 0.38 4,823 0.52 1770 1638 1.54 
148-01 2,548 5,027 0.51 2,014 1.27 3013 2849 0.89 
148-16 2,342 4,146 0.56 1,883 1.24 2263 1556 1.51 
148-21 2,420 6,186 0.39 4,648 0.52 1538 1450 1.67 
148-29 2,608 6,390 0.41 3,808 0.68 2582 2251 1.16 
mean 2,037 3,637 0.57 2,353 0.88 1,284 1,168 3.77 

a – return density is the nominal area spacing per single return (on average).  Therefore a density value of 0.57 is 1 
return per 0.57 m2 
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Table 66: LiDAR return density at different height thresholds for NE Victorian plots. 

PLOT 
ID 

Plot 
Area 
(m2) 

All 
Returns 

All 
returns 
density 
(m2/ret)a 

Ground 
returns 

Ground 
return 
density a 

Canopy 
returns 
0.5m+ 

Canopy 
returns 
2m+ 

Canopy 
2m+ 
return 
density a 

8 943 2,369 0.40 1,374 0.69 995 950 0.99 
99 943 994 0.95 662 1.42 332 314 3.00 

119 853 2,083 0.41 1,204 0.71 879 866 0.99 
169 898 1,273 0.71 645 1.39 628 616 1.46 
186 876 1,183 0.74 747 1.17 436 419 2.09 
212 990 2,737 0.36 1,405 0.70 1,332 1,262 0.78 
216 886 2,345 0.38 1,379 0.64 966 819 1.08 
220 914 3,568 0.26 2,034 0.45 1,534 1,471 0.62 
309 904 1,062 0.85 806 1.12 256 256 3.53 
313 874 1,311 0.67 639 1.37 672 653 1.34 
382 795 1,048 0.76 680 1.17 368 363 2.19 
391 1,143 2,828 0.40 782 1.46 2,046 1,690 0.68 
459 897 2,582 0.35 1,339 0.67 1,243 1,082 0.83 
463 873 2,368 0.37 864 1.01 1,504 992 0.88 
467 905 2,381 0.38 614 1.47 1,767 1,410 0.64 
471 855 1,080 0.79 410 2.08 670 609 1.40 
550 907 1,295 0.70 124 7.32 1,171 1,115 0.81 
554 1,009 1,396 0.72 333 3.03 1,063 972 1.04 
558 890 1,313 0.68 775 1.15 538 534 1.67 
562 818 1,000 0.82 566 1.45 434 398 2.06 
573 736 876 0.84 310 2.37 566 487 1.51 
603 909 2,580 0.35 922 0.99 1,658 1,596 0.57 

mean 901 1803 0.59 846 1.54 957 858 1.37 
a – return density is the nominal area spacing per single return (on average).  Therefore a density value of 0.59 is 1 
return per 0.59 m2 
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Figure 116: LiDAR derived tree stem basal area (per pixel) versus SLATS FPC, for 1114 Landsat 

pixels in 12 PSUs at Injune.  
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APPENDIX B 

Plot data illustrations for NE Victoria. 

Table 67: NE Victorian field plot data (left to right) - LiDAR CHM surfaces, LiDAR apparent 
vertical profiles, and plot centre hemispherical photos.  With CHM surfaces dark blue is ground, 

red-brown is tallest canopy.  Refer to LiDAR profile for respective heights (m). 
_____________________________________________________________________________________ 
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- -  
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099 
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_____________________________________________________________________________________ 

119 

- -  
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Statement of Author Contribution to Published Papers 

 

In the majority of my thesis I have sought to not replicate the text of published papers where I have been primary or second author.  This is to reduce 

duplication and the overall length of the thesis, and because the published work has already been peer reviewed.  Where components of the thesis have been 

replicated (for example, study area and field data description), this has been included as it is of direct relevance to the results and discussion chapters.  Where I have 

relied on text from the papers where other co-authors have contributed methodology, data or results, this is clearly stated in the text.  For example, in Chapter 1, I 

clearly state that the sampling designs are the product of existing research projects, and my research seeks to use the results of the projects, with any descriptions of 

the project experimental design (e.g. landscape sampling strategy) provided to allow discussion of the relative strengths of the design based on the results I have 

generated. 

 

The following table provides a detailed description of the different contributions I have made in each of the published papers that I have included in this 

Appendix, and from which I refer to in my thesis. 
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Paper and Authors Conception Experimental Design Methods Analysis Writing 
Enhanced Visualisation 
Capability for Forest 
Management Optimisation 
Results (2001) 
A. Lee,  
O. Chikumbo,  
S Davey,  
P. K. Tickle. 

Alex Lee developed the 
conceptual basis for 
comparing a range of 
LiDAR visualisation 
methods and assessment of 
utility.  
 
The other authors 
developed the idea to apply 
the methods to the 
visualisation of forest 
management optimisation 
modelling results 

Alex Lee was the primary 
developer of the 
comparison of the different 
visualisation methods, 
particularly with respect to 
LiDAR visualisation 
products.   
 
The other authors provided 
input into how they might 
be utilised in forest 
management scenarios. 
 
 
 
 

Alex Lee undertook all the 
methods for LiDAR 
visualisation.   
 
R.M. Lucas and P K. 
Tickle, as part of the Injune 
collaborative project, 
primarily undertook the 
SVS modelling. 

Alex Lee did the primary 
analysis and visual 
assessment.   

Alex Lee did the first draft.  
This was substantially 
edited by O. Chikumbo.  
All authors provided 
subsequent input to final 
paper. 

Quantifying vertical forest 
stand using small footprint 
LiDAR to assess potential 
stand dynamics. (2004) 
A. Lee,  
R. Lucas, 
C. Brack 

Alex Lee developed the 
idea to integrate LiDAR 
and field information 
within a 3D voxel matrix, 
based on the application of 
voxels in the literature.   
 
R M. Lucas provided input 
on the requirements for 3D 
SAR simulation modelling 
and associated concepts 
from the literature. 

Alex Lee primarily 
developed the experimental 
design, with iterative input 
from co-authors, especially 
to refine some components. 

Alex Lee undertook all the 
methods. 

All analysis was 
undertaken by Alex Lee 

Alex Lee did the first draft.  
Both co-authors 
contributed to edit, reduce 
and improve the text. Co-
authors also provided input 
for background 
information, and broad 
application of results (e.g. 
carbon sequestration). 

Quantifying Australian 
forest floristics and 
structure using small 
footprint LiDAR and large 
scale aerial photography 

The conceptual design for 
the Injune collaborative 
project was developed by a 
range of people, with the 
landscape sampling and 

The integrated sampling 
strategy was primarily 
developed by P. K. Tickle, 
R. M. Lucas and C. Witte  
 

The statistical assessment 
of the sampling strategy 
was undertaken primarily 
by P. K. Tickle and R. M. 
Lucas.  The LiDAR 

Analysis of results was 
undertaken by all authors.  
Alex Lee and J. Austin 
compiled and tabulated the 
different results, as well as 

R. M. Lucas and Alex Lee 
wrote the initial drafts.  
The other authors then 
contributed to edits and 
revision.  R. M. Lucas and 
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(2006) 
P.K. Tickle,  
A. Lee,  
R.M. Lucas, 
J. Austin, 
C. Witte 

integration of LiDAR and 
aerial photography 
developed by P. K. Tickle. 
 

Alex Lee provided primary 
input to LiDAR processing 
and reporting 
methodologies. 

methodologies (including 
integration with aerial 
photography results) were 
primarily undertaken by 
Alex Lee, and by J. Austin 
at the direction of Alex 
Lee.  The aerial 
photography was initially 
interpreted by the 
Queensland govt team 
headed by C. Witte. 
 
 

initial analyses.  The other 
authors subsequently 
interpreted the results in 
the context of the aims of 
the paper.  P K. Tickle and 
R. M. Lucas primarily 
undertook the statistical 
assessments. 

Alex Lee undertook the 
final edits and revision.  

Enhanced simulation of 
Radar backscatter from 
forests using LiDAR and 
optical Data (2006) 
R. M. Lucas,  
A. C. Lee,  
M. L. Williams 

R. M. Lucas primarily 
developed the idea (in 
consultation with co-
authors) to integrate 
LiDAR derived forest stand 
representations with SAR 
simulation models.   

M. L. Williams developed 
the SAR simulation 
models.  Alex Lee 
developed the LiDAR 
derived forest stand 
representations.  R.M. 
Lucas assisted with the 
integration of field data 
within the LiDAR 
modelling, and to link the 
forest representations to the 
SAR simulation models. 

Alex Lee undertook all the 
LiDAR related methods.  
The other authors 
undertook the SAR related 
methods.  The LiDAR 
branch models were cross-
validated after processing 
through SAR simulation.  
Where anomalous results 
were observed in the 
modelled SAR image, the 
LiDAR branch models 
were checked and updated 
if found to be outside field 
data estimates.  

Analysis and interpretation 
of LiDAR derived forest 
simulation was primarily 
done by Alex Lee, with 
consultation of other 
authors.  The SAR 
components of the analysis 
and interpretation were 
undertaken by the other 
two authors. 

Authors wrote their own 
sections based on their 
relative expertise (e.g. Alex 
Lee wrote the LiDAR 
related sections).  All 
authors contributed equally 
to final editing and review. 

A LiDAR-derived canopy 
density model for tree stem 
and crown mapping in 
Australian forests (2007) 
A. C. Lee,  
R. M. Lucas 

Building on the concepts 
developed in the 2004 
paper, and 2006 SAR 
simulation paper, Alex Lee 
was the primary driver to 
further refine the LiDAR 
canopy density modelling, 
to include individual crown 

Alex Lee primarily 
developed the experimental 
design. 

Alex Lee undertook all the 
methods. 

Alex Lee undertook all the 
analysis.  R M. Lucas 
assisted in the 
interpretation of point 
density comparison 
statistics.  

Alex Lee wrote the 
majority of the paper.  
Significant editorial input 
was provided by R. M. 
Lucas, mainly to reduce the 
length of the paper.  
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delineation and stem 
mapping applications. 

Retrieving Forest Biomass 
through Integration of 
CASI and LiDAR data 
(2008) 
R. M. Lucas,  
A. C. Lee,  
P. J. Bunting 

R.M. Lucas primarily 
developed the concept of 
integrating CASI and 
LiDAR, in consultation 
with the co-authors. 

Alex Lee undertook all 
LiDAR related research 
design, based on the 2007 
LiDAR paper.  The other 
authors did the 
hyperspectral research 
design. 

Alex Lee undertook all the 
LiDAR related methods.  
The other authors 
implemented the 
hyperspectral related 
methodology.  All authors 
contributed equally to the 
integration methodology. 

All authors contributed 
equally to the integration 
analyses, with particular 
emphasis on their area of 
expertise (e.g. Alex Lee for 
LiDAR, other authors for 
hyperspectral, all authors 
for biomass). 

Each author wrote the 
section relating to their 
expertise (e.g. Alex Lee for 
LiDAR section).  All 
authors contributed to 
editing and final revision. 
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Abstract: Despite the adoption of heuristic search algorithms for optimising large-scale spatial harvesting 
mainly constrained for socio-economic and environmental concerns, visualisation of landscape outcomes is 
still in the domain of 2-D GIS maps. Issues on visual impact due to harvesting, or forest structure for habitat 
niches, may not necessarily become obvious from a basic 2-D GIS map, making 3-D visualisation highly 
desirable. This paper looks at the potential use of airborne scanning lidar for visualisation that can be used to 
view modelled spatial harvesting scenarios from optimisation models and thus provide decision-makers with 
a capability to qualitatively improve on any optimisation scenario. Two case studies are looked at in this 
paper, to verify the visualisation capabilities of airborne scanning lidar. 
 
Keywords: Airborne scanning lidar, Spatial harvesting, 3-D visualisation 
 
1. INTRODUCTION 
 
In the last ten to fifteen years, forest analysts have 
made progress in modelling the forest ecosystem 
in tandem with the changing views and concerns 
raised by the public, governments and other private 
bodies in regards to the sustainability of forest 
management practices. Not only are forests 
managed for timber, but also for a myriad other 
entities that in themselves contribute equally in 
defining the complete forest ecosystem. Today we 
talk of ‘ecosystem management’, a terminology 
widely used in the United States, or ‘sustainable 
forest management’, which all mean the utilisation 
of forest resources in a manner that would not lead 
to depletion of any of the components that makeup 
the ecosystem in question. Such a situation would 
cripple the forest ecosystem in such a way that it 
looses its capability to self-repair in the event of 
anthropogenic or natural disturbances. 
 
In terms of modelling the forest ecosystem, there 
has been a gradual shift from basic wood or timber 
models integrated with linear programming for 
scheduling harvesting over a prescribed time 
horizon, to more complex ways of accounting for 
spatial harvesting such that non-timber values are 
catered for. Because of the limitations of linear 

programming in its inability to solve problems of 
0-1 integer type (combinatorial) for resolving land 
use or management action of neighbouring land 
parcels, other linear programming variants have 
been put to test, however, fraught with size 
problems. Mixed-integer linear programming 
comes to mind and handles these kinds of 
problems well, but only for small problems. Also 
when constraints are tight, the problem can be 
difficult to formulate, making the search hard to 
find an optimal solution. The Boise Cascade 
Corporation has tackled the problem in another 
way by linking a linear programming formulation, 
using FORPLAN [Barber and Rodman, 1990] and 
a GIS package, ARC/INFO [ESRI, 2001] to 
produce an application called Spatial Feasibility 
Test (SFT). A linear programming formulation is 
resolved using FORPLAN and the solution is 
‘disaggregated’ by a process that attempts to 
resolve adjacency violations of neighbouring 
polygon stands [Carroll et al., 1995]. The method 
is interactive, and FORPLAN is run many a time 
and at each run altering the constraints until such a 
time when the spatial constraints are satisfied. 
Given that SFT is deterministic and depends on the 
order of the list of polygon stands, each 
FORPLAN solution is tested against different lists, 
making the process time-consuming. 
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A quicker way to resolve these problems has been 
the use of heuristic search algorithms that are well 
known for their robustness in resolving large-scale 
combinatorial problems, although they are much 
harder to verify optimality. Since they are to be 
applied in situations where direct methods (such as 
linear programming) or enumerative methods 
(such as dynamic programming for exhaustive 
search) are difficult to apply, the goal becomes one 
of finding a solution that will improve the status 
quo rather than striving for optimality [Goldberg, 
1989]. Some recent work has shown that heuristic 
search algorithms are now being applied although 
it will take years of monitoring the outcomes of 
implemented strategies derived from these models, 
to see whether they are indeed improving the status 
quo [Chikumbo et al., 2000; Lockwood and 
Moore, 1993; Van Deusen, 1999]. 
 
To aid spatial modelling, visualisation is an 
important part of this kind of modelling. Most of 
the work so far has been to link optimisation 
results to GIS layers such that the overall spatial 
impact can be seen. For example, the new 
FORPLAN version, SPECTRUM, can now be 
linked seamlessly to a GIS visualisation capability 
called SPECTRAVISION, which is an ESRI 
ArcView extension [Chikumbo et al., 1999]. That 
means at each time step in the optimisation, one 
can visualise the area extent that is harvested. 
Although this is quite essential, it is still 
inadequate for visualising forest stand structures 
which help to inform on habitat quality for fauna, 
identifying impact on recreational areas, visual 
impact of the forests and so on. The basic 2-D GIS 
maps would not suffice here, and ‘enhanced 3-D 
visualisation’ will go a long way in satisfying our 
needs. 
 
This paper explores the capability of enhanced 3-D 
visualisation using airborne scanning lidar, as a 
potential tool for visualising optimisation results, 
such that further improvements are made to the 
spatial solution by qualitative means. This may 
also aid in reformulation of an optimisation 
problem. These days, forest analysts perform 3-D 
visualisation in commercial GIS packages by 
draping remotely sensed images over digital 
elevation models (DEMs). The information 
gleaned from this is only good for assessing visual 
impact from a myriad of forest management 
practices. However, the ability to visualise stand 
structure that would be invaluable for assessing 
animal habitat areas and enhance visual impact is 
not realised, as more information is required for 
this level of assessment. A more realistic 
representation of many elements within the 3-D 
landscape, for example trees and forests, becomes 

essential, hence the combination of remotely 
sensed data and the airborne scanning lidar. 
 
2. STUDY AREAS AND DATA CAPTURE 
 
Two study areas were considered here, in the states 
of Queensland and New South Wales (NSW) of 
Australia. The primary study area covers 220,000 
hectares of private and public land near Injune in 
central Queensland. Due to past and present 
agricultural and forestry management practices a 
wide range of regeneration and degradation stages 
exist, creating woodland communities that vary 
structurally. An associated study site covers two 
coastal forest compartments totalling nearly 400 
hectares in the southern Hunter Region, New 
South Wales. Here State Forests of NSW have 
established a series of research sites located in 
native regrowth forest and hardwood plantation 
production forests with complex structural 
heterogeneity. 
 
Airborne scanning lidar data were captured at the 
Injune and Hunter study sites on the week starting 
August 24th 2000 and May 28th 2001, respectively. 
Specific detail of the data capture can be found in 
Tickle et al., [2001]. Data were provided as ASCII 
text files, pre-processed into ground and vegetation 
returns, with an average sampling interval of <1m. 
At Injune, field data were gathered in 33 ground 
plots of 0.25ha. Within each plot, each tree over 
10cm in diameter at breast height (DBH) was 
located and mapped, including various structural 
(canopy and trunk) components.  
 
3. METHOD 
 
Since the GIS programs store their information in 
databases, an optimisation solution can be 
integrated in a database, showing when, where and 
how much timber will be harvested, which areas 
will be preserved for fauna and flora conservation 
and so on. This information may then be displayed 
like a movie over a time-series in a GIS program 
as in SPECTRAVISION [Chikumbo et al., 1999], 
making it possible for the user to study the spatial 
effects of the solution in a visual manner. 
Combining this with a DEM and airborne scanning 
lidar would provide an enhanced 3-D visualisation, 
that would lead to an improved understanding of 
optimisation results, with the added advantage of 
further refining the solution qualitatively, such that 
it better suits the wildlife and visual impact issues. 
 
The data preparation process for the enhanced 3-D 
visualisation is described below, based on the two 
study areas. This process basically involved 
visualising the lidar and other remotely sensed 
data, by using a combination of tools that included 



ESRI ArcView, ARC/INFO, ArcGIS [ESRI 2000], 
ERDAS Imagine [ERDAS 2001] and ENVI & IDL 
products [Research Systems, 2001]. The DEMs 
used in the visualisation were generated in an 
involved way, that was automated by using a 
scripting language called AML in ARC/INFO and 
the steps in the process were as follows: 
 
• The raw ASCII data (lidar) were converted to 

point data and first and last ground returns 
combined; 

• A ground TIN (Triangulated Irregular 
Network) was generated with a 2m proximal 
tolerance; 

• For each vegetation point, a height above the 
ground TIN surface was calculated. Ground 
points were assigned a height-above-ground 
value of zero; 

• First return vegetation data were combined 
with ground data, and a combined TIN 
canopy/ground surface created with a 1m 
proximal tolerance; and 

• Bare earth and canopy TINs were converted to 
1m raster DEMs for analysis with other raster 
datasets. Vector contours were derived from 
raster DEMs. 

 
During testing of the routines the TINs were 
visually checked to confirm correct classification 
of ground and vegetation returns. Estimates of 
canopy cover were generated by calculating the 
proportion of vegetation to ground hits within a 
specified cell size, and height range. ARC/INFO 
topogrid analysis routines were tested in the 
Hunter study area and they seemed to produce 
smoother terrain models, however quantitative 
assessment of the different processing methods is 
still to be carried out. 
 
4. RESULTS AND DISCUSSION 
 
Visualisation of spatial harvesting results from an 
optimisation problem maybe carried out at 
different scales depending on the information 
requirements of the analyst. Issues on harvesting 
block sizes of a management area within specified 
upper and lower limits for each successive period 
over a planning horizon, can be visualised using 2-
D maps. However, issues on access and stand 
structure are better handled using enhanced 3-D 
visualisation. This section describes visualisation 
at different scales using data from the two study 
areas, Injune and the Hunter Region.  
 
The three scales are as follows; 
• Tree level,  
• Stand level (group of trees),  
• Compartment level (group of stands).  

4.1 Tree Level Scale 
 
An initial attempt was made to visualise at one 
time-step, tree species, which would represent 
simulated harvested area, from a typical spatial 
harvesting optimisation problem. Stand 
Visualisation Software package (SVS), developed 
by the US Forest Service [McGaughly, 1997] was 
used to reconstruct field plot data for 3-D 
visualisation and assessment. Opportunities to 
identify and correct errors were realised, allowing 
for better interpretation of how the various sensors 
reported different canopy components and relative 
stand densities of the study plots. A lesson learnt 
here was that if we are to interpret spatial 
harvesting solutions in 3-D visualisation, carefully 
measured training areas from stands that have been 
previously prescribed similar management 
strategies, would be invaluable. Such information 
would then make it possible to simulate 3-D 
visualisation for the rest of the management area in 
question.  

Figure 1: Digital photo of actual field plot 
portrayed in Figure 2. The view is from south-west 

looking north-east. 
 
While SVS is useful for visualising stand-based 
data, it does not provide true representation of the 
Australian woodland forest. This is because the 
program was developed to cater for the coniferous 
forest in North America. However, with realistic 
tree location coordinates, it provides excellent 
relative positioning and density visualisation albeit 
not spatially linked to a coordinate system that 
enables integration with other GIS or remotely 
sensed data. Figure 1 illustrates one of the field 
plot sites at Injune. Each tree was visualised in 
SVS and this is shown in Figure 2.  
 
It is obvious that the visualisation of the irregular 
nature of eucalypt canopies is not well represented 
in SVS. Adaptation of the tree models may rectify 
the problem, but it would be time-consuming. The 
outputs from SVS would also need to be changed 
such that they can be exported to other programs. 
The value of this approach was therefore limited. 
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Figure 2: 3-dimensional stand reconstruction of 
field plot data using SVS. The perspective view in 

the main window is from the south-west to the 
north-east (as per photo view). 

 
Another option was to use ArcView 3D Analyst 
combined with lidar data. Lidar data were 
visualised using colour, which allowed us to 
differentiate first and last returns. Figure 3 
illustrates the result of this visualisation, and 
compares the lidar return cloud with the actual tree 
as seen in the field (Hunter study site).  

Figure 3: Single tree visualisation using lidar data 
and digital photo of same tree in the field. 

 
Lidar returns had been provided as pre-processed 
vegetation and ground returns. Further inspection 
of the returns, while out in the field, allowed 
differentiation of various canopy structural 
components. Pulses coded as vegetation first return 
corresponded to the outer canopy and some 
internal branches. Ground first returns 
corresponded to trunk, understorey vegetation, and 
some base ground points respectively. Vegetation 
last return pulses identified trunk and major 
internal branches, whereas ground last returns 
were generally all base ground points. Overall 
SVS proved better for quick initial assessments of 
tree density, species location, and general form 
based on height, due to the stylised nature of the 
tree output. However, ArcView allowed greater 
understanding of the actual tree form using lidar 

data, as well as its position with respect to other 
trees in the stand and the surrounding terrain. 
Problems arose using this method in heavily 
stocked stands where many interlocking branches 
prevented individual tree recognition. 
 
4.2 Stand Level Scale 
 
While improving field data can provide significant 
enhancement to models, it is costly and time-
consuming. Using stand based data we can 
extrapolate over much larger areas, and so realise 
more of the spatial variability that is not evident at 
the tree level scale. Using a sampling strategy 
combining lidar with other remotely sensed data 
such as interpreted aerial photography or high 
resolution hyperspectral data, we can enhance 
stand measurements of height, canopy cover, 
species composition, growth stage, disturbance and 
so on.  
 
An example of stand-based improvements through 
lidar, as well as visualisation of the results is 
illustrated in Figure 4, which demonstrates the 
combined ground with canopy model, with a 
1:4000 aerial photo draped over it. 

Figure 4: Lidar derived canopy and terrain model 
(1m resolution) with draped 1:4000 aerial photo. 

 
Realistic location and spatial extent of tree 
canopies are achieved, but not accurate 
representation of canopy form or volume. As with 
most GIS based visualisation packages, photo-
realistic effects are limited by the resolution of 
draped data, especially the terrain when viewed 
closely.  Using lidar data, improvements were 
made in representing the range of tree and stand 
forms found in forests and woodlands. However, a 
number of significant issues still exist in the 
application of terrain surface models for lidar data 
analysis at the stand level scale. With the 1-2m 
proximal tolerance used, we observed that 
approximately a third of all lidar returns were 
utilised in TIN or DEM generation. This was due 
to a large number of returns and redundancies in 
the significance of returns for representation of a 



surface. Note that many of these returns were from 
internal canopy hits and were not required for 
outer canopy edge volume rendering. A more 
serious issue was the loss of returns from under a 
canopy that resulted in a tree model resembling a 
blanket draped over a tree as seen in Figure 4. 
Figure 5 illustrates an extreme example of this 
process for a single tree in the Hunter study region 
(see Figure 3). The lighter areas of the grid 
represented high points in the canopy, and gaps in 
the canopy were clearly identified. Lidar returns, 
from which the grid was derived, are shown as 
black points. The contours derived from the grid 
were at 2m intervals for clarity. In planimetric 
view the contours adequately described the shape 
and extent of the canopy, and showed two distinct 
portions to the canopy. 

Figure 5: Canopy contours derived from 0.5m 
interpolated grid (background). 

 
When the contours are displayed in 3-D (as 
illustrated in Figure 6, left), it became clear that 
they did not represent the correct shape of the 
canopy when compared to the lidar cloud. The 
contours representing the extent of the canopy 
were not at their correct heights. As the DEM is 
being generated, ground returns have more 
influence on the final cell height that is calculated 
for the edge of the canopy. As a result of this 
height averaging, the cells at the outer edge of the 
canopy are assigned the relative height of between 
1-5m, depending on the shape. Trees and stands 
are therefore “grown” from the ground up such 
that a generalised conical shape is created. When 
these virtual trees are displayed in 3-D, the canopy 
does not assume the spherical or irregular 
ellipsoidal shape of the eucalypt trees. Canopy 
models developed in this way tend to be 
dominated by spikes, where the high (but 
sometimes not the highest) parts of the canopy 
exert the greatest influence. It was observed that 

this effect occurred in both TIN and raster derived 
elevation models.  We then conducted an analysis 
that used raw point data at 2m height intervals and 
created a stacked set of surfaces within the canopy. 
Contours were generated from these surfaces, and 
were stacked in 3-D to give a better representation 
of canopy shape (see Figure 6, right). These 
stacked contours are only viewed in 3-D as 
established cartographic rules would be violated 
due to multiple contours crossing in a planimetric 
view. 

Figure 6: Left - Canopy contours from Figure 5 
shown in 3-D, with the lidar return cloud. Right - 
Potential canopy contours (in black) derived from 

surfaces generated at 2m intervals. 
 
A visual assessment of the tree indicated that a 
ellipsoid shape best described the canopy. Canopy 
volume was then calculated using actual crown 
dimensions in the x, y and z planes. This was then 
compared to the volume derived from the TIN 
surface for the same tree. It was found that the TIN 
volume was 40% of the ellipsoid volume, 
indicating that current canopy DEM’s may not be 
adequate for volume calculations, and therefore 
biomass estimates. Existing biomass calculations 
are often constrained when using tree height due to 
trees expanding in canopy width rather than height 
after a certain age. Canopy volume would then 
allow improved biomass estimates at the stand 
level scale as both tree height and canopy width 
would be used. We will be using Research 
Systems IDL to further refine the results of volume 
visualisations, thereby improving our canopy 
volume calculations and ultimately, biomass 
estimates. 
 
4.3 Compartment Level Scale 
 
Accurate tree and stand-based parameters improve 
the quality of empirical models and subsequently 
harvested volume estimates. Existing 2-D map or 



satellite images draped over simple terrain DEMs 
may prove inadequate to convince the public 
and/or experts that all spatial requirements for non-
timber values are being met.  At compartment 
level broad vegetation types are investigated using 
a tool such as ERDAS Imagine Virtual GIS. 
Imagine is noted for providing virtual tree models 
that have been created from digital photos of real 
trees. These tree models can be manually placed, 
or used with point or attribute polygon layers to 
populate a scene for more realistic density 
visualisations. These models are general in nature 
and do not convey the variety of forms observed in 
the study areas. Individual models can be scaled 
with respect to height, width and depth, but 
accurate portrayal of non-standard canopy 
dimensions cannot be done. Therefore, current 
landscapes that use points or polygons for 
automatically populating forests with trees will 
have tree species of the same dimensions. This 
does not reflect typical woodlands and forests in 
Australia. Figure 4 illustrates an example of virtual 
trees in a lidar derived DEM, and shows the few 
Australian virtual trees that are currently available.  

Figure 7: Lidar derived ground terrain model with 
virtual trees arbitrarily placed. 

These species are not indicative of the species 
found at the study sites. Height and shape of 
virtual trees are less than what’s observed in 
reality. 
 
5. CONCLUSION 
 
This current work has demonstrated the potential 
of visualising stand structure (for optimisation 
results of spatial harvesting), information that is 
invaluable in determining viable animal habitat 
and visual impact. There are, however, hurdles still 
to be overcome, given that visualisation tools are 
not yet seamlessly linked with mainstream GIS 
software. Also computer programs such as 
BRYCE, by Corel Corporation will assist in 
designing tree forms that represent each species 
and environment, rather than the pre-generated tree 
forms in visualisation programs.  
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ABSTRACT: 
 
The vertical distribution of plant elements (e.g., foliage and wood) within a forest can yield important information on stand structure, 
dynamics and growth stage but such information is often difficult to acquire across landscapes using traditional methods of field 
survey and aerial photograph interpretation.  Recent advances in airborne laser scanning (ALS), however, have facilitated rapid 
assessment of stand height and cover to levels of accuracy considered acceptable for forest inventory and management. A few studies 
have extended this analysis to the descriptions of growth stage and retrieval of biomass, particularly in complex forest environments.   
However, current research has raised issues as to how well the vertical profile can be represented and whether the relative amounts of 
over and understorey can be quantified accurately.  Focusing on subtropical open forests and woodlands, in central Queensland, 
Australia, this paper provides a better insight into how small footprint Light Detection and Ranging (LiDAR) sensor data can be used 
to create apparent vertical profiles to describe aspects of vertical stand structure (e.g., overstorey/understorey) and also infer broad 
successional or growth stages.  Such profiles were integrated with field measurements within a common reference matrix (based on 1 
m cubes), thereby providing spatially explicit tree/crown maps in three dimensions and allowing validation of those generated from 
LiDAR.  Such interpretations, as well as enhancing forest information retrieval, were considered important in the interpretation of 
other forms of remote sensing data, including radar and optical data.  The conceptual basis for this integration method is outlined 
with an example utilising one field plot, and the role this method might play in quantifying stand dynamics and carbon sequestration 
is discussed.  
 

1. INTRODUCTION 

As a signatory to international agreements that include the 
United Nations Framework Convention on Climate Change 
(UNFCCC), the Kyoto Protocol and the Montreal Process, 
Australia is increasingly obliged to provide spatial and temporal 
information on ecosystem biomass, structure and community 
composition.  Such information is particularly necessary for 
regional assessments of biological diversity and forest 
condition, supporting sustainable utilisation of ecosystems, and 
calculating greenhouse gas emissions associated with land use 
change and forestry (Burrows, et al., 2002).  In natural forests 
and woodlands, or those where a diversity of management 
practices are imposed, traditional point measurements of 
structure, biomass and species composition are difficult to 
extrapolate to the landscape because of the inherent complexity 
of the system.  Such variability arises from natural disturbance; 
different processes of regeneration, and management practices 
occurring at a range of spatial and temporal scales.  The 
difficulty in quantifying this inherent variability leads, 
therefore, to uncertainties in local to regional extrapolations of, 
for example, species diversity and carbon balances.  The 
integration of remote sensing data, acquired by either airborne 
or spaceborne platforms, however provides a more appropriate 
mechanism for extrapolation as data of varying spatial and 
temporal resolution and information content can be combined.  
 
In recent years, the integration of LiDAR with other forms of 
remote sensing data has attracted attention as the resulting 
accuracy of structural attributes (e.g., height, crown cover) are 
considered to be equivalent or greater than those obtained on 

the ground.  Furthermore, such data provides a unique 
perspective on the vertical as well as the horizontal distribution 
of plant elements and hence the structure, dynamics and growth 
stage of forest stands.  Already, results of landscape-wide 
estimates of forest biomass generated through integration of 
LiDAR have been used to parameterise models of carbon 
partitioning (e.g., Hurtt et al., 2004).   LiDAR collected within 
a sampling framework has also been used to assist the 
calibration and validation of radar wave scattering models, 
thereby allowing a better understanding of microwave 
interaction with plant elements, and facilitating inversion of 
such models for quantitative mapping of forest structure and 
biomass (Lucas et al., 2004).    
 
Despite these advances, there is still a need to better understand 
how the LiDAR beam interacts with vegetation structural 
components and whether key structural attributes can be 
derived consistently and to acceptable accuracy levels.  Such 
research is essential as studies, (e.g., Lovell et al., 2003) have 
raised issues as to whether apparent vertical profiles are truly 
representative of forest structure.  Specifically, such data may 
not be reflecting the actual vertical distribution of foliage as 
they may not penetrate to the understorey, particularly where 
canopy cover is dense, and may over-represent the dominance 
and closure of the overstorey.  The return profile is also affected 
by the openness of tree crowns and canopies (which varies 
within and between species), differences in leafing and 
branching structures and also the number of strata within the 
vertical profile.    
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1.1 Conceptual basis for a common reference matrix 

The broad aim of the study was to reproduce the 3D structure of 
the forest as required by some radar simulation models (e.g., 
Sun and Ranson, 1995) for parameterisation in the third 
dimension.  Airborne Synthetic Aperture Radar (AIRSAR) data 
were acquired over the study area (see section 2.1) at the same 
time as the LiDAR, and parameterisation of 2D models utilising 
the concepts outlined in Durden et al., (1989) has already been 
undertaken (Lucas et al., 2004).  The progression to 3D 
representations of forest structure from LiDAR was the next 
step, building on the concepts outlined by Sun and Ranson, 
(1995) and Lexer and Honniger, (2001), as illustrated in Figure 
1.  Specifically, the study aimed to a) reconstruct the canopy 
based on voxels (i.e., volumetric pixels) of varying dimension 
(e.g., 0.5, 1, 2 m2) with the view to ultimately populating these 
with quantitative estimates of structural or biomass attributes 
(e.g., foliage density, branch size, leaf angle distributions, 
moisture contents) and b) derive ground parameters (e.g., slope 
and surface roughness) from the LiDAR ground returns.  Such 
attributes can then be used subsequently as input to models 
such as that described by Sun et al. (2002), which simulate 
microwave interaction and attenuation through the canopy.  
Through this process, a better understanding of microwave 
interaction with stand elements can be obtained, thereby 
refining the understanding and interpretation of the SAR 
response in complex environments.  The results presented in 
this paper illustrate the representations of the canopy at 1 m3 as 
this resolution was considered optimal with respect to the 
average lidar return density.    
 

 
 
Figure. 1. Conceptual modelling framework for a 3D 

representation of a forest (after Sun & Ranson, 
1995). 

 
This paper presents a subset of the main project aims as 
outlined previously.  Specifically, a conceptual method is 
presented that validates LiDAR derived apparent vertical 
profiles by integrating field and LiDAR data within a common 
reference matrix.  This provides a spatially explicit and variable 
resolution three-dimensional (3D) map of LiDAR returns which 
can be used to give a better representation of their distribution 
and the relationship with the actual location of plant elements.    
Such maps allow better quantitative retrieval of forest structural 
properties (e.g., foliage, branch and trunk distributions) and 
hence facilitate the parameterisation of radar and potentially bi-
directional reflectance (BRF) models that function in the third 
dimension.  The use of profiles generated from LiDAR data for 
determining the growth stage of forest stands and hence carbon 
sequestration potential is described and compared with field 

data, in order to investigate if the concepts outlined in Harding 
et al., (2001) using full waveform large footprint LiDAR could 
also be undertaken with small footprint LiDAR.  
 

2. METHODS 

1.2 Study Area and Data Sources 

The study was undertaken over a 220,000 hectare (ha) area 
containing diverse multi-aged woodlands and open forests 
located near Injune, central Queensland, Australia.  The project 
design utilised a systematic sampling scheme with 150 Primary 
Sampling Units (PSUs), arranged on a 4km grid over the 37 x 
60km study area.  Each PSU was 500 by 150 metres (7.5 ha), 
where one metre resolution first/last return airborne LiDAR 
(footprint size 0.09m) was collected.  PSUs were subdivided 
into 30 50 x 50 m Secondary Sampling Units (SSUs) numbered 
consecutively from 1 to 30.  AIRSAR data were acquired across 
the entire study area.  Detailed field surveys were undertaken in 
31 square (0.25 ha) ground plots where complete tree maps 
were generated.  These plots were selected using a stratified 
random field-sampling scheme within 13 selected PSU’s, which 
sampled across broad community and structural types.  Core 
attributes collected included species composition, forest 
structure, growth stage, biomass, disturbance, and land use.  
Tree map locations are derived from ± 1 metre GPS recording 
of plot corners and then a laser rangefinder distance and bearing 
to tree from the corner coordinate.  A more detailed description 
of the sampling methods can be found in Tickle et al., (2001) 
and Lucas et al. (2004).  At the site, the mean annual rainfall is 
approximately 630 mm per year and the mean annual maximum 
temperature is 27oC (Bureau of Meteorology, 2004).   
 
1.3 Parameterisation of the common reference matrix 

Parameterisation of a common cubic reference matrix can be 
undertaken for a range of forest types, but this paper provides 
an example by focusing on a plot in mixed species forest 
(referred to as SSU 124_19) dominated by white cypress pine 
(CP-) (Callitris glaucophylla), smooth barked apple (SBA) 
(Angophora costata, spp leiocarpa), various Eucalyptus 
species, and wattle (Acacia species), with a range of growth 
stages from regrowth to medium height (up to 30m).  This 
forest had established on flat terrain with sandy soils.  The plot 
was contained within an area of State Forest tenure that had 
been managed for selective native forest timber production 
(Callitris), as well as low intensity beef grazing.  The last 
recorded logging event in the area was 20 years ago, and fire 
has been actively suppressed for 50-100 years.   
 
To generate the 3D representation from the LiDAR data and to 
integrate available field measurements in a common reference 
matrix, the following method was applied.  This simulation 
method follows the general concepts developed for the FOL-
PROF programs as described in Walker & Penridge, (1987). 
 

1. A reference matrix was generated with a 1m2 fishnet 
ESRI ArcInfo polygon layer to cover the maximum 
geographical extent of field and LiDAR data.   
2. Database items were added to the layer for each one-
metre height interval, up to the tallest height recorded in 
the plot (either from field or LiDAR data).  This created 
‘virtual’ voxels (for this analysis, a voxel is defined as the 
combination of cell (XY) and a respective height interval 
database item (Z)) of 1m3 for the plot volume. 
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3. The LiDAR point layer was intersected with the 
matrix layer, and both the height above ground and 
intensity values for each return were recorded in the 
corresponding voxel in the matrix.  Where multiple returns 
occurred within one voxel, then the maximum height, 
mean intensity and number of returns were recorded.  
4. The field data tree map layer was intersected with the 
matrix layer.  Those cells that contained the tree point 
became ‘trunk’ cells, and were coded thus for all height 
intervals up to the canopy base height in the database.  
5. Crown dimensions (diameter in north-south and east-
west directions, canopy depth), species and growth stage 
were extracted from the tree map layer (i.e., field data), and 
the whole crown was modelled on a 1m3 basis. An 
elliptical shape was assumed in the horizontal plane, and 
shape assumptions in the vertical plane were based on 
species and growth stage.  Here three major shapes were 
used – the cubic expression of an ellipse (generic crown), a 
pyramid (conifer or young eucalypt), and an inverted 
pyramid (senescent eucalypt). 
6. A canopy openness factor was then applied to crowns 
larger than 5 metres in diameter.  Here, records were 
removed randomly from the database until the appropriate 
openness percentage for that particular crown had been 
achieved.  Crown openness was based on published 
records for selected species in the literature and through 
hemispherical photograph interpretation.   

