Semiclassical L^p Estimates for Quasimodes on Submanifolds

Melissa Evelyn Tacy

March 2010

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University
Declaration

Chapters 4 and 5 contain the primary new work of this thesis. Chapter 4 is based on material from a sole author publication “Semiclassical L^p estimates of quasimodes on submanifolds” to appear in *Communications in Partial Differential Equations*. Chapter 5 is based on material from a joint paper with my supervisor Andrew Hassell, “Semiclassical L^p estimates of quasimodes on curved hypersurfaces”.

The work in this thesis is my own except where otherwise stated.

Melissa Tacy
Acknowledgements

I would like to first acknowledge my PhD supervisor Andrew Hassell. His help and advice have been invaluable to me both when learning mathematics and learning how to write and present it to an audience. Thank you also to Maciej Zworski whom I visited for nine months of my program and who suggested I work on a semiclassical extension of eigenfunction estimates which lead to the results of Chapter 4. I would also like to thank the Berkeley Math Department for hosting me and the Australian-American Fulbright Commission for providing the funding and support for this period.

No PhD is completed in isolation. I would like to acknowledge the influence and support of the community of mathematicians both at ANU and the larger Australian mathematical community. I consider myself fortunate to have studied in such a supportive environment.

Within the larger community I would particularly like to thank the student group I have had the pleasure of studying alongside. I am very much in debt to those senior students now graduated who encouraged me to keep going during the confusing and frustrating early years.

Thank you to my friends and family who, while not always understanding what I am doing, have provided unfailing support over the last four years. Throughout this time they have proofread many a paper and chapter. Their faith in my ability to achieve has been an important factor in my success.
Abstract

Motivated by the desire to understand classical-quantum correspondences, we study concentration phenomena of approximate eigenfunctions of a semiclassical pseudodifferential operator $P(h)$. Such eigenfunctions appear as steady state solutions of quantum systems. Here we think of h as being a small parameter such that h^2 is inversely proportional to the energy of such a system. As we understand classical mechanics to be the high energy (or small h) limit of quantum mechanics we expect the behaviour of eigenfunctions $u(h)$ for small h to be related to properties of the associated classical system. In particular we study the connection between the classical flow and the quantum concentration properties.

The flow, $(x(t), \xi(t))$, of a classical system describes the system’s motion through phase space where $x(t)$ is interpreted as position and $\xi(t)$ is interpreted as momentum. In the quantum regime we think of an eigenfunction as being composed of highly localised packets moving along bicharacteristics of the classical flow. With this intuition we relate concentration of eigenfunctions in a region to the time spent by projections of bicharacteristics there.

We use the L^p norm of u when restricted to submanifolds as a measure of concentration. A high L^p norm particularly for small p is indicative of concentration near the submanifold.

We reduce the estimates on eigenfunctions to operator norm estimates on associated evolution operators. Using the semiclassical analysis methods developed in Chapter 3 we express these evolution operators as oscillatory integral operators. Chapter 2 covers the technical background needed to work with such operators. In Chapter 4 we determine eigenfunction estimates for eigenfunctions restricted to a smooth embedded submanifold Y of arbitrary dimension. If Y is a hypersurface, the greatest concentration occurs when there are bicharacteristics of the classical flow embedded in Y. In Chapter 5 we assume that projections of such bicharacteristics can be at worst simply tangent to Y and thereby obtain better results for small values of p.
Contents

Acknowledgements ... v
Abstract ... vii

1 Introduction ... 1

2 Oscillatory Integral Operators 13
 2.1 Stationary Phase Estimates 13
 2.2 Canonical Relations 21
 2.3 Spectral Projections 22
 2.4 Operators Associated with Spectral Projection 25
 2.5 Singular Canonical Relations 27

3 Semiclassical Analysis 29
 3.1 Quantisation .. 30
 3.2 Composition of Operators 37
 3.3 Localisation ... 41
 3.4 Approximate Propagators 46
 3.5 Semiclassical L^p Estimates 50

4 Submanifold Restriction Estimates 53
 4.1 Symbol Factorisation 59
 4.2 Extended Strichartz Estimates 61
 4.3 Evolution Operator Estimates 64
 4.4 Proof of Theorem 4.0.1 72
 4.5 Optimal Examples 76

5 Curved Hypersurfaces 81
 5.1 Evolution Equation 82
 5.2 Fourier Integral Representation 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Folding Canonical Relation</td>
<td>86</td>
</tr>
<tr>
<td>5.4 Optimal Examples</td>
<td>90</td>
</tr>
<tr>
<td>Bibliography</td>
<td>93</td>
</tr>
</tbody>
</table>