The Fiddler Crab Claw-waving Display:
An analysis of the structure and function of a movement-based visual signal

Martin J. How
A thesis submitted for the degree of Doctor of Philosophy from The Australian National University
October 2007
Title page: Photograph of a male *Uca mjoebergi* in mid-wave.
Declaration

This thesis is an account of research undertaken between March 2004 and September 2007 at the Research School of Biological Sciences, The Australian National University, Canberra, Australia. Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or in part for a degree in any other university. I am the senior author and the principal contributor to all aspects of the co-authored papers within.

..

Martin J. How
Abstract

Communication is an essential component of animal social systems and a diverse suite of signals can be found in the natural environment. An area of animal communication that, for technical reasons, we know very little about is the field of ‘movement-based’ or ‘dynamic’ visual signals. In this thesis, I make use of recent advances in measurement and analysis techniques, including digital video and image motion processing tools, to improve our understanding of how movement-based signals are adjusted according to signalling context. I measured and characterised the flamboyant claw-waving displays of male fiddler crabs (Genus *Uca*) and made use of their transparent lifestyle to record the behavioural contexts in which these signals are produced.

The claw-waving displays of seven Australian species of fiddler crab are compared and contrasted to show that these signals are species-specific, but also vary within and between individuals. I show that the species *Uca perplexa* produces different types of signal in different behavioural contexts, a lateral wave for courtship, and a vertical wave during short-range agonistic and courtship interactions. The structure of the lateral courtship waves of *U. perplexa* vary according to the distance of signal receivers, the first time this kind of relationship has been shown in a dynamic visual signal. Finally, I describe and analyse the signalling and orientation behaviour of *U. elegans* during courtship herding, an unusual mating system that uses the claw-waving display in a novel way.

The adjustments made by fiddler crabs to their displays during changes in behavioural contexts suggest that the fine-scale context-sensitivity of animal signals may be far more widespread in communication than hitherto recognised.
Acknowledgements

This thesis would not have been possible without the help of a number of people and institutions.

I would first like to thank the Research School of Biological Sciences at The Australian National University (RSBS, ANU) for providing funding and research facilities for the duration of this PhD. I also would like to acknowledge support from the Deputy Vice Chancellor’s fund for fieldwork assistance and the ARC Centre of Excellence in Vision Science at ANU for providing additional assistance. Fieldwork accommodation and facilities were provided by the ANU’s North Australian Research Unit and the Australian Institute of Marine Science.

I would like to thank my PhD supervisors Jochen Zeil, Jan Hemmi and Richard Peters for their fantastic and unending support, for without their continual advice and encouragement this project would not have been possible. Jochen’s passion for understanding how animals interact with the world, his elegant style of research, and his eternal enthusiasm for the pursuit of intellectual progress, scientific and otherwise, serve as a shining example of academia done well. Similarly, Jan’s rigorous analytical approach and continual scientific inspiration provide a reminder of what science is really about. Not to forget all of the camping, hiking, long-distance driving and drinking experiences that I have enjoyed with them along the way. I would also like to thank my PhD advisor Pat Backwell for providing valuable fieldwork help and advice in Darwin.

Many other individuals contributed to this research in some form or another. I have received help and advice along the way from many researchers at ANU and elsewhere, including Johannes Zanker, Norbert Boeddeker, Michael Jennions, Waltraud Pix, Wolfgang Stuertzl and Ajay Narendra. Thanks also to Istvan Zaveczky and the RSBS workshop team for helping to design and build
the custom-made video camera mounting system and other experimental equipment for fieldwork. I would also like to thank Mark Snowball at RSBS for designing, building and fixing electronic equipment and Emlyn Williams at the Statistical Consulting Unit for help with the published parts of this thesis. I would also like to thank my fellow students for their advice and support, including Jochen Smolka, Wiebke Ebling, Andreas Pfeil, Riccardo Natoli, Regan Ashby, Nicole Carey, Tanya Detto, Aung-Si, Emily Baird, Richard Berry, Leeann Reaney, Ali Alkaladi, Peter Kozulin and Alex McWilliams to name but a few, and the entire ANU lunchtime soccer contingent for helping to keep me fit and sane.

I would like to thank my parents, John and Jenny and my brother Roger, for the continuous support that they have provided, both pre-PhD and for the duration, especially mum for all the last minute proof-reading that I threw her way.

Finally, I would like to thank Molly for making this work. She has stuck with me through thick and thin and provided me with unerring love and support along the way.
Contents

Chapter 1. Introduction.. 1

1.1. Animal communication.. 3
 1.1.1. Defining communication signals.. 3
 1.1.2. Visual signals and movement-based displays.. 4

1.2. Introduction to fiddler crabs.. 5
 1.2.1. Fiddler crab vision... 7
 1.2.2. The claw-waving display... 9

1.3. Thesis background and summary.. 10

Chapter 2. Measuring motion.. 13

2.1. Introduction... 15

2.2. Qualitative methods... 16
 2.2.1. Verbal descriptions.. 16
 2.2.2. Pictograms and cartoons... 16

2.3. Quantitative methods.. 18
 2.3.1. Temporal coding of displays.. 18
 2.3.2. Measuring structural features... 21

2.4. Whole-image analysis: a receiver’s perspective.. 25
 2.4.1. Gradient detectors... 26
 2.4.2. Correlation detectors... 28