 
Apparent vertical foliage profiles of field simulated and LiDAR 
data were generated by summarising the number of voxels that 
were coded with canopy elements per one metre height interval, 
as a proportion of all canopy voxels in the plot volume.  This 
allowed any obvious strata breaks to be quantified and validated 
against existing vertical foliage profiles for this environment, as 
shown in Walker, et al., (1986).   
 

3. RESULTS AND DISCUSSION 

1.4 Integrating Field Simulation and LiDAR Data  

Within the plot matrix there were 2,367 cells with 27 (1m) 
height levels, resulting in 63,909 virtual voxels (1m3).  The 
results of the simulated field data, as visualised 3D in ESRI’s 
ArcScene software, are shown in Figure 2.  Note that for clarity 
this image shows the simulation without the canopy openness 
factor applied.   
 

 
 

Figure. 2. ‘Cubic’ 3D modelling and visualisation of field tree 
data from mixed Callitris and Angophora forests. 

Table 1 summarises the direct comparison between field data 
and LIDAR on a cubic metre basis.  Overall there was good 
correspondence between the two datasets in terms of a two 
dimensional crown map, with 76% of the field simulated matrix 
cells also containing LiDAR, although these were not 
necessarily at the same height above ground.  More cells 
recorded LiDAR returns than field data simulated canopy 
elements, possibly indicating that there were additional canopy 
elements not recorded in the field measurements (i.e. small 
shrub elements).  However, more voxels were tagged with field 
canopy elements than with LiDAR returns, which could 
indicate that the LiDAR is being occluded from the lower 
portions of the simulated crowns and trunk voxels.  Individual 
tree comparisons would be required to provide a more 
conclusive validation. 
 
Attribute No. Matrix 

cells 
No. Matrix 

voxels 
Field modelled crown 
elements 557 1,944 

LiDAR return elements 981 1,302 
Both LiDAR and field 
elements within the same 
vertical column (cell) 

426  

Both field and LiDAR canopy 
elements within same voxel  175 

 
Table 1. Summary of matrix results for the field plot area. 

 
Additional mismatch error could result from north-south and 
east-west dimensions, as measured in the field, not correlating 
with the longest axis of the crown.  The modelled crown may 
not, therefore, reflect the true shape (or the shape as indicated 
by LiDAR data), especially with very uneven crowns (as is 
typical of Angophora and Eucalyptus species).  Preliminary 
comparisons of crown shapes derived from the LiDAR crown 
delineations versus the simulated field data ellipses have shown 
this to be a significant issue.  Additionally the field data tree 
map and LiDAR may not line up correctly due to discrepancies 
in the field-based measurement of tree trunk relative to crown 
location and also due to GPS and rangefinder error.   
 
Comparisons between field and LiDAR profiles for SSU 
124_19 (Figure 3) show that there was little difference between 
the two, potentially indicating that, for the less dense 
woodlands and open forests of Queensland, the LiDAR profiles 
are providing an adequate representation of overstorey and 
understorey distributions.  This analysis is being undertaken on 
all 31 field plots in order to verify if this conclusion is 
supported across a range of forest structures.  A number of 
issues were identified when comparing the two profiles.  First, a 
discrepancy of approximately 2 metres exists between the two 
estimates of maximum top-height, with LiDAR recording taller 
tree height which most likely results from the inability to 
identify correctly and measure accurately the top of the tree in 
the field.  Second, field and LiDAR curves diverge significantly 
at around 22 metres, which suggest that the field crown shapes 
in the simulation are not creating sufficient canopy elements to 
match the LiDAR strikes recorded.  Testing an inverted 
pyramid shape for tall overstorey crowns so that proportionally 
more canopy elements are found closer to the top heights as 
opposed to the centre of the crown could resolve this issue.  
Third, there appears to be a 1 metre offset on average between 
LiDAR and field profiles, with the LiDAR recording the taller 
value. This could indicate that field measures are 
underestimated, especially where the density of stems is high 
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(~600 stems within the 50 x 50m plot), and the measurement of 
the correct top height and/or canopy base is more difficult.  
Conversely, this could indicate that the lidar is only striking the 
upper portions of crowns, and so over-representing their taller 
portions, which then results in a curve with an apparent taller 
canopy.   
 

 
 
Figure. 3. Comparison of apparent vertical profiles generated 

from the common 3D reference grid, for LiDAR and 
field simulated data. 

 
Fourth, the difference in lower understorey curves between 2-5 
metres could indicate that not many LiDAR returns are 
penetrating the dense understorey, and therefore the amount of 
vegetation is potentially under-represented.  Conversely, the 
1m2 size of all field-modelled trunks (regardless of actual size) 
could be over-representing the amount of vegetation potentially 
available for the LiDAR to strike.  Understorey measurements 
(i.e., stems 1-5cm diameter at breast height (DBH)) were only 
sampled in four 5 x 5 metre subplots within the field plot, and 
scaled up subsequently to the full extent of the plot prior to 
simulation.  Therefore, the presence of a significant understorey 
component could change the relative distribution of LiDAR 
percentage cover throughout the vertical profile with respect to 
field-simulated data.  This could introduce some error in very 
heterogeneous sites, where the samples do not reflect the wider 
plot.  The subplot sampling resulted in a mean stem count of 18 
per subplot, with a standard deviation of 9 stems, and a 
Coefficient of Variation of 50%, indicating that this plot is 
heterogeneous for stems 1 - 5cm DBH.  Checking the 
simulations against photographs of the plots would also assist in 
reducing this potential error.  
 
Crown shape has been shown to be important for assessing the 
interaction between LiDAR and tree crowns (e.g. Nelson, 
1997), and this was also identified during the algorithm 
development phase, where it was observed that crown shape 
and openness had a significant influence on how field and 
LiDAR profiles compared.  The consistent application of crown 
shape is being explored through assessment of photographs of 
field plot trees. 
 

1.5 Assessing Stand Dynamics and Carbon 

Figure 4 presents a summary of the field data for SSU 124_19, 
outlining tree growth stage and species by relative percentage of 
basal area and stocking per DBH class.  Plot growth stage could 
be interpreted as complex with an overstorey canopy of large 
crowns and secondary stratum of trees with more restricted 
crowns reflecting, multiple successional phases (based on 
Florence, 1996).  Eucalyptus and Angophora species occurred 
throughout the DBH class and growth stage range, and have a 
mean tree height of 9.1 m (Standard deviation, SD, of 7.6m, 
range 2.5 – 24.0 m).  Four distinct cohort age groups were 
evident with these most likely relating to major disturbance and 
regeneration episodes in the past.  However, these species have 
relative few stems (only 1 - 3 stems per DBH class above 
25cm), indicating that they have been on this site for possibly 
hundreds of years and have self-thinned to a woodland climatic 
equilibrium.  Acacia species constitute 67% of all stems, but 
only 6% of stems greater than 10cm DBH, and have a mean tree 
height of 1.1m (SD 1.5 m, range 0.5 – 12.3 m).  Callitris has 
the majority of stems greater than 10cm DBH (77 %) but they 
are all less than 20cm DBH and, with a mean tree height of 7.4 
m (SD 3.1m, range 2.7 – 14.0 m), and are identified with the 
developing growth stage.  Therefore, they would be relatively 
recent recruits to the plot, possibly as a result of past logging 
and fire suppression, given this genus is fire intolerant when 
young.   
 

 
 
Figure. 4. Field data summary illustrating tree growth stage and 

genus distribution by basal area (total BA = 4.30m2) 
and stocking (n = 603). 

 
In terms of inferring potential stand growth stage and therefore 
carbon sequestration potential from the vertical profiles, a 
number of elements can be related to the field data.  A distinct 
strata break between understorey and overstorey could be 
inferred at 13 metres, which broadly corresponds to the 
previously described plot growth stage.  There are 13 stems 
with a top height greater than 13 metres (2 % of all stems), but 
these stems account for 55 % of the total basal area, so the 
strata break is reasonable.  The dominant understorey 
proportion visible in the curve would indicate a dense 
understorey layer that is capturing a significant number of 
returns (75 % of non ground returns are <14 m).  Further lidar 
analyses indicate this is from many small crowned stems, rather 
than a few stems with dense and wider crowns, which again 
reflects the field data.  The less dominant overstorey (in terms 
of cover) is likely to be quite open as evident by the relatively 
few voxels with canopy elements, compared to the understorey.  
Also, comparisons between this plot and other field and lidar 
plots indicate that the tallest trees in this plot are near the 
maximum height for this environment.  Based on this stand 
structure, carbon sequestration potential is likely to reduce from 
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the current stock of 143 Mg ha-1, as the few large senescent 
individuals are anticipated to die eventually and the growth of 
the other larger DBH cohorts is likely to be slow.  There is 
potential for increased sequestration from the large number of 
CP- regrowth stems present.  However in this environment they 
can ‘lock-up’ and remain small for long periods of time 
(decades) unless disturbance (e.g. fire) leads to thinning of 
individuals. 
 

4. CONCLUSION 

To date LiDAR has mainly been used to produce maps of the 
two-dimensional height and cover of forests.  In this study, we 
have shown that by distributing LiDAR returns within a voxel 
matrix, and simulating actual vertical and horizontal foliage 
distributions, a 3D representation of forest structure can be 
generated.  As each voxel can be populated with information on 
plant structural elements (e.g., foliage density), these 
representations can be used as input to models of microwave or 
radiation interaction with forests, thereby facilitating better 
interpretation of their radar response or even bi-directional 
reflectance, as recorded by airborne or spaceborne remote 
sensing instruments.  Voxels (1 m3) within the matrix were 
found to correspond to simulated crown elements and were 
summed per one metre height interval, producing vertical 
foliage profiles similar to those generated with LIDAR for the 
same forests.  The vertical strata identified in the LiDAR 
profiles appeared to match qualitative assessments of 
disturbance history and quantitative field measures.  However 
there is a requirement for adequate field and ancillary data to 
effectively calibrate and validate the analyses.  The methods 
investigated in this paper provide insight into the utilisation of 
small footprint LIDAR for determining potential stand 
structural dynamics (e.g., forest structure, biomass, potential 
growth stage, types of disturbance and succession stage), and 
further research is underway to improve the consistency of 
forest attribute estimates across a wider range of structural and 
environmental types.  
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Abstract

Light detection and ranging (LiDAR) data and large scale (1:4000) photography (LSP) were investigated for their potential to quantify the

floristics and structure of mixed species forests near Injune, central east Queensland, and to scale these up to the region for purposes of baseline

assessment and on-going monitoring. For a 220,000 hectare (ha) area, LiDAR and LSP were acquired over 150 500 m � 150 m (7.5 ha) primary

sampling units (PSUs) located on a�4 km systematic grid. Based on LSP interpretation, 292 species combinations were observed, although forests

were dominated or co-dominated primarily by Callitris glaucophylla, Eucalyptus melanaphloia, Eucalyptus populnea and Angophora Leiocarpa.

Comparisons with species distributions mapped using LSP and in the field suggested a 79% correspondence for dominant species. Robust

relationships were observed between LiDAR and field measurements of individual tree (r2 = 0.91, S.E. = 1.34 m, n = 100) and stand (r2 = 0.84,

S.E. = 2.07 m, n = 32) height. LiDAR-derived estimates of plot level foliage/branch projected cover (FBPC), defined by the percentage of returns

>2 m, compared well (r2 of 0.74, S.E. = 8.1%, n = 29) with estimates based on field transects. When translated to foliage projected cover (FPC), a

close correspondence with field measurements (r2 = 0.62, S.E. = 6.2%, n = 29) was observed. Using these relationships, floristics and both height

and FPC distributions were estimated for forests contained with the PSU grid and extrapolated to the study area. Comparisons with National Forest

Inventory (NFI), National Vegetation Information System (NVIS) and Queensland Herbarium data suggested that sampling using LSP and LiDAR

aggregated to the landscape provided similar estimates at the broad level but allowed access to a permanent and more detailed record. Observed

differences were attributed to different scales of data acquisition and mapping. The cost of survey was also reduced compared to more traditional

methods. The method outlined in the paper has relevance to national forest monitoring initiatives, such as the Continental Forest Monitoring

Framework currently being evaluated in Australia.
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1. Introduction

As a signatory to international agreements, including the

United Nations Framework Convention on Climate Change

(UNFCCC) and the Montreal Process for sustainable forest
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management, Australia is increasingly required to provide

accurate and quantitative information on the species/community

composition (herein referred to as floristics), structure and

condition of it’s forests through time (MPIG, 2001; Barrett et al.,

2001). In addition, such information is required by governments,

industry, private landholders and the public to detect trends in

commercial, biodiversity and greenhouse values (NFI, 1998,

2003; AGO, 2000; Henry et al., 2002), assess the performance of

management practices and public policies, guide sustainable

development and forecast the future condition of these

ecosystems (NFI, 2003). However, undertaking such assessments

within Australia represents a significant challenge for two main
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reasons. First, Australia has an estimated 164 million hectares

(ha) of native forests, which are distributed largely around the

outer margins of the continent. Second, around 70% of these

forests are under private management and less than 10% are in

commercial public forest estates (NFI, 2003). In the areas under

private management, the information available on structure and

condition is especially limited (MPIG, 2001). The development

of efficient and cost-effectivemethods for retrieving this essential

information is therefore critical if international obligations are to

be better fulfilled and the sustainable development and

conservation of forest resources optimised.

The overall objective of this research, therefore, was to

evaluate whether large scale (1:4000) stereo aerial photography

(herein referred to as LSP) and/or small footprint light detection

and ranging (LiDAR) data could be used as tools, either

singularly or in combination, for routinely sampling, describing

and quantitatively assessing the floristics and structure of these

forests. Focusing on areas of agricultural land and mixed

species forests in central Queensland, which were considered

typical of those occurring across large areas of Australia, the

study aimed specifically to evaluate whether: (a) floristics could

be described through air photograph interpretation (API) of

LSP, (b) measures of structure (e.g., height and canopy cover)

could be estimated from LiDAR data, (c) the resulting

quantitative estimates of each could be extrapolated to the

landscape with levels of reliability comparable to or better than

those currently available and (d) data from these sensors

combined offered a viable and cost-effective alternative or

supplement to methods used currently for on-going regional

assessment and monitoring of forests.

2. Background

Although LSP has been used as a basic forest inventory tool

for some time (e.g., Spencer, 1992), the integration of LSP and

LiDAR data has only been possible in the past few years due to

advances in sensor design and data acquisition and processing.

The following sections therefore provide a brief overview of

these two systems and their use in Australia.

2.1. Airborne scanning LIDAR

LiDAR is an active remote sensing technique that directs a

near infrared (NIR) laser pulse downwards towards the Earth’s

surface (Lefsky et al., 2002). This pulse reflects from objects

(e.g., tree canopies, buildings and the ground), and is then

received by the sensor. The time-delay between pulse

transmission and receipt is related directly to distance and

hence height, density and areal proportions of objects can be

retrieved. The intensity of the return (which has no units)

provides information on the pseudo NIR reflectance character-

istics of the objects (Wehr and Lohr, 1999; Suárez et al., 2005).

Airborne scanning LiDAR is currently experiencing rapid

commercial growth, with small footprint LiDAR being used

increasingly for terrain mapping, powerline surveys and

vegetation classification (Dowling and Accad, 2003). The

number of commercial companies operating LiDAR has
increased substantially in recent years, as has the sophistication

of instruments. In a period of only 5 years, the industry standard

has advanced from systems emitting 5000 pulses per second

and measuring a single return to those emitting between 25,000

and 75,000 pulses per second, and measuring up to five returns,

with some recording the intensity of each return (Moffiet et al.,

2005). In most systems, the laser beam is emitted through a

rotating mirror, which creates a zigzag swath of laser returns

either side of the aircraft.

Depending upon flying height, the footprint size may vary

from 0.1 to 5.0 m and the interval between laser returns may

range from 0.25 to 5 m. With the aid of real-time global

positioning systems (GPS) and sophisticated inertial navigation

systems (INS) that compensate for aircraft pitch, yaw and roll,

most LiDAR are now capable of achieving absolute spatial

accuracies of <�1 m in the x and y directions and <0.25 m in

the z direction (i.e., elevation). For forest assessment purposes,

such accuracies now makes it possible to ‘‘image’’ individual

tree crowns, and to locate the same trees on the ground using,

for example, hand-held GPS.

Over the last 15 years, the use of small footprint airborne

LiDAR for retrieving ground surface and vegetation parameters

have been demonstrated (as examples, see Nelson et al., 1984,

1988; Aldred and Bonner, 1985; Nilsson, 1994; Naesset, 1997;

Magnussen and Boudewyn, 1998; Means et al., 1999; Weller

et al., 2001; Lovell et al., 2003; Riaño et al., 2004). This work

has nowmatured to the state where direct estimates of structural

variables (e.g., tree heights and canopy cover) routinely achieve

r2 values approaching or exceeding 0.90 (e.g., Suárez et al.,

2005). Hyyppa et al. (2001) demonstrated that LiDAR could

provide more precise stand-based estimates than conventional

field-based inventory.

2.2. Large scale photography

LSP has long been recognised as a valuable tool for forest

inventory, improving the efficiency of ground sampling through

improved stratification and plot selection and bridging the gap

between ground measurements and other forms of remotely

sensed data using multi-phase and multi-stage techniques

(Spencer and Hall, 1988). Although LSP has been operational

for many years (Spencer and Hall, 1988; Spencer, 1992; Nielson,

1997; Pitt et al., 1997; Spencer and Czaplewski, 1997), its

application in Australia has been limited, with the notable

exception of a comprehensive inventory of two million hectares

of forest in western Australia (Spencer, 1992). This inventory

demonstrated that large area inventories could be undertaken at

one-tenth of the cost of traditional ground surveys. The reasons

for the lack of adoption include the perceived high cost of data

capture, film processing, labour cost (for parallax-based

measurement of stand variables), establishment of ground control

and the requirement of specialised medium format camera

systems (often mounted on helicopters). However, with the

advent of image motion compensation, specialised aerial films,

INS and real-time differential GPS, LSP can now be captured

from fixed-wing aircraft (using large format aerial cameras) by

the mainstream aerial survey and photogrammetry industry.
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Fig. 1. The location of the 37 km � 60 km study area, central east Queensland.
3. Study area

To evaluate the use of both LSP and LiDAR for quantifying

the floristics and structure of forests, an area of 37 km � 60 km

(222,000 ha) of private and public land near Injune, central

Queensland (Lat 258320S, Long 1478320E), was selected

(Fig. 1). The study area was chosen, as the forests are typical

to those of much of Australia1 in terms of floristics and

structure. Furthermore, a wide range of regeneration and

degradation stages exist, due primarily to past and present

agricultural and forestry management practices, creating forest

communities that are structurally diverse (Lucas et al., 2004,

2006). The forests near Injune have also been the focus of

extensive clearance, particularly in the late 1990s and the early

2000s, and have contributed to the significant losses of carbon

associated with vegetation clearance in Australia (Barrett et al.,

2001; Burrows et al., 2002; Henry et al., 2002).

The study areawas locatedwithin the Southern BrigalowBelt

(SBB) biogeographic region, and contained a diverse range of

forest communities (Queensland Department of Natural

Resources (QDNR, 2000)). Based on1:250,000broadvegetation

mapping (Monteal Process Implementation Group (MPIG,

2001)) and 1:100,000 scale land cover mapping from aerial

photography and Landsat TM, the forest communities were

dominated byWhiteCypress Pine (Callitris glaucophylla, herein

referred to as CP-), Poplar Box (Eucalyptus populnea, PBX),

Silver Leaved Ironbark (E. melanophloia, SLI), Smooth Barked

Apple (Angophora leiocarpa, SBA) and/or Brigalow (Acacia

harpophylla, BGL). Common understorey genera included

Sandalwood Box (Eremophila mitchellii, SWB) and Wilga
1 Within Australia, forest is defined as all woody vegetation with a top height

equal or greater than 2 m above the ground and a crown cover �20%. Wood-

lands are defined as supporting 20–50% crown cover (equivalent to 10–30%

FPC), and open forests as 51–80% crown cover (equivalent to 30–70% FPC;

NFI, 1998). Woodland formations such as those found in the study area are

representative of over 70% of Australia’s forests (Montreal Process Implemen-

tation Group (MPIG, 2001)).
(Geijera parviflora,WIL). In the north of the area, the terrainwas

hilly and dissected by small gorges in places, and ranged from

400 to 1000 m above sea level (ASL). In the centre and south,

undulating hills, plateaux and plains at approximately 200–

400 m ASL occurred. The mean annual rainfall was approxi-

mately 630 mm year�1 and the mean annual maximum

temperature was 27 8C (Bureau of Meteorology, 2004).

4. Image and field data collection

The acquisition of image and field data was undertaken in

four main stages (Table 1). In stage I, a systematic sampling

scheme (Schreuder et al., 1993) was implemented to guide the

acquisition of LSP (stage II) and LiDAR data (stage III).

Following collection and initial interpretation of these data,

forest inventory data were collected from selected areas (stage

IV). The majority of the fieldwork was carried out during the

period of LiDAR data acquisition and within 1-month of the

LSP data acquisition, thereby minimising any seasonal effects

and the likely impacts of anthropogenic land cover change at

the field sites. The following sections describe these four stages.

4.1. Stage I: sample design

The sampling framework for the collection of the LiDAR

and LSP data was implemented to allow comparison with

estimates generated using wall-to-wall mapping undertaken as

part of other studies (QDNR, 2000) and also to provide

operational experience in the implementation of sampling

frameworks that may be adopted in future regional and national

inventory programs (e.g., the National Forest Inventory (NFI)).

A systematic sampling scheme was selected, as knowledge of

the floristics and structure of the forests was too limited to allow

application of efficient stratified sampling methods. The state of

the forests had also changed rapidly over recent years, largely

because of extensive clearance of vegetation within the area,

thereby preventing the use of historical spatial layers for

stratification.
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Table 1

Main stages in the acquisition, processing and analysis of field and remote sensing data

Stage Task Purpose

Sampling and data acquisition

I Sample design To select appropriate field sample locations

II LSP capture and pre-stratification To allow description of the species/community composition

III LiDAR capture To facilitate retrieval of structural attributes (height, crown,

foliage and/or branch cover)

IV Field sampling To provide ground truth for interpretation of LSP and LiDAR

and validation of products

Post-processing

V Georeferencing of LSP to LiDAR To allow overlay of API vector information

VI Generation of LiDAR height surfaces Calculation of a bare earth DEM and vegetation height

Data analysis

VII Classification of forest communities

based on LSP interpretation

To determine spatial distributions of dominant, co-dominant

and sub-dominant species

VIII Tree height, FBPC, FPC and canopy cover

retrieval from LiDAR

To provide individual tree and stand level estimates
Based on these considerations, the systematic sampling

scheme for the 37 km � 60 km study area allowed the

acquisition of LSP pairs across a grid containing 150 (10

columns and 15 rows) points located 3.7 km � 4 km apart in

the east–west and north–south directions, respectively

(Fig. 2). The acquisition of LSP was planned such that

the 800 m � 800 m (64 ha) area (herein referred to as a

primary photo plot or PPP) was centred on each of the 150

grid points. For each PPP and within the 60% stereo

overlap area of the LSP, a 500 m � 150 m (7.5 ha) primary

sampling unit (PSU) was established. Each of the 150 PSUs

was then subdivided into 30 systematically numbered

secondary sampling units (SSU) which were 50 m �
50 m (0.25 ha) in area. Using this scheme, data could

be analysed and summarised for each of the 150 PPPs and

PSUs (4500 SSUs) that represented 5.3% (3.9% for only the

stereo area) and 0.5% of the 222,000 ha study area,

respectively.
Fig. 2. Layout of the PPP
4.2. Stage II: LSP capture

For each of the 150 PPPs, and using pre-defined coordinates,

1:4000 stereo colour aerial photographs (in negative format)

were acquired on the 11th July 2000 by QASCO Surveys Pty.

Ltd. on behalf of the Queensland Department of Natural

Resources and Mines (QDNR&M) Landcare Centre. Photo-

graphs were taken using an RC20 large format photographic

camera from late morning to mid afternoon. The effective

swath width was 920 m and, for each photo principle point,

GPS coordinates were recorded towithin a nominal precision of

�20 m absolute location. As 150 PSUs were sampled, 300

frames of photographs were obtained.

4.3. Stage III: LiDAR data capture

Airborne scanning LiDAR data were captured over a 1-week

period commencing August 24th 2000 using an Optech 1020
, PSU and SSU grid.
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Table 2

Allocation of sampled SSUs to each of 12 strata described by floristics and

biomass, giving a total of 34

Above ground biomass (mg ha�1)

Low

(<50; n = 10)

Medium

(50–100; n = 10)

High

(>150; n = 14)

Acacia (1) 1 0 0

Callitris (12) 2 3 7

Ironbark (12) 3 3 6

Eucalypt other (9) 4 4 1
scanning LiDAR mounted in a Bell Jet Ranger helicopter. The

Optech 1020 measured 5000 first and last returns and the

intensity of each return per second. The LiDAR operated within

the NIR spectrum with a beam divergence of 0.3 mrad, a

footprint of approximately 7.5 cm and an average sampling

interval of <1 m. Data were acquired flying in an east–west

direction (and centred on each PSU row), at a nominal altitude

of 250 m and a swath width of approximately 200 m. A GPS

base station was established for all flights. With full differential

GPS corrections, in addition to pitch, yaw and roll compensa-

tion from an INS, coordinates were guaranteed to an absolute

accuracy of<1 m in the x and y directions and<0.15 m in the z

direction.

4.4. Stage IV: field sampling

Field inventory data were collected during August 2000. The

collection of field data over the same period as the remote

sensing data acquisition was considered necessary to limit the

impact of changes in seasonal foliage cover or land cover

(associated with disturbance by fire or clearing) on the

subsequent development of relationships with remotely sensed

data.

Prior to acquisition of the field data, a 100 m � 100 m dot

grid was overlain onto the overlap area of each of the 150

hardcopy LSP stereo pairs and used to estimate the proportions

of land use, land cover and forest types as well as forest height

and cover, disturbance regimes and vehicular access (Jones,

2000). The LSP code allocations were then used to stratify and

identify suitable locations for field sampling on the assumption

that the vegetation types contained within the 150 PSUs were

representative of the proportions across the entire study area.

For the purposes of stratification, and based on the vegetation

assessment, the API codes were classified into four woodland

types: Acacia or sparse vegetation (containing species such as

BGL, SWB, Casuarina cristata, Allocasuarina luehmanni);

Callitris (e.g., CP-, C. preissii); Eucalypt Ironbark (e.g., SLI, E.

decorticans, E. fibrosa spp. Fibrosa and E. crebra) and

Eucalypt other/Angophora (e.g., PBX, E. dealbata, SBA and

Angophora floribunda). The Eucalypt class was split as the

various Ironbark species were seen to contribute a significant

proportion of the mapped landscape. Each forest type was then

ranked into three (low, medium and high) potential and relative

structure/biomass classes, based on structural information

obtained from API (Jones, 2000) and a biomass map generated

previously using Japanese Earth Resources Satellite (JERS-1)

Synthetic Aperture Radar (SAR) data (Lucas et al., 2000),

thereby producing 12 vegetation strata. The number of field

plots sampled (Ns) was then allocated based on the area of each

of the 12 strata (AS) as a proportion of the total area occupied by

the PSUs (where At = 1125 ha) such that:

Ns ¼
nAs

At

(1)

where n represented the number of SSUs available for sampling

based on criteria relating to road access, travel times and safety

issues. Each of the PSUs (and their contained SSUs) was
necessarily scored according to whether road and subsequent

foot access was possible, as determined primarily from the LSP

interpretation. Landsat-7 Enhanced Thematic Mapper (ETM+)

data were also used to identify roads outside of the LSP, thereby

assisting assessment of the quality of road access. Knowing that

travel times and safety issues would restrict field inventory to

2–4 SSUs per day using 2 field crews of 5 staff, 13 PSUs were

selected that contained the necessary strata and met access

criteria. Within these, 34 SSUs were sampled across the 12

strata (in proportion to their area within the 150 PSUs). Within

each of the 13 PSUs where field measurement took place, SSUs

used for field data collection were selected at random from the

390 possible SSUs and according to API-defined classes prior

to arriving at the site. Plot coordinates were also calculated and

entered into a GPS navigation system to ease location in the

field. The final plot allocations per strata are shown in Table 2.

Once located, a 50 m � 50 m square plot, aligned in a north–

south direction, was established using GPS survey and laser

range finding equipment. Tapes of 50 m length were then laid

out to produce a 10 m � 10 m grid to guide the subsequent

location of trees for measurement. For three additional SSU’s

identified as non-forest but containing regenerating vegetation,

species and structural measures were conducted in five

10 m � 10 m plots contained within the selected SSU. Within

each plot, the location of all trees >10 cm in diameter (at

130 cm above ground level) was recorded digitally by placing

reflectors at each of the plot corners and then using either a

GEOSCAN or CENTURION Laser Rangefinder to record the

distance and angle from each tree to the nearest visible reflector.

Using this approach, the Universal Transverse Mercator (UTM)

coordinates of all trees were calculated. Trees 5–10 cm in

diameter were located by reading the x and y distances (in cm)

from 50 m tapes placed perpendicularly (at 10 m intervals)

across the entire plot. The cover and height of trees and shrubs

<5 cm in diameter was estimated within five 10 m � 10 m sub-

plots, with the centres of four located at a distance of 10 m from

each of the corners and a fifth located at the centre of the plot.

Within each plot, each tree was identified to species level and

key measurements recorded included trunk diameter (cm, at

both 30 and 130 cm) and height (m) to the top of the tree.

Transects were established within the field plot to estimate

vegetation cover and consisted of three 50 m tapes laid out in

the north–south direction at 10, 25 and 40 m, moving eastward

from the south–west corner. Along each transect the presence or

absence of canopy material was recorded at 1 m intervals. The
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recording method, after Specht (1970), uses a plastic tube

which is attached to a 2 m length rod and contains an internal

cross-hair. Amirror situated at the base of the tube at an angle of

458 then enables the operator to record the presence or absence
of green leaves or wood (trunk or branches) in the canopy

vertically above. Foliage/branch projected cover (FBPC) and

foliage projected cover (FPC) is then calculated as the sum of

foliage and/or branch records as a proportion of the total. For

the purposes of this study, FBPC relates to the amount of light

that would reach the ground, and is the percentage of the plot

area occupied by the vertical projection of foliage and branches,

while FPC only considers light interception by green foliage

(McDonald et al., 1998).

5. Post-processing of field and remote sensing

Following collection, the inventory data were analysed

primarily to determine the species composition of the forests, so

that the API could be better evaluated, and to generate tree and

stand level estimates of height and cover that could be regressed

against LiDAR data. For this purpose, further stages of LSP

(stage V) and LiDAR data (stage VI) processing were necessary

(Table 1).

5.1. Stage V: georeferencing of LSP to LiDAR

Following hard copy production of the LSP, photo prints

were scanned at 600 dpi. Initial rectification was undertaken

using the known locations of the principle points and camera

parameters. Comparisons with the LiDAR data confirmed that

the photo products were generally accurate to �20 m without
Fig. 3. True colour 1:4000 stereo aerial photograph of PSU 138 overlain with the 500

associated with different forest communities (based on species composition and c
additional registration. The spatial accuracy of the LSP was

refined further by collecting ground control points (GCPs) from

the LiDAR data. This generally resulted in root mean square

(rms) errors of <�2 m within the LiDAR strips, enabling the

LSP to be georeferenced with the LiDAR data. Following

registration of the LSP, floristic and structural mapping

interpreted from the photographs (Jones, 2000; Fig. 3) was

also scanned, vectorised and rectified using the same

transformation as the digital imagery, to allow GIS overlays

over the LiDAR data (3).

5.2. Stage VI: generation of LiDAR height surfaces

Each LiDAR strip was subset to encompass only the areas

corresponding to the PSUs. A bare-earth Digital Elevation

Model (DEM) was then generated for each PSU using both the

first and last return pre-classified ‘‘ground’’ LiDAR data, such

that all measurements of vegetation height were based upon a

reliable ground reference. Both first and last returns were used

as in some cases (e.g., bare ground), only one return (i.e., first)

was recorded. The DEMwas generated for each LiDAR strip by

creating a triangular irregular network (TIN) based on a 1 m

proximal tolerance. The resultant TIN was then checked

visually to confirm correct classification of ground returns and

then transformed into a 1 m grid using quintic interpolation

methods such that irregularities in the surface, resulting from

the high density of first and last returns used, could be smoothed

out. The final DEM was checked visually against the LSP to

ensure all vegetation was removed and potential mis-

registration between LiDAR and LSP was accounted for.

Given that ground surface features <20 cm high were easily
m � 150 m PSU boundary, contained SSUs (50 m � 50 m) and polygonvectors

over), as mapped through aerial photography interpretation (API).
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Fig. 4. LiDAR data representing tree crown heights acquired over PSU 138 and rasterised to a 1 m spatial resolution grid.
discernable, the relative elevation accuracy of the final DEM

was considered to be <1 m. The height above ground of each

LiDAR vegetation return was then calculated as the elevation

difference between the ground DEM and the vegetation return.

Canopy surfaces were interpolated using a TIN from all

vegetation returns, and this was converted subsequently to a

1 m2 grid (Fig. 4) for further analysis.

6. Data analysis

To provide summary information on the forests, their

floristic composition was described using LSP (stage VII)

whilst estimates of tree and stand height and cover were

retrieved from LiDAR data (stage VIII).

6.1. Stage VII: classification of forest communities

Based on API, polygons interpreted from the LSP were

allocated between one and three dominant tree species which,

herein, are referred to as D1–D3. However, it should be

recognised that D2 and D3 could be co-dominant or sub-

dominant (e.g., common in the understorey). This resulted in

292 unique combinations of species code sequences (e.g., CP-

SLI or PBXSLISWB) throughout the study area. For reporting

clarity, these 292 species combinations were aggregated into

five broad genus groups based on the dominant species: Acacia,

Callitris, Eucalypt Ironbark, Eucalypt other and Angophora.

Areas of non-forest were also distinguished. Angophora was

identified as a separate class as the distribution of this species is

poorly documented in regional datasets, particularly as these

species are often mixed with other genera.

6.2. Stage VIII: tree height and cover retrieval

More than 2300 individual trees with diameters >10 cm (at

130 cm) were measured for diameter and height in the field.

From this pool, the heights of �100 clearly identifiable trees

were extracted from the LiDAR data. Adjustments were

required in some cases, as the centres of many tree crowns

(particularly Eucalyptus species) did not correspond to the
locations of the trunks. Field and LiDAR measurements of

height were then compared. At the plot level, relationships were

also established between field-based estimates of FBPC and

FPC, which represented the percentage of the SSU occupied by

the vertical projection of foliage and branches (Carnahan, 1990)

and foliage (excluding branches), respectively. Both FBPC and

FPC were compared against the number (for each SSU) of (a)

actual vegetation LiDAR returns with a height >2 m above

ground level and (b) interpolated vegetation cells (based on a

1 m2 pixel grid) as a proportion of all cells to determinewhether

stand level estimates of both cover attributes could be retrieved.

Crown cover (CC) was also estimated through interpretation of

the LSP, and considered the area occupied by the whole crowns

(which are considered opaque), with respect to the polygon

area.

7. Results: tree and stand level estimates

Based on the analysis outlined above, the use of both LSP

and LIDAR for tree and stand level assessment, in terms of

floristics, tree height and canopy cover was evaluated.

7.1. Species/community composition from LSP

The discrimination of species from LSP required skills in

API with knowledge of the appearance (in terms of colour and

texture) of different species. Although individual trees were not

mapped or identified by the interpreter, and so a tree-by-tree

comparison was not possible, a close correspondence (24/

34 = 70.5%) between the dominant species within the field plot

SSUs and that assigned by the API was observed (Table 3).

Forests dominated by Callitris species were identified in all

cases. SSUs identified through API as non-forest typically

contained remnant trees and regrowth stands of BGL but also

non-forest, and hence the API classification was deemed

correct in this case, increasing the overall correspondence to

79%. API identified 40 and 17.6% of D2 and D3 genera

correctly. However, all SSUs inventoried in the field contained

the same species identified as D1–D3 through API. Therefore,

although the exact order of dominance differed, the species
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Table 3

Count of field plots classified through API vs. tree basal area estimates, for D1–D3 species

API Based on field (basal area) data

Non-forest Acacia Angophora Callitris Eucalypt other Eucalypt Ironbark

D1 = dominant

Non-forest 3

Acacia 1

Angophora 3

Callitris 2 9 1

Eucalypt other 1 7 1

Eucalypt Ironbark 2 4

Total 34

D2 = co-dominant

Non-forest

Acacia 2 4 2

Angophora 2 1

Callitris 3 2

Eucalypt other 4 1 2 3

Eucalypt Ironbark 1 3

Total 30

D3 = co- or sub-dominant

Non-forest

Acacia 2

Angophora 1 1 1

Callitris 1 2

Eucalypt other 2 1 3

Eucalypt Ironbark 1 1 1

Total 17
composition was correctly identified in the majority of cases.

Such a strong correspondence gave confidence in the

subsequent classification of dominant species and communities

within each of the 4500 SSUs.

7.2. Tree and stand height estimates from LiDAR

A close correspondence (r2 = 0.91, S.E. = 1.34 m, n = 100)

between tree heights derived from both field measurements and

LiDAR data was observed (Fig. 5a). The comparison suggested,

however, that the height was more reliably estimated for trees

with more hemispherical crowns (e.g., Eucalypt and Ango-

phora species) compared to those that were more pointed (i.e.,

Callitris species). The estimates of height, both from the field

and LiDAR measurements, were within largely �1 m of each

other, although discrepancies as high as 4 m were observed,

which suggested some over-estimation by field measurement or

under-estimation from LiDAR. The height estimates provided

by the LiDAR were, however, considered to be more reliable

for several reasons. First, height measurements were obtained

from a greater area of the canopy and therefore the highest point

of the canopy could be located objectively. This is particularly

significant as the interpretation of the highest point of the tree

from the ground varies with the observer and can lead to errors

of the order observed between LiDAR and field measurements.

Second, the field-based height measurements were often

considered to contain errors as the highest point of the tree

was not always visible. Even so, a disadvantage of the LiDAR
was that the wind effects on the crown might lead to minor

errors. For the stand, a close correspondence between the

maximum (r2 = 0.84, S.E. = 2.07 m, n = 32) height (excluding

non-forest) estimated from the field and LiDAR data was

observed (Fig. 5b).

7.3. Foliage cover estimates from LSP and LiDAR

From LSP, CC was interpreted and also categorised into four

forest cover classes: 10–30, 30–50, 50–70 and 70–100%, and a

non-forest class (<10%). All classes were observed, but the

majority of cover was from 30 to 70%, which equates to open

forests under the Carnahan (1990) classification (Specht and

Specht, 1999). A close relationship between field-based

measurements of FBPC and FPC was observed (Fig. 5c)

which indicated that, on average, FPC was 67.7% (range 50–

92%) of FBPC. In general, the percentage of leaf material was

lower within forests with a greater proportion of Angophoras

and Eucalypt other and was greater within those containing

Callitris, Ironbarks and Acacia.

