Microstructure of Bicontinuous Phases in Surfactant Systems

Ian S. Barnes

March 1990

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University.
This thesis is the result of research carried out in the Department of Applied Mathematics at the Australian National University, the Département des Lasers et de Physico-Chimie of the French Commissariat à l’Energie Atomique at Saclay and at the Chemical Centre at the University of Lund in Sweden between March 1986 and March 1990.

Much of this work is the product of collaborations. The one-dimensional fluid analysis in Chapter 1 was done with John Mitchell. The models presented in Chapter 3 were developed jointly with Stephen Hyde, Barry Ninham and Thomas Zemb. The X-ray scattering work of Chapter 4 was done jointly with Thomas Zemb and with Paul-Joël Derian and Greg Warr. Thomas and Paul-Joël did the neutron scattering. The X-ray scattering experiments for Chapter 5 were done with Thomas Zemb, while Mario Corti and Vittorio Degiorgio did the neutron scattering. Barry Ninham told me about θ-functions for Chapter 6. The phase diagram work of Appendix A was done with Krister Fontell, and with the assistance of Tuck Wong and Ulf Olsson who ran NMR on my samples.

The work presented here is, however, my own. None of it has been submitted to any other institution for any degree.

Ian Barnes

Ian S. Barnes
Canberra
23 March 1990
Abstract

A geometric approach to microemulsions and other phases in surfactant systems is presented. The basic premise is that the behaviour of these systems is dominated by geometric constraints on microstructure. The utility of this approach is first demonstrated for the one-dimensional fluid, for which the statistical mechanics can be solved analytically, before being applied to more realistic but complex systems.

Small-angle X-ray and neutron scattering techniques are used to obtain structural information. A numerical method for calculating theoretical scattering curves from arbitrary models is presented. The importance of the real-space correlation function is emphasised, and it is used to obtain a plot of the scale dependence of the internal surface. A new technique is proposed for the division of two spectra from the same sample measured at different contrasts, which eliminates the underlying lattice and gives sensitive local information.

Two new geometric models for microemulsions are presented: a structure of interconnected cylinders and one of folded connected lamellae. It is shown that these models succeed where all others fail, in explaining the behaviour of the isotropic liquid phases found in ternary systems containing the double-chained cationic surfactant didodecyldimethylammonium bromide. This approach is also applied to two nonionic polyoxyethylene surfactant binary systems.

Similar methods are also applied to cubic liquid crystalline phases. It is shown by a simple calculation that the scattering from such structures is very sensitive to small changes. Certain of these structures are thought to follow periodic minimal surfaces. Approximations to these are investigated and in particular it is shown that periodic equipotential surfaces and periodic minimal surfaces with the same symmetry and topology are not necessarily identical.
Contents

List of Publications ... vi

Acknowledgements .. viii

1 Introduction .. 1
 1.1 The one-dimensional aggregating fluid 7
 1.1.1 Statistical mechanics approach 7
 1.1.2 Hard "spheres" ... 8
 1.1.3 Scattering ... 9
 1.1.4 Small-angle limit ... 11
 1.1.5 Interpretation of scattering 13
 1.1.6 Geometric approach .. 16

2 Scattering theory ... 19
 2.1 General theory ... 20
 2.1.1 The correlation function 22
 2.1.2 The invariant .. 24
 2.1.3 The Porod limit and the internal surface 26
 2.1.4 The chord distribution and the correlation function ... 29
2.2 Calculation of scattering from models ... 31
 2.2.1 Description of Procedure .. 33
 2.2.2 Alternative approximations ... 35
 2.2.3 Choice of parameter values ... 38
 2.2.4 Tests of the method .. 39
 2.2.5 The internal surface ... 40

2.3 The correlation function ... 41
 2.3.1 Fourier transform of a piecewise linear function sampled at une-
 equally spaced data points ... 42
 2.3.2 Calculation of the correlation function 43
 2.3.3 Background subtraction ... 44
 2.3.4 The internal surface ... 46

2.4 Division of X-ray by neutron ... 52
 2.4.1 Form factors for locally cylindrical or lamellar structures 53
 2.4.2 Determination of parameters from composition 55
 2.4.3 Calculation of the quotient ... 59

3 Geometric models of microemulsions .. 61
 3.1 Existing models .. 62
 3.1.1 Spherical droplets .. 62
 3.1.2 Parametric models .. 63
 3.1.3 The random wave model .. 63
 3.1.4 The Talmon-Prager model ... 64
 3.1.5 The cubic random cell model 67
3.1.6 “Bicontinuous” models .. 68
3.2 The DOC cylinders model .. 68
 3.2.1 Calculation of volume and surface 71
 3.2.2 Curvature .. 73
 3.2.3 Ratio between sphere and cylinder radii 74
 3.2.4 Calculation of parameters from constraints 75
 3.2.5 Predictions of the model 75
3.3 The DOC lamellar model ... 77
 3.3.1 Curvature of facetted surfaces 80
 3.3.2 Curvature of Voronoi models 82
 3.3.3 Calculation of volume, surface and surfactant parameter .. 84
 3.3.4 Model predictions .. 86
3.4 Curvature of the CRC model 87
 3.4.1 Mean Curvature ... 88
 3.4.2 Gaussian curvature .. 90
3.5 Cusps in the DOC cylinders model 94