Chapter 3. Comparative form of fiddler crab claw-waving displays 35

3.1. Introduction.. 37

3.2. Methods.. 41
 3.2.1. Data collection and analysis... 41
 3.2.2. Cluster analysis.. 42

3.3. Results.. 44
 3.3.1. Subgenus: Celuca (Crane, 1975).. 44
 3.3.2. Subgenus: Australuca (Crane, 1975).. 51
 3.3.3. Subgenus: Thalassuca... 64

3.4. Inter-specific display variation.. 68
 3.4.1. Geographic variation in display structure... 74
 3.4.2. Display variation within and between individuals............................... 76

3.5. Discussion... 80
 3.5.1. Species specificity.. 82
 3.5.2. Geographic variation... 85
 3.5.3. Individual display variability... 86

3.6. Conclusion... 86
List of figures

Figure 1.1. Examples of movement-based signals... 5
Figure 1.2. Photographs of a fiddler crab (*Uca perplexa*) and some examples of fiddler crab habitats. .. 7
Figure 1.3. The fiddler crab visual system. ... 8
Figure 1.4. The role of the horizon in the visual system of the fiddler crab. 9
Figure 1.5. The two fieldwork locations.. 12
Figure 2.1. Pictograms and cartoons representing movement displays.............................. 17
Figure 2.2. Examples of Markov models for representing dynamic visual displays. 19
Figure 2.3. Temporal structure of movement-displays. ... 20
Figure 2.4. Trajectory analysis.. 23
Figure 2.5. Time series of movements during visual displays in three different species...... 24
Figure 2.6. Gradient detector outputs from analyses of dynamic visual signals............... 27
Figure 2.7. The Reichardt detector... 29
Figure 2.8. The 2-Dimensional Motion Detection (2DMD) model....................................... 30
Figure 2.9. Constructing a kinetograph.. 32
Figure 3.1. Illustration of the two main behavioural and morphological subdivisions of fiddler crabs... 38
Figure 3.2. Phylogeny of Australian fiddler crab species.. 40
Figure 3.3. The claw-waving display of *U. mjoebergi*. .. 47
Figure 3.4. The claw-waving display of *U. perplexa*. .. 50
Figure 3.5. The claw-waving display of *U. polita*. .. 54
Figure 3.6. The claw-waving display of *U. seismella*. ... 57
Figure 3.7. The claw-waving display of *U. signata*. .. 60
Figure 3.8. The claw-waving display of *U. elegans*. ... 63
Figure 3.9. The claw-waving display of *U. vomeris*. ... 67
Figure 3.10. Summary of claw-waving display choreography for each species................... 69
Figure 3.11. A comparison of three wave variables across species..................................... 72
Figure 3.12. Intra- and inter-individual variation in the claw-waving display of *U. elegans*. 77
Figure 3.13. Cluster analysis of the *U. perplexa* lateral claw-waving display. 79
Figure 3.14. Comparison of Australian and Japanese *U. perplexa* claw-waving displays. 75
Figure 3.15. Phylogenetic summary of characteristics over the seven study species. 81
Figure 4.1. Comparison of lateral and vertical waves from an individual male *U. perplexa*. 100
Figure 4.2. Frequency distribution of inter-wave intervals for lateral and vertical waves. 101
Figure 4.3. The positions of wanderers and the burrow for three behavioural criteria........... 105
Figure 4.4. Mean lateral and vertical wave rates ... 106
Figure 4.5. Bearing and orientation of resident male crabs relative to wanderers and the home burrow. .. 110
Figure 5.1. The lateral wave of *U. perplexa*. .. 122
Figure 5.2. Modulation of signal variables relative to receiver distance............................ 127
Figure 5.3. The frequency of walking leg movements, depending on receiver distance. 129
Figure 5.4. Close-range variation of claw speed and height. ... 130
Figure 5.5. The effect of receiver distance and time from start on claw flex angle. 131
Figure 6.1. Anterior and posterior images of male *U. elegans* ... 141
Figure 6.2. The claw waving signal of *U. elegans*. ... 145
Figure 6.3. Changes in claw-wave characteristics over the four phases of courtship behaviour in *U. elegans* .. 147
Figure 6.4. Three examples of herding interactions in *U. elegans* viewed from above. 149
Figure 6.5. Relative azimuthal positions of female wanderers ... 150
Figure 6.6. Movements of wandering female *U. elegans* .. 153
Figure 6.7. Azimuthal position of wandering females in the field of view of outward running males ... 155
Figure 6.8. Simulated outward runs for *U. elegans*. .. 158
Figure 6.9. Anti-sense simulated outward runs for *U. elegans*. ... 159
Figure 6.10. Test of the outward run control system model. ... 162

Figure A1. Schematic diagram of a fiddler crab: dorsal view ... 186
Figure A2. Schematic diagram of a fiddler crab: ventral view .. 187
Figure A3. Scatter-graphs illustrating 2DMD sampling base and time constant parameters. ... 188
Figure A4. Speed sensitivity of the 2DMD motion detection model 189
Figure A5. Contrast sensitivity of the 2DMD motion detection model 190
Figure A6. Spatial sensitivity of the 2DMD motion detection model 191
List of tables

Table 3.1. The proportion of each claw-waving display that reaches above eye-level. 73
Table 5.1. Results of the linear mixed model analysis for the measures in figures 5.2 and 5.4.128