On average, there were approximately 5000 LiDAR point

measurements in total per 0.25 ha field plot, with an average of

1700 vegetation returns from objects greater than 0.5 m in

height. In comparison, there were only up to 150 canopy

measurements from the three 50 m transects per SSU.

Exploratory data analysis was undertaken to identify which

field measures were most closely explained by the LiDAR

vegetation returns. In this analysis, 29 of the 34 field plots were
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Fig. 5. Relationships between (a) individual tree height and (b) maximum stand height (based on SSUs), as estimated in the field and from LiDAR, and (c) field-based

assessments of FBPC and FPC (with 1:1 line in grey).
compared, as field measurements were not obtained for plot

142_02, and plot 138_28 was missing significant LiDAR data

as a result of errors in data acquisition caused primarily by

adverse wind conditions. Three plots were located in sparsely

vegetated short regrowth areas and were not therefore included.

For those plots with partial loss of LiDAR data, transects were

clipped to the extent of the available LiDAR data. The strongest

relationship between LiDAR data and field estimates was that

between field FBPC and LiDAR returns 2 m height and above

(Table 4; r2 = 0.74, S.E. = 8.1%, n = 29). In order to compare

LiDAR derived cover estimates with existing regional scale

data, which was based on FPC field calibration alone, a

relationship between field FBPC and FPC was necessarily

applied to the LiDAR vegetation returns, as the LiDAR is
Table 4

Relationships between FC and FPC and the proportion (x) of LiDAR vegetation r

Cover descriptor r2 Adjusted r

Field FBPC vs. LiDAR veg returns 0.74 0.73

Field FPC vs. field FBPC 0.89 0.88

Field FPC vs. LiDAR FPC (returns) 0.62 0.61
responsive to both leaves and branches. This relationship

suggested a good correspondence (r2 = 0.89, S.E. = 4.0%,

n = 29) between these parameters. The LiDAR-predicted

estimates of FPC, when plotted against the field-estimates of

FPC, suggested that this cover measure could be estimated with

a reasonable degree of certainty (r2 = 0.62, S.E. = 6.2%, n = 29;

Fig. 6), particularly given the disparity between respective

number of measures per method, and also the measurement

coverage within the plot (field = �3% of plot; LiDAR = 100%

of plot). The lower outlier identified in Fig. 6 was associated

with an SSU in which one of the three field transects passed

through a particularly open section, suggesting that the ground

measurements were not adequately capturing the variability

within the plot. The upper outlier was associated with a SSU
eturns (�2 m)

2 S.E. (%) n Equations

8.1 29 Y = 1.09x + 6.24

4.0 29 Y = 0.6454x + 3.23

6.2 29 Y = 1.08x + 3.46
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Fig. 6. Estimates of LiDAR predicted FPC vs. actual field estimates. Outliers

associated with open ground or less dense LiDAR returns are circled. Dashed

lines indicate 95% confidence intervals.
with high cover, but poor LiDAR coverage (2 m spacing)

compared to other SSU’s, as a result of adverse wind

conditions. With these plots removed, the strength of the

relationship increased further (r2 = 0.68, S.E. = 4.9%, n = 27).

The various relationship values for field to LiDAR cover

conversions are summarised in Table 4.

8. Scaling up to the landscape

On the basis of the plot level relationships established with

LSP (floristics) and LiDAR (height and canopy cover),

predictions of mean attribute values and distributions at both

the PSU (150 predictions) and SSU (4500 predictions) level for

the entire 220,000 ha study area were generated. The following

sections present a summary of the extrapolations and then

compare the sampled distributions with the mapped distribu-

tions based on datasets currently used by both the Queensland

and Federal Governments.
Table 5

Comparison of dominant genus groups as sampled from the 4500 SSUs and mapp

Data source Percentage area of dominant genus group

Acacia Callitris Eucalypt

Field plots (7.75 ha)a 8.8 30.3 15.7

API-PSU (1125 ha) 3.1 35.6 24.3

API-PPP (8713 ha) 2.8 36.8 25.2

Qld Herbarium (PSU area) 0.0 18.8 54.5

Qld Herbarium (PPP area) 0.3 17.5 54.5

Qld Herbarium (study area) 1.1 18.6 51.9b

a Percentage based on basal area (for trees 10 cm DBH+) and not crown area.
b 28% could also be included in the ‘‘Eucalypt other’’ class.
c Includes unknown species in the field plot and LSP data.
8.1. Species distributions

The floristic composition was established by summarising

the occurrence of species associations within the 4500 SSUs.

Approximately 70% of the D1 species were represented by CP-,

SLI, SBA and Eucalypt species, with CP- being the most

common. Only 10% of the study area was non-forest. Within

the remaining 20%, species such as Eucalyptus dealbata

(TDG), E. fibrosa sp. Fibrosa (BRI) and E. decorticans (GTI)

were commonplace. Of the D2 species, SLI, EUS, CP- and SBA

continued to account for the majority (55%), with the remaining

co-dominant including GTI, TDG and PBX. D3 species were

absent from 35% of the PSUs and, where they did occur, these

were dominated by Eucalyptus species (particularly SLI),

although a diversity of other species were present. Such species,

many of which are understorey, included BGL and SWB.

Species associations were commonplace. Based on the

presence of D1 and D2 species (e.g., PBXSWB, which

represents and association of PBX and SWB), CP-SLI formed

the most extensive association although CP-SBA, SBA-CP- and

SLI-CP- were common. However, these associations (together

within non-forest) represented only 31% of all associations.

Other associations, including SLI-EUS and CP-EUS, domi-

nated within 61% of the PSUs with non-forest occurring in the

remainder.

Within the existing regional datasets (i.e., 1:250,000 broad

vegetation mapping; MPIG, 2001) and 1:100,000 scale land

cover mapping based on Landsat TM, the equivalent detail at a

species level was not available. Therefore, species information

for the SSUs were extracted from Queensland Herbarium data

and based primarily on the dominant species according to the

main categories ofAcacia,Callitris, Eucalypt/Ironbark, Eucalypt

(other), Angophora and non-forest. It should be noted that the

regional datasets were also generated partially from the

Herbarium data, but the final aggregation classes were too

broad for our needs. The distribution of species/communities

within the study area, as sampled using the field plots, the PSUs

and also the PPPs, was then compared (Table 5). Areas of

Angophora andnon-forestmapped using theHerbariumdata (for

the PPPs andPSUs)were similar to thosemapped usingAPI. The

mapped area of Acacia was far lower within the Herbarium data,

although this may have been attributed to the extensive clearance
ed using Queensland Herbarium data for the SSUs and also the region

Ironbark Eucalypt otherc Angophora Non-forest

30.3 15.1 –

16.1 10.9 10.0

15.1 9.5 10.7

4.6 12.4 9.7

5.4 12.7 9.7

6.8 11.0 10.7
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of woodlands and subsequent regrowth of Acacia in the period

between the Herbarium (1995) and the LSP survey (2000). The

area of Callitris were under-estimated (by �50%) by the

Herbarium and a greater area of Eucalypt/Ironbark was mapped

compared to just Eucalypt and other genera. The combined area

of Herbarium-mapped forests with Eucalypt dominance was,

however, greater (by about 20%) compared to the 2000 survey.

The relative proportion of Herbarium classes within the area of

the PSUs and PPPs, was similar to that observed across the entire

study area, suggesting that the proportion of species observed in

the LSP for the PSUs and PPPs should be representative of the

area as a whole.

The discrepancies observed between the two surveys were

attributed partly to the differing scales of the datasets rather

than to the different approaches to mapping (i.e., wall-to-wall

mapping and systematic sampling). Specifically, the Herbar-

ium classifications were generated from a combination of

Landsat sensor data with API of 1:80,000 scale photography

and some field survey, and hence less detail was able to be

resolved. Also, the Herbarium classifications were designed

for describing community mosaics, so that the relative

dominance of species in any one polygon may not match a

field survey plot in that same polygon; however, the overall

landscape composition will be robust. The differences in the

extent of Callitris are of concern, however, as these are

spectrally most distinct from other communities within the

Landsat sensor data. The analysis suggests that the LSP API

provided a good estimate of the extent of dominant species

within the study area and also a better identification of the

composition of the communities.

8.2. Height and FPC distributions

A comparison of height estimates for the 13 PSUs with those

estimated through the NFI (2003; Table 6) indicated a general

correspondence between classes but demonstrated the greater
Table 6

Estimates of the maximum and range (top 10%) of heights as estimated using

LiDAR and by the NFI (2003)

PSU LiDAR height NFI (2003) height

Maximuma (m) Rangeb (top 10%, m) Range (m)

114 30 16–30 11–30

124 29 17–29 11–30

83 29 17–29 11–30

111 29 16–29 11–30

81 27 18–27 11–30

58 25 14–25 11–30

23 24 14–24 11–30

138 23 15–23 11–30

148 23 13–23 11–30

144 24 15–24 0–30

142 20 13–20 0

59 20 11–20 0

131 15 10–15 0

a The highest LiDAR return above the ground.
b 10% of returns sorted highest to lowest.
detail that could be obtained using LiDAR (as only two height

categories were stated by the NFI). Within Australia, forests are

defined as being>2 m in height and supporting a canopy cover

of �20% and, within this vegetation type, woodland, open

forest and closed forest are regarded as having an FPC between

10 and 30%, 30 and 70% and greater than 70%, respectively

(Carnahan, 1990; Specht and Specht, 1999). These broad

categories were therefore used to summarise the spatial

distribution of FPC (and also height), as estimated using the

regression equations with LiDAR outlined above, across the

4500 SSUs (Table 7).

Heights, in this case, were defined as the maximum height

within each SSU, as estimated using LiDAR, whilst FPC was

defined as the total FPC of the SSU. Based on the FPC classes,

approximately 10% of the area represented by the SSUs was

defined as non-forest, whilst 17.7 and 72.2% were defined as

woodland and open forest, respectively. Within the non-forest

areas, the maximum height of vegetation was <9 m (for

approximately 85% of the class) with greater heights associated

with large and relatively isolated trees (e.g., remnant within

paddocks). Within the woodlands and also the open forests, the

maximum height of the trees was distributed relatively evenly

between the 10–19 and 20–29 m classes. Few PSUs with trees

30–39 m tall were observed.

The distribution of height by genus group (Table 8)

suggested that different height classes were dominated by

different genera, namely Acacias (2–9 m), Callitris and

Eucalyptus (10–19 m), Callitris (30%, 20–29 m) and Calli-

tris/Angophoras (30–39 m). Within the 20–29 m height class,

Callitris predominated (36.5% of the category) but Eucalypt/

Ironbark, Eucalypt/other and Angophora occurred in moderate

(�20%) and roughly equal proportions.

LiDAR FPC estimates were also generated for each of the

4500 SSUs. The distribution of FPC by community (Table 9)

suggested that within the non-forest category (i.e.,

FPC < 10%), Acacia was more abundant, with BGL dominat-

ing. Within woodlands, all other genus types were equally

represented. However, within the open forest, Callitris and

Eucalypt other/Ironbark represented over 70% of the dominant

genera occurring.

Estimates of forest cover by type (based on either API or

LiDAR) for the area were compared subsequently against prior

estimates generated by the State Land Cover And Trees Survey

(SLATS) land cover change analysis (1991/1999; QDNR,
Table 7

Percentage distribution of 4500 SSUs within different height and FPC classes

Height

interval (m)

Non-forest

(<10%)

Woodland

(10–<30%)

Open forest

(30–<70%)

Total

<2 3.5 0 <0.1 3.5

2–9 5.0 <0.1 0 5.1

10–19 1.3 9.3 38.2 48.8

20–29 0.2 8.2 33.6 42.1

30–39 0 <0.1 0.4 0.5

Total 10.1 17.7 72.2 100.0
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Table 8

Proportion of different dominant genera within the 4500 SSUs

Height intervala (m) Percentage of SSU’s by dominant genus group

Non-forest Acacia Callitris Eucalypt Ironbark Eucalypt other Angophora Total

<2 2.64 0.80 0.04 0.0 0.04 0.0 3.53

2–9 4.58 0.36 0.13 0.0 0.02 0.0 5.09

10–19 2.11 1.58 20.04 15.38 8.20 1.53 48.84

20–29 0.64 0.40 15.18 8.82 7.78 9.22 42.04

30–39 0.02 0.0 0.18 0.09 0.07 0.13 0.49

Total 10.0 3.13 35.58 24.29 16.11 10.89 100.0

a Max LiDAR height of SSU.

Table 9

The percentage distribution of FPC by dominant genus group across the 4500 SSUs

FPC Percentage of SSU’s by dominant genus group

Non-forest Acacia Callitris Euclaypt Ironbark Eucalypt other Angophora Total

Non-forest (<10%) 8.47 1.22 0.20 0.09 0.09 0.2 10.09

Woodland (10–<30%) 1.31 0.36 3.60 4.13 4.20 4.09 17.69

Open forest (30–70%) 0.22 1.56 31.78 20.07 11.82 6.78 72.22

Total 10.0 3.13 35.58 24.29 16.11 10.89 100

Table 10

Forest extent estimates (FPC) as a percentage of the 220,000 ha study region based on existing regional mapping compared to those generated using LSP and LiDAR

Data source Date Non-forest (% of area) Woodland (% of area) Open forest (% of area)

SLATS 1991a 12 17 71

NFI (SOFR) 1997 11 30 60

NVISb 1999 11 70 19

NFIc (Montreal reporting) 2000 13 67 20

LSP sample (3.9% of study area)d 2000 11 � 5 43 � 5 38 � 5

LIDAR sample (0.5% of study area) 2000 10 � 2 18 � 2 72 � 2

a The FPC value (i.e., woodland/open forest) is based on 1991 estimates, whilst the non-forest area is based on 1999 land cover change mapping.
b For Queensland, the NVIS is derived from the Herbarium data.
c The NFI provides information only on broad vegetation classes (e.g., Callitris, Acacia and Eucalpyt) and is a combination of Landsat cover estimates plus regional

ecosystem mapping (including Queensland Herbarium data).
d Translation of LSP estimate of CC to FPC.
2000), the 1998 State of the Forest Report (SOFR; NFI, 1998),

the National Vegetation Information System (NVIS; NLWRA,

2001) and more recent NFI data (through Montreal Process

reporting; Commonwealth of Australia, 2002). Of the existing

datasets, the area estimates generated through SLATS and NFI

(from the State of the Forests Report, SOFR) suggested a lower

proportion of woodland compared to open forest (Table 10).

NVIS and the NFI were also similar but suggested that the area

of woodland far exceeded that of open forest. In all cases, the

area of non-forest was relatively similar. The distribution of

FPC within the PSUs/SSUs was most similar to that of SLATs

(when based on the LiDAR) and the NFI (SOFR), although

some variability between samples was observed. The compar-

ison also suggested a discrepancy in the area of non-forest, with

a lower amount estimated using the LiDAR data (Lee et al.,

2003).
9. Discussion

The study has shown that LSP and LiDAR can provide

estimates of stand level floristics and structure (e.g., canopy

cover) which are more comprehensive, precise and of greater

number compared to field measurements alone. Through API

and the development of empirical relationships with LIDAR

data, regional level estimates can be generated through simple

extrapolation. This approach provides options for operational

mapping of such attributes. These options are discussed in

greater detail in the following sections.

9.1. Retrieval of tree and stand level floristics and structure

The identification of tree species and an assessment of their

dominance within the community can be achieved through
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interpretation of LSP, although the skills of an experienced

interpreter are required. As the diversity of D1 species is not

high compared to D2 and D3 genera and many are spectrally

distinct in the visible wavelengths, reasonable identification can

be achieved at this scale. This capability was confirmed by the

high correspondence between the API assessment of dominant

species and the field observations. However, the classification

of the community according to the three levels of dominance

appears to be more subjective because the composition of the

communities is well described but the relative order of

dominance is not.

Previous studies within Australia and also overseas have

indicated that the estimates of tree height from LiDAR are

likely to be more accurate than field-based measurements under

most conditions, largely because of the difficulty in locating the

highest part of larger, non-uniform crowns in the field

(particularly in closed canopies) and the errors associated with

the measuring devices (e.g., rangefinders) themselves (Witte

et al., 2000). Even so, variations occur between sites (Lovell

et al., 2005) as LiDAR estimates of tree height are affected by

sensor configurations as well as crown shape (Nelson, 1997).

Correction factors may therefore need to be applied, although

this requires additional knowledge on tree form or species

distributions. Within woodlands and open forests, however,

estimates of tree height are likely to be more reliable compared

to closed forest situations because of the greater likelihood of

retrieving returns from the underlying ground surface.

Strong relationships were obtained between field-based

estimates of both FBPC and FPC and LIDAR, regardless of the

forest type. Similar outcomes were reported by Riaño et al.

(2004), who demonstrated that LiDAR-derived estimates of

canopy cover correlated well with ground estimates of covered

ground and leaf area index (LAI, m2 m�2) generated using

hemispherical photography, although the study indicated that

variation with forest type occurred. The retrieval of both

parameters from LIDAR was considered more reliable than

from field measurements and (in the case of CC) API estimates,

largely because of the capacity to quantitatively encompass the

spatial distribution of tree crowns and the variability in crown

shapes. Furthermore, the estimates from LIDAR can be re-

sampled to support the interpretation of other data (e.g., as

acquired by Landsat sensors), thereby avoiding the specific

design of field-sampling layouts to suit the resolution of the

particular data involved.

9.2. Regional estimates of floristics and structure

Comparison with Queensland Herbarium data suggested

that although the area of non-forest was similar, the areas

occupied by forest types differed. In particular, the LSP data

suggested that Callitris dominated approximately one-third of

the forests occurring, whilst the Herbarium data suggested this

figure to be less than one-fifth. The Herbarium data also

suggested that over 50% of the forests were dominated by

Eucalyptus species including Ironbark, whereas the LSP data

indicated that Ironbarks were less represented or absent in

approximately 15% of the forests observed as containing
Eucalyptus. The LSP therefore provided a better indication of

the species composition of the forests and a more detailed and

permanent record. The areas of Angophora and non-forest were

reasonably similar to those mapped by the Queensland

Herbarium, although a greater extent of Acacia was noted

from the LSP.

Based on the analysis, LSP was considered to be an efficient

and reliable sampling tool that also provided a single, consistent

source of information on vegetation structure, land use,

disturbance regimes and other landscape attributes. The LSP

also provided a more robust regional estimate of community

composition than existing mapping sources and was also more

suited for establishing baselines of community composition and

monitoring long-term changes, particularly as a photographic

record was provided. In terms of structure, the height (both

maximum and range) distributions from LiDAR were

considerably more detailed than those available previously

(e.g., NFI, 2003) and provided a greater insight into the

structure of the forests. For the study area, the greatest heights

were typically associated with open forests dominated by

Callitris and Angophora. Angophoras are often remnant within

the area because of their low commercial value and large

individuals with expansive crowns are commonplace. Callitris

forests are also managed for commercial purposes (Harris et al.,

2003) and large trees are therefore typical. Acacias generally

dominated the lower height classes, particularly as many are in

the early stages of regeneration as a result of recent clearance

and degradation (Scanlan, 1991; Fensham et al., 1998).

The FPC estimated from LiDAR suggested that the majority

of the area could be classified as open forest, with woodlands

occupying a relatively small amount. The greatest FPC was

associated with Callitris and also Eucalypt Ironbark forests.

Both CP- and SLI, which are typical to these forests, have a

high density of foliage compared to many other species and the

density of crowns within CP- is also often large (several

thousand per hectare). Although being amongst the largest

trees, Angophoras typically support a lower density of foliage

(which is generally orientated vertically) and hence there is

some representation of Angophoras within the woodland

category. Similarly, the Eucalypt/other category was associated

more with the woodlands. The lower cover estimates from LSP

were attributed to the more qualitative assessment compared to

when LiDAR data are used.

The FPC estimates from LiDAR for the PSUs corresponded

well with those generated by SLATS and to a certain extent with

the NFI SOFR. However, the estimates of the proportion of the

area allocated to woodland and open forest differed substan-

tially from the NVIS and NFI (Montreal Process reporting)

which was attributed largely to differences in mapping

techniques and issues of scale.

9.3. Operational implications

The study has confirmed that LSP and LIDAR, both

singularly or in combination, can provide stand-based and

landscape estimates of floristics and structural attributes (e.g.,

height, FPC) for structurally complex forests that are typical to
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large areas of Australia. At the stand level, such estimates are

probably at least as accurate as and potentially more precise

than ground-based sampling methods and can be implemented

at the same cost once initial calibrations with field data are

undertaken. As illustration, 4500 0.25 ha estimates of stand

height and cover were produced across the 37 km � 60 km area

for approximately AU $120,000 including labour. The same

4500 ‘‘plots’’ would take more than 20 person years to

complete and are estimated to cost between AU $4–6 million

using traditional field-based methods. Suchmethods would also

be difficult to implement across the area due to problems of

access. Additional analyses are required to estimate how these

savings and benefits may translate into national and regional

inventory and monitoring programs. However, it is realistic to

expect cost savings well in excess of 90% over traditional field-

based methods when surveying large areas.

Whilst the potential savings through integration of LSP and

LiDAR have been indicated, further savings would be realized

through their combined use within an integrated monitoring

framework. For baseline surveys of very mixed and hetero-

geneous forests, LSP is crucial for identifying, for example,

land cover, floristics and disturbance, and for assisting with the

calibration and validation of LiDAR information. Under many

circumstances, LSP alone may seem a ‘‘cheaper’’ option

compared to flying both LSP and LiDAR, particularly

considering LSP offers the ability to record more than

structural attributes. However, the labour costs associated with

LSP are effectively fixed, so each subsequent survey will cost

approximately the same as the first. LiDAR is significantly

different in that the majority of the cost in terms of labour

occurs in the early stages of the first survey and automated

procedures decrease labour costs as the areas flown and the

requirement for monitoring increase. LiDAR also offers the

ability to automatically monitor structural attributes (e.g.,

canopy density or defoliation) relating to, for example, forest

condition at a more precise level than LSP. For these reasons,

the use of both LSP and LiDAR in an initial baseline survey and

the acquisition of LiDAR in subsequent survey would be the

most cost-effective option for sample-based inventories. Fully

automated procedures could also be used to identify significant

areas of change using the LiDAR data.

10. Conclusions and recommendations

The research has demonstrated that sampling using LSP and/

or LIDAR can provide quantitative assessments of floristics and

key structural attributes (height, cover) which can be

extrapolated across the landscape. These estimates are

comparable to those generated using traditional wall-to-wall

mapping approaches although absolute comparison is limited

because of the coarser level of detail associated with many

existing datasets. This feature highlights then the additional

information that can be obtained using the fine spatial

resolution datasets. Furthermore, the assessments are based

largely on statistical relationships established between remote

sensing data and field-based measurements and the procedures

are consistent, reproducible and are also cost-effective.
Although the level of detail is greater and the sampling

appears to represent the distribution of floristic and structural

attributes across the landscape, wall-to-wall mapping is still

regarded as essential for certain purposes (e.g., to evaluate the

loss of communities associated with land clearing). However,

such mapping is actually enhanced considerably by the

provision of an extensive fine spatial resolution dataset as

acquired during this research.

The study therefore recommends the establishment of an

integrated mapping and monitoring framework which has, at its

base, sampled acquisition of fine spatial resolution data

(namely LIDAR, LSP, videography or even hyperspectral

data) supported by a comprehensive and targeted field

campaign and same-date acquisition of airborne or spaceborne

remote sensing data for scaling purposes. Once established,

repeated overflights of all datasets can be used to determine

change in floristics and structure and better inform and/or

support regional forest and woodland management, obligations

to international agreements (e.g., the Montreal Process,

International Biodiversity Treaty and the UNFCCC) and

national and international opinions on, for example, greenhouse

gas emissions and conservation of biodiversity.

Within Australia, a Continental Forest Monitoring Frame-

work (CFMF) has been initiated to provide an integrated,

nationally consistent inventory and monitoring program for

meeting assessment and reporting requirements (BRS, 2003).

For the CFMF, new data integration and analysis techniques are

being investigated and evaluated on the basis of cost-

effectiveness, ease of application, repeatability, transparency

and verification. The outcomes from the CFMF are intended to

provide a scientifically robust analysis of status and trends in

the extent and condition of forest ecosystems (including the

environmental services they provide) in a timely and consistent

manner across all tenures. The information will be used to

inform and evaluate national policy and regional decisions on

trans-boundary issues and to support sub-regional monitoring

activities aimed at evaluating management actions (BRS,

2003). The CFMF will be designed with consideration to

political, economic and scientific requirements and constraints.

This design will take advantage of opportunities presented by

recent developments in remote sensing at a range of scales,

whist at the same time retaining the maximum extent of

coverage and incorporating new and more efficient data

collection techniques as these become available. The design

features three interrelated tiers of data collection and is being

evaluated in north–east Victoria where a wide range of forest

types and environments exist (Lee et al., 2003). The techniques

developed in this research are contributing to this CFMF pilot

project and it anticipated will form the basis for wider

application across Australia.
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Enhanced Simulation of Radar Backscatter From
Forests Using LiDAR and Optical Data

Richard M. Lucas, Alex C. Lee, and Mark L. Williams

Abstract—Focusing on a forest dominated by Poplar Box
(Eucalyptus populnea) near Injune in Queensland, Australia, light
detection and ranging (LiDAR) and optical remote sensing data
are integrated with tree- and stand-level information to parame-
terize a coherent L-band synthetic aperture radar (SAR) imaging
simulation that models microwave penetration and interaction
with the canopy, understory, and ground. The approach used
LiDAR data to generate a three-dimensional representation of
the distribution of tree components (leaves and small branches)
by species (based on 1-m3 voxels) and the ground surface. Tree
trunks were mapped across a 7.5-ha forest stand using a LiDAR-
derived height-scaled crown openness index. Primary and sec-
ondary branches were modeled as tapering cylinders and linked
the canopy voxels to the LiDAR trunks. The dimensions of veg-
etation and soil components and their geometric and dielectric
properties required by the model were calibrated with field-based
measurements. Visual and numerical comparison between NASA
JPL Airborne SAR data and the model simulation suggests the
effective modeling of SAR imagery at L-band. The study provides
a proof-of-concept approach for integrating LiDAR data in the
parameterization of coherent SAR simulation models, and the
model presents options for better understanding of the informa-
tion content of SAR data in real forest situations.

Index Terms—Australia, forestry, light detection and ranging
(LiDAR), radar, scattering, simulation.

I. INTRODUCTION

KNOWLEDGE of the information content of synthetic
aperture radar (SAR) data acquired over forest envi-

ronments, particularly microwave interaction with different
components (i.e., leaves, trunks, and branches), is required to
support the retrieval of their biomass, structure, and floristic
composition at an operational level. Such knowledge is in-
creasingly important given the successful launch of Japan’s
Advanced Land Observing Satellite (ALOS) Phased Array
L-band SAR (PALSAR) in January 2006 and the proposed
deployment of other spaceborne SARs operating at L-band,
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C-band (e.g., RADARSAT-2), and X-band (e.g., TerraSAR).
Data from these and currently operating SARs are anticipated to
play a major future role in global forest characterization, map-
ping, and monitoring and will be used to support greenhouse
accounting, carbon cycle science, biodiversity assessment, re-
source management, and sustainable utilization of forests.

In gaining such knowledge, a number of approaches can be
adopted. These include the use of empirical relationships with
structural attributes and biomass [1]–[3]. More sophisticated
models use two-dimensional (2-D) layered distributions of tree
components of varying sizes, geometries, and dielectric proper-
ties [4]–[6] to simulate (and understand) microwave interaction
with the forest volume together with the overall backscatter
coefficient (σ◦) and the magnitude of contributory mechanisms
(e.g., single bounce, volume scattering) [7], [8]. However, in
both cases, much of the information used has been derived
from field data collected from individual trees and/or stands
(e.g., through plot-based survey). Such information is limited,
however, as the three-dimensional (3-D) distribution of plant
components is not adequately captured. Furthermore, many
layered models assume a random but uniform distribution of
scattering elements within the forest volume, whereas many
forests are much more structurally complex.

An opportunity to provide a more realistic representation of
forest volume has arisen with the advent of light detection and
ranging (LiDAR) data. These data have been used primarily
to retrieve commonly measured forest attributes, namely tree-
based estimates of top height and crown dimensions [9]–[11] or
stand-based estimates of mean or maximum canopy height [12],
basal area [13], canopy cover [14], [15], timber volume [16],
and/or biomass [17]. Algorithms have typically been devel-
oped through reference to or using empirical relationships with
ground data, and their success has been reported by referring
to a testing ground data set and utilizing standard statistical
descriptors (e.g., the coefficient of variation r2). Most of these
studies have been conducted across a range of forested biomes
(boreal, temperate, subtropical, and/or tropical) in the U.S. [18],
[19], Canada [20], [21], Australasia [22], [23], and Europe
[24], [25] and largely by timber companies, government orga-
nizations, and the academic scientific community. As with this
study, data acquired by discrete return small footprint LiDAR
have generally been utilized [26]. This is typically a two-return
system (although some systems can retrieve up to five returns),
whereby the ground and vegetation returns are separated (into
first and last). Depending upon the flying height, the laser
footprint size can vary from 0.1 to 5.0 m and the interval of
laser returns from 0.25 to 5.0 m [23]. Large-footprint full-
waveform LiDAR is also increasingly being used, as these sys-
tems facilitate a more comprehensive assessment of the forest
canopy volume [15], [19], [26], [27], although they have yet to
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become commercially feasible or as widely available as small-
footprint systems. When retrieving forest structural attributes, a
majority of the studies utilized the LiDAR height information,
which has generally been in the form of canopy height surfaces
interpolated from point data. However, research is increas-
ingly focusing on alternative measures (e.g., summaries of the
vertical distribution of returns) for retrieving forest structural
attributes [16], [17], including those that have proved more
difficult to quantify [e.g., the density and actual location of
trees and the distribution of individual plant components (e.g.,
leaves, branches) within the forest volume]. It is this informa-
tion that is also sought by scientists researching the interaction
of microwaves with the forest volume and the potential of radar
for retrieving forest structural attributes and biomass.

Developments in SAR simulation modeling have occurred
alongside those in LiDAR remote sensing, with the former
increasingly seeking and utilizing information on the 3-D strati-
fication of forests. For example, Stuopis et al. [28] used sim-
plified models of Pinus (pine) and Quercus (oak) species to
reconstruct forested terrain and coupled these to a model that
both simulated microwave interaction and produced an image.
In this case, the forests were not generated using detailed
ground truth, and simulations from single polarization channels
only were reported. More realistic representations [of Acer
(maple) trees] were generated in [29] and [30] using fractal
models, although only backscatter levels were predicted and
the data were not coupled with SAR simulations. A number
of researchers have developed SAR simulation models based
on cubes or “voxels” of varying dimensions (e.g., [8], [34],
and [36]) attributed with input parameters from modeled repre-
sentations of trees. These SAR imaging calculations determine
the attenuation of microwaves during their passage through the
forest canopy as a function of the dimensions, orientations, and
dielectric constants of the tree components by voxel. As with
the 2-D models, they simulate both total and decomposed (i.e.,
according to the contributions of different scattering mecha-
nisms) SAR backscatter. For example, Praks et al. [33] used
models of Scots Pine (Pinus sylvestris) coupled to backscatter
calculations and compared these with actual SAR observations
(although a full SAR image calculation was not performed). In
[34], similar tree models were used in a very high frequency
(VHF; 20–90 MHz) SAR calculation, and image outputs were
compared with CARABAS [31] observations; the simulations
used for this paper are an extension of this earlier technique.
In [35], a model canopy generated from a statistical descrip-
tion of Indonesian rainforest was combined with a full SAR
simulation to perform a coherent (phase preserving) InSAR
calculation, including a prediction of interferometric coherence.
By indicating the potential for the recovery of canopy structure
using interferometry, this work highlighted the importance of
coherent SAR image prediction. In [32] and [36], a biologically
accurate model forest was coupled to a coherent SAR simula-
tion to assess the potential of an algorithm (which relied upon
both polarimetry and interferometric coherence) for detecting
subcanopy moisture [32] and concealed targets [36]. Despite
these advances, no studies have yet utilized LiDAR data to map
or model the explicit distribution and size of plant components
(leaves, branches, and trunks) within different canopy layers
and in three dimensions for input to SAR simulations. Further-
more, in parameterizing the models (e.g., with geometric and

dielectric information), most have used data from external and
often historical sources rather than undertaking field sampling
(e.g., destructive harvesting of trees for assessing moisture
content) at the same time and location at which the SAR data
were acquired.

In this study, and focusing on a 7.5-ha forested site in
Queensland, central east Australia, we bridge gaps in forest
canopy model 3-D representation and SAR simulation by pre-
senting a proof-of-concept methodology that revolves around
the construction of a 3-D voxel matrix (1-m3 resolution). The
matrix is intersected with airborne scanning LiDAR data, and
voxels containing LiDAR returns are used to model the 3-D
distribution of leaf and terminal branches within the forest
volume. A LiDAR-derived canopy density surface is used to
map potential tree stem locations. An algorithm for delineating
individual crowns/clusters of crowns (objects) is then applied
to the LiDAR data, and each object is associated with a
species type through reference to classifications of hyperspec-
tral Compact Airborne Spectrographic Imager (CASI) data and
large-scale (1 : 4000) aerial photography (LSP) acquired over
the same forests. Voxels are then associated with individual
crown/cluster objects based on criteria of proximity and adja-
cency and are attributed subsequently with species-specific and
field-measured parameters related to the dimensions and geo-
metric and dielectric properties of leaves and terminal branches.
Finally, secondary branches of varying dimension and orien-
tation are constructed between individual voxels and primary
branches, with the latter constructed between discrete groups
of voxels and the LiDAR-mapped stems. The ground surface is
also characterized using field observations and classifications
undertaken through linear spectral unmixing of CASI data.
Using this information, we parameterize a 3-D coherent SAR
image simulation model that considers microwave penetration
and interaction with canopy and understory components.

The research presented is unique in that it is the first to
reconstruct a forest from LiDAR data and use this to perform
a coherent SAR image calculation and predict a fully polari-
metric single-look complex (SLC) SAR image. Simulations are
performed at L-band. The significance of an ability to predict
coherent SAR imagery was amply highlighted in [35], where
calculations indicated the potential of recovering structural
information from InSAR measurements. This potential has
recently been demonstrated using the model reported in this
paper; here, SAR imagery of the Injune forest was simulated,
and tree height was retrieved using PolInSAR techniques [37].
This research also emphasized the importance of the correct
prediction of SAR coherence in modeling.

This paper is constructed as follows. Sections II and III
provide an overview of the study site and the collected data.
Section IV considers the formation and parameterization of
the model forest canopy using LiDAR. Section V describes
some of the more salient features of the SAR simulation. In
Section VI, the fully polarimetric simulation results for a single
forest at L-band are illustrated and compared with airborne
SAR (AIRSAR) observations of the modeled area at the same
frequency. Section VII then evaluates the procedures developed
for integrating the LiDAR, CASI, and field data to reconstruct
the forest and parameterize the coherent SAR model, the SAR
simulation results, and the benefits and implications of the re-
search. The study is summarized and concluded in Section VIII.
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II. SITE DESCRIPTION

The study focused on an area of mixed species forests
near Injune in central Queensland, Australia (latitude 25◦32′S,
longitude 147◦32′E). In preparation for the acquisition of LSP,
LiDAR, and hyperspectral (e.g., CASI) data as well as air-
borne NASA JPL SAR (AIRSAR), a grid of one hundred fifty
500 × 150 m primary sampling units (PSUs; 10 columns,
15 rows) was established, with each separated in the north–
south and east–west directions by approximately 4 km. PSUs
were numbered sequentially from top left (1) to bottom right
(150), with each subdivided into 30 secondary sampling units
(SSUs) that were numbered sequentially from 1 to 30. The
study area is described in full in [4] and [23], which include
illustrations and descriptions of the PSU/SSU grid and remote
sensing data sets acquired.

For this particular study, a 500 × 150 m section (PSU 142)
of forest dominated by Poplar Box (Eucalyptus populnea) was
considered, as data from four 50 × 50 m field plots (SSUs)
had been collected at the same time as the remote sensing data.
This forest contained relatively sparse cover with a biomass
ranging from 43 to 80 Mg · ha−1 for the contained SSUs,
as calculated by applying species-specific allometric equa-
tions [38] to plot measurements of stem diameter. Although
E. populnea dominated, individuals of other species, including
Brigalow (Acacia harpophylla), White Cypress Pine (Callitris
glaucophylla), and Silver-Leaved Ironbark (E. melanaphloia),
were also present, but none represented more than 5% of
individual trees within the four plots. In sections, a 5–6-m-
high understory consisting of Sandalwood Box (Eremophila
mitchelli) occurred. The forests ranged from thinned (typically
ring barked) stands, which contained a significant proportion of
regenerating individuals (to the west), to more mature stands
dominated by trees with larger trunk diameters (up to 45 cm
at 130 cm above ground level; to the east). Across the PSU,
grazing by stock had occurred.

III. DATA COLLECTION

A. Acquisition of LSP, LiDAR, and Hyperspectral Data

For the 37 × 60 km study area, LSPs were acquired in
July 2000, which is a month before a field campaign in Au-
gust 2000. Small-footprint airborne scanning LiDAR data were
acquired over a one week period commencing on August 24,
2000, using an Optech 1020 scanning LiDAR mounted in a Bell
Jet Ranger Helicopter. The Optech measured 5000 first and last
returns and the intensity of each return per second. The LiDAR
operated within the near-infrared spectrum with a beam diver-
gence of 0.3 mrad, a footprint of approximately 7.5 cm, and an
average sampling interval of < 1 m. Data were acquired flying
in an east–west direction (and centered on each PSU row) at a
nominal altitude of 250 m and over a swath width of approxi-
mately 200 m. A global positioning system (GPS) base station
was established for all flights. With full differential GPS cor-
rections in addition to pitch, yaw, and roll compensation from
an inertial navigation system (INS), coordinates were provided
with an absolute accuracy of < 1 m in the x and y directions and
< 0.15 m in the z direction [23].

For PSU 142, a total of 195 446 LiDAR returns were
recorded, with 82% and 18% classed as ground and vegetation

Fig. 1. Study stand of PSU 142. (a) LiDAR-derived crowns and extracted tree
heights and the location of the four field plots (boxes). (b) CASI near-infrared
reflectance data. In both images, crowns were delineated using the procedures
outlined in [43] and [39], respectively.

strikes (i.e., greater than 0.5 m height above ground) respec-
tively. The average number of strikes per 0.25 ha SSU (n = 30)
within the PSU was 5337 and 1178 for ground and vegetation
respectively, which is equivalent to approximately one strike
per 0.4 m2 on the average. The tallest LiDAR return in the
PSU was 20.2 m, with an average maximum height (from the
30 SSUs) of 15.9 m. The LiDAR height data (by crowns/
crown clusters) for PSU 142 are shown in Fig. 1(a).