4 Isotropic phases in DDAB ternary systems 97
 4.1 Review of previous work 97
 4.2 Cyclohexane .. 100
 4.2.1 Experimental procedure and results 100
 4.2.2 Comparison with models 104
 4.3 Dodecane ... 108
 4.3.1 Experimental results 110
4.3.2 Comparison with models 113
4.4 Tetradecane .. 117
 4.4.1 Experimental procedure and results 119
 4.4.2 Comparison of models 122
 4.4.3 Conclusions ... 128
4.5 Discussion .. 129

5 Nonionic surfactant binary systems 130
 5.1 Introduction .. 130
 5.2 Experimental data .. 135
 5.2.1 Background subtraction 138
 5.2.2 The invariant .. 139
 5.2.3 The internal surface 142
 5.2.4 Headgroup area .. 143
 5.3 Discussion .. 146
 5.3.1 Spherical micelles 147
 5.3.2 Random filling models 149
 5.3.3 Parametric models 149
 5.3.4 The DOC cylinders model 150
 5.3.5 The DOC lamellar model 151
 5.4 Division of Neutron by X-ray 152
 5.5 Conclusion .. 153

6 Cubic liquid crystal phases 155
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Calculation of scattering from an approximate structure</td>
<td>156</td>
</tr>
<tr>
<td>6.2</td>
<td>Periodic Equipotential Surfaces</td>
<td>160</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Fourier representation</td>
<td>161</td>
</tr>
<tr>
<td>6.3</td>
<td>Trigonometric approximation</td>
<td>163</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The caesium chloride structure</td>
<td>163</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The Neovius surface</td>
<td>165</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The diamond surface</td>
<td>166</td>
</tr>
<tr>
<td>6.3.4</td>
<td>The I-WP surface</td>
<td>168</td>
</tr>
<tr>
<td>6.3.5</td>
<td>The gyroid</td>
<td>168</td>
</tr>
<tr>
<td>6.3.6</td>
<td>The sodium chloride structure</td>
<td>171</td>
</tr>
<tr>
<td>6.4</td>
<td>Further analysis of the potential</td>
<td>171</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Theta function form</td>
<td>171</td>
</tr>
<tr>
<td>6.4.2</td>
<td>A tautology: this solves Poisson's equation</td>
<td>172</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Convergence acceleration</td>
<td>173</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Error bounds for truncation</td>
<td>174</td>
</tr>
<tr>
<td>6.4.5</td>
<td>The caesium chloride surface</td>
<td>177</td>
</tr>
<tr>
<td>6.5</td>
<td>Curvature</td>
<td>179</td>
</tr>
<tr>
<td>A</td>
<td>The system DDAB/decanol/water</td>
<td>183</td>
</tr>
<tr>
<td>A.1</td>
<td>Experimental procedure</td>
<td>184</td>
</tr>
<tr>
<td>A.2</td>
<td>Results</td>
<td>184</td>
</tr>
<tr>
<td>A.3</td>
<td>The cubic phase</td>
<td>188</td>
</tr>
</tbody>
</table>

Bibliography 191
List of Publications

Acknowledgements

I thank my supervisors Stephen Hyde and Barry Ninham for putting up with me for four years. It can’t have been easy. Many times I stubbornly refused to believe their theories, but to their credit, they just explained them again until things became clear. The world needs ideas men like these; I hope there is also a place for skeptics like me. I also thank Barry for arranging for me to spend time in France and Sweden, and for persuading me to come and work for him in the first place.

I spent a total of about seven months in France working with Thomas Zemb in the Département des Lasers et de Physico-Chimie of the Commissariat à l’Energie Atomique at Saclay. I thank Thomas for welcoming me there—his boundless enthusiasm communicates itself to all who work with him. I also thank Christine Ceccutti for French lessons on the bus to work; Monique Dubois, Pierre Lesieur and Marie-Paule Pileni for inviting me to their homes; and my mate Greg Warr, another Australian in Paris, for putting me up in his flat, teaching me a lot of science and not least for providing the welcome sound of a familiar accent.

I thank Michel Ronis of the French Embassy for setting up the program of scientific co-operation between our two countries, also for arranging a French Government Scientific Fellowship Level II for my first stay in France, and financial assistance through the Bureau d’Accueil des Personnalités Étrangères for the second.

I spent about three months working with Krister Fontell in Fysikalisk Kemi 1 & 2 at Lunds Universitet in Sweden. I thank Krister for being a wise and patient teacher, Björn Lindman for financing my stay and Majlis Larsson for organising my accommodation. Thanks to Cliff and Robyn Woodward for providing a bit of home away from home, and to the volleyball and innabandy teams, the matlaget and Bo and his boys for taking me in and making me feel welcome.

In Canberra I thank my friends and colleagues, in particular my fellow-sufferers in the dungeon, for their company and friendship. I also thank Diana Wallace for her help in reducing the weight of administrative tasks that would have taken me forever otherwise.

Finally my deepest thanks to Helga for getting me through the last few months.