Over a similar time period, 1-m spatial resolution CASI data
were acquired on August 29 and September 1, 2000, close to
the solar noon and over the same areas as the LiDAR, although
the aircraft flew in a north–south direction. Fourteen wavebands
of data covering the visible to near-infrared wavelength regions
were acquired at a flying height of approximately 500 m. Full
calibration of the CASI data was achieved by laying out one
black and one white 4 × 4 m calibration tarpaulin of the same
material at each of three separate PSUs and at the time of
the CASI overpass and simultaneously collecting reflectance
measurements from one set using an ASD field spectroradio-
meter. Empirical line calibration (ELC) was then subsequently
employed to generate a calibration file for converting CASI
data for all PSUs from units of “at sensor” radiance (L, in
watts per square meter per steradian per micrometer) to surface
reflectance (in percent). Further details of the calibration can
be found in [39]. An example of the CASI data for PSU 142
is shown in Fig. 1(b). Several hyperspectral HyMap images
(∼1.2 km swath width and orientated in the north–south di-
rection) were acquired in September 2000 along selected PSU
columns and consisted of 128 bands of data at 2.6-m spatial
resolution. These data, which were also georeferenced using
GPS and INS, provided a landscape view of tree and other
land cover distributions and were used subsequently to assist
the georegistration of the AIRSAR data.

Four strips of fully polarimetric C-, L-, and P-band AIRSAR
data were acquired over the PSU grid on September 3, 2000 [4].
The AIRSAR data were generated by the NASA JPL using the
integrated processor version 6.3.1 in compressed Stokes matrix
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format. The range and azimuth resolutions were stated as 3.3
and 4.6 m, respectively. Further details of the AIRSAR data
and processing can be found in [4]. In previous studies, the
AIRSAR data were registered to Landsat sensor data georef-
erenced through the Queensland government’s Statewide Land
Cover and Trees Study (SLATS) [40], but here, the registration
was fine-tuned by establishing common GCPs between indi-
vidual trees identified within the HyMap data acquired in the
area around and including PSU 142 and P-band HH backscatter
data. This AIRSAR channel was selected, as the phase center
was considered to be closer to the base of the trunks compared
to other frequencies and polarizations.

B. Forest Inventory and Destructive Harvesting

At the same time as the LiDAR, CASI, and LSP data were ac-
quired, forest inventory data were collected from selected SSUs
located within 12 of the 150 PSUs, with four located within
PSU 142 [4]. These data consisted of basic forest inventory
measurements for each tree, including the following:

1) diameter (in centimeters) at 30 and 130 cm [herein re-
ferred to as D30 and D130 (which is equivalent to the
diameter at breast height), respectively; measured using
standard diameter tapes];

2) heights (in meters) to the top, canopy base, and the first
leafing branch (measured using either a GEOSCAN or
CENTURION Laser Rangefinder to within ±0.5–1 m,
depending on tree size and form);

3) crown dimensions (in meters) in the east–west and
north–south directions (measured using 50-m tapes to
within ∼±1 m, depending on tree size and form).

Each tree measured was identified to species and associated
with a growth stage (e.g., young, mature, senescent) by expe-
rienced botanists employed by the Queensland Department of
Natural Resources and Mines. Most trees, including those in
PSU 142, were photographed from the side (with a scale) using
a digital camera. Soil measurements included type (e.g., clay,
sand), gravimetric moisture content (in percent), and the dielec-
tric constant [using a time-domain reflectometer (TDR)]. Leaf
dimensions (i.e., length, width, and thickness, in millimeters)
were also measured in the field using calipers and subsequently
in the laboratory using a leaf area meter, from which the mean
and variance were calculated.

Following the collection of field data, destructive harvesting
of E. populnea (n = 7) and E. melanaphloia (n = 5) took
place, primarily to assess the validity of existing equations [41]
but also to obtain: 1) equations relating tree size (i.e., D30,
D130, height, and crown area) to the biomass of components
of differing dimension (e.g., branches of < 1, 1–4, 4–10,
and > 10 cm diameter) and 2) data on the moisture content
and amount of leaves, branches, and trunks at the time of
the AIRSAR overpass. The procedures for harvesting and for
obtaining biomass and moisture content followed those outlined
in [41]. The harvesting of E. populnea was undertaken within
PSU 142. Comprehensive accounts of the methods of field data
collection, destructive harvesting, and also the measurement of
the dimensions, orientations, and dielectric moisture contents
of plant components can be found in [23] and [37].

IV. MODEL PARAMETERIZATION

A. Generation of a Digital Terrain Model

A 1-m spatial resolution DTM was generated for PSU 142
to provide information on the ground surface topography and
to assign height (above the ground surface) to the LiDAR
vegetation returns. Initially, the DTM was constructed by inter-
polating preclassified first and last ground returns with a 1-m
proximal tolerance (where any returns found within 1 m of
other returns were excluded) and represented as a triangulated
irregular network (TIN) model. However, examination of the
resulting surface indicated a certain degree of “noise” and
surface variation resulting from on-ground surface features
(e.g., logs, grass swards, and shrubs). Therefore, and following
other studies (e.g., [11]), a multiscale filtering strategy was
employed. Here, the lowest returns (first or last) within local
search windows of increasing dimension (1 × 1 to 5 × 5 m)
were selected to generate a bare ground surface, on the assump-
tion that these were more likely to represent the true elevation
surface. The most suitable window size for generating the
final elevation surface was determined by examining a corre-
sponding elevation standard deviation surface generated using a
5 × 5 search area. Specifically, where low standard deviations
in the surface occurred, the lowest returns from the 3 × 3 search
area were used, whereas for areas with higher deviation (e.g.,
water courses), the lowest returns from the smaller search areas
were used [9], with the elevation deviation determining the
search area used. Subtracting the initial TIN ground model from
the final spatially filtered surface produced a difference surface.
The surface analysis for PSU 142 indicated that the spatially
filtered elevation layer was lower and differed, on the average,
by 8 cm (standard deviation δ = 8 cm, range = −0.5 to 0.5 m),
which compared well with other studies (e.g., [42]). The on-
ground surface features previously identified were also evident
within the difference surface, indicating that spatial filtering of
the surface was effective in their removal. Once calculated, the
height of woody vegetation was determined as the difference in
elevation between the final bare ground surface and the first and
last vegetation LiDAR returns. Only returns above 0.5 m were
used subsequently for canopy assessment, as those below this
height were considered to be from shrubs, tall grass, and larger
items of woody debris.

B. Trunk Location and Tree Crown/Cluster Delineation

To indicate canopy density and potential stem location, the
relative penetration of LiDAR pulses through the forest volume
was quantified within a 1-m3 voxel matrix (i.e., a horizontal
and vertical spatial resolution of 1 m). This approach is fully de-
scribed in [43] and is also similar to that adopted in [44]. Within
the 3-D matrix, voxels containing canopy LiDAR returns were
identified (through intersection), and each was attributed with
the tallest recorded height value occurring within the 1-m3

volume space. A height-scaled crown openness index (HSCOI;
expressed as a percentage) was then calculated as

HSCOI (in percent)=
nc∑

n=1

((
hmax − hvox

hmax

)
× 1

nc

)
×100 (1)

where hmax represents the maximum height over a specified
area (see later part of this section), and hvox represents the
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Fig. 2. HSCOI surface and local minima (black crosses) for SSU 142-13. Surfaces are smoothed with a focal-mean function using (a) 1 m circular and (b) 5 ×
5 m rectangular kernels. (c) Extent of crowns mapped using a 69% HSCOI contour and raw LiDAR point data (returns > 2 m in height are larger). Darker areas
have lower HSCOI values, and tree crowns mapped from the field data are shown as circles.

height of each voxel (within the 1-m2 vertical column) associ-
ated with a LiDAR return. The summation of individual canopy
penetration distances (from the top of the canopy) was based
on voxel positions within a vertical column of 1 × 1 × nl m,
where nl represented the number of 1-m height levels within
the vertical profile and was determined from the maximum
height of the stand. The final HSCOI is a summation of the
penetration percentage for all canopy voxels (nc) found within
the vertical column such that each voxel contributes equally to
the cell result. As a result of the LiDAR sampling density and
forest stand structure, between one and five voxels per 1-m2

column were observed. HSCOI values, which are expressed as
a percentage, were outputted as a 2-D raster grid of 1-m2 spatial
resolution. Once generated, the HSCOI layer was smoothed
using a 3 × 3 focal mean function, which is defined as a low-
pass filter that averages the values of an n × n kernel (or focus)
and assigns the result to the center cell [45]. Local minima
in the HSCOI surface were then identified using the ArcInfo
Topogrid function [44], and comparisons between the locations
of low points and actual tree locations, including those in the

subcanopy, suggested a close correspondence. Two HSCOI
layers were derived to improve stem mapping: one using hmax

extracted from a canopy height surface created using a local
low-pass filter (3 × 3 kernel) and the other using the maximum
LiDAR height found in the 7.5-ha PSU. Specifically, the local
height kernel surface improved stem identification in dense
clusters, while the stand maximum height surface allowed
stems in the overstory and understory to be better differentiated.
An initial limitation of using the HSCOI minima to locate stems
was the practical difficulty in separating stems from branch
clusters within the crowns of larger trees (i.e., with an area
approximately > 100 m2). To overcome this difficulty, HSCOI
surfaces were also generated at two different spatial scales. The
first was based on a circular kernel of 1 m radius, and minima
were associated with small trees [with D130 > 5 cm; Fig. 2(a)]
as well as the branch clusters of larger trees. A second was
generated using a square 5 × 5 m kernel [Fig. 2(b)], and HSCOI
minima were predominantly associated with the stem locations
of larger trees. HSCOI minima extracted from surfaces of both
spatial scales were combined, and where minima identified
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using the 1-m-radius kernel occurred within a certain distance
of those identified using a 5 × 5 m kernel, these were removed,
as they were assumed to be branch clusters. The exclusion
distance was based on the expected crown area for a given
trunk height, with this relationship derived from field data
(r2 = 0.7, RMSE = 16.2, and n = 249) [43]. A comparison
of tree locations mapped using the LiDAR and in the field
indicated (for PSU 142) a 92% and 82% correspondence for
trees > 10 m in height and > 10 cm in D130, respectively.
Omission errors were associated mainly with trees that were
senescent or dead, occurred in a cluster with high stem density,
or were small and beneath the canopy of larger overstory trees.
Commission errors were found to occur with branches of large
trees (as mentioned previously), or occasionally with small
shrubs that were not measured in the field.

The retrieval of D130 for the located trees was critical for
subsequent application of allometric equations for estimating
total and component (e.g., branch) biomass, particularly as
this was the independent variable in most of the available
allometric equations [38]. Using field data, a significant non-
linear relationship was observed between D130 and height [43]
(r2 = 0.76, RMSE = 6.47 cm, and n = 249), which was used
to estimate D130 for all LiDAR mapped stems. Determining
the true height of subcanopy trees was often problematic,
however, as the overstory trees generally intercepted many of
the LiDAR pulses, particularly where the canopy (i.e., leaves
and branches) were dense. In these cases, their height was
necessarily estimated using an empirical function established
between the HSCOI value and field-measured height [43] rather
than using the canopy height surface alone. A procedure that
checked the stem height from the LiDAR canopy height model
against that determined using the HSCOI was developed. If
the height difference was greater than 20%, then stems were
attributed with the HSCOI-derived height. Examination of the
PSU 142 field data indicated that, on the average, trees that were
overtopped by the crowns of others accounted for 28% of stems
> 5 cm D130 and 24% of the basal area.

Tree crowns or clusters were delineated subsequently by gen-
erating contours of the HSCOI layer (derived using the stand
maximum height and smoothed with a 1-m circular kernel) at
1-m intervals and intersecting these with the original LIDAR
point data. An iterative process was then used to identify the
HSCOI contour, which contained at least 90% of the original
LiDAR returns > 2 m in height [Fig. 2(c)]. Depending upon
the structure of the forests, the contour identified to fulfill this
criterion varied from 65% to 90% HSCOI value, and for PSU
142, a HSCOI threshold of 69% was selected. The result of
this process for PSU 142 indicated an average crown cover
per SSU of 30.4% (δ = 12.4%, range: 13.7%–57.8%). Within
the defined crown area, individual crown/cluster segments (ob-
jects) could be differentiated further by applying hydrological
drainage basin delineation routines available within the ArcInfo
Hydrological suite to the HSCOI surface [43], [45]. Within
larger crowns, objects were often associated with clusters of
branches, and additional rules utilizing spatial location, size,
and shape, as well as crown attributes such as height and
density, were necessary to merge these into a single object
[43]. The final map of stem and crown locations generated
from the HSCOI layer covering the 7.5-ha PSU is shown
in Fig. 3(a).

Fig. 3. Data layers generated for PSU 142. (a) LiDAR-derived stem and
crown map, with the four field plots shown as squares (numbered from left to
right as 02, 13, 18, and 20). (b) Tree species classification generated from CASI
data showing E. populnea (white), E. melanaphloia (black), and E. mitchelli
(gray). (c) Ground cover class map derived through linear spectral unmixing of
CASI data showing bare soil (black), photosynthetic vegetation (ground shrubs
and forbs; gray), and NPV (primarily grass; white).

C. Tree Species Discrimination and Structural Attribution

Maps of crowns by species type were produced by first ap-
plying a tree crown delineation procedure to the CASI data [38],
which was developed independently within eCognition Expert
(based on the Cognition Network Technology [46]). The mean-
lit spectra, which are defined by taking the average spectra from
pixels that were above the average for the crown as a whole,
were then extracted from crowns of known species [47] and
used to develop discriminant functions based on a selection
of the 14 wavebands. These functions were then used subse-
quently to classify all remaining crowns to species. The species
classification for PSU 142 [Fig. 3(b)] confirmed the dominance
of E. populnea, and based on ground truth, accuracies in the
classification of all species exceeded 80%. A species type was
assigned to each LiDAR-delineated crown object by linking and
referencing crowns generated from CASI data based on criteria
of proximity and area. The extraction of mean-lit spectra from
crowns delineated using the LiDAR-derived HSCOI was not
undertaken because of slight misregistration with the CASI
data, although automated procedures for registering LiDAR
and CASI data have been developed subsequently to overcome
this limitation [48]. Cloud shadow reduced the reflectance of
trees in the central and eastern sections of the CASI scene (see
Fig. 1), but the crowns in this area were identified using the
LiDAR data and could be associated with species discriminated
through visual interpretation of the cloud-free LSP, thereby
enabling complete mapping of species within the stand.
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Each stem within the LiDAR-delineated crown or cluster
objects was then attributed with information on height (from the
LiDAR height or HSCOI) and D130 (from the relationship with
height however derived). By applying the available species-
specific allometric equations [38], [41], [49], which required
height or D130 as input, each delineated object was also at-
tributed with an estimate of leaf and branch (including terminal
branches of < 1 cm diameter) biomass. The numbers of leaves
and terminal branches per tree, which for most trees in this
forest were regarded as tertiary, were then estimated by dividing
the total dry weights of leaves and terminal branches by the
mean weights of individuals, as determined from field measure-
ments and approximations of branch volume (from branch start
and end radii and length) and wood density, respectively.

A classification of the ground surface was also undertaken
by applying linear spectral unmixing to CASI data for the
areas outside of the delineated crowns [50], [51]. The mapped
distribution of bare soil, nonphotosynthetic vegetation (NPV;
dry grass) and photosynthetic vegetation (shrubs) [Fig. 3(c)]
corresponded closely to those observed within the LSP and on
the ground. Beneath the crowns, the surface was assumed to
be similar to that of the surrounding open areas, although field
survey transects suggested that more litter might be expected in
these areas.

D. Voxel Construction and Association With LiDAR Data

To distribute the leaves and terminal branches associated
with each crown/cluster, a 3-D (1 m3) voxel matrix representing
the forest volume was constructed from the LiDAR data [52].
Initially, 1-m2 fishnets were generated for each 1-m height
interval, from the ground surface to the tallest height recorded,
and covering the maximum geographical extent (500 × 150 ×
21 m) of the LiDAR data. For PSU 142, this resulted in
a 3-D matrix of 1 575 000 potential 1-m3 voxels, with each
associated with a combination of cell (x, y) and height (z)
coordinates. The LiDAR point height data were then intersected
with the voxel matrix such that each voxel that contained
LiDAR data was attributed with the height above ground of
the LiDAR return. This resulted in a total of 77 647 voxels
with LiDAR returns (including ground). Within the 3-D matrix,
voxels were associated, through geographical reference, with
the nearest HSCOI-derived local minima (stem) and object (i.e.,
crown/cluster) delineated using the HSCOI surface (Fig. 4).
Subsequent steps in the reconstruction replaced the voxel stem
with a cylinder form and removed voxels that did not contain
LiDAR returns.

E. Voxel Parameterization: Leaves and Terminal Branches

For each delineated object, the associated voxels were at-
tributed collectively with structural information. Specifically,
leaf dimensions (i.e., width, length, and thickness) were ob-
tained from field measurements of individual leaves (an ex-
ample for E. populnea is given in Table I, but see also [4]).
Terminal branches (< 1 cm diameter) were defined as those
with a start radius of < 0.005 m (i.e., 0.5 cm) at the base and
0.0005 m (i.e., 1 mm) at the terminus. The lengths of the
terminal branches were taken, on the average, as being close to
the voxel dimensions and no longer than 1.2 m (to fit within
the voxel space) and were distributed with a large standard

Fig. 4. Tree stem locations and associated voxels for 7.5 ha PSU 142.
Branches are modeled subsequently from tree stems to voxel locations; stems
are replaced with tapering cylinders scaled according to modeled D130.

TABLE I
EXAMPLES OF ATTRIBUTES LINKED TO EACH LIDAR VOXEL

AND USED AS INPUT TO THE SAR COHERENT MODEL

deviation. The density of leaves and terminal branches was esti-
mated by dividing the total number for the delineated tree by the
number of associated voxels and assuming an even distribution.
The average number of leaves per branch length (assuming an
average of 1 m) was also estimated. The distribution of terminal
branch and leaf orientations within voxels was assumed to be
uniform. The moisture contents (%) of terminal branches and
leaves were determined from the dry/wet weight ratios obtained
for each species through on-site destructive harvesting. Voxel
descriptions for attributes with a distribution of quantities (e.g.,
branch length and radii, or leaf orientation) are listed in Table I
in the following order: minimum, maximum, mean, and stan-
dard deviation.

F. Primary and Secondary Branches and Trunks

To approximate the distribution of primary branches, voxels
associated with each delineated object were divided into groups
based on criteria relating to adjacency, relative height, and polar
angle (Fig. 5).

As examples, for trees < 15 m, the voxel above the HSCOI
minima (i.e., the trunk location) was associated with the main
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Fig. 5. Groups of voxels associated with branch clusters within an indivi-
dual tree.

branch extending from the trunk. Voxels immediately adjacent
to this upper voxel were associated with branches emanating
from the trunk and in the upper part of the crown. All subse-
quent branch clusters were associated with adjoining groups of
voxels (up to nine from a 3 × 3 × 1 m search kernel in the x,
y, and z directions) identified and assigned by searching, both
in distance and azimuth orientation, from the trunk center. For
trees > 15 m in height, branch clusters were identified using a
search kernel of 3 × 3 × 2 m (up to 18 voxels per group). The
search commenced at the top of the tree and worked progres-
sively downward through the canopy until all voxels had been
assigned to a branch group. Search orientations for each new
group were selected randomly to minimize bias in grouping.
The number of groups (and therefore primary branches) varied,
depending upon the height and crown dimensions of trees, with
up to seven found within larger individuals.

In addition to the terminal branches (< 0.005 m radii; which
were distributed within the voxels), primary and secondary
branch distributions were reconstructed for each crown/cluster.
The end points of primary branches were associated with the
centroid location of the different voxel groups, whereas the
start points (i.e., the join with the trunk) were determined using
species-specific zenith angle distributions from the vertical.
These were established by taking measurements of branch
angles from digital photographs of individual field trees (details
are given in [4]). In some cases, the estimated join point was
too close to the tree base, and this location was then associated
with the height where the first leafing branch joined the trunk,
as approximated using species-specific relationships with top
height. Both measures of height had been recorded during the
field campaign (see Section III-B). Secondary branches were
constructed subsequently from the base of each voxel within
the group associated with each primary branch to positions
along the primary branch. These join positions were based on
the proportional distance and location of each voxel base to
the trunk. Regroupings of voxels and, hence, adjustments to
secondary branch origins were necessary to compensate for
voxels that were grouped initially with a primary branch cluster
but were then considered to be too far away or at an unrealistic
angle to be associated. An overview of primary and secondary

Fig. 6. Sample of mapped tree stems, crowns, and primary (thicker lines)
and secondary (thinner lines) branch distributions in PSU 142 derived from
the LiDAR data. Inset extent is marked as a dashed box.

branch distributions for part of PSU 142 is given in Fig. 6. This
representation is considered realistic, with the primary branches
associated with single trees emanating in all directions with
those of adjoining objects trending toward the outer edge of
the crown.

The length of primary and secondary branches was estimated
from their relative positions in 3-D space. Values for the start
and end radii of both branch categories were based primarily
on trunk and branch diameter data (see Section IV-B) that were
recorded as trees were being destructive-harvested as well as
during a corresponding study undertaken on the same trees at
Injune and also several near Dingo in central east Queensland
[53]. This latter study aimed to evaluate the use of randomized
branch and importance sampling for quantifying the biomass of
E. populnea and provided measurements of branch diameters
at divisions from the trunk to the top of the tree for ∼15 trees
covering a range of growth stages. From these data, the assump-
tions that the start radii of each primary branch was one-half
of the diameter of the trunk where the primary branch joined
and that the start radii of the secondary branch was one-half of
the primary branch diameter at the join point were considered
reasonable. Given the complex growth structure of E. populnea
and other tree species, considerable variations in the start and
end radii of the branches will occur, particularly as this depends
upon the number and different sizes of the branches following
division. However, these rules were considered to adequately
represent the reduction in radii with branching. The radius of all
primary branches at the end point was assigned as 0.01 m (i.e.,
2 cm diameter) with any smaller assigned to secondary
branches. The end radius of all secondary branches was given
as 0.005 m. These divisions, while partly arbitrary, were con-
sidered to reflect the progressive division and diminishment of
size toward the periphery of the crown. The trunk radius at
ground level was calculated using an empirical function with
D130, which was again established with field data and was
assumed to decrease progressively (through taper and division)
and terminate as a small (tertiary) branch with radius 0.005 m
at the base of the uppermost voxel. The moisture content of
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all woody material was determined (through destructive har-
vesting) as 45%, and a mean permittivity of 12.4 + j3.3 was
assigned.

G. Stand Validation and Reconstruction

Using the inputs generated from the LiDAR data, the stand
associated with PSU 142 was reconstructed. Across the PSU,
20 295 branches were modeled in total, with 3616 (18%)
of these being primary. The mean length of all branches
(whether primary or secondary) was 2.9 m (δ = 1.9 m, range =
0.01−14.8 m), and the start radius was 0.02 m (δ = 0.008 m,
range = 0.0001−0.075 m). There were 21 709 canopy voxels
utilized across the PSU (i.e., voxels greater than 1 m height
above ground). The canopy voxel density across the PSU
was 28%, which compared well to the mean-field plot foliage
branch projective cover of 29.8%.

Comparison with plot-based measurements of structural at-
tributes indicated a good level of agreement. Specifically, the
LiDAR modeling produced 1872 stems across the PSU, giving
a mean density of 250 stems per hectare. For the LiDAR stems
identified, the mean tree top height was 9.6 m (δ = 3.8 m,
range = 0.20−20.2 m), and the mean D130 was 17.3 cm (δ =
6.7 cm, range = 1.0−35.4 cm). Assuming that the four field
plots in the PSU were a representative sample of the PSU, the
field data (live stems with D130 ≥ 5 cm) indicated a mean stem
density of 295 stems per hectare, a mean tree top height of
8.8 m (δ = 1.6 m, range = 2.5−18.0 m), and a mean D130 of
15.5 cm (δ = 4.2 cm, range = 5.0−38.8 cm). Therefore, there
is confidence in the identification and attribution of stems across
the PSU, as they are within 15% of mean-field data estimates
for stem density and within 12% for stem attributes, and the
range of values observed is very similar.

For stems located using the LiDAR and able to be matched
to those identified in the field (i.e., within the four field plots),
woody biomass was estimated by multiplying the length and
radius (i.e., volume) of each trunk and individual branches
by species-specific wood densities (in kilograms dry matter
per cubic meter); tapering and hollows within larger trees
were both considered. Leaf mass was recalculated by multi-
plying the assumed number of leaves by species-specific leaf
weight. The total component biomass per tree (above-ground)
was then calculated as the sum of stem, branch, and leaf
biomass. Total tree biomass was also estimated by applying
species-specific allometric equations to all located stems, using
LiDAR-derived height and/or D130 as input. Comparison of
the two biomass estimation methods for each LiDAR stem re-
sulted in a close correspondence in total above-ground biomass
(r2 = 0.82, RMSE = 50.3 kg, and n = 200). This indicated
that the modeled distributions and dimensions of components
were reasonable, given the implicit assumptions. The com-
ponent biomass modeled from LiDAR was also compared
to that estimated for corresponding field trees by applying
species-specific allometric equations to ground measurements,
although this was less robust (r2 = 0.52, RMSE = 114.4 kg,
and n = 200) largely because of differences in height and D130

estimated from the LiDAR data. Examination of the stems with
poor correspondence (n = 30) identified two main issues. First,
the height allocation to subcanopy stems was incorrect largely
because the influence of the overstory canopy resulted in a

Fig. 7. (a) E. populnea-dominated forest at PSU_142. (b) Graphical output
of part of the reconstructed canopy from the DSTO radar simulation (ground
cover is not shown).

large disparity between D130 and therefore allometric biomass
estimates. In a few cases, the dimensions of the modeled
branches (in terms of either length or radius) were too great,
which generated a disproportionately large estimate of branch
biomass. Second, some stems located in the field were of a
size and form that was outside of the mean predictive functions
used for deriving D130 and D30 as described in Sections IV-C
and E. In these cases, the stems had a much larger D30 for
the equivalent D130 based on the prediction model, or stems
were shorter than average for the predicted D130. With the
30 outliers removed, and as expected, the biomass correspon-
dence between LiDAR component sum and field stem allomet-
ric increased (r2 = 0.81, RMSE = 68.3 kg, and n = 170).

The reconstruction was also evaluated by visualizing the
simulated stand using specifically developed software (Fig. 7),
which allowed errors relating to branch locations, dimensions,
and orientations to be identified. The final reconstruction of
the forest sampled within PSU 142 was considered to be a
valid representation of the distribution of trees and elements
(i.e., leaves, primary, and secondary and terminal branches and
trunks), both visually and quantitatively.

V. SAR SIMULATION

A. Mean-Field SAR Simulation

The unique coherent scattering and imaging model devel-
oped in [33], [34], and [54] and used successfully to model the
SAR response of the Scots Pine (P. sylvestris) forest at L-band
was adapted for the forests at Injune focusing, in this case, on
those associated with PSU 142. No capacity for simulation at
C- and P-band data was provided, although this is the subject
of further research. The simulation employed a 3-D voxel-
based vector wave propagation and scattering model coupled
to the recovered forest structure. The model is approximate but
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TABLE II
KEY SOIL INPUT PARAMETERS TO THE SAR COHERENT MODEL

tractable, since the complexity of the real scene does not permit
a full numerical solution to the scattering problem. The sim-
ulation produces synthesized, fully coherent, and polarimetric
SLC SAR imagery that can be analyzed as real observations.

The simulation models the SAR image as a coherent su-
perposition of focused scattering events, each attributed to
an element of the scene much smaller than the SAR system
resolution such that the polarimetric pixel value P(x,R) at
cross range x and slant range R is described by

P(x,R) =
∑

n

FnI(x,R, en) (2)

where Fn is the polarimetric scattering amplitude associated
with the scene element, and I(x,R, en) is the complex system
point spread function (impulse response) that depends upon
the effective scattering center en. By accounting correctly for
phase in the point spread function, the simulation is made fully
coherent. In addition, the SAR image calculation is essentially
deterministic, since it is coupled directly to a 3-D model of
the scene, and fully polarimetric, since it employs the fully po-
larimetric scattering amplitudes calculated for scene elements.
Since the calculation is based on that detailed in [36], the
following focuses largely on adaptations that yield significant
differences with previous forest SAR imaging calculations.

The primary difference between the present coherent SAR
simulation and that employed in [36] for forests dominated by
P. sylvestris is in the interface between the radar calculation
and the forest input model. Previously, the forest canopy was
described using detailed tree architecture models that have
been replaced in the current implementation with the voxel
description of the model canopy, along with related trunk and
branch lists. This means that in the previous model, modeled
trees of a certain height were chosen at random to fill locations
where it was known that a tree of a certain height existed.
The forest model was statistically correct, but not a match
for the forest area in detail. In the new approach, the detailed
description of each tree at any given location exactly matches
the available ground and LiDAR data. In addition, the previous
model described tertiary branches explicitly, whereas in this
new approach, these are described statistically from which a
deterministic realization is generated.

In contrast to [36], the SAR simulations utilized the LiDAR
data to produce a digital elevation model (DEM) of the un-
derlying terrain surface and CASI data to classify the ground
cover. Text files describing soil parameters for each cover in
terms of scattering elements, including local roughness, corre-
lation length, soil type, and permittivity (derived from moisture
content) [55], were also provided as input to the simulation
(Table II).

As in [36], the forest canopy and understory vegetation were
represented by a distribution of discrete, dielectric objects, and
scattering by the canopy at L-band was calculated using the
mean-field approach pioneered in [21] and [22]. The rationale

Fig. 8. Illustration of the composition of a simulated SAR image. Scattering
events focus on the SAR image plane at the projection of their “effective”
scattering center position.

for this approach is described fully in [36]; scattering of the
coherent mean wave is focused by the SAR instrument using the
phase history of the scattered signal [56], [57]. Coherent phase
histories are modeled in the simulation, but the contribution to
the image from scattering of the incoherent wave is not modeled
directly but can be incorporated in the form of a noise signature.

Three significant classes of scattering event have been
included in the calculations, namely: 1) direct–ground (DG);
2) direct–volume (DV); and 3) ground–volume (GV) terms,
where

P(x,R) =
∑

α=DG,DV,GV

Nα∑
n

FαnI(x,R, eαn). (3)

Both forest canopy and understory contribute to DV and GV
scattering, whereas GV ground scattering is generally insignif-
icant and was found to be below anticipated noise levels. Each
scene element, such as a ground facet, branch segment, leaf,
or a section of a blade of grass in the understory, has an
effective scattering center eαn, where α ∈ {DG, DV, GV}, and
an associated in situ polarimetric scattering amplitude Fαn,
which can be calculated using an appropriate model. This
effective scattering center is projected as the point of focus of
the scattering event in the 2-D SAR image (Fig. 8). For DG
and DV terms involving only first-order or direct backscatter,
the effective scattering center is simply the center of the scene
element. For higher order returns involving multiple reflections,
the effective scattering center must be determined from the
imaging geometry [36].

B. Modeling Attenuation

In the mean-field model, locally incident fields are approx-
imated by the mean wave propagating in the canopy. The
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forest canopy is inhomogeneous on a scale commensurate
with the spatial resolution of the SAR system, and it is de-
sirable to incorporate the effects of canopy inhomogeneity
into the simulation. To achieve this, the form of the layered
Green’s function of the mean wave in a homogeneous medium
[58], [59] was employed, but the wavenumber of the mean
wave was estimated locally for the aperture used to focus each
scattering interaction.

For this purpose, the canopy volume was again subdivided
into new subvolumes (voxels) but on a scale determined by the
sensor resolution such that, on the whole, each voxel contained
a large number of scattering objects. The LiDAR vegetation
model was then used to determine the occupancy of each voxel,
and the effective permittivity (εeff) of each was calculated
using the Foldy–Lax approximation and forward scattering
amplitudes [60], [61] such that (e.g., [59])

εeff = I + no
4π

k2
o

〈S(ki,ki)〉 ≈

 ε 0 0

0 ε 0
0 0 εz


 . (4)

Vegetation permittivities were determined using the model
described in [62] at frequencies employed by the SAR instru-
ment. To remove sensitivity to the choice of permittivity in the
model, the vegetation element moisture contents were assumed
a normal distribution with a standard deviation of 10% of the
mean value for each scattering element of each species. In the
model, those voxels in the line of sight of the scattering element
contributed to the attenuation of the scattering amplitude of
that element as observed by the radar. The contribution to
attenuation from each voxel was calculated using the distance
traversed in that voxel, and the effective wavenumber of the
voxel calculated using (4) and (5) [59].

C. Focus of GV Terms

Scattering between the ground and elements in the forest
volume was modeled in the far field. A mean surface for
ground–element interactions was calculated from the DEM
close to the scattering element. In practice, this entailed de-
veloping a map of “local mean surface” by essentially fitting
a local flat plane to points on the DEM and using an area
many wavelengths in dimension. The area was sufficiently large
to contain the path of the specular point of reflection in the
mean plane over the synthetic aperture. At the same time that
an estimate of ground surface roughness about the local mean
is made, a flat surface was determined over the same area
for use in the GV scattering calculation. The extent of the
mean flat surface was taken to be sufficiently large to allow
the GV interaction to be modeled as the bistatic scattering by
the volume element of the specular or coherent field reflected
from the (rough) mean surface. By geometrical arguments (see
the Appendix), the specular path for any point on the platform
trajectory has the same length as the direct path from the point
located at the normal projection of the volume element onto
the mean plane. Thus, GV interactions appear as direct returns
originating close to ground level, although their polarimetric
phases differ from those of DV returns as a result of the ground
reflection.

D. Calculation of DG Images

DG contributions were calculated from ground facet ele-
ments using a hybrid deterministic/stochastic approach. The
ground DEM was divided into tiny flat rough facets, each
much smaller than the SAR resolution. The ground was mod-
eled as a homogeneous half-space with dielectric permittivity
determined from soil type, moisture content, and frequency
following [62].

L-band ground facet RCS values depend on local incidence
angle in the small perturbation model (SPM) used in these
calculations. The ground facet scattering amplitude is scaled
by attenuation matrices determined from line-of-sight visibility
through the canopy and averaged over azimuth and frequency
as follows:

FDGn = 〈γ
s
· SDGn · γ

i
〉 (5)

where the angular brackets denote azimuth and frequency aver-
aging, γ

s
the attenuation suffered over the scattering path, γ

i
the attenuation suffered over the incident path, and SDGn the
unattenuated DG scattering amplitude associated with the nth
ground facet.

Our model may be considered as being two scale in the sense
that the ground DEM describes the large-scale surface height
variation, whereas the facets have local small-scale roughness
and correlation length. Since the true realization of surface
roughness on any facet was unknown, we used the SPM and
local facet orientation to obtain local HH and VV scattering
cross sections for the facet. These values were taken to be the
means for local fully developed exponential intensity speckle
distributions [63]. These distributions were sampled randomly
to obtain modeled scattering amplitudes for each ground facet.
The sampled HH–VV phase statistics were then incorporated
using a supplied coherence model such that ground surface
polarimetric entropy was nonzero. Finally, a speckle phase was
added using a spatially correlated speckle phase model [36].
The local scattering amplitude was then converted into the
global frame for incorporation into the image [60]. By main-
taining the correct random number sequence, the deterministic
nature of the DG calculation was preserved to the extent that
interferometric coherence may be simulated using multiple
baselines as demonstrated in [29]. The importance of predicting
correctly the interferometric behavior has been amply demon-
strated in [37], wherein the present simulation has been used
to demonstrate the potential for canopy height recovery by the
new PALSAR sensor aboard the recently launched ALOS.

E. Calculation of DV Images

To calculate direct forest clutter, each vegetation element
was addressed, in turn, with scattering amplitudes calculated
using the mean-field and appropriate physical scattering models
such that

FDVn = 〈γ
s
· SDVn · γ

i
〉. (6)

Branch segments were modeled using truncated infinite-
cylinder approximations [64]. Scattering by vegetation, which



LUCAS et al.: SIMULATION OF RADAR BACKSCATTER FROM FORESTS 2747

is typically extremely thin in at least one dimension, was cal-
culated using the generalized Rayleigh–Gans (GRG) approach
[65] applied to spheroidal needles, long leaves, and round
leaves, depending upon tree species. Ground cover vegetation
was modeled using GRG needles, leaves, grass blades [66],
or stems, depending upon ground cover class. The dry grass
was modeled as random distributions of cylindrical stems to a
depth of 0.5 m and a mean volume fraction of 0.05. Low-level
photosynthetic vegetation was modeled as a mixture of stems
and round leaves to a depth of 0.2 m and a mean volume fraction
of 0.02. All quantities used to describe the low-level vegetation
were distributed statistically. No calculation of multipath be-
tween vegetation elements was performed. However, for correct
calculation of cross-polar returns at frequencies higher than
L-band, the explicit incorporation of such multiple interactions
may be necessary [67].

Leaves and understory elements were too numerous for
deterministic calculation, so populations of these were sampled,
and their GRG contributions were scaled to preserve estimated
σ◦. Large samples ensured that fully developed speckle and
random samples were preserved to be consistent between simu-
lated observations. This preserved also the deterministic nature
of the calculations and ensured correct behavior of interfero-
metric coherence with baseline [67], which will be the subject
of future investigations.

F. Calculation of GV Images

GV returns were calculated using the bistatic scattering am-
plitude for scattering of the specularly reflected wave from the
rough local mean flat surface. The magnitude of the reflected
field vector was moderated by the Rayleigh parameter in the
manner described in [34]. To calculate the Rayleigh parameter,
the local estimate of the combined (large scale and small
scale) roughness at the specular point was used, which was
determined for each sampled sensor position and frequency in
the averaging process such that the scattering amplitude for a
GV interaction may be written as follows:

FGVn =
〈
γ

s
· SGVn(ks,kr) · γr

· Rn(kr,ki) · γi

〉

+
〈
γ

i
· Rn(ks,−kr) · γr

· SGVn(−kr,ki) · γs

〉
. (7)

Equation (7) is the sum of two terms, namely: 1) the for-
ward path and 2) the reverse path, which combine in phase
(coherently), since they have the same path length. These
paths are indicated in Fig. 8. Each scattering path divides
into three sections, namely: 1) sensor–ground; 2) GV; and
3) volume–sensor. The attenuations on each path are calculated
separately and represented in (7) by the matrices γ

i
, which

denote the attenuation suffered between sensor and specular
point on the ground, γ

r
, which is the attenuation between the

ground and volume element, and γ
s
, which is the attenuation

between sensor and vegetation element. In each path, Rn

is a Fresnel reflection matrix, which incorporates the ground
roughness effects, representing the effects of the ground on the
reflected wave. Finally, SGVn is a bistatic scattering amplitude
of a vegetation element for scattering from the ground to the
sensor, or vice versa (here, kr is the reflection of the incident

wave vector ki at the ground, and ks is the scattered wave
vector in the direction of the sensor).

The Rayleigh roughness correction [68] can display great
sensitivity to surface roughness estimates, particularly at
smaller incidence angles. The recorded mean large-scale rough-
ness was 0.038 m, leading to a mean combined roughness of
0.043 m and a subsequent reduction in scattering amplitude of
0.38; this is equivalent to a typical loss in power of 8.3 dB in
the GV term as a result of surface roughness.

G. Simulation Details

Simulations were conducted at the center wavelength of
0.24 m (L-band) for the reconstructed forests associated with
PSU 142. The SAR swath center corresponded to the center of
the 500 × 150 m area of the PSU, and as with the AIRSAR, the
site was imaged east–west, with a broadside ground range of
9965 m, a height above ground of 7746 m, and an incidence
angle (at scene center) of 52.1◦. The final SLC image was
228 × 199 pixels (each 0.65625 × 2.5 m in dimension) and
corresponded to an area of approximately 150 m (azimuth) ×
500 m (ground range). The simulation matched the reported
JPL AIRSAR bandwidth of 40 MHz and employed a high
azimuth resolution (width at half height power) of 1.6 m. Only
the multilooked image was available from JPL for comparison,
so the SLC image was multilooked in azimuth by a factor of
9 in accordance with the AIRSAR processing so that the final
image resolution was within 3% of that reported by JPL.

With any attempt at simulation, one ultimately encounters
the issue of limited ground measurements, and although in this
instance, the ground truth campaign was intensive, it was not
exhaustive. Thus, some quantities could not be fully quanti-
fied, such as the distribution of small branch biomass within
voxels, the understory biomass, and the rough ground correla-
tion length, which have necessarily been estimated based upon
other studies or experience. For example, the small-scale rough
ground correlation length was chosen to reproduce closely the
DG returns reported in [4].

VI. RESULTS

A. L-Band Coherent Simulations

The AIRSAR image in Fig. 9(a) may be compared with the
multilooked simulation of Fig. 9(b), which itself was derived
from the original SLC image displayed in Fig. 9(c). Values
of σ◦ were derived from the simulated imagery and compared
favorably with the AIRSAR data (Table III), with the total
σ◦ showing greatest difference at HV polarization. Levels of
σ◦ and the relative contributions of the different scattering
mechanisms were within several decibels of those observed in
[4], although results in [4] were obtained for one SSU (142-18)
and by using a two-layered model only. This can be expected
given that the cross-polarized response is typically underesti-
mated in a first-order model of this kind [67]. A greater range
of scattering mechanisms was also considered.

Simulated backscatter levels were seen to vary slightly with
different imaging geometries and resolutions. This arose pri-
marily from the variation in the DEM-derived ground rough-
ness estimate from different interpolations of the original DEM
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Fig. 9. (a) AIRSAR L-band image. (b) Simulated multilooked L-band image. (c) Simulated L-band SLC image for PSU 142 showing HH-, HV-, VH-, and
VV-polarized images from left to right (in each case).

TABLE III
COMPARISON OF SIMULATED AND ACTUAL σ◦

and different realizations of the attenuation voxels. The GV
return can be sensitive to estimates of ground roughness, which
leads to variations in σ◦. However, the typical values reported
in Table III did not vary by more than a fraction of a decibel
when system resolutions and pixel spacings were altered.

The decomposition of the total return into different scat-
tering mechanisms [5] indicated that at HH polarization, GV
returns were the most significant and resulted primarily from
ground–trunk interactions. The DV component was secondary
and resulted largely from scattering by primary branches (i.e.,
those originating from the stem), whereas DG terms were not
significant in this model. At VV polarization, DV returns from
primary branches predominated. However, in contrast to the
cross-polarization case, the combined contributions of DG and
GV were significant in the VV return. This agreed with the
results of [4]. Overall VV returns were lower than HH because
of the strength of the GV interaction in the HH channel.

Cross-polarization (HV) returns were dominated by the DV
response, to which primary branch, groundcover, and voxel
contributions were commensurate. As with [4], simulated HV
backscatter levels were underestimated by the model, and the
second-order volume–volume terms required to correct for this
defect [67] will be the subject of future work. The production
of imagery is a unique feature of the coherent wave simulation,
and the simulated and AIRSAR images were visually compa-
rable, particularly at HH polarization (Fig. 10). Close examina-
tion revealed that large-scale features and even individual tree
clusters could be matched within the simulated and AIRSAR
imagery, which itself suggested that the canopy reconstruction
and SAR simulation had been performed to a high degree

Fig. 10. Comparison of L-band HH images (a) acquired by the AIRSAR and
(b) simulated using the coherent wave model.

of fidelity. Brightness in the HH imagery, although greater
over the denser forest areas, showed less variation within the
AIRSAR image.

VII. DISCUSSION

A. Analysis and Integration of LiDAR and Optical Data

A recognized limitation of previous studies aimed at SAR
backscatter modeling has been the reliance on field data
for parameterization, which has resulted in a less complete
representation of the spatial variability in the distribution of
tree components (e.g., leaves, branches) of varying sizes and
orientations in either 2-D or 3-D. Furthermore, such data have
often proved inadequate for providing sufficient validation for
model outputs. By integrating LiDAR and field data in this
study, a more realistic representation of the forest stand has
been constructed, and hence, the variation observed within
simulated and also actual SAR data can be better explained.
As a large LiDAR data set has been acquired for a range of
forests near Injune, options are also now available for further
development of the simulations and validation of outputs.
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The reconstruction of the 3-D structure of the forest through
integration of field, LiDAR, and CASI/LSP data is itself a new
approach to forest characterization. By seeking to parameterize
the coherent SAR model, new techniques have been developed
for locating tree trunks based on the HSCOI canopy density
model and retrieving the heights and diameters of subcanopy
trees [43]. Tree crown delineation methods in complex forest
environments have been advanced using both CASI [39] and
LiDAR [43] data, as well as discriminating and mapping com-
mon tree species through discriminant classifications. Finally,
the new techniques have allowed finer resolution mapping of
total and component (i.e., leaf, branch, and trunk) biomass
through integration of LiDAR, CASI, and LSP and defin-
ing leaf and terminal branch distributions based on LiDAR
voxels. The development stage explicitly included a continu-
ous improvement component, whereby intermediate LiDAR-
derived component 3-D outputs were run through the SAR
simulation process. In some cases, anomalous SAR artifacts
were identified (e.g., overly bright pixels in seemingly sparse
vegetation). When these were checked in the LiDAR compo-
nent model, they were found to correspond to branches that
were not realistic in terms of length or size. The process of
continuous improvement therefore allowed the LiDAR model
branch location and size allocation to be improved, which
removed the SAR artifacts in the next simulation run. An added
advantage of using the continuous improvement approach was
that crown locations outside of the field plots could be validated
and crown configurations not observed in the field plots could
be encompassed in the simulations. This process highlights the
synergies that are possible when integrating data from a range
of sources and scales.

The SAR simulations closely resembled that of the actual
AIRSAR data and gave confidence that the approach to forest
reconstruction from the LiDAR data was reasonable across the
range of forest structures present in the scene. Considering the
complexity of the forests, the reconstruction provided a realistic
representation of the forest.

B. SAR Simulation

The 3-D coherent SAR simulations were based on field
(including destructive harvesting) measurements and finer spa-
tial resolution data acquired over a similar time period as the
AIRSAR overpass. Therefore, the distribution of foliage and
terminal branches (within the voxels), primary and secondary
branches, and trunks was considered realistic as was the attribu-
tion of these elements and the ground surface with information
relating to their size (volume), geometry, and dielectric prop-
erties. The ground surface was similarly well characterized.
A particular advantage of acquiring data at this time was that
much of the uncertainty associated with, for example, tree
distributions, vegetation moisture contents, or leaf amount, was
reduced.

The unique SAR simulations provided a realistic overview,
both visually and numerically, of L-band backscatter from
E. populnea-dominated forests. Differences in brightness varia-
tion across the actual AIRSAR and simulated images indicated,
however, that the recovery technique might have overestimated
the variation in biomass across PSU 142 or there was loss
of dynamic range in the compressed AIRSAR data or both.

These differences in dynamic range are illustrated in Fig. 11,
which plots the distributions of normalized pixel amplitudes
in the three polarimetric channels at L-band over PSU 142.
The difference between simulated and actual data was most
noticeable at HH polarization, where the major contribution
to the returned power arises from the ground–stem interaction.
Examination of the ground roughness map revealed that rough-
ness was not the major cause of variation in the GV term across
the simulated image but that the biomass of the stems might
contribute significantly.

Other possible sources of loss of dynamic range at L-band
include the influence of clutter motion, which leads to loss of
focus and a spreading of energy throughout the image, and the
incoherent component of the GV interaction [69], both of which
have not been included in current calculations. The low HV
return predicted by the model is also traceable to the lack of
multipath in the DV calculation [67].

C. Benefits and Implications

In a previous study that focused on these same forests [4], the
wave scattering model of [5] was used to understand the interac-
tion of microwaves of different frequency and polarization with
vegetation components (i.e., leaf, branch, and trunks). Although
the original model assumed scatterers to be distributed in two
layers, modifications were made to allow multiple distributions
of branch and trunk cylinders within the upper and lower layers,
respectively, thereby facilitating a better representation of the
multilayered canopy. Despite good simulations, it was consid-
ered that the complex structure of the forests could be better
represented if layers were allowed to overlap and a tapered
trunk model was included. This led to the development of a
multilayer canopy scattering model [7] based on the Michigan
Microwave Canopy Scattering model (Multi-MIMICS [6]). The
use of a 3-D voxel-based coherent vector wave propagation and
scattering SAR model [33], [34], [54] to simulate fully coherent
and polarimetric SLC SAR imagery from a realistic repre-
sentation of the distribution of foliage, branch, and trunk ele-
ments (and their attributes; as mapped primarily from LiDAR
with reference to field data) therefore represents further ad-
vancement. The simulations from this model compare well with
those of [4] and [7] for the same forest confirming the validity of
each. As with these approaches, a better understanding of how
both total and component biomass and structural attributes can
be retrieved from SAR can potentially be obtained. The model
can also be used to assess the extent to which the forest structure
can be simplified in order for a realistic interpretation of the
SAR backscatter through modeling to be obtained. Future work
will focus on the integration of the various approaches such that
the modeling of SAR backscatter within this forest environment
can be optimized and a greater understanding of how biomass
and structural attributes can be retrieved using these data can be
obtained.

The focus on L-band SAR simulation is particularly per-
tinent given that Japan successfully launched the ALOS
PALSAR in January 2006 and other sensors operating at this
frequency are being planned and proposed. This sensor is
anticipated to provide near global coverage of L-band HH
and HV data several times per year, and considerable interest
has been generated regarding the use of these data for forest



2750 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 10, OCTOBER 2006

Fig. 11. Distribution of (a) HH, (b) VV, and (c) HV pixel amplitudes in simulated and actual AIRSAR L-band imagery.

assessment, particularly biomass retrieval. The study presented
here provides a series of tools that allow the reconstruction
of the forest stand and the subsequent simulation of L-band
SAR images as well as overall backscatter and contributory
mechanisms, which will ultimately be used to support inter-
pretation of these data. The Injune study area is also well
suited for such research as a comprehensive data set exists,
which includes a substantial quantity of field, LiDAR, CASI,
LSP, and AIRSAR data. The integration of these data with
coherent SAR models can therefore support efforts in the char-
acterization and mapping of forests in Queensland, as well as
across Australia, and presents opportunities for understanding
the information content of these data for research and opera-
tional purposes.

VIII. SUMMARY AND CONCLUSION

By integrating LiDAR, CASI, aerial photography, and field
data, a 3-D representation of an Australian forest has been con-
structed and populated with quantitative information related to
the size, geometry, and dielectric properties of foliage, branch,
and trunk components. Using these same data, a representation
of ground surface properties has also been generated. This
information has been used as input to a coherent SAR model
to simulate SLC images, from which multilooked backscatter
data have been retrieved. Comparisons with AIRSAR L-band
data indicate a close correspondence in the backscatter and
also imagery, particularly at HH and VV polarizations, a real-
istic representation of the contribution from different scattering
mechanisms and comparative results with those obtained in pre-
vious studies [4], [7]. As such, the potential of the 3-D coherent
SAR simulation model as a tool for further investigating the
utility of SAR data for retrieving the biomass and structural
attributes of complex mixed species forests typical to large parts
of Australia has been demonstrated.

Model simulations have been performed for a forest domi-
nated by E. populnea at L-band, and performance in different
forests types and at other frequencies will be the subject of
future investigations. The validated forest reconstruction and
L-band SAR models provide significant opportunities for better
understanding the potential of current and forthcoming satellite
mission, including the ALOS PALSAR, for retrieving forest
structural attributes and biomass. LiDAR data from other PSUs
are being processed for further simulation of SAR data, which
will be reported in subsequent papers.

APPENDIX

LOCATION OF SURFACE-VOLUME MULTIPATH

IN SAR IMAGERY

Consider the following imaging geometry for a small target
above a sloping terrain. The SAR platform position

r =xx̂ + r0

r0 = yŷ + H ẑ (A1)

progresses in the x̂ direction at a constant ground range y
and height H in the world coordinate system. Let T be the
projection of the true target position t onto the sloping flat
terrain with surface normal n̂. T may be written in terms of
unit vectors {â, b̂} and a ground-plane location G as follows:

T =G + αâ + βb̂

â · n̂ = b̂ · n̂ = 0. (A2)

If the target is at a height h above the sloping terrain in the
normal direction, then

t = G + αâ + βb̂ + hn̂ (A3)

from which it follows that

α = (t · â) − (G · â)

β = (t · b̂) − (G · b̂)

h = (t · n̂) − (G · n̂). (A4)

Consider first the range history of the direct return from the true
target position, which is written as follows:

R(x) = 2 |r(x) − t|

=2
√

(x − tx)2 + (y − ty)2 + (H − tz)2. (A5)

Following SAR processing, this return is focused at azimuth
x = tx and at range R = ((y − ty)2 + (H − tz)2)

1/2 [12]. The
pulse transmitted by the sensor can be modeled as the band-
limited weighted sum of harmonic signals. Each harmonic
signal is scattered by the rough surface into diffuse and coherent
terms. It is assumed that the diffuse scattered term will not
appear focused in the SAR image, since it contains phase and
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amplitude elements, which vary in an effectively random man-
ner along the synthetic aperture. The coherent term, however,
will focus in the SAR image if the phase history for the
interaction is similar to that of the direct return from a point
scatterer. We show that in the far-field approximation, the phase
history of both the term containing a single ground reflection
and the term containing a double ground reflection vary in
exactly this way and, hence, may be expected to appear focused
in SAR images.

The coherent wave scattered from a flat (albeit rough and
tilted) half-space is in the specular direction. For the purposes
of this paper, the flat surface is taken to be the mean surface
about which the real surface height fluctuates, and from which
rms height fluctuations may be determined.

The specular reflected wave is then either scattered back to
the sensor directly from the target to yield the single-reflection
multipath return or first scattered back to the ground and
then coherently reflected to the sensor to form the double-
reflection multipath return. Thus, we need to determine the path
of the specular point for the interactions to understand their
eventual focus.

Let the specular point for platform azimuth position r be S.
The total path length of the single-reflection multipath interac-
tion is determined from the far-field geometry. Since reflection
is specular, r, S, and t lie in a plane normal to the terrain, and
which therefore contains the projection T of the target onto the
terrain.

The case of low grazing angle is shown in Fig. 12. With
reference to the figure, the single-reflection multipath return
contains a path length that is twice the distance from sensor
to specular point S plus two additional lengths, namely 1) the
distance D = |S − t| and 2) the distance A = |t − u|.

Now, let us suppose that there exists a point target at T,
which contributes a direct return. The path length associated
with this supposed scatterer also contains twice the distance
from sensor to specular point and an additional term, i.e.,
2C = 2|T − q|, where the lines Tq and Su are orthogonal.
We proceed to show that the additional path lengths are given
such that D + A = 2C , regardless of the position of the sensor.
Close examination of Fig. 12 reveals that

A = D sin γ (A6)

from which it follows that

D + A = D(1 + sin γ) (A7)

and that

C = A + E

= D sin γ + h sin θ. (A8)

Using the fact that

h = D sin θ (A9)

we can write for (A8)

C = D(sin γ + sin2 θ). (A10)

Clearly

γ = 90 − 2θ (A11)

so that

sin γ = cos 2θ = cos2 θ − sin2 θ (A12)

where

2C =2D(cos2 θ − sin2 θ + sin2 θ)

= 2D cos2 θ (A13)

and

D + A =D(1 + cos2 θ − sin2 θ)

=D(cos2 θ + sin2 θ + cos2 θ − sin2 θ)

= 2D cos2 θ (A14)

and, finally, by comparison of (A13) and (A14)

D + A = 2C. (A15)

The identity (A15) means that for any position of the platform,
the path length of the single-reflection multipath term is equal
to that between the sensor and the fixed point, which is the pro-
jection of the target position onto the mean plane. This implies
that the single-reflection multipath term appears focused in the
image at azimuth and range given by

x = Tx (A16)

R =
√

(y − Ty)2 + (H − Tz)2 (A17)

where T = (Tx, Ty, Tz) may be determined using (A2)–(A4),
given knowledge of the terrain slope. We note that the single-
reflection multipath term has an increase in path length over the
direct target return of

2E = 2h sin θ. (A18)

We now move on to consider the other multipath term involv-
ing two reflections at the terrain surface. It is apparent from the
geometry of Fig. 12 that the double-reflection multipath term
incurs an increase in path length over the direct target return of

2D − 2A = 4h sin θ. (A19)

Comparison between (A18) and (A19) leads one to speculate
that there exists another fixed point T ′ for which the direct re-
turn has the same path length as the double-reflection multipath
term. This is indeed the case, and the point is clearly located at
a position below the terrain at

T ′ = T − hn̂

= t − 2hn̂. (A20)

Since this point is also fixed with respect to the world
coordinate system, the double-reflection multipath term must
focus at azimuth and range given by

x = T ′
x (A21)



2752 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 10, OCTOBER 2006

Fig. 12. Geometry for determining the multipath path length. T is the
projection of the target position t onto the sloping terrain with normal n̂.

R =
√(

y − T ′
y

)2 + (H − T ′
z)

2. (A22)

Again, this may be found using available knowledge of the
terrain.
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Abstract

The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy
height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a
complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a
quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return
LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be
located (including those in the sub-canopy) and attributed with height using relationships (r2=0.81, RMSE=1.85 m, n=115; 4 outliers removed)
established with field data. A threshold contour of the HSCOI surface that encompassed ∼90% of LiDAR vegetation returns also facilitated
mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with
field measurements (r2=0.82, RMSE=133 stems ha−1, n=30), with the most consistent results observed for stem densities ≤700 stems ha−1. By
combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2=0.91, RMSE=0.77 m, n=30),
crown cover (r2=0.78, RMSE=9.25%, n=30), and Foliage & Branch Projective Cover (FBPC; r2=0.89, RMSE=5.49%, n=30) were estimated
to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria,
stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of
greater height and canopy closure.
© 2007 Elsevier Inc. All rights reserved.
Keywords: LiDAR; Forests; Structure; Height; Canopy density; Canopy cover; Queensland; Australia
1. Introduction

Stand density (e.g., stems ha−1), basal area (m2 ha−1),
predominant height (m), andmeasures of canopy extent, including
crown cover, Foliage Projected Cover (FPC, %) and Foliage
Branch Projected Cover (FBPC, %) are structural variables that
are often used to characterise forests in support of inventory and
mapping programs, management strategies and conservation
activities (Specht & Specht, 1999). As examples, density by
species and size class (e.g., diameter at 130 cm above ground level
(D130) or top height (H)) and basal area are fundamental for
assessing timber yields and carbon stocks (Florence, 1996), whilst
measures of crown cover (CC) are used commonly to assist
⁎ Corresponding author.
E-mail address: rml@aber.ac.uk (R.M. Lucas).

0034-4257/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
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quantification of carbon fluxes and understanding of ecosystem
function (Parker, 1995; Popescu et al., 2004). In Australia, where
this study is focused, thresholds of both CC and H are used to
distinguish forests from other terrestrial vegetation (e.g. Lovell
et al., 2003) and both are useful for assessing biodiversity values
(Ishii et al., 2004; Turner et al., 2003).

In recent years, the retrieval of forest structural attributes
across the landscape has been advanced considerably following
the development of remote sensing technology and particularly
multiple (discrete) return and full waveform Light Detection and
Ranging (LiDAR) (Lim et al., 2003). In earlier studies using
LiDAR data, emphasis was placed on retrieving tree or stand H
from canopy height models (CHM) or information on the
vertical stratification of foliage and branch elements (e.g., Lovell
et al., 2005; Magnussen & Boudewyn, 1998; Todd et al., 2003).
However, attention is increasingly turning to the estimation of a

mailto:rml@aber.ac.uk
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greater range of forest attributes as processing methods become
more sophisticated. Desirable attributes include tree density
(e.g., Holmgren et al., 2003; Leckie et al., 2003), basal area or
biomass (e.g., Lefsky et al., 1999, 2005; Lim&Treitz, 2004) and
measures of canopy cover (Chen et al., 2005; Riaño et al., 2004).
For purposes of retrieving these attributes, measures derived
from the LiDAR CHM (maximum, mean or percentiles) and/or
the percentage of canopy strikes per unit area or volume have
typically been considered. For estimating stem density, for
example, several studies have simply counted crowns delineated
using the CHM (e.g., Hyyppa et al., 2001; Leckie et al., 2003;
Suárez et al., 2005) whilst others have used more complex
transfer functions based on specific percentiles of the height
distribution of canopy LiDAR pulses or mathematical functions
(e.g., Weibull or Johnson's SB) that describe apparent vertical
profiles (Jerez et al., 2005; Maltamo et al., 2004). Plot and stand
level descriptions (e.g., density, meanH and canopy cover) have
been obtained through aggregation of tree level information
(e.g., Popescu et al., 2003). However, success in locating and
attributing stems occurring in high density young forests or
beneath overstorey canopies and integrating these with those of
the overstorey trees for stand-based estimation has been limited
to only a few studies (e.g., Hyyppa et al., 2001; Leckie et al.,
2003; Gaveau & Hill, 2003; Suárez et al., 2005).

The majority of studies on forest characterisation have
focused on small footprint LiDAR, largely because of the earlier
development of this technology but also because of the wider
availability of commercial systems in many countries. By
contrast, full waveform airborne large footprint systems are still
experimental and (at the time of writing) generally not
commercially available outside North America, although this
limitation is being addressed to some extent by spaceborne
LiDAR platforms such as the Geoscience Laser Altimeter
System (GLAS) on the current NASA Ice, Cloud, and land
Elevation Satellite (ICESat). These and other full waveform
LiDAR data (e.g., SLICER and LVIS) are showing considerable
promise for forest characterisation. Depending on foliage
canopy, they are capable of sampling almost the full canopy
profile within each footprint and providing information on the
distribution of strata (including the sub-canopy), the canopy
volume and other stand attributes (e.g., growth stage) which
have proved difficult to obtain with small footprint LiDAR
(Harding et al., 2001; Lefsky et al., 1999, 2005; Lim et al.,
2003). However, whilst providing stand level descriptions,
these systems have proved limited for retrieving tree level
information such as the location of individual stems and their
associated crowns dimensions. This occurs largely because the
diameter of the footprint, which is generally 8–70 m (Lim et al.,
2003), presents a lower bound on the horizontal spatial
resolution. Also, it is often difficult to relate field scale data
or provide absolute measures of the foliage height distribution
(Harding et al., 2001). This is in contrast to the small footprint
systems within which tree crowns can be readily discerned and
information on the vertical profile also obtained. Large footprint
systems also generate a full waveform for each footprint, and so
large volumes of complex data requiring sophisticated proces-
sing are generated. Small footprint systems also generate large
volumes of data but the data themselves are relatively simple
(i.e., in terms of spatial location, elevation and intensity) and are
more readily available for immediate use and analysis. Even so,
the representation of the canopy vertical profile is at a lower
resolution and can be biased toward the upper parts of the
canopy (Lovell et al., 2003).

A key benefit of all LiDAR systems is that they provide
information on the distribution of plant elements in the sub-
canopy and, in Australia, this information is sought as it has
relevance to managing flora and faunal species and understand-
ing both forest health and condition and the capacity of forests to
regenerate (Stone et al., 2000; Todd et al., 2003). Such
knowledge is also required for improved carbon accounting of
both current and future carbon stocks (Dean et al., 2004), and for
risk assessment in relation to fire fuel loads and crown fires
(Anderson et al., 2005; Riaño et al., 2003). However, useable
algorithms for retrieving information on the sub-canopy of
forests in Australia from LiDAR have been difficult to obtain,
partly because most have been developed on, and are applicable
to, single-layered forests or those that are multi-layered but with
a relatively uniform structure. Such structures are common to
forests in temperate and boreal regions, which are composed
primarily of coniferous (e.g., Hall et al., 2005) and/or broad-
leaved (e.g. Patenaude et al., 2005; Wulder & Seemann, 2003)
species, and also the tropics (Clark et al., 2004; Drake et al.,
2002). Within Australia, the structural characteristics and
distribution of plant communities is largely a function of
geologic, pedologic and climatic (e.g., rainfall) influences (Peel
et al., 2005). Most native forests are more open and comprised of
species with architectures that are markedly dissimilar to those
found in temperate, boreal and tropical closed forests (Barlow,
1994). The vegetation is mostly woody, sclerophyllous and
evergreen, and is characterised by the presence of relatively
small, rigid, long lived leaves, which also tend to be vertically
orientated in response to the high sun intensity. The dimensions
(area and depth) of crowns in the upper canopy are highly
variable, ranging from large and expansive (typical to many
Eucalyptus and Angophora species) to small and compact
(typical to Callitris species). In many cases, both crown types
occur in the same stand but often in different strata, and variation
in tree height, crown size, shape and density (which is high even
within species) occurs as a function of the volume and type of
soil that can be exploited for water and nutrients. Crown size is
also indicative of the area a plant will influence through, for
example, shading and litter deposition (Jupp & Walker, 1997).

These configurations present significant challenges for estimat-
ing tree density, basal area and CC when utilising a LiDAR CHM
(particularly that generated from small footprint data). Specifically,
when locating individual trees within the CHM,many trees that are
partially or wholly within the sub-canopy or understorey are not
identified (Hyyppa et al., 2001), high points in crowns often do not
necessarily correspond to the location of the stem (Lee et al., 2001),
and multiple high points within a single crown may occur that
falsely indicate the presence of several separate trees (Florence,
1996). Estimates of stand-based CC are also often based on
arbitrary thresholds of the CHM rather than onmeasures that better
relate to the distribution of foliage and branch elements.
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This study relates to mapping at a tree scale, but with
particular reference to sub-canopy elements. Ideally, the sub-
canopy assessment would be undertaken using full waveform
large footprint systems, as confidence in the representative
assessment of the vertical elements would be increased.
However, in the absence of available systems, the practical
solution is to emulate some of the large footprint system
attributes using small footprint systems. Algorithms for
assessing Australian vegetation structure from LiDAR also
need to be tailored to Australian conditions, and particularly
consider soils and climate as these factors play a major role in
influencing growth form, even within the same species group.
For this purpose, we have developed a new structural
assessment tool, termed here the Height-Scaled Crown
Openness Index (HSCOI). This index, which is calculated
from small footprint LiDAR, provides a quantitative measure of
the penetration of the LiDAR pulse through the forest canopy
and is considered complementary rather than supplementary to
the traditional LiDAR CHM-based approaches. The HSCOI
was developed primarily to address problems that can arise
when utilising CHMs to identify stems in Australian forests.
This paper describes the conceptual development of the HSCOI
and then evaluates its utility, both alone and in conjunction with
the CHM, for:

a) Locating tree stems and estimating H within both the
overstorey and sub-canopy of multi-layered forests that are
common to semi-arid environments (e.g., wooded savannas).

b) Delineating the extent of the forest canopy and individual or
clusters of crown(s) contained within.

The paper also provides a preliminary assessment of the
applicability of a HSCOI (developed for a semi-arid forest) to
other forested environments in Australia, and the implications
and requirements for regional calibration and application. The
paper reports the results from initial proof of concept
investigations into stem mapping and attribution. The set of
Fig. 1. The location of th
procedures required to meet adequate levels of accuracy are
outlined, and are then tested on independent sites in another
location. This has been undertaken to highlight additional
regional calibration requirements.

2. Study areas and data collection

2.1. Site descriptions

The study focused on two locations. The primary develop-
ment and calibration location is an area of open forests and
woodlands near Injune (Latitude 25° 36′ S, Longitude 147°
30′ E) in central Queensland, Australia (Fig. 1; Lucas et al.,
2006a; Tickle et al., 2006). Within this area, elevation varies
from 437 to 850 m and the mean annual rainfall is
approximately 635 mm, though variable, with most recorded
between December and February (summer). The mean annual
maximum temperature is 27 °C (Bureau of Meteorology, 2004).

The forests are diverse and dominated by several species,
with both excurrent (e.g., pines) and decurrent structural forms
commonplace (Lucas et al., 2004). White cypress pine (Callitris
glaucophylla) dominates many stands but this species is also
selectively harvested, so large individuals are typically absent.
Most Callitris trees occur in dense stands comprised of a large
number of smaller individuals (up to several trees per m2).
Eucalyptus species are widespread throughout the area, with
Silver-leaved Ironbark (E. melanaphloia) and Poplar Box
(E. populnea) being prevalent. Tumbledown Red Gum
(Eucalyptus dealbata var chlorodata) and Smooth Barked
Apple (Angophora leiocarpa) occur along the creeks and at
scattered locations throughout the landscape, and individual
trees often contribute the greater proportion of the stand
biomass. Larger individuals of both Eucalyptus and Angophora
species form the upper canopy of many stands, below which
several layers of sub-canopy trees of varying densities occur.
Brigalow (Acacia harpophylla) and understorey shrubs such as
Wilga (Gejeira parviflora) and Sandalwood Box (Eremophila
e Injune study area.
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mitchelli) are commonplace. Many stands contain a mix of
Acacia, Callitris, Eucalyptus and Angophora species and a wide
range of growth (and therefore structural forms) exist because of
the varying impacts of natural fires, droughts, clearing (e.g.,
pulling, poisoning) and grazing (Tickle et al., 2006).

The secondary study site (utilised for regional validation of the
HSCOI) was located in northeast Victoria (Fig. 2). Here, a
National Forest Inventory (NFI) Continental Forest Monitoring
Framework (CFMF) pilot project was undertaken in 2003–04 to
evaluate multi-tier data collection sampling design and attribute
measurement approaches (BRS, 2003a). The CFMFwas initiated
to provide an integrated nationally consistent inventory and
monitoring program for meeting assessment and reporting
requirements. The pilot region, the Ovens and Broken catch-
ments, covered 1.5 million hectares, and contained a wide range
of forest types ranging from high rainfall alpine and montane
environments to rolling foothills and semi-arid floodplains. The
elevation ranges from around 1900m in the alpine area to a low of
around 100m above sea level in the floodplains. Themean annual
rainfall ranges from 2264 mm yr−1 to 394 mm yr−1 from the
alpine to the floodplains areas respectively. Forest covers
approximately 35% of the area and the remainder is occupied
largely by agricultural land. In terms of structure, the forests
studied in Queensland and northeast Victoria were considered
representative of the majority occurring within Australia.

2.2. LiDAR data acquisition

For Queensland, small footprint discrete return LiDAR data
was collected using an Optech 1020 system, mounted in a Bell
Jet Ranger helicopter with a nominal flying altitude of 250m and
Fig. 2. Location of the CFMF pilo
a swath width of approximately 200 m. The data were captured
over a regular grid of 10×15 primary sampling units (PSUs)
located ∼4 km apart in the north–south and east–west
directions. Each PSU was 500×150 m in the x and y dimensions
respectively, andwas further divided into 30 secondary sampling
units (SSUs) that were 50 m×50 m (0.25 ha). The sampling
strategy is described in more detail in Lucas et al. (2006a) and
Tickle et al. (2006). The acquisition occurred over a one-week
period commencing August 24th 2000. The Optech 1020 had a
laser repetition rate of 5 kHz, operated at 1047 nm (near infrared
spectrum), with a beam divergence of 0.25 mrad, a footprint of
approximately 7.5 cm, and an average sampling interval of 1 m.
First and last returns and the intensity of each return were
acquired flying in an east–west direction (centred on each PSU
row).

Within northeast Victoria, LiDAR data were collected using
an Optec ALTM 1225 system mounted in a fixed wing aircraft,
with a nominal flying height of 1100 m and an average swath
width of 400 m. The LiDAR data were acquired over a 20 km
regular grid laid out across the two catchments and LiDAR data
were flown along a total length of 1485 km and an area of
∼59,400 ha. The system supported a laser repetition rate of
25 kHz, with a beam divergence of 0.1 mrad, and a footprint
size of 0.24 m. The data averaged a nominal point spacing of
1 m, though some plots were over-flown multiple times at the
sampling grid intersections, resulting in a return spacing of 30–
50 cm at these locations (BRS, 2006).

At both sites, a Global Positioning System (GPS) base
station was established for all flights. With full differential GPS
corrections, in addition to pitch, yaw and roll compensation
from an inertial navigation system, coordinates were supplied to
t study in northeast Victoria.



Table 1
Summary of tree and stand attributes based on measurements from 32×0.25 ha
and 22×0.09 ha plots located in forests near Injune Queensland and in northeast
Victoria respectively

Attribute Total/count Mean SD Minimum Maximum

Injune, Queensland
Plot Stems per hectare
(D130≥5 cm)

32 518 444 76 2452

Tree D130 (cm) 3771 13.5 9.4 5.0 97.1
Tree height (m) 3771 8.7 3.9 0.3 30.8
Tree crown area (m2) 3771 9.6 19.7 0.1 397.4
Plot basal area (m2/ha) 32 10.8 4.4 4.0 21.6
Plot crown cover (%) 32 46.5 19.6 3.5 86.3
Plot predominant stem
height (m)

32 15.7 2.5 10.9 21.5

Plot Stems per hectare
(D1305–10 cm)

32 246 362 0 1964

Tree D130 (cm) 1813 7.1 0.6 5.0 9.9
Tree height (m) 1813 6.1 1.7 0.3 19.3
Plot basal area (m2/ha) 32 1.0 1.6 0.04 8.6

Plot Stems per hectare
(D130≥10 cm)

32 263 114 100 492

Tree D130 (cm) 1958 19.4 9.4 10 97.1
Tree height (m) 1958 11.2 3.8 2.0 30.8
Plot basal area (m2/ha) 32 9.7 3.6 3.7 18.2

Northeast Victoria
Plot Stems per hectare
(D130≥10 cm)

22 383 221 22 1078

Tree D130 (cm) 839 25.9 18.5 9.7 194.8
Tree height (m) 839 13.7 6.7 1.6 40.8
Plot basal area (m2/ha) 22 32.2 11.7 14.0 63.6
Plot crown cover (%) 22 81.7 19.0 19.5 99.4
Plot predominant stem
height (m)

22 23.0 7.0 9.8 36.2
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an absolute accuracy of b1 m in the x and y directions and
b0.15 m in the z direction.

2.3. Field data

During August 2000, field data were collected in Queensland
from the equivalent of 34 sub-sampling units located within 12 of
the 150 PSUs such that themain vegetation types and regeneration
stages were represented. For 31 SSUs, field data were collected
from 50×50 m plots, each of which also contained five 10×10 m
subplots for recording trees with diameters b5 cm. Within three
additional sub-sampling units representing non-forest and re-
growth, five 10×10 plots rather than one 50×50 m plot were
established in the centre and along the diagonals 10m distant from
the four corners, largely because of the high density of small trees
occurring. Within each plot, stem diameter at 130 cm (D130) and
30 cm (D30), stem H, crown dimensions (x, y and z, representing
the east–west and north–south directions and crown depth
respectively) as well as the species of each tree were recorded.
To map trees and thereby determine stem density, the location of
all trees withD130≥10 cmwas recorded digitally within each plot
by placing reflectors at each of the four corners and then using
either a GEOSCAN or CENTURION Laser Rangefinder to
measure the distance and angle from each tree to the nearest visible
reflector. Using this approach, the location of trees in UTM
coordinates was calculated. Adjustments were made subsequently
to correct for angular errors, which were assisted by differential
GPSmeasurements of plot corners, and a few key trees. Trees with
D130 between 5 and 10 cmwere located separately by reading the x
and y distances (in cm) from the 50m tapes laid out in the plot and
assigning each a coordinate relative to that of the south west
corner, which was located using differential GPS. Several
measures of cover were generated for each plot. CC was
calculated as the percentage of the plot that was contained within
the vertical projection of the periphery of crowns of trees inside a
plot, with crowns considered opaque (McDonald et al., 1998).
FBPC, defined as the horizontal percentage cover of leaves and
branches, was estimated by applying the sighting tube method
(Specht and Specht, 1999) at 1 m intervals across three 50 m
north–south transects established within each plot at 10, 25 and
40 m intervals eastwards from the south-west corner. The FBPC
method is described in more detail in Tickle et al. (2006). Initial
LiDAR plot FBPC estimates were generated by calculating the
percentage of all LiDAR returns thatwere 2m and above in height.

For northeast Victoria, 22 field plots (30×30m)were measured
at forested sites located at the nodes of the 20 km systematic
sampling grid. Where forest was not present at these nodes, plots
were separate by several 10 s of kilometers. The plot locationswere
coincident with the LiDAR swaths and, within each, structural
attributes similar to those measured within the Injune study area
were recorded (e.g., location, species, height, and crown dimen-
sions for every tree with D130≥10 cm). The plots were stratified
subsequently into three broad ‘ecozone’ categories — montane
(including alpine), foothills, and floodplains. These categories
were defined from elevation, terrain, soils and vegetation
maximum height characteristics (BRS, 2006). Summaries of tree
and plot distributions of key attributes (stem density, basal area,
diameter, height and crown area) are provided in Table 1 and Fig. 3.
Note that 2 SSUs in the Queensland data were excluded (i.e.,
n=32) because these were only partially covered by LiDAR data.

3. Data analysis

3.1. Data analysis overview and strategy

The analysis of field and LiDAR data was undertaken in
several successive stages (Stages I–IX; Table 2). Specifically, the
field data were used to a) evaluate the potential of the LiDAR data
for identifying stem locations, including those associated with
sub-canopy trees, b) support the generation of empirical relation-
ships between LiDAR-derived data (i.e., the CHM and HSCOI)
and H for all identified stems, and c) evaluate the potential of the
LiDAR for retrieving stand level estimates of stem density,
predominant stem H and cover (namely CC and FBPC).

3.1.1. Stage I. Calibration and validation strategy
A three-stage calibration and validation strategy was

developed to optimise the HSCOI stem and cover mapping
process for the semi-arid woodlands and open forests found in
the primary study area (i.e., Injune).



Fig. 3. A summary of stand attributes from field data across 32×0.25 ha plots for Queensland and 22×0.09 ha plots for northeast Victoria. Mean values are labelled and
indicated as dashed (Injune) and solid (NE Victoria) vertical lines respectively.
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1. Initially, four field plots (111-18, 81-11, 124-19 and 81-16;
referenced by their PSU and SSU number respectively) that
spanned the different dominant forest structures observed across
three widely separated PSUs were selected. These are shown
(circled and labelled) with reference to the other field plots in
Fig. 4. The HSCOI was then developed using data from these
plots, and the stem extraction and attribution method refined
such that consistent results were achieved when compared to
field data. These plots were selected for the following reasons:
a. The predominant height of the forest stands within the

four plots was greater compared to the other plots and
these were expected to support multiple strata and stems
in the sub-canopy.

b. The plots were located in forests that spanned more than
one half of the FBPC range, and were in the upper half of
the cover range. Plots with a higher FBPC tended to
support more stems and/or larger crowns, which contrib-
ute to the difficulties associated with stem mapping.

c. The species contained with the plots were typical of those
within the study area. Specifically, plot 111-18 contained a
matureCallitris pine forest, which had tall stems with small
crowns, with a few large Eucalyptus trees. Plot 81-11



Table 2
Overview of processing stages in the analysis of field and LiDAR data

Stage Purpose

I Calibration and validation strategy To ensure a) a sequence of reliable inputs to models and b) data to test model outputs across a range of
forest types and environments.

II Calculation of plot-based stem density, cover, and sub-
canopy tree assessment

To provide calibration and validation sets at the plot level and to establish, based on field data, the
realism of retrieval.

III Ground and canopy height surfaces To provide an accurate ground DEM against which to retrieve vegetation heights from LiDAR point
data.

IV Conceptual development of the Height-scaled Crown
Openness Index (HSCOI)

To conceptualise and demonstrate the steps required for calculation of the HSCOI.

V Calculation of the HSCOI
•Matrix generation and intersection of LiDAR points.
•Calculation of LiDAR penetration.

VI Smoothing of the HSCOI and generation of minima To allow detection of stems regardless of crown dimensions and position in the vertical profile.
VII Stem location using the HSCOI: To allow mapping of stems by locating HSCOI minima and refinement of these maps by utilising

empirical functions and field-measurements (e.g., height, crown area) for different species.•Stem identification and extraction
•Filtering at multiple scales utilising tree crown area

and HSCOI thresholds.
VIII Crown/cluster area and cover estimation To identify the forest/non-forest boundary and crowns/crown clusters contained within.
IX Estimation of stem H and plot-scale attributes

(including density and predominant height).
To indicate stem size at the tree and stand level, thereby facilitating tree and stand level assessment of
growth (successional) stage and estimation of biomass.
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contained a stand of mature Angophora species with very
large crowns and included a Callitris midstorey with an
Acacia understorey. Plot 124-19 supported a senescent
Angophora forest with a few larger crowns (though smaller
than plot 81-11) and a dominant understorey of Callitris.
Plot 81-16 contained co-dominant Angophora and Callitris
in the upper canopy. The remainder of the validation plots
included variations along this continuum; though in some
plots different genus combinations were observed.

2. Subsequently, the HSCOI routines were applied to the
remaining 26 field plot locations from the 12 PSUs, and
comparisons made with field data at these locations. There
were between 1 and 4 field plots within these PSUs, which
Fig. 4. The distribution of the 32×0.25 ha (Queensland) and 22×0.09 ha (northeast V
used in development of the HSCOI are indicated (circled and labelled).
were widely spaced throughout the study area (separated by
4–50 km). Where multiple field plots occurred within a PSU,
the plots were located within different forest structural types.
This then provided independent validation across a greater
range of forest structural configurations.

3. Finally, the HSCOI routines calibrated against the Injune
datasets were applied to field plot locations in northeast
Victoria to assess capability for stem density mapping and
validation across a wider range of forested environments.
This was undertaken to highlight issues that might arise
when applying the technique to forests supporting trees and
stands of differing structure and to determine what further
calibration requirements (e.g., consideration of regional or
ictoria) plots within the FBPC and predominant height feature space. Key plots
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environment-specific factors) might be required to broaden
the utility of the HSCOI algorithms.

From Fig. 4, the Injune plots were observed to occupy a
FBPC range of between 14–64% and a predominant height
range of 8–20 m which was largely outside the cover-height
envelope associated with the forest plots in northeast Victoria.
For this reason, these data were considered suitable for
assessing the utility (or otherwise) of the HSCOI algorithms
when applied to forests with a structural range outside that used
for algorithm development.

3.2. Field data processing stages

3.2.1. Stage II. Calculation of plot-based stem density, cover
and sub-canopy tree assessment

At the plot level, and using the field data for trees with
D130≥5 cm, stem density (i.e., the sum of all stems within field
plots) and basal area were calculated. Trees with D130b5 cm
were excluded as these were only sampled in subplots within
the sub-sampling unit. Both measures were scaled to a per
hectare basis. Predominant H was also calculated as the mean
top H of the 13 tallest trees in the plot area (i.e., 0.25 ha). This
measure is a standard descriptor of Australian forests and is
usually calculated as the mean top H of the 50 tallest trees per
hectare; though between 40 and 75 trees can be selected
(Research Working Group 2, 1999). CC was estimated by
summing the crown areas of individual trees with D130≥5 cm.
FBPC was calculated as the percentage of leaf and branch
observations along three 50 m transects within each field plot.

The development of the HSCOI was motivated initially by
the requirement to locate stems in the sub-canopy, which could
not be achieved using a CHM. As a preliminary investigation,
the field data were analysed to evaluate the likely percentage of
sub-canopy trees (i.e., overtopped by taller individuals) across a
range of stands. For this analysis, three plots were excluded from
the initial 34 as they were regrowth plots with vegetation b2 m
height and generally D130b5 cm, whilst one had significant
portions of the plot area missing LiDAR data because of adverse
wind conditions at the time of the overflight. For the remaining
30 plots, a circular buffer based upon the crown radius,
calculated as half the average crown width in the north–south
and east–west directions, was created around the stem location
for all trees with D130≥5 cm. Starting with the tallest tree, a
count was then made of any stems located within the buffered
area and withH shorter than the tree being assessed. No tree was
counted more than once. The contribution of sub-canopy stems
to the total in terms of, for example, basal area, was also
evaluated to establish the importance of including these in stand-
based estimates (e.g., for carbon accounting purposes).

3.3. LiDAR data processing

3.3.1. Stage III: Ground and canopy height surfaces
An initial Digital Terrain Model (DTM) was constructed by

interpolating pre-classified first and last ground returns with a
1 m proximal tolerance (where any returns found within 1 m of
other returns were excluded) and represented as a Triangulated
Irregular Network (TIN) model. However, examination of the
resulting surface indicated a certain degree of ‘noise’ and
surface variation resulting from on-ground surface features
(e.g., logs, grass swards and shrubs). Therefore, and following
other studies (e.g., Suárez et al., 2005), a multi-scale filtering
strategy was employed. Here, the lowest returns (first or last)
within local search windows of increasing dimension (1×1 m to
5×5 m) were selected to generate a bare ground surface on the
assumption that these were more likely to represent the true
elevation surface. The most suitable window size for generating
the final elevation surface was determined by examining a
corresponding elevation standard deviation surface generated
using a 5×5 search window. Here, flat areas with low deviation
in elevation only required ground returns from large search
windows (e.g. 5×5 m). Where ground elevation was more
variable (e.g. around water courses) then returns from smaller
windows were used, with the general rule being that the greater
the deviation, the smaller the search window.

Subtracting the initial TIN ground model from the final
spatially filtered surface produced a difference surface. As an
example, the surface analysis for PSU 142 indicated that the
spatially filtered elevation layer was lower and differed, on
average, by 8 cm (standard deviation (δ)=8 cm, range=−0.5 to
0.5 m). Similar results were observed within the other PSUs,
and these compared well to other studies (e.g., Hodgson &
Bresnahan, 2004). The on-ground surface features previously
identified were also evident within the difference surface,
indicating that spatial filtering of the surface was effective in
their removal. Once calculated, the height of woody vegetation
was determined as the difference in elevation between the final
bare ground surface and the first and last vegetation LiDAR
returns. Only returns above 0.5 m were subsequently used for
canopy assessment, as those below this height were considered
to be from shrubs, tall grass, and larger items of woody debris.

3.3.2. Stage IV. HSCOI conceptual development
Australian forests can be stratified both vertically and

horizontally. In the vertical domain, all vegetation has an
upper stratum and lower layers may exist whilst in the
horizontal domain, variations result from the arrangement
(spacing) and density of foliage within any given vertical layer
(Jupp & Walker, 1997). In open forests and woodlands, this
relationship is often referred to as “gapiness”, in that foliage
clumping creates gaps through which light may penetrate to the
lower layers (Nilson and Ross, 1997). Conceptually, the HSCOI
considers the penetration of the LiDAR pulse through the forest
volume and therefore relates to canopy gapiness (or porosity)
and also light transmittance. As such, it provides a 3D measure
of opacity and can therefore be considered an extension of
traditional foliage cover estimates calculated from point
observations, most of which are summarised above or below
a certain height threshold (typically eye level; McDonald et al.,
1998) and transformed to give a 2D projection of canopy extent.
The HSCOI also draws upon some of the conceptual aspects
surrounding the interpretation and analysis of full waveform
large footprint LiDAR, including those presented in the initial
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phases of the Canopy Volume Method (CVM; Harding et al.,
2001; Lefsky et al., 1999). Comparisons between the HSCOI
and CVM are described in Section 5.1. The development of the
HSCOI additionally incorporates a multi-scale strategy in both
the initial generation stage, and in the subsequent stages of
spatial refinement and attribution. This is because the HSCOI is
designed to assess both trees and stands of trees, which may
occur at a range of sizes. Since the utilisation of multi-scale
analyses have been shown to reduce scale effects in spatial
analyses, and thus provide enhanced understanding of ecolog-
ical patterns (Burnett & Blaschke, 2003; Frazer et al., 2005; Hay
et al., 1997; Jelinski and Wu, 1996), this strategy has been
adopted with the HSCOI.

3.3.3. Stage V. Calculation of the HSCOI
To generate the HSCOI, the LiDAR data were processed in a

raster format for computational speed and efficiency, with each
1 m height interval represented within the attribute database of
the final output 2D raster grid. To quantify the relative
penetration of LiDAR pulses through the forest volume, these
data were transformed into a three-dimensional (3D) voxel
matrix of 1 m3 spatial resolution (i.e., horizontal and vertical
spatial resolution of 1 m); an approach adopted also by Chasmer
et al. (2004). The 1 m output spatial resolution reflected the post-
spacing of the base LiDAR point data and was commensurate
with other acquired datasets, namely the Compact Airborne
Spectrographic Imager (CASI; Bunting & Lucas, 2006) and
large-scale aerial photography (Tickle et al., 2006). Within this
3D matrix, canopy voxels containing returns were attributed
with the tallest recorded LiDAR height value occurring within
the voxel space. The HSCOI (expressed as a percentage) can be
considered a weighted summation of a proxy variable of the
inverse of canopy density (i.e., 1/number of voxels containing
returns (n_voxels) per 1 m2 vertical column). The weighting
used is the relative height of the voxel (voxel_ht) with respect to
a kernel window or stand/PSU, where:

a) The local maximum height, HSCOIlocal, uses the maximum
height (max_htlocal) in an n×n kernel window.

HSCOIlocal ¼
XnvoxelsðiÞN0

n¼1

maxhtlocal � voxelht
maxhtlocal

� �
⁎

1
nvoxels

� �
⁎100 ð1Þ

b) The stand maximum height HSCOIstand, uses the maximum
height of the stand (max_htstand), as represented by a plot/
SSU or PSU.

HSCOIstand ¼
XnvoxelsðiÞN0

n¼1

maxhtstand � voxelht
maxhtstand

� �
⁎

1
nvoxels

� �
⁎100

ð2Þ

where the summation uses only those voxels that contain
LiDAR returns. This is achieved with a counter variable (i),
which counts the LiDAR voxels (containing returns) up to the
maximum number of levels (i.e., maximum height of column).
The HSCOI therefore translates point observations from the
LiDAR into a measure of relative penetration of LiDAR pulses,
by scaling these from the top of the canopy such that 0%
indicated no canopy penetration whilst 100% represented full
penetration to the ground. As an illustration, if four LiDAR
strikes were recorded within a column, then each would
contribute 25% of the total HSCOIstand value. If max_htstand was
25 m and the voxel heights in the column were 0 m (ground),
5 m, 10 m and 25 m, then:

HSCOIstand ¼
25� 0

25
⁎
1

4

� �
þ 25� 5

25
⁎
1

4

� �
þ 25� 10

10
⁎
1

4

� �
þ 25� 25

25
⁎
1

4

� �� �
⁎100

¼ ð0:25þ 0:20þ 0:15þ 0:0Þ⁎100

¼ 60% HSCOIstand for the 2D output cell

If max_htlocal (e.g., within a 3×3 kernel) was 15 m (rather
than 25 m) but returns were still recorded at 0 m, 5 m and 10 m,
then a HSCOIlocal of 66% would be calculated. The higher
HSCOI therefore indicates a greater likelihood of penetration to
the ground surface as a consequence of the relative scarcity of
leaves and branches in the canopy. A top of canopy height grid
(in 2D), which contained the maximum height found within
each square meter column of the 3D matrix, was also generated.
This allowed creation of a CHMlocal, which was required for
deriving reliable tree H and estimating max_htlocal within a
(3×3) kernel area.

The use of both the local kernel and the stand maximum
height in the calculation of the HSCOI presented two
advantages. First, with HSCOIlocal, areas of dense vegetation
within crown clusters could often be identified regardless of
height because of the local nature of the kernel. Second, with
HSCOIstand, crown clusters containing a high density of stems
with low height (e.g., understorey) were separated from those
associated with taller overstorey trees. In this latter case, the
heights were closer to the maximum of the plot and hence
HSCOIstand values were lower compared to those of shorter sub-
canopy trees. As the height range within the larger stand area
was generally greater, fewer minima were identified in the
understorey clusters.

3.3.4. Stage VI: HSCOI smoothing and minima generation
During development of the HSCOI, comparisons with field

data suggested that lower HSCOI values were associated with
either the locations of stems or clumps of branches contained
within larger crowns. To better define local minima that may
correspond to stems, this stage had two main phases. First, a
range of smoothing kernels of varying size and shape were
evaluated in order to determine the optimal configuration for
surface generation and subsequent minima extraction. The
optimal configuration sought to minimise internal crown gaps/
holes in the canopy density surface (i.e., the initial HSCOI
layer) that occurred because of branch clumping, the LiDAR
sampling rate, and the spatial resolution of the HSCOI matrix.
The second phase took the final smoothed layers and passed
them through a topographic assessment routine for rapidly



Fig. 5. The comparison between the number of minima produced with different
kernel sizes and shapes for test SSU 124-19, and the number of trees of different
stem diameter sizes identified in the field.
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extracting minima that could be compared against actual stem
locations.

Previous research has described the use of multiple kernel
sizes and shapes for enhancing individual tree crown identifi-
cation (e.g. Wulder et al., 2000; Popescu and Wynne, 2004).
Therefore, a range of focal mean smoothing functions were
evaluated to identify branches associated with larger crowns
and fill internal crown gaps. This step applied kernels of varying
shapes (e.g., squares or circles) and sizes (e.g., with pixel side
length or radii increasing from 1 to 11 m) to one of the
calibration plots (SSU 124_19) that contained crowns of
varying sizes and dimension (Fig. 5). Pouliot et al. (2005)
described a similar comparison using fine spatial resolution
optical imagery and bright point counting within segmented
crowns. The HSCOI process confirmed the findings of Pouliot
et al. (2005) in that an increasing kernel size resulted in fewer
Fig. 6. A HSCOIstand surface (based on plot maximum height) for SSU 124_19, smoot
kernels. Darker areas represent lower HSCOIstand values and hence a higher canop
identified in the field are represented as circles that are proportional to crown radius
minima, with this size effect also found when a range of field
data stem counts at different stem diameter size thresholds were
assessed (Fig. 5). This indicated a link between kernel spatial
resolution and likely tree crown area (i.e., small crowns are not
detected with larger kernels because of spatial smoothing).

A circular kernel of 1 m radius (which averaged the centre
and four adjacent cells) applied to the stand maximum height
surface provided the best initial correspondence for the count of
stems with D130≥5 cm. By applying to the HSCOI, gaps in the
canopy were filled and the crown edges of many trees were
clearer in definition, thus corresponding well with those
observed in the field (Fig. 6a). When rectangular (square)
kernel sizes of 5 m or greater were used, lower values of the
HSCOI extended beyond the estimated boundary of the field-
measured crowns. However, minima associated with the 5 m
rectangular kernel were found to better identify the centre of
taller individuals and the dominant trees within clusters
compared to other rectangular kernel sizes (e.g., 3×3), although
many of the smaller trees identified previously using the circular
kernel of 1 m radius were not detected (Fig. 6b).

To extract minima from the smoothed HSCOI layers, the
ArcInfo Topogrid function (ESRI, 1996) was used to create
interpolated surfaces of 1 m2 cell size and corresponding ‘sinks’
or minima. The locations of these sinks were then compared
against the location and number of stems recorded in the field.
The resultant smoothed HSCOI surfaces (Fig. 7a) can be
considered akin to an inverted CHM, but with a significant
difference. In a CHM, the tallest parts of a crown tend to form
the apex of the surface (Fig. 7b) whereas with a HSCOI surface,
the densest part of the crown forms the minima as the LiDAR
pulses have the most difficulty in striking the ground. As the
densest part of the crown is typically directly above the stem,
the HSCOI minima better represent the stem location. By
contrast, the tallest parts of the crown identified using the
CHMlocal are only directly above the stem location for certain
hed with a focal-mean function using a) 1 m circular and, b) a 5×5 m rectangular
y density. Local HSCOI minima are indicated with crosses, whilst tree crowns
.



Fig. 7. Comparison of (a) HSCOIstand surface and (b) an interpolated CHM calculated for SSU 124-19 (50 m×50 m). Both images have a spatial resolution of 1 m2 and
dark blue areas represent the ground surface.
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structural forms (e.g., Callitris pine species with conical shaped
crowns) but less so for others (e.g., Eucalyptus species with
expansive crowns containing multiple high points).

3.3.5. Stage VII: Stem location using the HSCOI
As the different HSCOI layers extracted using different

parameter combinations contained valuable information for
locating stems, so the minima from both HSCOIlocal and
HSCOIstand surfaces were combined. For example, the combi-
nation of both 1 m and 5 m kernel layers allowed smaller
individuals adjacent to or beneath the canopies of larger trees to
be identified and differentiated. To distinguish these stems from
clumps of branches within the crowns of larger individuals, two
criteria were used:

a) Distance from the 5 m kernel minima (main stem) to the 1 m
kernel minima (potential branch clump). This criterion was
used to determine if the distance of the potential branch
clump was within the expected crown area of the main stem.
The main stem height was extracted from the CHMlocal, and
the crown area was estimated using a function derived from a
random selection of field data (n=994) where:

Crown Area ¼ 0:60384exp0:24584height ð3Þ

Using a validation dataset, the function produced a strong
correspondence (r2 0.70, RMSE=16.2 m2, n=249) with a
slope and intercept of the best-fit line being 1.66 and −1.937
respectively. The assumption behind this criterion was that
stems occurring within the expected crown area of the larger
stem should be branches rather than sub-canopy stems.
Given the slope of the best-fit line, some bias is evident in
that the area of the field-measured crowns appears to be
around 1.5 times that estimated from LiDAR-derived height.
This is likely to be a consequence of natural variation in tree
form and the simplified method used to estimate crown area
in the field. Although there is uncertainly in the both the field
and LiDAR-derived estimates of crown areas, at this
intermediate stage of the processing stream, the relationship
is acceptable. However, the function could be refined using
data specific to species and the physical environment (e.g.,
soil type).

b) A threshold of the HSCOIstand, which allowed differentiation
of sub-canopy stems from branches of trees with larger
stems. If the HSCOIstand value was below the threshold, then
the minima were associated with a clump of branches and
leaves in the upper parts of the crown, otherwise a sub-
canopy stem was assumed for values above the threshold.
The HSCOIstand threshold (HSCOIstand_t), which was
determined through analysis of the four calibration plots,
was calculated such that:

HSCOIstand t ¼ 19:54Logðmt HSCOIstandÞ � 11:4 ð4Þ

where mt_HSCOIstand represents the HSCOI value of the
main stem in the cluster, with HSCOIstand values assigned
when minima are generated. This threshold was applied
because the HSCOIstand value is scaled with reference to the
tallest tree in the plot, so minima that have HSCOIstand values
similar to the taller trees are more likely to be branches of
these trees.

If the selected stem occurred within the expected crown area
of the main stem and the HSCOIstand value was less than the
HSCOIstand threshold, there was greater confidence that the
minima represented a branch of the larger tree and was coded
accordingly. Otherwise, the minima were considered to be sub-
canopy trees (i.e., beneath the overstorey crown) and were
retained as such in the final stem map. On this basis, the
locations of stems across the PSUs were mapped from the
HSCOI minima.
3.3.6. Stage VIII: Crown/cluster area and cover
Crown cover is used commonly, often in combination with

height, to establish whether a stand of trees can be classified as a
forest. As the HSCOI relates to crown openness, this index can
be used to delineate crowns or clusters (where clusters are



Fig. 8. (a) Crown cluster delineation PSU 142-13, based on the 69% contour (thick black line) from the underlying HSCOIstand grid, and the distribution of LiDAR
returns N2 m in height. Note that 90% of the LiDAR returns are encompassed by the contour. (b) TIN canopy height model 2 m contour for the same plot.
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defined as a group of trees with interlocking crowns and/or
occurring within the sub-canopy of larger crowns) and hence
forest stands. However, when determining the crown edge
boundary, and hence a crown/non-crown mask, a number of
issues should be considered.

1. As the HSCOIstand relates to canopy density, and since the
layers have been spatially smoothed, an objective threshold
is difficult to define as there is no clear indication where the
crown boundary may be. Instead, break-lines or density
contours may be determined where HSCOI values seem to
reach a plateau in the density surface. These, in turn, could
equate to the actual maximum crown edge.

2. The edge of the crown is unlikely to be as clearly defined as
in high-resolution optical imagery but contours of the
HSCOIstand may well indicate the crown edge. The issue
then becomes that of extracting the most appropriate density
contour.

3. The original point height data rather than the rasterised
HSCOIstand surface are likely to provide a more realistic
representation of where actual crowns occur, although the
post-spacing of the LiDAR will determine how well the
crowns are discerned.

4. Validation of the best procedure is difficult as field
measurements of crown extent often only provide a very
basic representation, particularly where crowns are highly
variable and irregular in shape.

On this basis, the following method was applied to identify
the edges of crowns and subsequently calculate crown cover
and the forested area. Contours of HSCOIstand openness were
generated at 1 m intervals and were intersected with the original
LiDAR point data. An iterative process was then used to obtain
the HSCOIstand contour that contained at least 90% of the
original LiDAR returns ≥2 m in height. Depending upon the
structure of the forests, the contour of the HSCOIstand providing
the optimal crown edge delineation varied from 65 to 90% for
the 12 PSUs investigated. For example, the optimal crown edge
contour for PSU 142 was 69% (Figs. 8a and 10). The optimal
contour was selected according to the user-defined percentage
of returns required. In this study, the 90% value used was
considered indicative of the planimetric crown area because
higher percentage values resulted in the overestimation of
crown area as a consequence of a greatly expanded contour. As
the HSCOIstand contour value represents the maximum crown
delineation, so values of HSCOIstand less than the contour value
were considered part of the crown. The count of 1 m2 cells with
these values was then summed for a defined area (stand/plot/
PSU) and expressed as a percentage of the total number of cells
to estimate crown cover.

Crown cover estimates were also generated independently
using the CHMlocal by spatially interpolating LiDAR returns
≥2 m height and representing these using a Triangular Irregular
Network (TIN). The TIN surface was rasterised subsequently to
generate a top of canopy surface at 1 m2 cell spatial resolution.
A 2 m height contour was then extracted from the surface to
represent the planimetric crown area (Fig. 8b), as this height
threshold conformed to definitions of forest cover (BRS,
2003b). Crown cover, expressed as a percentage, was then
calculated as the sum of all cells ≥2 m height divided by the
count of all cells. Crown cover estimates from both the
HSCOIstand and CHMlocal analyses were compared against each
other, and to field estimates.

3.3.7. Stage IX. Calculation of stem H and plot scale attributes
As the forests are structurally complex, several stages were

required to attribute mapped stems, including those in the
understorey, with an estimate of H. These focused on first
deriving H for relatively simple forest structures using the
CHM. The attribution approach was then evaluated through
investigation, implementation and validation of more advanced
procedures where complex forest structures were observed
(e.g., when many sub-canopy stems occurred). These more
advanced approaches involved, in part, the development of
empirical relationships between the HSCOI and H with these
varying with environmental and forest structural categories.



Table 3
Functions used to estimate stem H from the HSCOI as a function of environment (soils and land management)

Max height
(m)

Function
criteria

No. crown-
clusters used in
function

r2 Function equation a

b16 Heavy clays in
heavily grazed
environments

267 0.91 y=−0.153x+16.764

16–20.4 Duplex clays in
partially grazed
environments

1035 0.79 y=−0.1842x+21.39

20.5–25.4 Clay loam to
sandy loam in
partially grazed
environments

8412 0.83 y=−0.0003x3+0.0031x2−0.2956x+25.264

N25.4 Sandy loam to
sand in
partially grazed
or logged
environments

8463 0.82 y=−0.00004x3+0.0052x2−0.4455x+31.453

a y=tree height, x=HSCOI value at stem location.
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A consistent and accurate derivation of stem H was required
to attribute mapped stems with a size parameter that could then
be used directly or indirectly (e.g., through a relationship with
D130) as input to allometric equations for biomass estimation.
The retrieval of H class distributions was also considered
beneficial for assessing growth or successional stage and
Table 4
Criteria description for final stem height allocation

Criterion Criteria conditions

Crown/cluster area (m2) Main stem height (m)

1 b100 b20

2 30–100 ≥20

3 N100 ≥20

1HSCOI_ht=stem height as calculated from HSCOI value, as described in Table 3
3Crown_Expected=expected crown area (sum of estimated crown area (stem_cro
4Crown_Actual=crown or cluster actual area (m2), as mapped from the HSCOI co
regenerative capacity. When using LiDAR data, the H of the
dominant overstorey trees can generally be retrieved using the
CHM, but sub-canopy stem H is more difficult to obtain
because only the upper canopy returns are used in the derivation
of the CHM (Hyyppa et al., 2001). The HSCOI was therefore of
greater utility for retrieving sub-canopy stem H, as the
Criteria result

Final height=HSCOI height Final height=CHM height

(HSCOI_ht1b (CHM_ht2 — 20%) (HSCOI_ht≥ (CHM_ht — 20%)

Where Crown Expected3 ¼
Xn stems

n¼1
stem crown area

 !
� 1:33

 !
and

IfðCrown ExpectedNCrown Actual4ÞthenðCrown Threshold ¼ 2Þ

elseðCrown Threshold ¼ 1Þ

then;where

ðHSCOI htbðCHM ht � 20%ÞÞ

the

Final ht5 ¼ HSCOI ht
Crown Threshold

ðHSCOI htzðCHM ht � 20%ÞÞ

then

Final ht ¼ CHM ht
Crown Threshold

HSCOI htbðCHM ht � 20%Þ

then

Final ht ¼ HSCOI ht
3

HSCOI htzðCHM ht � 20%Þ

then

Final ht ¼ CHM ht
3

(m); 2CHM_ht=stem height as derived from canopy height model (CHM, m)
wn_area) for all stems (n_stems) in cluster multiplied by scale factor) (m2)
ntour; 5Final_ht= final height allocated to stem (m).
;
;
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distribution of LiDAR returns within the vertical profile was
considered and minima with higher values indicated a greater
number of returns from the sub-canopy. Sub-canopy stem H
was subsequently retrieved based on relationships between the
HSCOI and field-measured stem height. A limitation of this
approach was that the HSCOIstand values were dependent upon
the top height of the forest stand under consideration. These
stands varied primarily as a function of environmental
conditions, such as soils and land management/disturbance
history. For this reason, different relationships between the
HSCOI and height were established for four observed height
ranges (∼5 m intervals) that could be associated with four broad
environmental regimes (Table 3). HSCOIstand-derived H was
then cross-checked against CHM-derived H and where the
estimates differed by N20%, stems were attributed with the
HSCOIstand-derived H on the assumption of an overestimate by
the CHM.

Based on analysis of the field data from the four calibration
plots, additional refinement of the estimated H was undertaken,
using a range of criteria and functions to specifically account for
observed variations in stem height and crown/cluster area
Fig. 9. Flowchart of steps for fi
combinations. The variations were considered to partly reflect
the internal dynamics of the forest (Table 4; summarised in Fig. 9).
For example, where trees were taller and supported a larger crown
then a greater height suppression of sub-canopy stems was
commonly observed (Florence, 1996). In these instances, the
CHM height for sub-canopy stems was found to be too large.
Therefore, specific criteria (e.g. 2 and 3) were utilised to reduce
sub-canopy stem height according to the likely suppression effect,
such that a main stem with a taller overstorey stem H and large
crown resulted in a greater height reduction for associated sub-
canopy stems.

At the stand level, structural descriptors retrieved were stem
density, predominant stem H and canopy predominant H. Stem
density (within the area of the field plots) was estimated by
simply counting stems, both field and those mapped from the
HSCOI. Field and HSCOI predominant stem H were calculated
as the mean of the maximum H of the tallest 13 stems in the plot
area. Canopy predominant H was calculated as the mean of the
maximum LiDAR height for 10×10 m (100 m2) cells (25 per
plot). From the field data, 99% of trees with D130≥10 cm
supported a crown area ≤100 m2 and hence few trees would
nal stem height allocation.



Table 5
Summary of correspondence between forest attributes measured in the field and estimated using LiDAR data for Queensland and NE Victorian sites

y (Field) x (LiDAR) r2 RMSEa N b Function Ref. c

Tree level comparisons
H H (CHM) 0.42 3.19 m 119 y=0.587x+3.63 1
H H (HSCOI/CHM) 0.71 2.25 m 119 y=0.824x+1.82 2
H H (CHM) d 0.79 1.91 m 110 y=0.939x+0.27 3
H H (HSCOI/CHM) d 0.81 1.85 m 115 y=0.880x+0.99 4

Plot level comparisons
Stem count Stem count (HSCOI) 0.82 133 stems ha−1 30 y=1.539x−142.63 5
Stem pred. H e Stem pred. H (HSCOI) 0.91 0.77 m 30 y=0.898x+1.28 6
Stem pred. H Stem pred. H (CHM) 0.81 1.11 m 30 y=0.720x+3.86 7
Stem pred. H Canopy pred. H (HSCOI) 0.86 0.94 m 30 y=0.891x+3.34 8
CC CC (HSCOI) 0.78 9.25% 30 y=1.038x−0.58 9
CC CC (CHM) 0.81 8.58% 30 y=0.972x−7.59 10
FBPC CC (HSCOI) 0.89 5.49% 30 y=0.910x−2.03 11
NE Victoria stem count Stem count (HSCOI) 0.19 152 stems ha−1 22 y=0.513x+73.55 12
a Root Mean Square Error.
b Number of observations.
c Correspondence reference number as listed in text.
d Outliers excluded.
e Predominant stem height.
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have crowns extending beyond this area, though some crowns
might be split between cells. Canopy predominant H was
derived to investigate its use as a rapid initial assessment or
surrogate for stem predominant H, as this would not require
more complex individual stem mapping and H attribution.

4. Results

The following sections provide an evaluation of the success in
retrieving forest structural attributes in the Injune forests.
Evaluation covers tree level location and H, plot level stem
density, canopy cover and predominant height, and the spatial
arrangement of stems based on Ripley's L-function nearest
neighbour analysis. Further validation is provided for a range of
forest types within northeast Victoria, a proportion of which were
structurally similar to those observed at Injune. All comparisons
were based on the correspondence with field-based observations,
and are summarised and cross referenced in Table 5.
Fig. 10. Crown/clusters and stem locations identified using the HSCOI surface genera
taller and contain a greater density of canopy elements. Internal squares are SSU fie
4.1. Stem density per plot, tree location, and spatial
arrangement of stems

Maps of stem locations, together with crown boundaries,
were generated using HSCOI layers for each of 12 PSUs (see
example in Fig. 10). Stem density estimates from 30 plots
contained within the 12 PSUs (Tickle et al., 2006) were
compared with those generated using the HSCOI for the
equivalent area and a close correspondence was observed across
the stem density range (Table 5, Ref. 5, Fig. 11). However, for
densitiesN∼700 stems ha−1, a larger number of field stems
with D130b10 cm were not identified using the HSCOI. This
was attributed to the 1 m spatial resolution being too coarse to
resolve all stems in higher density clusters, and also to frequent
overtopping by larger individuals.

To evaluate the success of tree location, one field plot from
each of the 12 PSUs was selected, with the addition of all four
field plots associated with PSU 142, as these had been assessed
ted for PSU 142. Darker areas in the HSCOIstand surface indicate crowns that are
ld plot locations numbered (from left to right) as 02, 13, 18 and 20.



Fig. 11. Correspondence between field stem counts and HSCOI stem count for 30 field plots across a diverse range of forest structural types.
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previously for another study (Lucas et al., 2006b). HSCOI
mapped trees were matched manually to those identified in the
field, with the process considering similarities primarily in
location, but also height, D130 and estimated crown area. The
validation set contained 50.2% (n=1772) of all field trees (with
D130N5 cm) measured across the 12 PSUs, and 1226 trees
mapped using the HSCOI. As a number of the trees measured in
the field supported more than one stem, a total of 1892
individual stems were considered. Validation using all stems
within all plots was not undertaken because most of the forest
structural formations occurring within the study area were
represented by the sample. The commission and omission
analysis results are presented in Table 6.

On average across the validation plots (n=12), 73% of stems
(δ=12.1%; range 50.8–90.6%) identified using the HSCOI
were matched correctly with a stem identified in the field,
although this reduced to 70% when multiple stems were
considered. Accuracies were greatest (over 90%) when stems
were fewer and crowns were larger, more mature and separated
from each other. Accuracies lowered to around 50% where the
density of stems was higher and where many occurred as
understorey trees. Across the plots, a mean of 12% (δ=8.8%;
range 0–27%) of stems identified using the HSCOI were not
matched to those identified in the field. This was attributed to
incorrect assignment of branch clusters to stems or to shrubs of
a smaller size that they were not mapped in the field.

To assess the importance of identifying trees within the smaller
size classes, the number of stems within the 5–10 cm D130 range
as a proportion of the total (within all 30 field plots) was
determined. This size class range comprised a mean of 38.5%
(δ=17.8%; range=0–85%) of all stems (D130≥5 cm) across the
30 plots, but only a mean of 8.1% (δ=8.1%; range=0–39.8%) of
the plot basal area. A mean of 28% of stems (D130≥5 cm) were
overtopped by taller individuals (δ=12%; range 9–66%) and
these constituted a mean of 17% (δ=8%; range=5–48%) of the
plot basal area. These proportions were therefore considered
indicative of the proportion omitted if a CHM alone was used to
quantify stem density, and explained some of the error observed
with plots containing a high density of stems.

To further assess the ability to locate trees using the HSCOI,
second order statistics that described the small-scale spatial
correlation structure of point patterns identified from two
sources (in this case, field and HSCOI stems) were considered.
These include Ripley's K or L and the pair-correlation (typically
referred to as g) functions. Each can describe the characteristics
of the point pattern over a range of distance scales, thereby
allowing detection of patterns relating to dispersion and
aggregation (Wiegand & Moloney, 2004). In this analysis, the
bivariate nearest neighbour (NN) distance, which is a component
of the Ripley's L-function, was used to assess the similarities
between mapped stem patterns from the HSCOI and field data.
The analysis was conducted within Programita (Wiegand et al.,
2006) using the 30 Injune plots, with an open circles model and a
0.2 m cell size. All cells within the area were included and, to
convey the assumption of a homogeneous pattern, the test model
was set to null. For each of the field-mapped stem distributions
(pattern 1), the nearest HSCOI mapped stem was identified
(pattern 2). A cumulative NN distance distribution was
calculated and normalised by the number of stems mapped in
the field. The output was the proportion of field stems that were
within an NN distance (d) of a HSCOI mapped stem. The larger
the proportion at smaller distances, the better the spatial
arrangement match between the two stem distributions. Stems
mapped in the field were considered to be ‘truth’ and hence the
analysis focused on assessing the success in the LiDAR-based
mapping. The accumulated univariate distribution of the field
stem NN distribution was also calculated to establish whether
the spatial scale of the field stem pattern itself might impact on
the bivariate NN result.

The NN distance at an arbitrary assessment threshold of 80%
accumulated distribution was chosen to represent the univariate
and bivariate results for each plot. An NN distance at 80%



Table 6
Commission and Omission table for selected SSUs within all 12 PSUs with field measurements

PSU-
SSU

Field-
LiDAR
match

Field-LiDAR
multi-stem a match

LiDAR stems no
match (commission)

Field stems no
match (omission)

Field multi-
stems a no match

Total match
tree level %

Total match
stem level %

LiDAR commission
% (total LiDAR)

Plots used for calibration
81-11 64 3 24 5 2 92.8 94.4 26.4
81-16 89 2 15 26 21 77.4 66.9 14.2
111-18 127 1 12 57 0 69.0 69.6 8.6
124-19 78 0 5 53 0 59.5 59.5 6.0
Mean 90 2 14 35 7 74.7 72.6 13.8

Plots used for validation
131-18 29 0 5 3 1 90.6 87.9 14.7
58-29 72 0 22 9 0 88.9 88.9 23.4
114-12 61 1 13 10 1 85.9 86.1 17.3
142-18 49 0 18 13 5 79.0 73.1 26.9
142-13 50 1 3 17 7 74.6 68.9 5.6
83-20 72 0 9 26 4 73.5 70.6 11.1
138-16 118 5 8 48 5 71.1 71.9 6.1
144-19 57 0 5 24 10 70.4 62.6 8.1
142-02 52 2 1 24 16 68.4 58.7 1.8
142-20 57 0 14 33 11 63.3 56.4 19.7
23-20 55 1 2 40 4 57.9 56.6 3.4
148-01 180 0 0 174 17 50.8 48.5 0.0
Mean 71 1 8 35 7 72.9 69.2 11.5

All plots
total

1210 16 156 562 104

All plots
mean

76 1 10 35 7 73.33 70.04 12.08

This validation sample accounts for 50% of all field-measured stems at the Queensland study site.
a Multiple stems are mapped where split occurs below 1.3 m in height, and all extra stems are mapped at same XY location as main stem. Field stem counts include

dead stems without foliage and crowns which are difficult to map using LiDAR data.
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cumulative distribution indicated that at least 80% of field stems
were associated with a LiDAR-mapped stem NN separated by up
to distance d. The mean NN value across all plots was then
Fig. 12. Example of Ripleys L univariate and bivariate NN analyses for SSU 142-13,
circles represent field stem locations, with the size proportional to D130. Open circles
density is 252 stems ha−1.
calculated for both based on univariate and bivariate analyses.
The mean NN distance for the bivariate analysis was 2.6 m
(δ=0.6 m, range 1.9–4.2 m, n=30) whereas the univariate mean
with the associated stem maps generated from field data and the HSCOI. Filled
are proportional to crown radius. Crosses represent HSCOI stems. The field stem



Fig. 13. Example of Ripleys L univariate and bivariate NN analyses for SSU 124-06, with the associated stem maps generated from field data and the HSCOI. Filled
circles represent field stem locations, with the size proportional to D130. Open circles are proportional to crown radius. Crosses represent HSCOI stems. The field stem
density is 668 stems ha−1.
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NN distance was greater at 3.2 m (δ=1.1 m, range 1.3–5.8 m,
n=30). A paired Students t-Test generated a P of 0.001 which
indicated a significant difference between the univariate and
bivariate NN distances for the 30 plots. This illustrated that the
stems mapped using the HSCOI were closer to those mapped in
the field thanwere the field-mapped stems to each other. For 25 of
the 30 field plots, the univariate spatial scale did not impact on the
bivariate result. An example is shown in Fig. 12, where the
bivariate NN and univariate NNdistances were 2.7m and 3.9m at
80% cumulative distribution respectively. While there is some
under-estimation of stems using the HSCOI in Fig. 12 (field
stems=75, LiDAR stems=54), attributable largely to not
identifying small and dead field stems, the general spatial pattern
of larger trees and tree clusters is adequately represented by the
HSCOI stem mapping. This then instilled confidence in the
HSCOI as a tool for mapping stems in this forested environment.

The opposite case, where the univariate scale pattern may
impact on the bivariate result, is illustrated in Fig. 13. Here, the
univariate NN distance was lower with respect to the bivariate
NN distance. This condition was observed in the remaining 5 of
the 30 plots, all of which supported a higher density of stems.
When stems with D130b10 cm were excluded and the NN
analyses repeated, the bivariate NN distance was reduced from
3.0 to 2.6 m (range 2.0–3.0 m), whereas the univariate NN
distance increased from 2.1 to 3.2 m (range 2.6–4.1 m). This
illustrated that the HSCOI mapping was generally successful for
locating stems N10 cm D130 even in higher stem density plots.

To provide additional evidence for the HSCOI mapping
accuracy, a more detailed Ripleys bivariate analysis was
undertaken. Consider the bivariate quantity λ2K12(r), which is
the expected number of type 2 points (HSCOI stems) within
distance r of an arbitrary type 1 point (field stem). If spatial
mapping errors are not too large, we may expect that a HSCOI
mapped stem is always in the neighbourhood of a field-mapped
stem. This will produce an attraction into the bivariate point
pattern. The more accurate the HSCOI mapping, the stronger is
the attraction and the smaller the range of attraction (Wiegand
et al., 2006). To test if both patterns show small-scale attraction,
the K-function of the data can be contrasted to K-functions
derived from Monte Carlo simulations of the null model of
independence where one pattern (HSCOI stems) is shifted as a
whole by a random vector and wrapped on a torus. This null
model maintains the first- and second-order structures of both
patterns but breaks its dependence. The theoretical expectation
under independence is L(r)=0. The L-function was utilised as
the test statistic, which is a square-root transformation of the K-
function. The analysis used 99 Monte Carlo simulations of the
null model to construct 95% confidence limits, which were the
5th lowest and highest L12(r) from the Monte Carlo simulations.
In order to develop an idea of the overall potential mapping
accuracy across all plots, the L-function (r) values and
confidence limits were calculated for all 30 plots, and the
mean value at each d generated and plotted (Fig. 14). This
shows that there is a strong attraction and it is significant at
scales rb7 m. Thus, LiDAR-mapped stems are significantly
more frequent within a distance of 7 m around field-mapped
stems. The mean NN distance across the 30 plots utilising 100%
of stems was 6.02 m, which supports the bivariate L-function
assessment of 7 m, with both these figures being close to the
expected field mapping error when using GPS, tape and
compass.

4.2. Height attribution of trees using the HSCOI

The accuracy of stem attribution with a size estimate (e.g., H)
using the HSCOI was assessed based on a validation set of 119
trees (with D130≥5 cm), selected randomly from 30 field plots.
Up to 4 live trees per plot were utilised, with at least one stem
with D130 in the range 5–10 cm included (where present) within
each plot to provide an indication of success in mapping and
attributing sub-canopy stems. When initial selections were
made, 13 of the 119 field trees (10.9%) could not be matched
with HSCOI minima, with over half of these occurring in the 5–
10 cm D130 size range. If a HSCOI stem could not be linked



Fig. 14. Ripleys bivariate L-function analysis summary, illustrating themean of spatial stem distribution (field and HSCOI derived) comparison results across 30 field plots.
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initially to a field stem, then a new field stem was selected
randomly to maintain 119 trees in the validation set. The mean
offset distance between stems located in the field and using the
HSCOI surface was 2.25 m (Gaussian distribution, δ=1.46 m;
range 0.22–8 m, which was within the standard GPS error of
±5–10 m; Garmin, 2003).

Previous research from this study site (Tickle et al. 2006)
reported a close correspondence between H measured in the
field and from the LiDAR CHM (r2 =0.91, SE=1.34 m,
n=100). However, that analysis only considered trees that were
clearly distinguished from others (i.e., occurring in the
overstorey or as isolated individuals). By contrast, the 119
trees selected in this study consisted of both overstorey and sub-
Fig. 15. Correspondence between H measured in the field and estimated from (a) th
refinement methods.
canopy stems, and hence when the heights extracted from the
CHM were compared initially with the field validation set, the
correspondence was reduced significantly (Table 5, Ref. 1).
However, the correspondence increased (Table 5, Ref. 2) when
H was extracted from a combination of the CHM and the
HSCOI (utilising methods illustrated in Fig. 9 and Table 3).
Comparison with field data identified a few outliers that
occurred regardless as to whether the CHM or HSCOI was used
for H extraction. H was overestimated mainly where the CHM
was used (Fig. 15, circled at right), but fewer underestimates
occurred when the CHM and HSCOI were combined (circled at
left in Fig. 15). Removal of these outliers increased the
correspondence (as expected) with field H for both extraction
e initial CHM, and (b) integrated CHM and HSCOI after application of height



Fig. 16. The correspondence between field and LiDAR-estimated predominant height for 30 field plots, calculated using the average of a) 25 10×10 m canopy height
model cells associated with each field plot and b) the tallest 13 HSCOI-mapped stems within the 0.25 ha area.
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methods (Table 5, Ref. 3 and 4), thus highlighting that improved
results are achievable if further model calibration was
undertaken. Errors in H extracted from the CHM model are
unlikely to be correctable because sub-canopy stems are not
observed. However, with further calibration, the HSCOI is
expected to provide better estimation of sub-canopy height as
this index can be adapted for different forest environments and
crown configurations.

Some variability in H retrieval at a tree level was evident and
expected given the irregular crown shapes of the many trees,
particularly those associated with Eucalyptus and Angophora
species. When stem predominantH derived from the HSCOI was
compared to the field estimate (Fig. 16), a very close (almost 1:1)
correspondence was observed (Table 5; Ref. 6). However, when
derived from the CHM, the correspondence with field data was
reduced (Table 5; Ref. 7). Stem predominant H estimated from
either a CHM alone or in combination with the HSCOI was
equivalent for plots with an upper canopy height of 18 m or less.
However, for plots with taller trees, the assumed overestimation of
stem H for sub-canopy trees from the CHM was more evident in
that the slope and intercept of the best-fit line decreased and
increased respectively (Table 5). This indicated that the
overestimation in stem H for sub-canopy trees lead to greater
error in plot-based predominantH where taller trees occur. When
canopy predominant H calculated from 10×10 m cells was
compared to field measurements (Fig. 16), the correspondence
was reduced slightly (Table 5, Ref. 8) and an underestimate of
approximately 2 m (on average) was observed. This was
attributed to the conceptual difference between canopy and
stem predominant H, as the inclusion of parts of crowns that are
lower than the tallest point in the calculation reduced the overall
mean height. With predominant stemH, only the height of the top
of each stem was used in the calculation and the heights of other
parts of the crown (i.e., the crown extent) were ignored.
4.3. Projected cover

A close correspondence between measures of crown cover
estimated from field measurements (for stems D130≥5 cm) and
both the HSCOI surface (Table 5, Ref. 9; Fig. 17a) and the
CHM (Table 5, Ref. 10; Fig. 17b) was observed. However, a
closer match to the 1:1 correspondence line was observed
between field and HSCOI-derived crown cover. Cover
estimated from the HSCOI also exhibited a closer relationship
with FBPC (Fig. 17a; Table 5; Ref. 11). The CHM method was
observed to overestimate crown cover by ∼10%, although
scatter in the relationship was similar to that observed in the
relationship with HSCOI-derived crown cover.

4.4. Evaluation of HSCOI in different environments

As an independent test, the HSCOImodel generated using the
Injune data was applied to LiDAR data acquired over three
north-east Victorian ecozones, and validated against plot data for
stem density only (Table 5, Ref. 12; Fig. 18). As expected, the
correspondence in the stem density comparison was relatively
weak overall given the structural and environmental differences
outlined in Section 3.1 and Figs. 3 and 4. However, two distinct
clusters of plots were identified (Fig. 18). Within seven plots
(represented as squares), the number of stems counted (mean
559 stems ha− 1, δ=98 stems ha−1, range 452–748) was within
20% of those observed in the field (differing only by 2–8 stems
per plot). The density of the remaining 15 plots was consistently
overestimated by more than 20% (by more than 10–39 stems per
plot) using the HSCOI model, which suggested potential for
refinement of the approach. The forests in these latter plots were
highly variable structurally, reflecting the range of forest
environments considered, and contained a lower mean density
of stems (318 stems ha−1; δ=255 stems ha−1, range 22–1135).
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5. Discussion

5.1. Conceptual linkages between HSCOI and waveform
LiDAR

The HSCOI method has sought to emulate aspects of full
waveform large footprint LiDAR processing using small
footprint data. Conceptual development has drawn on methods
presented in the initial phases of the CVM of Lefsky et al.
(1999) and Harding et al. (2001). In these studies, a 3D matrix
consisting of a 5×5 grid of contiguous waveform footprints was
used to characterise the 3D geometry of the forest canopy
volume. Three main differences between the HSCOI method
and the CVM were noted:

a) Using the CVM, gaps were explicitly accounted for and
classified, which contrasts to the HSCOI where they are not.
Fig. 17. The correspondence between a) LiDAR HSCOI percent of tree cells (CC %) w
triangles); and b) CC (%) estimated from the CHM and the field data.
The small footprint LiDAR data used to generate the HSCOI
only sampled the vertical and horizontal distribution of
canopy elements and can be biased, especially because the
LiDAR pulse is preferentially captured by the upper layers of
the canopy. Therefore, the absence of LiDAR returns at
lower levels cannot be explicitly used to infer a real canopy
gap. As a result, the volume calculations for the different
canopy classes differ between the CVM and the HSCOI,
with the latter limited to voxels that explicitly contain
LiDAR returns.

b) The CVM uses 5×5 arrays of 10 m footprints whereas the
HSCOI is calculated at a 1 m resolution across the LiDAR
swath width (nominally 200–400 m). Both CVM and
HSCOI share the 1 m vertical bins as part of the 3D matrix
but the 1 m horizontal post-spacing of the small-footprint
LiDAR allows multiple measurements of individual trees
crowns, and facilitates their identification and subsequent
ithin plot with field based estimates of CC (open circles) and FBPC (solid black



Fig. 18. Independent validation of the HSCOI application results for northeast Victorian plots.

514 A.C. Lee, R.M. Lucas / Remote Sensing of Environment 111 (2007) 493–518
delineation (at least those occurring in the upper canopy). To
evaluate how this sampling reflects the overall structure of
the forest and therefore how large footprint data might
represent Injune forests, tree crowns measured in the field
were reconstructed in 3D by generating an ‘artificial’ 1 m3

voxel matrix in the same manner as that used in the HSCOI
Fig. 19. Comparison of LiDAR-derived plot crown cover (CC) and Foliage Bra
calculation. This process utilised field measurements of stem
location and H, crown area and depth, and general shape
assumptions based on species and growth stage. The
percentage of tree canopy voxels per 1 m height interval
was then summarised to give apparent vertical profiles,
which were then compared to equivalent plot level profiles
nch Projective Cover (FBPC) for Queensland and northeast Victorian plots.
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generated from the LiDAR return data. This comparison
suggested a close correspondence in profile shape (for an
example figure, see Lee et al., 2004) within the limits of the
spatial modelling scale. Acceptable sampling of the vertical
canopy profile, particularly for more open canopies, was
therefore assumed. Some studies (e.g., Harding et al., 2001;
Lovell et al., 2003) have identified potential biases in
apparent vertical profiles generated from discrete return data.
The approach adopted here suggests that such biases are less
evident, though still present, in the more open forests of this
structure and form observed at the study site.

c) The forest canopies found at the study site are likely to differ
greatly from those used to initially interpret the full
waveform data and methods. In particular, Harding et al.
(2001) indicated that open woodlands and stands containing
cone-shaped crowns strongly depart from the assumptions of
uniformity in terms of random horizontal organisation (no
clumping) and the height of the canopy outer surface within
the LiDAR footprint. In addition, large footprint canopy
height profile bias associated with error in the ground
reflectance scaling factor increases with decreasing canopy
closure because of greater error introduced in the transfor-
mation weighting function (Aber, 1978; MacArthur & Horn,
1969). An error in the scaling factor causes an error in
closure that is larger, in an absolute sense, for open canopies
compared to canopies with high closure (Harding et al.,
2001). As the canopies found at the study site are generally
very open, then many of the large footprint processing
assumptions relating to canopy uniformity are likely to be
violated. The HSCOI has therefore been developed to
address differing processing requirements.

5.2. Impact of trees that are large crowned, or small, or dead

While senescent and dead treesmay have little or no foliage for
the LiDAR beam to interact with, returns from the branches (if
present) and stem are sufficient to create minima in the HSCOI
surface at the location of the stem, particularly where these are
isolated from other crowns. However, senescent or dead trees are
less able to be located if they occur within clusters or underneath
leafy canopies. As an example, only 44% (25/57) of dead trees
from four field plots (located within PSU 142; Fig. 10) were
located correctly. Improving the identification and attribution of
these stems would most likely require LiDAR at higher sampling
densities.

Stems with D130≤10 cm are also more difficult to map from
the HSCOI, particularly as many support a small crown area
(often less than 1–2 m2), occur in stands of high density (several
perm2) and/or are often located beneath the canopy of larger trees.
In these cases, the HSCOI surface generated at 1 m spatial
resolution may be limited in detecting small stems. For example,
only 33% (47/144) and 26% of stems with D130≤10 cm and
D130≤5 cm respectivelywere identifiedwithin the four field plots
within PSU 142 (Fig. 10). As with senescent stems, the use of
finer spatial resolution LiDAR data (e.g.≤30 cm post-spacing)
for HSCOI calculation would lead to refinements in mapping and
attribution of stems occurring in this size range.
Using individual crown delineations combined with apparent
vertical profiles to classify crowns into decurrent & excurrent
forms (Lucas et al., 2004) could also reduce the negative
influence of the large spreading crowns of overstorey trees on
the sub-canopy stem H retrieval. This would allow a more
targeted application of crown area/H functions for stem
attribution, especially where sub-canopy stems occur within
clusters. Variation in the correspondence between crown cover
estimated from the field data and the HSCOI was observed and
was most likely a result of inadequate representation by field
measurements (in the north–south and east–west directions) of
the irregularly shaped crowns of trees of the decurrent form. A
greater correspondence would be expected if field measure-
ments were taken along the longest and shortest axes, although
this requires measurement of the angle of the longest axes from
north. Even so, the estimates of crown cover based on the
HSCOI were regarded as representative of the forests
considered.

5.3. Northeast Victorian HSCOI validation

Two main issues were identified when applying the Injune-
calibrated HSCOI model to forests in north-east Victoria. First,
most of the plots were outside the calibration range, as identified
previously (Fig. 4), in terms of predominant height, crown
cover, crown area and foliage density, and the number of strata.
Factors such as elevation, soils and rainfall, which influence tree
and stand form/structure, also differed. Second, stems in the 5–
10 cm D130 range were not mapped in Victoria. As the Injune
HSCOI had been calibrated to allow small stems to be
identified, an overestimate in the number of stems mapped by
the HSCOI was observed in Victoria (Fig. 18). The three plots
that were successfully modelled (labelled in Fig. 18 and Fig. 4
as plots 216, 220 and 382) contained woodlands in the Foothills
ecozone which were structurally similar to those observed at
Injune, partly because they established on similar sandy or
sandy loam soils. The three Foothills plots that did not compare
as well were located on clay/loam soils. These differences were
attributed to variations in soil nutrient availability, as the more
productive clay/loam soils could support trees with large
spreading crowns even though these were relatively short (up
to ∼20 m). These plots were also dominated by species that
have denser foliage, as compared to the other Foothills sites
with sandy soils (Boland et al., 1992). Plots 459 and 573 were
Montane zone plots, with a predominant height less than 28 m
and FBPC of between 40 and 60 %. These forests were
therefore at the lower bounds of the Montane structural
envelope and closer to the environmental envelope that
encompassed the Injune forest plots. Plot 459 was also situated
on a ridge top where the poorer soils and reduced water
availability led to a forest structure similar to that observed at
Injune. Likewise, the forests represented by plot 603, which was
located in the high elevation Montane ecozone, had been burnt
in 2003 and the reduced foliage cover and understorey also
rendered these structurally similar.

Tree crown area, shape and foliage density may be factors
contributing to the successful application of the HSCOI
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(Nelson, 1997). The northeast Victorian plots that compared
favourably using the current HSCOI calibration had a mean tree
crown area that was generally smaller than tree crowns found in
the plots where the stem number had been overestimated. From
the 22 northeast Victorian plots, the overall mean tree crown
area was 28 m2 (δ=46 m2, range 0–644 m2, n=810; Fig. 3).
For the seven plots where the Injune calibration was successful,
the mean tree crown area was 24 m2 (δ=32m2, range 0–277m2,
n=350), whereas for the other 15 plots the mean tree crown area
was 30 m2 (δ=54 m2, range 0–644 m2, n=460). It seems
plausible therefore that the Injune calibration performs best for
plots containing trees with smaller crowns (i.e.b30 m2) in
general. This is highlighted by the fact that the mean crown area
for trees N10 cm D130 across all 30 Injune plots was 16 m2

(δ=25 m2, range 0–397 m2, n=1960).
This study defines foliage density as the amount of green leaf

foliage than occupies a given crown area, and is measured using
LiDAR with the FBPC metric. Foliage density can vary widely
depending on the genus and species as well as environmental
constraints such as water and soil nutrient availability. Where
FBPC approaches CC, canopies will tend to be denser with few
internal crown gaps. Alternatively, where taller trees occur, this
could also indicate the presence of multiple strata with vegetation
at lower levels making use of all available light space from gaps
(either within or between crowns) higher in the canopy. An
increase in foliage density per plot would result in the LiDAR
pulse having a lower ability to penetrate the overstorey canopy,
which would potentially be detrimental to the retrieval of canopy
density and stem locations. Fig. 19 indicates that Victorian forests
tend to have greater CC and FBPC when compared forests at
Injune. This is likely to lead to the identification of more branch
clusters (particularly when combined with the larger tree crowns
found in northeast Victoria) and the overestimation of stems
observed in Fig. 18. The Injune calibration has not yet accounted
for the higher part of the CC and FBPC range. Therefore
additional structural formations such as larger crown areas
combined with higher cover would need to be included in future
HSCOI model development and to more reliably predict stem
density in forests where the density of foliage is greater.

5.4. Wider application

The woodland and open forest formations occurring at
Injune, and for which the HSCOI was developed, are generally
less than 30 m in height, contain 1 or 2 main strata, and a canopy
cover of up to 80%. As such, these formations are typical to
approximately 90% of Australia's forest estate in terms of
structure when classed at the broad National Forest Inventory
level; 95% of these forests have a reported height of b30 m
(BRS, 2003a). Therefore, the HSCOI should be broadly
applicable to Australian forests in other locations that have
similar soils, terrain and climate to that found at Injune, and
where LiDAR data with adequate or optimal post-spacing are
available. The remaining forests can exceed 60 m, contain
multiple strata levels and have denser canopies (BRS, 2003a)
and therefore the HSCOI might be less effective, as shown by
the northeast Victorian validation.
Products from the HSCOI (stems, canopy voxels) have been
used to calibrate coarser scale remote sensing data. Firstly, these
have been used to generate fine scale descriptions of the
distribution of tree components (leaves, branches and stems) for
application in three-dimensional coherent SAR imaging
simulation. Visual and numerical comparison between actual
AIRSAR data and simulated SAR data so far suggests effective
modelling of SAR imagery (Lucas et al., 2006b). Secondly,
products are currently being used to validate the height and
cover extraction routines for ICESat full waveform satellite
LiDAR, as part of the NFI CFMF continental monitoring
strategy.

6. Conclusions

The capacity to locate stems regardless of their position in
the forest vertical profile, and attribute these with key common
structural descriptors (e.g., H, D130) is perhaps of greatest
significance for forest inventory. The HSCOI is a new multi-
scale measure for enhancing the retrieval, mapping and
reporting of key forest structural attributes that utilises small
footprint discrete return LiDAR data acquired at 1 m post-
spacing. The HSCOI was developed to maximize the amount of
information that can be retrieved from scanning LiDAR. As part
of the initial proof of concept investigations, algorithms have
been written which allow automated integration of HSCOI and
CHM measures for forest assessment, and specifically stem
mapping and attribution in complex semi-arid forests. With
appropriate calibration, the set of procedures has met adequate
levels of accuracy for the semi-arid forests found at the primary
study site. Independent validation in different locations has
highlighted the requirement for additional regional calibration.

For the open forests and woodlands near Injune, and with
reference to the northeast Victorian validation site, the HSCOI
facilitated the location, density and height of tree stems
associated with both the upper and sub-canopy strata, and
differentiation of individuals and clusters was successful (i.e.
70–80% accuracy) for stems with D130≥5 cm. Spatial
arrangement analyses confirmed the accuracy of the stem
location, with 80% of field stems having an HSCOI stem within
3 m (on average) across 30 field plots. Success in retrieval was
more variable in higher density and structurally complex stands,
which in turn required the application of more complex
processing routines. Stand-based estimation of predominant
stem H, crown cover and FBPC achieved accuracies in the
order of 70–90%, which allowed detailed mapping of the
forested areas, and delineation of both individuals and clusters
of crowns. Following independent validation in different
regions and forested environments, the requirement for
additional contextual information for calibration was identified.
Data on soils and/or terrain provided additional flexibility for
the modelling of complex forests, and especially to cater for
regional differences where these attributes have an influence on
tree size and architecture.

The HSCOI should not, however, be considered as a
replacement for the CHM surface but rather as a complementary
tool for assessing forests with highly variable structure.
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Traditional CHM strengths include the provision of reasonably
accurate upper canopy tree Hmeasurement, where relationships
between measured H are generally more robust. However, the
HSCOI specifically allows additional stems in the dominant
overstorey and sub-canopy to be identified and associated with
an estimate of H, either from a CHM or the HSCOI itself. By
combining data for individual trees, stand level estimates of
predominantH, and crown cover can also be obtained.While not
explicitly reported in this paper, it would be relatively simple
process to generate additional structural information such as
D130 and basal area through empirical relationships established
with H using field data. The retrieval of structural information
using the HSCOI and CHMs has supported the interpretation of
other remote sensing data acquired over the Injune study area,
and is being used to better quantify the carbon and diversity
values of forests at Injune. Even so, whilst applicable to some
forests in Australia, further testing of the algorithms are certainly
required and recommended for both within the country and
overseas. However, the research does currently provide input to
Australian State and Federal Government commitments to
national forest monitoring initiatives such as the CFMF, and for
international reporting agreements (BRS, 2003b; Henry et al.,
2002; Patenaude et al., 2005).
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To increase understanding of forest carbon cycles and stocks, estimates of total

and component (e.g. leaf, branch and trunk) biomass at a range of scales are

desirable. Focusing on mixed species forests in central south-east Queensland,

two different approaches to the retrieval of biomass from small footprint Light

Detection and Ranging (LiDAR) and Compact Airborne Spectrographic Imager

(CASI) hyperspectral data were developed and compared. In the first, stems were

located using a LiDAR crown openness index, and each was associated with

crowns delineated and identified to species using CASI data. The component

biomass for individual trees was then estimated using LiDAR-derived height and

stem diameter as input to species-specific allometric equations. When summed to

give total above-ground biomass (AGB) and aggregated to the plot level, these

estimates showed a reasonable correspondence with ground (plot-based)

estimates (r250.56, RSE525.3 Mg ha21, n521) given the complex forest being

assessed. In the second approach, a Jackknife linear regression utilizing six

LiDAR strata heights and crown cover at the plot-scale produced more robust

estimates of AGB that showed a closer correspondence with plot-scale ground

data (r250.90, RSE511.8 Mg ha21, n531). AGB aggregated from the tree-level

and Jackknife regression plot-based AGB estimates (for 270 plots—each of

0.25 ha) compared well for more mature homogeneous and open forests.

However, at the tree level, AGB was overestimated in taller forests dominated

by trees with large spreading crowns, and underestimated AGB where an

understorey with a high density of stems occurred. The study demonstrated

options for quantifying component biomass and AGB through integration of

LiDAR and CASI data but highlighted the requirement for methods that give

improved estimation of tree density (by size class distributions) and species

occurrence in complex forests.

1. Introduction

Forest biomass is a key biophysical property that describes the carbon content of

vegetation. Quantification at various scales is critical for understanding the stocks

and fluxes associated with forest clearance, degradation, and regeneration,
particularly given current concerns regarding global climate change (Barrett et al.

2001). Knowledge of carbon dynamics is crucial when addressing issues relating to

carbon accounting, including quantifying carbon for credit schemes (Patenaude et al.

2005). National reporting of carbon sources and sinks is also required to fulfill
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obligations to international agreements such as the United Nations Framework

Convention on Climate Change (Rosenqvist et al. 2003). Despite these require-

ments, there is still much uncertainty in biomass estimation at a range of scales and

in particular on how much carbon is cycled through the Earth’s forests. Scenario

development to assess whether this cycling might change as a result of forest

alteration (e.g. degradation induced by climate change) is also needed and is

becoming increasingly important as a research field (Brack et al. 2006).

Forest biomass can be quantified at scales ranging from the local to global

depending on the research or reporting requirements. Different units of measure-

ment can be utilized that relate to within-tree components (e.g. leaves, branches, and

trunks), individual (whole) trees, clusters of trees, forest inventory plots, forest

stands or patches and landscape-scale descriptions such as communities or biomes.

When remote sensing data are used to quantify biomass, the level of detail obtained

depends largely upon the spatial resolution of the observing sensor, the regions of

the electromagnetic spectrum within which observations are recorded, and whether

the sensor is active (e.g. Synthetic Aperture Radar (SAR) or Light Detection and

Ranging (LiDAR)) or passive (e.g. optical sensors). Indeed, several sets of remote

sensing data are often required for biomass estimation, alongside algorithms that

allow their effective integration. Even so, the above-ground biomass (AGB) has, to

date, only been measured indirectly from remote sensing data (e.g. through transfer

functions or from surrogates for biomass such as height or canopy cover). Reliable

estimation of component (e.g. leaf, branch or trunk) biomass has rarely been

achieved.

To advance the estimation of biomass from remote sensing data, this research

aimed to establish whether:

1. tree size estimates from LiDAR integrated with species classifications from

hyperspectral Compact Airborne Spectrographic Imager (CASI) data can be

used as input to species-specific allometric equations to estimate the AGB and

component biomass of individual trees identified from these data;

2. the resulting estimates, when aggregated to the plot-level, compare favourably

(or otherwise) with those generated either from forest (plot-based) inventory

or through empirical-based relationships with LiDAR data; and

3. differences in species type, height, crown cover and stem density influence

retrieval using this approach.

Scaling biomass from the individual tree level was considered, as empirical

relationships with remotely sensed data generally allow only for the estimation of

total AGB and not component biomass. This is largely because the inherent

relationship between these components (e.g. leaf and branch biomass) introduces

uncertainties in their retrieval (Lucas et al. 2000). However, information on the

distribution and allocation of biomass to components is desirable, particularly for

understanding vegetation dynamics relating to plant health, identifying growth

stage, and quantifying productivity and carbon/nitrogen cycling (Gastellu-

Etchegorry et al. 1995, Zagolski et al. 1996). Estimates are also useful for

interpreting data acquired by remote sensing instruments operating within

wavelength regions known to be sensitive to different forest components. For

example, L-band microwaves (,25 cm wavelength) transmitted by Synthetic

Aperture Radar (SAR) interact preferentially with the woody components of

forests, and backscatter can be related directly to the biomass of the branches and/

1554 R. M. Lucas et al.
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or trunks if this information is available (Lucas et al. 2004). Similarly, the

reflectance of forests in the visible portion of the spectrum is dictated largely by the

amount of photosynthetic pigments within leaves forming the canopy, and hence

relationships with photosynthetic activity can be established. For these reasons, the

study sought also to demonstrate the retrieval of component biomass as well as

AGB.

2. Background

2.1 Biomass estimation from ground survey

Biomass estimates from ground data are generally calculated using allometric

equations. These equations are typically nonlinear and relate measures of tree size

(e.g. diameter at breast height (DBH), top height, crown area) to the dry weight of

the above (leaves, branches, and trunks) and/or below (fine, coarse roots) ground

components of biomass or the sum of these (i.e. the total). Equations are determined

typically for a particular species by destructively harvesting trees across the size (e.g.

stem diameter) range, as observed in the field or from independently collected forest

inventory data. Often, the components are separated during the harvesting

operation such that equations relating to their individual biomass can be

formulated. While height is sometimes used as input to allometric equations, most

utilize stem diameter, which is typically measured at 130 cm above ground level (i.e.

DBH). However, in Australia, the height at which diameter is measured may be

lower (e.g. 30 cm above ground level) where multistemmed individuals occur

(Burrows et al. 2000). For this reason, DBH is referred to as D130 in this study to

clarify the measure used. In many cases, diameter can be estimated using generalized

or species-specific relationships with height, which can be established at the time of

harvesting. Crown area is sometimes used as an input to allometric equations,

particularly where individual trees support a large number of stems (e.g. Harrington

1979), although obtaining reliable ground-based measures of crown area for use in

these functions is often problematic.

Although some equations are interchangeable between species (Eamus et al. 2001,

Burrows et al. 2002), many require trees to be similar in terms of architecture if the

allometric equation for one species is to be successfully applied to another. For

example, equations generated for coniferous species will underestimate the amount

of leaf and branch material if applied to most broadleaved species (Lucas et al.

2004). Even within species, equations may differ. For example, those generated for

species in more productive environments are often not applicable when applied to

the same species in an environment that is less conducive to growth. Inter- and

intra-specific variation in the specific gravity of the wood in trees also introduces

error when applying a standard allometric equation (Chave et al. 2004). Often,

however, users are not given a wide choice of species-specific allometric equations,

as these are expensive to generate in terms of costs, labour, and resources, and hence

very few exist. For this reason, a common approach is simply to apply the equation

that best represents the species types occurring within the forest, with the resulting

increased likelihood of error in the biomass estimates (Richards 2002). Error also

increases if the allometrics are applied to trees that are outside the size range of the

original calibration data, as overestimation of biomass may result. Careful

consideration therefore needs to be given to the development and application of

these functions.
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2.2 Remote sensing for biomass estimation

With the advent of fine-spatial-resolution remote sensing data, the capacity for

retrieving information on forest floristics and structure has increased. This capacity

has been demonstrated for a range of forested environments and at a range of scales

from individual trees up to landscapes and biomes (Lefsky et al 1999, Popescu and

Wynne 2004, Lefsky et al. 2005, Chasmer et al. 2006a,b). For tree-level biomass

estimation, species typing is needed for appropriate application of available species-

specific allometric equations and is best provided by hyperspectral data (e.g,. Clark

et al. 2005, Zhang et al. 2006). However, independent variables relating to tree size

(e.g. height) have generally proved more difficult to obtain from optical data (unless

appropriate stereo data are available; Lucas et al. 2002, Mitchell et al. 2007) and

therefore need to be derived from other sources.

Increasingly, studies have found that the three-dimensional structure of forest

canopies can be measured to high levels of accuracy using airborne LiDAR data

(Lim, et al. 2003, Lim and Treitz 2004). Specifically, LiDAR data have been shown

to produce estimates of tree height that are considered to be at least equivalent to

and often more accurate than those obtained at the ground level using more

traditional approaches (e.g. clinometers, laser rangefinders; Tickle et al. 2006). This

occurs partly because of the difficulty with ground-based measurements in sighting

the tops of crowns that are expansive or occur in forests where the canopy is dense.

Even so, LiDAR-derived tree top heights can be less accurate (although error

magnitudes are often better than ground-based survey) for trees where the crown

tapers to a point (e.g. conifers), unless a very high LiDAR sampling rate is used or

variations in the collection parameters are accounted for (Gaveau and Hill 2003,

Lovell, et al 2005). As with optical data, LiDAR can be used to estimate planimetric

cover but additionally facilitate retrieval of cover at different layers within the forest

volume

Although species and structural measures can be obtained using a combination

of optical and LiDAR data, quantifying biomass at the tree level through

application of allometric equations is problematic because individuals have to be

located, identified to species, and attributed with a size measurement. Difficulties in

extracting such information arise when data of a spatial resolution coarser than

that of individual crown areas are used (e.g. a pixel area .10610 m or 100 m2), as

individual tree crowns are more difficult to distinguish and attribute. In these cases,

it is often necessary to assume that multiple stems as well as different species may

occur within a pixel area, especially in heterogeneous forests. As a consequence,

any estimates of biomass generated using allometric equations are likely to be in

error, particularly as neither the independent variables (e.g. height, diameter) for

individuals nor estimates of stem density are generally available. Conversely, tree

level assessment is also problematic using finer (e.g. a pixel area ,262 or 4 m2)

spatial resolution data. In these cases, individual crowns are often discernible, but

they are frequently composed of several pixels with highly variable reflectance

because of differences in illumination (i.e. the occurrence of sunlit and shaded

portions of the crown). Therefore, traditional pixel-based approaches to classifica-

tion are often unsatisfactory. For this reason, object-orientated algori-

thms that allow the delineation of tree crowns (as objects) and which then extract

some component of the reflectance that allows best discrimination of trees to the

species level are desirable (Lobo 1997, Burnett and Blaschke 2003, Leckie et al.

2005).
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The retrieval of key attributes for biomass estimation at the tree level is therefore
complex, and many approaches to mapping (particularly at landscape scales) have

necessarily reverted to the use of empirical relationships between total AGB and

remotely sensed data (e.g. Dobson et al. 1995, Means et al. 1999, dos Santos et al.

2003). In such cases, the leaf, branch and trunk biomass cannot be retrieved

separately using component-specific empirical relationships with remote sensing

data because of the proportional linkages between components and also the total

(Lucas et al. 2000, 2004). In many cases, total AGB assessments are sufficient, but

the demand for more detailed assessments of biomass distributions (e.g. for carbon
accounting) is increasing.

3. Study area and datasets

The study focused on a 37660 km area (latitude 25u329 south, longitude 147u329

east) of mixed species forests located near the township of Injune and within the

Southern Brigalow Belt, a biogeographic region of south-east central Queensland,

Australia (figure 1). Common tree species (Lucas et al. 2004) include brigalow

(Acacia harpophylla), poplar box (Eucalyptus. populnea), white cypress pine (Callitris

glaucophylla), silver-leaved ironbark (E. melanaphloia) and smooth-barked apple

(Angophora leiocarpa). Forests were observed in varying states of degradation and

regeneration as a result of prior disturbance (e.g. broad scale clearing, altered fire
regimes and spread of exotic species). The forests were also structurally similar (in

terms of broad National Forest Inventory classifications) to over 70% of those

occurring in Australia (Tickle et al. 2006) and comprised woodlands (10–30%

Foliage Projected Cover or FPC) and open forests (30–70% FPC; Specht and Specht

1999) of varying density and canopy cover.

4. Remote sensing data acquisition

A systematic sampling scheme was used within the study area to collect coincident

field and fine-spatial-resolution remotely sensed data. This consisted of one hundred

and fifty 5006150 m Primary Sampling Units (PSUs), spaced 4 km apart. Each PSU

was subdivided into thirty 50650 m Secondary Sampling Units (SSUs), providing

4500 plots (0.25 ha in area) that were equivalent in size to those used commonly in
forest inventory. From the 4500 SSUs, 33 forested plots were selected for detailed

ground survey (Lucas et al. 2004) based on a representative sample of the structure,

Figure 1. Location of the study area near Injune, central south-east Queensland, Australia.
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composition and biomass of forests occurring within the study area (Tickle et al.

2006).

Small-footprint discrete return LiDAR data were acquired over each PSU using

an Optech 1020 scanner mounted on a Bell Jet Ranger helicopter (Tickle et al. 2006).

Data were acquired in an east–west direction, at a flying height of 250 m and over a

week commencing 24 August 2000. The Optech 1020 measured 5000 first and last

returns per second, each with intensity in the near-infrared (1047 nm) part of the

electromagnetic spectrum, a beam divergence of 0.3 milliradians, an approximate

footprint of 7.5 cm, and an average sample interval ,1 m. Using full differential

Global Positioning System (dGPS) correction (a base station was setup for the

flights) and an Inertial Navigation System (INS) supplying pitch, yaw, and roll,

coordinates with an absolute accuracy of ,1 m in the x and y axis and ,0.15 m in

the z axis were provided.

CASI data (nominally 1 m spatial resolution) were also obtained over each of the

150 PSUs on either 29 August or 1 September 2000. The data were acquired in a

north–south direction at a flying height of approximately 500 m and in 14

wavelength regions (12 bit) covering the visible to near-infrared regions of the

electromagnetic spectrum, including several along the red edge (Bunting and Lucas

2006a). Following acquisition, the CASI data were converted to surface reflectance

(per cent) using the ENVI empirical line calibration (Research Systems Inc. 2003)

method and reflectance spectra collected from ground calibration targets at the time

of the overflights. A more comprehensive overview of the LiDAR and CASI

acquisition and pre-processing is given in Lucas et al. (2004), Bunting and Lucas

(2006a), and Tickle et al. (2006).

5. Methods

To retrieve and map AGB and component biomass at the individual tree/cluster

level from LiDAR and CASI data and scale-up to the plot or stand, algorithms were

developed for:

1. automatically registering the CASI and LiDAR data using canopy height and

band ratios, respectively;

2. delineating tree crowns/crown-clusters observed within the CASI data;

3. classifying tree species based on CASI spectra extracted from delineated

crowns/crown-clusters;

4. mapping associated stem locations and attributing with a height and diameter

using LiDAR data;

5. estimating the component biomass and AGB by utilizing LiDAR-derived

estimates of height and diameter as input to the available species-specific

allometric equations.

While appearing complex, all algorithms and procedures have been fully automated

such that they can be applied routinely using CASI and LiDAR data, either

singularly or in combination. The sequence of processing is outlined in figure 2 and

described in more detail in the following sections.

5.1 Automated registration of CASI and LiDAR data

As is common in many studies, the CASI and LiDAR sensors were mounted on

different aircraft. Although the data were acquired over a similar time period with
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differential Global Positioning Systems (dGPS) and Inertial Navigation Systems

(INS), differences between data types, flying conditions and flight paths led to

inconsistencies in registration between images. While manual interactive procedures

based on ground control point (GCP) selection provided reasonable registration

between the LiDAR and CASI data, these were time-consuming and automated

registration procedures (Zitová and Flusser 2003, Inglada and Giros 2004) were

therefore developed and implemented (Bunting 2007).

An appearance-based method to the automated registration of these two datasets

was adopted, whereby matching of the pixel intensity values was performed on

windows of image data. A number of metrics (e.g. Euclidean distance and Mutual

Information) were evaluated, but the correlation coefficient proved to be more

robust (Bunting 2007). The registration process used a multiscale approach through

an image pyramid where an adapted self-organizing (Kohonen) network (Kohonen

2001) related neighbouring tie points to one another. The process of registration

commenced in the upper level of the pyramid (associated with the coarsest spatial

resolution). As tie points were progressively moved into their final position, each of

the neighbouring tie points within all levels of the network was updated as the

identified transform propagated through the network. Following registration at the

upper level and using the tie points established here, the process continued

Figure 2. Overview of processing sequences implemented for estimating total above-ground
and component biomass at the individual tree/cluster level.
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progressively through to the lower levels, thereby allowing the registration at the

lowest level (finest spatial resolution) to be refined. Once registered, the tie points at

this lowest level were extracted as GCPs. Registration of the CASI to the LiDAR

reference data was based on the identified GCPs and undertaken within IDL ENVI

using a nearest-neighbour interpolation and triangulation transformation.

5.2 Delineation of tree crowns from CASI data

Using the registered CASI datasets, an algorithm was developed within eCognition

(Definiens) Developer (Definiens 2005) to delineate tree crowns of varying

dimension. This algorithm, which is fully described in Bunting and Lucas (2006a),

first differentiates forest, non-forest, and understorey using a Forest Discrimination

Index (FDI) that combines the near-infrared, red edge, and blue reflectance

channels. The forested area is then segmented into large objects, which are then

allocated to one of several forest types based on their spectral reflectance

characteristics. Within each of these, the object maxima are identified using the

band ratio C1 and iteratively expanded using the ratio C2 (Carter 1994) to create

sub-objects, where:

C1~
r741

r680

ð1Þ

C2~
r741

r714

, ð2Þ

and r represents reflectance in selected wavebands (e.g. centred at 741 nm). The

expanded objects (containing the maxima) are classified subsequently into crown or

crown/cluster classes based on a series of measures relating to, for example, shape

and spectral indices that reflect the structural characteristics of crowns of different

tree types. Further iterative splitting of unclassified objects is then undertaken using

a progressive set of rules to delineate more crowns/crown-clusters. Where objects are

oversplit into crowns or crown/clusters, these are identified based largely on rules

relating to the relative position of the object maxima in relation to the object

boundary. With reference to ground data, the delineation process provided

accuracies averaging ,70% (range 48–88%) for individuals or clusters of trees of

the same species with D130>10 cm (senescent and dead trees excluded). The lower

accuracies were associated with stands containing a higher density of individuals

and several canopy layers.

5.3 Discrimination to species

Once delineated, crowns/crown-clusters needed to be associated with a species type

so that species-specific allometric equations could be applied appropriately. A

number of studies (e.g. Gougeon and Leckie 2003, Huang et al. 2004, Leckie et al.

2005) have extracted spectra from individual pixels or the meanlit (sunlit)

proportions of crowns to classify species, with these defined using selected bands

(e.g. the green reflectance channel; Leckie et al. 2005). Bunting et al. (2006), using

the Injune dataset, established that the mean lit spectra extracted using the C2 ratio

increased the accuracy of classification of tree species by ,10% compared with when

other measures (e.g. single band reflectance data) were used. The classification was

performed using Multiple (Stepwise) Discriminant Analysis (MDA) within SPSS

1560 R. M. Lucas et al.
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where the Mahalanhobis Distance was used with probabilities of F set at 0.05 for

entry and 0.1 for removal of variables (Bunting and Lucas 2006b). For species of the

genera Eucalyptus, Angophora, Acacia, Callitris, and Eremophila, accuracies of

classification were typically greater than 87% and 77% based on reference to training

and validation sets, respectively (established through observations in the field and

from aerial photography). An example of the classification output for PSU 144 is

shown in figure 3.

5.4 LiDAR stem mapping and attribution

To generate tree-level estimates of biomass, measures of tree size (e.g. stem diameter

(D130) and top height (H)) for all stems within a unit area were required for input to

allometric equations. While LiDAR Canopy Height Models (CHMs) can be used to

generate stem maps, they generally only identify the upper strata trees (Hyyppa et al.

2001). Within the study area, a wide range of forests at various stages of

regeneration occurred, and as a result, many stems were found in the sub-canopy

(often beneath large crowns). Hence, these sub-canopy stems were omitted when

mapping using a traditional CHM. For this reason, a LiDAR-derived Height-Scaled

Crown Openness Index (HSCOI) surface was used to identify stems in both the

overstorey and in the sub-canopy. The development of the HSCOI method and its

application to SAR simulation are presented in Lucas et al. (2006b) and fully

described in Lee and Lucas (2007). However, a brief overview of the method will be

presented here.

The HSCOI provides a spatial representation of the density of crown components

(i.e. leaves, branches, and trunks) by quantifying the penetration of LiDAR returns

in three dimensions. The penetration distance of each return with respect to the top

of the canopy is scaled by the maximum height of the stand. For example, returns

that reach the ground have 100% penetration distance, while those that return from

the top of the canopy may have only 10–20% penetration, with respect to the

maximum height of the stand. The percentage penetration or openness is then

mapped onto a two-dimensional raster surface (herein referred to as the HSCOI

surface). Areas of tree crowns that return most of the LiDAR pulses from the upper

canopy (i.e. above the trunk and the larger portions of major branches) are generally

associated with lower HSCOI values, which are represented as local minima in the

Figure 3. Distribution of Eucalyptus melanphloia (cyan), E. populnea (orange), E.
chlorochlada (pink), and Callitris glaucophylla (dark green) mapped from the CASI data
for PSU 144 (centre of image 147.47uE, 225.789u S; 500 m6150 m in the east–west and
north–south directions, respectively).
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surface. As the edges of crowns tended to be more open, LiDAR pulses can

penetrate better to the ground, thus resulting in higher HSCOI values, even though

the height above the ground is often close to the tree top height.

To locate and map stems, two different smoothing kernels were applied initially to

the 1-m-spatial-resolution HSCOI surface; a 1-m-radius circular and a 5-m square

kernel. In the first application, local minima were associated with both overstorey

stems and smaller trees (typically with D130(10 cm), many of which were adjacent to

or below larger crowns. Stems in the sub-canopy were identified largely because the

relatively open structure of the overstorey crowns allowed sufficient LiDAR returns to

penetrate and hence record the presence of vegetation at lower levels. For the second

application, a 5-m square kernel was used. The larger smoothing kernel resulted in

fewer HSCOI minima, but these were found to be associated with larger individuals

forming the upper canopy and occurring within crown-clusters. By combining the

minima from the two HSCOI surfaces, the locations of trees forming both the

overstorey and sub-canopy could be identified and differentiated. A CHM was also

generated as part of the HSCOI modelling by using an initial raster layer containing

the tallest LiDAR value in each 1m2 HSCOI column. A 363 kernel was then applied

to the initial height raster, which assigned the tallest LiDAR value within the kernel to

the central cell, resulting in the final CHM. The smoothing was undertaken to reduce

small within-crown gaps caused by the LiDAR sampling rate. Figure 4 illustrates the

Figure 4. 1 m spatial resolution LiDAR-derived (a) CHM and (b) HSCOI layers generated
for PSU 58. The darkest areas in the HSCOI layer are minima associated with tree stem
locations.
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CHM and HSCOI (smoothed with the 1 m circular kernel) for PSU 58. The stem map

derived from the HSCOI for this PSU is shown in figure 7 (§6). A contour that bounded
90% of LiDAR returns >2 m in height was extracted from the HSCOI layer and was

found to correspond well to the crown edge boundary and also to plot-scale estimates

of crown cover. The crown cover estimates generated using this approach were used

subsequently in stepwise and Jackknife linear regression models for estimating plot-

scale biomass.

While not directly measured, diameter can be derived through relationships with

height. For overstorey crowns/crown-clusters, height is determined traditionally

from the CHM values. However, for trees located in the sub-canopy, the heights

derived from the CHM were found to have greater error, as only height from the

outer canopy surface was extracted. Therefore, height was retrieved for both
overstorey and sub-canopy stems by:

1. First, intersecting stems with the CHM and assigning the height from this

layer to the stem. Where a single stem occurred within the crown, the

maximum CHM value found within the delineated crown area was assigned.

2. Using an empirical relationship established between tree height (derived from

the CHM for trees with a single stem) and the minimum HSCOI (Lucas et al.

2006b) to assign all remaining stems with a second height estimate.

The height assigned to stems using both methods was then compared, and when

these were within an arbitrary 20% of each other, the CHM-derived height was

assigned to the stem. Where the two height measures diverged by a greater amount,

the stem was assumed to be a sub-canopy tree, and the HSCOI-derived height was

assigned.

Stem diameter (at 130 cm) was estimated from tree height using a general

empirical nonlinear function that was generally applicable across the main genus

types. A random sample (80%, n53016) of ground-measured live trees with

D130>5 cm, (from 33 field plots) was used, such that:

D130~3:9806 exp 0:1189Hð Þ: ð3Þ

When evaluated against the remaining 20% of live trees (D130>5cm, n5755),

predictions of D130 were reasonable (r250.60, RSE55.97 cm, with the slope and

intercept of the best-fit line being 1.06 and 0.43, respectively). While some scatter

was evident, the slope of the best-fit line indicated that stem D130 derived from H

measurements approximated actual ground-measured D130. The function could be

further refined using species-specific data. Following attribution of LiDAR stems

with D130, an independent validation set of 119 randomly selected ground-measured
trees (D130>5 cm) from 30 field plots were matched to the LiDAR stems (using

location, height, crown area, and D130), and a useful correspondence was observed

(table 1).

5.5 Tree-scale estimation of component biomass and AGB

To assign individual trees with an estimate of component (leaf, branch, and trunk)

biomass, allometric equations for E. populnea and E. melanaphloia (Burrows et al.

2000), C. glaucophylla (Burrows et al. 2001), A. harpophylla (Scanlan 1991), and a
range of sub-canopy and understorey species (e.g. Eremophila mitchelli; Harrington

1979) were used. The equations and coefficients are summarized in Lucas et al.

(2006a) and required either circumference (at 30 cm or 130 cm) or height (m) as
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input. To apply the allometric equations appropriately, crown/crown-cluster objects

representing single species and containing more than one stem were first identified,

and stems with heights within 10% of the maximum (as determined from the CHM)

were then assigned to the crown/crown-cluster object and given an associated species

code. Generally, objects with several stems were associated with species supporting

larger, more expansive crowns (e.g. A. leiocarpa or E. melanaphloia). All remaining

stems within the object were then associated with sub-canopy trees, and were

necessarily linked to species (e.g. C. glaucophylla) of lower stature occurring in

proximity to the object being considered. The circumference (determined from D130)

or heights of both the overstorey and sub-canopy stems were then used as input to

the species-specific allometric equations for estimating component biomass.

Adjustments were made for species where the diameter at 30 cm (D30) was the

required independent variable, through the use of empirical relationships between

D130 and D30. The AGB associated with individual stems was calculated by

summing the leaf, branch and trunk biomass. The AGB associated with delineated

crowns/crown-cluster objects was then calculated as the sum of the AGB of the

stems contained within each object.

To generate estimates of AGB for the 30 0.25 ha (50650 m) SSUs contained

within each of the PSUs being sampled, the AGB associated with each delineated

crown/crown-cluster was summed. Where a SSU boundary intersected a crown, the

AGB assigned to each SSU was based on the proportion of the crown area found

within the SSU. All estimates were expressed in terms of Mg ha21. Although ground

data were collected form 13 PSUs, three were excluded for the analysis as follows:

1. PSU 59: contained small trees (typically less than 2 m in height) that were

regenerating following recent clearance (i.e. the area was considered to be

largely non-forest);

2. PSU 144: portions of the LiDAR data were adversely affected by strong winds

during the acquisition;

3. PSU 148: the large number of species observed reduced confidence in

discrimination and hence subsequent calculation of AGB.

Of the 300 SSUs remaining, 30 were associated with non-forest and were also

excluded from further analyses.

5.6 Validation and comparison

To provide an independent assessment of AGB at the plot scale, a set of estimates

was generated using a Jackknife linear regression between field measures of AGB

and both LiDAR-derived crown cover and the frequency of returns within a range

of canopy height levels. Canopy heights were determined from apparent vertical

Table 1. Relationships established between tree height and diameter based on 119 randomly
selected trees from 30 field plots.

Comparison R2 (RSE*) Function

Tree height{ 0.71 (3.19 m) y50.587x + 3.6
Tree diameter{ 0.65 (6.9 cm) y50.793x + 4.4

*Residual standard error.
{x5diameter.
{x5height.
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profiles of LiDAR returns, with the use of three heights each from both understorey

and overstorey (where present).

The model form and parameter selection were developed initially through

stepwise linear regression (Lucas et al. 2006a). However, this approach was limited

because all plots were included in the calibration, and none were available for

independent validation because of the small number of field plots and wide range of

forest types occurring. To refine the estimates of variance and derive robust

estimates of standard errors in the model, Jackknife techniques were applied

subsequently. Jackknifed statistics are created by systematically omitting subsets of

data one at a time and assessing the resulting variation in the studied parameter

(Mooney and Duval 1993). This allowed the refinement of parameter selection,

resulting in substitution of two parameters from the initial regression model.

Parameter estimates were refined through examination of the replicates histogram,

where plots of the observed parameter value and mean of the replicates highlighted

the estimated bias. Jackknifed statistics also provided information on the influence

of each observation on the model. The final function had the form and parameters

listed in equation (4):

Biomass Mg ha{1
� �

~ {44:4ht 5%½ �z 57:98ht 10%½ �z {18:8ht 20%½ �z

8:3ht 50%½ �z {34:98|ht 75%½ �z 32:2ht 80%½ �z 0:86Crown Cover%½ �{20:68,
ð4Þ

where ht_x% is the height at which the LiDAR data (.0.5 m in height and sorted

lowest to highest) reaches the cumulative percentage of returns. Once all iterations

were complete, the mean parameter values were used to calculate AGB for the field

plots. The observed, mean, bias and standard error estimates for the parameters are

shown in table 2. Table 3 shows the correlation between the coefficients used in the

regression analysis and were used to establish if any multicollinearity between

parameters might exist. As expected, some metrics were correlated, but this only

occurred for a minority of the parameter combinations (assuming a ¡0.7

correlation threshold). However, as there is little correlation between the different

overstorey and understorey sampling parameters, this correlation between some

metrics is considered to be a relatively minor issue.

Estimates of AGB generated using the Jackknife regression were calibrated with

ground data at the plot scale. The regression equation was considered to be

sufficiently robust (r250.90, RSE511.8 Mg ha21, n531; figure 5) for application

across the landscape using the PSU grid. The Jackknife method compared well with

a previous iteration of the plot-scale biomass estimated using a stepwise linear

Table 2. Jackknife results for the plot scale regression parameters.

Parameter Observed* Bias* Mean* Standard error*

Height_05% 244.48 1.31 244.43 18.80
Height_10% 58.04 21.72 57.98 20.33
Height_20% 218.82 0.49 218.81 5.45
Height_50% 8.33 20.18 8.32 3.47
Height_75% 235.13 4.56 234.98 17.07
Height_80% 32.32 24.35 32.18 14.98
Crown cover % 0.86 0.05 0.86 0.23
Intercept 220.68 0.01 220.68 11.41

*Rounded to two decimal places for clarity.
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regression method that also corresponded well with ground data of (r250.92,

SE512.06 Mg ha21, n532; Lucas et al. 2006a). Note that one plot was omitted from

the jacknife regression because the coverage of LiDAR returns within the field plot

was insufficient, and this resulted in greater uncertainty with the field calibration.

The resulting large dataset (estimates for all 4500 SSUs) provided a reference against

which estimates of tree-summed plot AGB could be cross-checked across a wide

range of different forest types and structures.

6. Results

6.1 AGB estimates: comparisons with ground data

The comparison of tree-summed plot AGB estimated through integration of LiDAR

and CASI data with ground (plot) data provided an overall correspondence

(r250.56, RSE525.3, n521; figure 6). For 10 plots, this correspondence was close

(within 10%), and within these, the density of trees (D130>5 cm) was lower

(average5360 stems ha21, d534.2, range 210–670; table 4), trees were taller, and

their crowns were more widely spaced. Large individuals, particularly A. leiocarpa,

also contributed the majority of the basal area. However, within the remaining 11

Table 3. Correlation of Coefficients for Jackknife analysis

(Intercept) HSCOI-CC HT@05% HT@10% HT@20% HT@50% HT@75%

HSCOI-CC 0.11 –
HT@05% 0.40 0.17 –
HT@10% 0.32 0.14 0.94 –
HT@20% 0.20 0.08 0.54 0.76 –
HT@50% 0.09 0.00 0.06 0.13 0.45 –
HT@75% 0.10 0.25 0.09 0.03 0.21 0.79 –
HT@80% 0.18 0.33 0.16 0.10 0.14 0.70 0.99

Figure 5. Correspondence between AGB (Mg ha21) estimated from field measurements and
using the plot scale jackknife linear regression (R250.90, RSE511.8 Mg ha21).
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plots, the AGB was underestimated using LiDAR-CASI data. Within these plots,

the density of trees was greater (average5700 stems ha21, d5145.2, range 100–2310),

and many contained regenerating understorey layers dominated by C. glaucophylla.

Table 4 presents the different forest structures observed in the 21 field plots.

6.2 AGB estimates: comparisons across the landscape

Across 10 PSUs, the biomass (leaf, branch, trunk, and AGB) was estimated and

mapped at the individual crown/crown-cluster level. Figure 7 illustrates the

component and total AGB maps for PSU 58.

When the AGB was summed at the individual tree level for 270 SSUs, the

comparison with the AGB estimated using the Jackknife regression suggested an

overall correspondence (r250.47, RSE524.4 Mg ha21), with the slope and intercept

of the best-fit line being 0.65 and 37.05, respectively. To test for possible

autocorrelation between adjacent SSUs with the PSUs, the Durbin–Watson statistic

was applied using the residuals. This gave a d value of 1.152, which was outside the

confidence bounds for the number of samples used with 1 regressor term and at the

1% significant level. As a Durbin–Watson statistic of 2 indicates no autocorrelation,

while a 0 indicates large positive autocorrelation, the result generated from the 270

SSUs indicates some positive autocorrelation between SSUs. However, as the input

data list sequence is not a complete representation of the spatial arrangement

because of some non-adjacent SSUs and PSUs being considered as adjacent, then a

further comparison was undertaken. Here, two equal sets of SSUs were selected

from the 270, such that there were no adjacent SSUs in either set. A further test

randomly selected two equal sets of SSUs. The correspondences for the two

Figure 6. Comparison of AGB estimated from field data and by summing the AGB of
individual trees estimated through LiDAR-CASI integration. Circle size is proportional to
plot stem density, and the shading relates to co-dominant genera, as determined from basal
area measurements. Field data error bars represent the 95% confidence level.
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non-adjacent SSU sets were (r250.42, RSE526.1 Mg ha21, n5135, slope50.58,

intercept541.1) and (r250.53, RSE522.4 Mg ha21, n5135, slope50.72, inter-

cept532.9). The correspondence for the two randomly selected SSU sets was

(r250.47, RSE524.1 Mg ha21, n5135, slope50.63, intercept535.4) and (r250.48,

RSE524.5 Mg ha21, n5135, slope50.66, intercept539.3). A Student t-test compar-

ing the residuals for both selections found no significant difference between the

means.

Given the similarity in result between the full 270 SSU and the subsequent non-

adjacent and randomly selected samples, it was concluded that any spatial

autocorrelation bias that existed was very minor. This was also considered because

the AGB comparisons were made between different data sources within SSUs,

rather than between SSUs. Therefore, SSU spatial arrangement and adjacency

should only have an indirect and minor influence on the correspondence.

To assist in the interpretation of the different sources and interactions of potential

error, these 270 points were divided into three classes (figure 8). Specifically, tree-

summed plot AGB generated through integration of LiDAR and CASI data were

considered to be overestimated by .10% compared with the Jackknife regression

estimate (Class 1, n537), within (10% of each other (Class 2, n540), or

underestimated by .10% (Class 3, n5193).

The results presented in figure 8 are described further in table 5. Within Class 1,

most of the stands contained C. glaucophylla and E. melanphloia species (both in the

Table 4. Differences in forest structure observed for plots where estimates of AGB generated
using LiDAR and CASI data compared well (n510) or otherwise (n511).

Field plot

Stem count
Crown
cover

%

Predominant
plot height

(m) Co-dominant genus
Callitris/

Acacia
Eucalyptus/

Angophora
Total
stems

142–02 28 46 74 23.8 10.9 Eucalypt–Acacia
142–13 4 59 63 31.7 12.4 Eucalypt–Callitris
114–12 53 16 69 28.6 14.2 Callitris–Angophora
142–20 58 47 105 42.2 14.7 Eucalypt–Acacia
142–18 2 51 53 40.0 15.1 Eucalypt–Callitris
23–16 37 37 74 48.7 15.6 Angophora–Acacia
83–20 52 48 100 43.2 15.6 Eucalypt–Callitris
111–18 146 21 167 68.5 19.8 Callitris–Angophora
23–24 84 35 119 59.4 19.8 Angophora–Callitris
81–11 63 7 70 62.7 21.5 Angophora–Callitris
Mean of plots
((10%)

53 37 89 44.9 16.0 10

131–18 12 13 25 18.6 11.1 Eucalypt–Acacia
83–12 3 52 55 25.6 12.7 Eucalypt–Callitris
138–21 51 122 173 47.3 14.5 Eucalypt–Callitris
23–20 84 27 111 34.9 14.9 Angophora–Callitris
138–16 36 135 171 56.0 15.0 Eucalypt–Callitris
23–15 70 136 206 67.6 15.1 Eucalypt–Callitris
124–06 136 75 211 52.9 15.7 Callitris–Eucalypt
111–12 550 27 577 77.1 17.5 Callitris–Eucalypt
81–16 93 24 117 62.6 18.0 Angophora–Callitris
114–04 138 14 152 40.5 18.0 Callitris–Angophora
124–19 110 19 129 49.9 18.2 Angophora–Callitris
Mean of field
plots (.10%)

117 59 175 48.5 15.5 11
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overstorey and sub-canopy) along with other taller trees (e.g. A. leiocarpa), many of

which supported larger crowns. Here, large crowns are defined as those with an area

.100 m2. Generally, the basal area of the sub-canopy was lower (an average of 7%

of plot basal area) compared with Class 2 forests. The overestimation of AGB was

therefore attributed to the greater interaction of LiDAR pulses with the upper

canopy of these taller overstorey trees and hence overestimation of stem height (and

thus diameter) in the sub-canopy. Additionally, the overstorey stems of large

individuals were likely to have exaggerated AGB values because of the height/

diameter being outside the range of the allometric equations for these species. This

was particularly the case for some species (namely Angophora), as allometrics were

not available, and equations from other species were necessarily substituted. Where

Figure 7. Maps of (a) leaf, (b) branch, (c) trunk (proportional symbols in red), and (d) total
AGB (kg) generated from CASI and LiDAR data for PSU 58.
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Figure 8. Comparison of AGB estimated at the plot scale using a Jackknife regression (y-
axis) and by summing tree-level AGB (x-axis) obtained through integration of LiDAR and
CASI data, for each of the 270 SSUs.

Table 5. Comparison of mean structural attributes (n5270) associated with classes 1, 2, and
3.

Error class 1 2 3

Error class range
Overestimate

.10% (10%
Underestimate

.10%

Count 37 40 193
% of SSU’s 13.7 14.8 71.5

Structural attribute Mean SD Mean SD Mean SD

Jackknife AGB (Mg ha21) 78.7 24.1 81.3 29.5 78.0 28.7
Tree-scaled AGB (Mg ha21) 107.5 35.0 80.9 29.2 46.5 21.1
% of SSU composed of large
crown area

12.7 14.3 9.7 12.5 6.0 10.7

% basal area in understorey 7.4 9.8 9.9 12.9 11.9 10.2
% stems (C. glaucophylla/E.
melanaphloia)

80.7 23.9 71.7 30.4 61.4 35.3

% understorey stems
(C. glaucophylla/E. melanaphloia)

32.9 13.9 31.0 16.1 27.3 19.4

SSU Predominant height (m) 17.2 3.4 15.4 3.6 14.2 3.2
% basal area SLI/CP in understorey 5.6 5.6 7.2 10.2 7.4 9.4
SSU crown cover % 48.8 13.4 46.8 14.4 44.2 16.6
% understorey stems (5–10 cm dbh) 41.2 16.5 42.7 14.2 44.2 17.0
LiDAR stem density (stems ha21) 438 136 425 143 424 173

Attributes listed after AGB are ranked in order of percentage difference between error classes.

1570 R. M. Lucas et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
u
s
t
r
a
l
i
a
n
 
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
7
:
3
4
 
2
1
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



the AGB was underestimated (Class 3), the forests were less mature, as indicated by

their lower plot predominant height and crown cover, and there were fewer larger

crowns present. These SSUs were also highly variable in terms of their structure and

species composition. The SSUs in this class were differentiated from Class 1 SSUs in

that the plot basal area of the understorey was greater (average of 12% of plot basal

area), and a higher number of other species were found in this stratum. In this case, the

underestimation of AGB was attributed largely to the inability to locate all stems

using the LIDAR-derived HSCOI because of their high density (often several per m2).

Where there was agreement in the AGB estimates (Class 2), these forests had a similar

density to Class 3 forests but supported less understorey. The trees contained were tall

but supported less expansive crowns compared with those found in Class 1 forests.

The selection of the 10% threshold to represent ‘correct’ estimation was arbitrary.

Furthermore, the use of percentage difference as an indicative measure can inflate

the apparent error for plots with low AGB. For example, consider a plot that has an

AGB estimate of 20 Mg ha21 from the Jackknife regression, and 10 Mg ha21 from

the tree-summed plot AGB estimates. The difference in estimates (10 Mg ha21) is

50% of the Jackknife plot estimate. Now, consider another plot that has greater

biomass, where the Jackknife AGB estimate is 160 Mg ha21 and the tree-summed

plot AGB is 150 Mg ha21. The 10 Mg ha21 difference between estimates is now only

6.25% of the Jackknife plot estimate. Therefore, an apparently small difference in

estimates (e.g. 10 Mg ha21) can give the impression of large error if percentage

differences are only used for lower biomass plots. Consideration of the practical

application and error requirements, as well as the distribution of plot biomass across

the landscape is needed to determine the most appropriate assessment strategy.

For these reasons, a number of other thresholds were used (table 6), and this

suggested that, at best without further model refinement, 50% of the AGB could be

estimated by scaling from the individual tree level. The analysis also indicated that

because of the complexity of forests occurring within the study area resulting from

different species and successional stages (and hence crown architectures), accurate

estimates of AGB are perhaps very difficult to achieve if scaling from trees identified

and attributed using LiDAR and CASI data.

7. Discussion

For forest inventory, landscape estimation of structural attributes, biomass, and

species composition at the tree level is desirable but has been difficult to achieve

Table 6. Assessment of the accuracy of modelling using different thresholds of potential error
based on 270 SSUs.

Error Class

1 2 3

Count % Count % Count %

10% threshold (table 4) 37 14 40 15 193 71
20% threshold 26 10 76 28 168 62
Greater than plot scale RSE
for field plots*

29 11 76 28 165 61

Greater than plot vs tree scale
RSE for 270 SSU plots{

19 7 134 50 117 43

*12 Mg ha21.
{24 Mg ha21; RSE5residual standard error.
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through ground (plot-based) measurement alone because of logistical constraints.

This research has demonstrated an approach for specifically estimating biomass

from fine spatial resolution airborne data within an integrated landscape-scale

sampling scheme. The approach utilized a sequence of separate procedures aimed at

retrieving structural (i.e. stem diameter, height, and density) and species information

from LiDAR and CASI data, respectively. These derived data were then used in

conjunction with available allometric equations to estimate AGB and component

biomass. Such information could not have been obtained using either dataset alone.

The approach presented is also complementary or even partially supplementary to

ground survey, particularly as landscape-level assessments can be achieved over

large areas and often in shorter time frames. The approach also contrasts with many

previous biomass estimation methods that have focused primarily on extrapolating

plot-based measures across the landscape. These methods have been based largely

upon empirical relationships established with, for example, LiDAR (e.g. Lucas et al.

2006a), optical (Steininger 2000), or radar remote sensing data (e.g. dos Santos et al.

2003).

The methods developed in this research can be used to support biomass

assessment at scales from the tree to the landscape, although further refinement is

needed for successful retrieval in the more complex forests. Table 7 outlines some of

the refinements that are needed and how these might be addressed in the future.

While not offering a full solution to the consistent retrieval of biomass, the research

has set a methodological baseline against which the success of future work can be

Table 7. Refinements necessary for improving AGB estimation through integration of
LiDAR and CASI data.

Requirement Potential solution

Discriminating
tree species in the
overstorey

N Refinements to crown delineation
N Inclusion of shortwave infrared data (Lucas et al. 2006c)

Discriminating
tree species in the
sub-canopy

N Spectrally unmix delineated crowns/crown clusters
N Utilize structural information from LiDAR (e.g. Moffiet et al. 2005)

as well as known community association for different environments
(soils, terrain, etc.)

Detecting
multiple stems

N Develop rules based on, for example, stem number versus height/
crown area and species relationships

Estimating stem
density

N Further refine methods that use the HSCOI for locating stems (Lee
and Lucas 2007)

N Establish empirical relationships between delineated crown/cluster
area and height and stem density

N Utilize LiDAR data acquired at a higher sampling rate, or smaller
footprint size to allow greater penetration to sub-canopy

Estimating the
height of
sub-canopy trees

N Further evaluate relationships with the HSCOI
N Utilize full waveform LiDAR, if available

Estimating
diameter

N Utilize species specific empirical relationships between diameter and
height and crown area

N Utilize relationships that consider environmental influences (e.g. soils,
topography) on growth form

Estimating AGB
and component
biomass

N Develop allometric equations for new species and for the full range of
size classes across different environments, through further destructive
harvesting and/or by using terrestrial laser scanners
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gauged and has also provided insight into some of the limitations of such an

approach and obstacles that need to be overcome.

The majority of the procedures implemented in this research are generally

applicable to other forests provided that remote sensing data of a similar form are

available. Knowledge of the species composition of the forests is, however, necessary

for implementing parts of the crown delineation algorithms, training the multiple

stepwise discriminant analysis, appropriately applying allometric equations for

AGB and component biomass estimation, and for retrieving structural attributes

(e.g. diameter and height) based on species-specific empirical relationships (Lee and

Lucas 2007). Nevertheless, once established for a particular forest region, the

procedures can be applied routinely, although some independent validation would,

of course, be necessary.

8. Conclusions

This study has provided a preliminary evaluation of the integration of LiDAR and

CASI data for estimating AGB and component biomass at the individual tree or tree

cluster level. When summed to a plot scale, a close correspondence with the AGB

estimated within the field and using a Jackknife regression with LiDAR data was

observed. When tree-scale LiDAR-CASI AGB estimates were evaluated, greater

correspondences were observed for forests where the tree density was generally

lower, individuals were widely spaced, trees were tall with crowns of a moderate size,

and more mature individuals dominated the basal area. However, for plots where

these structural conditions did not occur, the AGB was overestimated in forests

where a large number of tall trees with expansive crowns occurred. Underestimation

occurred in less mature forests of lower stature, and which were dominated by trees

with smaller crowns, or containing a higher stem density of individuals usually in the

understorey. Clusters containing a higher stem density consisted primarily of the

species C. glaucophylla across all plots.

The approach was automated and allowed rapid estimation of AGB and

component biomass across the landscape at a level unachievable through plot-based

survey alone. While estimation at the individual crown-cluster level appears to be an

involved process with the potential for significant improvement, advantages over

more general methods that relate remote sensing data (e.g. reflectance at coarser

spatial resolution) to biomass through empirical relationships (e.g. with plot-based

summaries) were evident. For example, a better understanding of allocation of

biomass to different plant components can be obtained, even though there is large

apparent variability in some results. This is to be expected, given the complex

relationship between components and the total biomass, which, in turn, complicates

retrieval using remote sensing data (Lucas et al. 2000, 2004). The approaches

outlined in this paper present the necessary initial steps to better understand these

inherent relationships by first mapping the biomass components, and then using

multiscale analyses to interpret, refine, and ultimately improve the algorithms for

their estimation.

The algorithms developed for the characterization and reconstruction of the

selected forests have a direct application for forest assessment in other regions of

Australia and also overseas. The data and products have already been used to

support the development of forest mapping using other remote sensing datasets

including (1) a 3D forest quantitative reconstruction for coherent SAR simulation

(Williams et al. 2003, Lucas et al. 2006b), (2) a better understanding of microwave
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interaction with different components of the forest and the importance of sensor

parameters (frequency, polarization, and incidence angle) for biomass retrieval

(Lucas et al. 2004, 2006a), (3) improved techniques for mapping woody regrowth

using a combination of lower frequency radar and Landsat-derived FPC data

(Lucas et al. 2006c), and (4) interpretation of coarser spatial resolution

hyperspectral (e.g. HyMap) data for forest classification and assessment of tree

species diversity (Bunting and Lucas 2006b). In future work, the algorithms will be
implemented across the Injune study area to provide baseline datasets of forest

biomass, structure, and species to support regional and national mapping using

spaceborne remotely sensed data including that provided by Japan’s Advanced

Land Observing Satellite (ALOS), as well as ICESat large footprint laser data.
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APPENDIX D 

Hemispherical photo calibration methodology overview 

Hemispherical Photo Cover Calibration 

An alternative method to assess crown/foliage cover is through the use of “fisheye” or 

hemispherical canopy photos. This method is effective for LiDAR cover validation as both 

LiDAR and photos sample a wider extent of the plot than with point based transect methods.  

This method has been widely used, for example (Frazer et al., 2001; Lovell et al., 2003; Coops 

et al., 2004; Hill et al., 2006; MacFarlane et al., 2007a:~, 2007b) and for assessing the light 

penetration through canopy.  The images can also be converted to crown openness images that 

are also used, for example Walker et al., (1988), and McDonald et al., (1998).  Circular fisheye 

images were gathered in the NE Victorian field plots, however as the lens was an adapter, not a 

prime lens, the quality is not optimal, though sufficient for the purposes of this research.  The 

Queensland datasets have used a 10.5 mm full frame prime hemispherical lens designed for 

digital cameras, so the image quality is very good (Figure 117).  Estimates of foliage cover and 

LAI for both Queensland and NE Victorian plots were generated using Gap Light Analyzer 

(Version 2) software (Frazer et al., 1999).  For each Injune field plot the photo closest to the 

centre was used.  However in plots with highly variable cover, that is, the initial photo estimate 

differed from the field transect or LiDAR cover estimate by more than 15%, then the centre 

photo from each of the three transects was selected and the cover and LAI estimate calculated as 

the average of the three photos.  All measurements were taken at 1 m (± 20cm) above the 

ground.  

The full-frame nature of the Nikon lens used for the Injune study site images does not 

give a full 180o image view (i.e. circular).  This is because an 180o view is only present along 

the diagonal (Figure 117) using calibration images taken at the Australian National University 

(ANU).  As a result two images were required to better approximate the area of a full 180o 

circular image.  Therefore photos were collected oriented both in north-south and east-west 

directions and merged to create a composite image.  However this still resulted in some gaps in 
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photo coverage at the edges.  When examined in the GIS the total circle area was 358,699 

pixels, with the photo area equal to 277,479 pixels.  Therefore the estimation of the gap in photo 

coverage was calculated to be 22.65%, with the photo area being 77.35% of the full circular 

area out to 90 degrees zenith.  Therefore if a 70 degree zenith is used, then the composite image 

allows 100% of the circular area to be used.   

 
Figure 117: Registration of calibration images using Nikon fisheye lens, showing effective view 

area, zenith rings, and gaps in extent with the merged photos. 

 

It was initially assumed that the Minolta lens imaged a full circular extent out to 90 

degree zenith.  However this assumption was tested in the interests of complete calibration and 

in order to understand any potential biases that may arise when comparing cover estimates 

between photos from the two lenses.  When the actual view extent (i.e. what canopy elements 

were evident at the edge of the image) was compared (Figure 118) between the Nikon 

composite image and the Minolta image, it was observed that the effective Minolta view 

equated to the 70 degree zenith ring in the Nikon composite image.  Therefore it can be 

concluded that both images completely image the same effective area, with the Nikon composite 

partially imaging further out towards the 90 degree zenith ring.  
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As the hemispherical photo analyses software was optimised for processing circular 

images that are assumed to image out to the 90 degree zenith angle, further processing of the 

images was undertaken.  In this instance, because it is unknown if the edge of the photo would 

have been predominantly sky or canopy, the effective bias of choosing either was minimised by 

dividing the area outside the photo extent into equal area panels of black and white.  This meant 

the contribution of the non-photo area to the cover / sky estimate will cancel out.  In some cases 

this may introduce some bias from the actual result, as more sky (in very open woodland 

environments) or canopy (in dense forests) may be present, so the cover estimate will be an 

over-estimate or under-estimate respectively.   

a) 

 

b) 

 
Figure 118: Calibration images taken at ANU showing area imaged, and the same effective view 

extent with (a) Nikon lens, and (b) Minolta lens. 

 

To determine the potential effect of using a split black and white panel may have on 

cover estimates from hemispherical photography from the two lenses, a calibration exercise was 

undertaken using the ANU image.  Here the images from both lenses were analysed with three 

different backing panel combinations: fully white, half black and white, and fully black.  Then a 

full range of pixel brightness threshold values were used, to remove any potential user bias 

(Cescatti, 2007).  The result of this analysis is shown in Figure 119.   

Another issue that arose from assessing the images was that the sun disk was visible in 

many photos.  This was due to the need to collect many samples in a short amount of time, as 
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well as the trunks and shiny leaves of some tree species (for example E. populnea) may be very 

similar to cloud or bright parts of the sky, introducing error when pixel brightness thresholding 

is undertaken.  To resolve this, manual masking or pixel changes were required in cases where 

the sun disk and/or bright and shiny trunks and leaves were present. 

 
Figure 119: Effect of background colour and pixel brightness threshold in hemispherical photo 

analysis on cover estimates, using Nikon and Minolta lenses. 

 

An assessment of the geographic extent visible in photos was undertaken to ensure the 

LiDAR used in the comparison also encompasses the same view area (Figure 120).  This was 

also done to ensure that the same available view extent is used in both Victorian and 

Queensland datasets.  Also, the heights that tree elements have to be to be observed in the 

photo, at the plot edge, given the “view” angle.   
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Figure 120: Simulated viewsheds at different zenith angles for Nikon fisheye photos when taken along Qld transects within a field plot
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In a similar manner to the Injune processing, analyses of photo view extent were also 

undertaken for the NE Victorian plots.  The analyses differed due to the different plot size and 

transect sampling methods used in the CFMF trial.  It was noted that the actual visible extent of 

the hemispherical photos is not precisely known for each plot, as this varies with forest density.  

For example, in a more open forest the canopy elements from further away will be observed.  

The analysis of the LiDAR data involved calculating the cover estimate for a range of distances 

out from the plot centre.  This utilised two research questions: 

• What is the most likely distance that a single hemispherical photo is observing, such that 

there is a close correspondence with the LiDAR cover estimate?  Initial calibration of 

the hemispherical photos at ANU indicated that the nominal view extent of the photo 

was between 40-50m from the camera location.  Therefore the LiDAR was analysed at 

40, 50, and 60m circle radii distances from the plot centre to see if this distance could be 

more precisely quantified.  

• Given the assumed optimal hemispherical photo observing distance, do the additional 

transect photos collected as part of the CFMF sampling strategy adequately sample the 

wider one hectare transect area? 

A distance of 50m for a single photo has the smallest residual error, and best r2, though 

the difference from the other distances are small (Figure 121).  The results observed are also 

close to calibration measurements undertaken.  There appears to be a consistent underestimation 

of cover (as compared to the LiDAR estimate) by the photo method of approximately 10% on 

average.  This may be a result of the photo not having a full 180º view angle.  The view 

calibration exercise identified that at the edge of the photo it is actually observing canopy that is 

approximately 7m tall, with this height difference progressively reducing as the distance from 

the centre of the photo reduces.  The LiDAR estimate includes all canopy strikes 2m+ in height 

throughout the assessment area, therefore the apparently greater cover results from the LiDAR 

may well be from the additional canopy that is below the view angle of the photo.  To test this 

explanation, more detailed modeling of the LiDAR data that would simulate the removal of 

canopy elements below the photo view angle would need to be developed undertaken. 
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Figure 121: Assessing potential hemispherical photo view areas for NE Victorian plots against of 

LiDAR returns (FBC) clipped at a range of circular areas.  

 

To test the sampling of photos along the transects, against LiDAR across the whole 

transect area (one hectare), further analyses were done.  Here, the photos that were taken 20 m 

in from the end of each of the four transects were processed for cover, and combined with the 

plot centre photo estimate.  This estimate was compared with LiDAR returns (foliage-branch 

cover%) clipped to a circle with an 80 m radius from the plot centre.  The observed relationship 

shows much scatter (Figure 122) and this would appear to indicate that, with the current transect 

photo locations and orientation, that the wider transect area is not sampled adequately for cover, 

when compared to a LiDAR sample.  It may be that different photo placements within the wider 

stand are required to better sample the forest for foliage and branch cover, to more closely 

emulate the LiDAR estimate for the given area.. 
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Figure 122: Assessing view area of NE Victorian plot hemispherical photos against LiDAR (FBC) 

% circular area assessment for plot and transect areas respectively.  
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