Adaptive User Interfaces for Mobile Computing Devices

Robert Angus Bridle

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

October 2008
Except where otherwise indicated, this thesis is my own original work.

Robert Angus Bridle
30 October 2008
Acknowledgements

My sincere thanks go to my supervisor, Dr Eric McCreath, who has supported me throughout my thesis with his patience and valuable knowledge. In particular, his guidance and encouragement were the key to the completion of this thesis.

I would like to thank Professor John Lloyd, Dr Lex Weaver, and Dr Vineet Nair, who helped and supervised me along the way. I would also like to thank Joshua Cole and Kee Siong Ng, who collaborated with me and who have contributed many valuable ideas.

This research was supported by the generous scholarships provided by the Australian National University and the Smart Internet Technology Cooperative Research Centre.

I would like to thank the Department of Computer Science for providing me with an excellent working environment, and I would also like to thank technical services, who have provided me with much help and assistance.

I am particularly grateful to the examiners for their valuable contributions which have greatly improved the re-submitted thesis.

Lastly, I owe a great debt to my family and friends who have encouraged and supported me throughout my time as a student.
Abstract

This thesis examines the use of adaptive user interface elements on a mobile phone and presents two adaptive user interface approaches. The approaches attempt to increase the efficiency with which a user interacts with a mobile phone, while ensuring the interface remains predictable to a user.

An adaptive user interface approach is presented that predicts the menu item a user will select. When a menu is opened, the predicted menu item is highlighted instead of the top-most menu item. The aim is to maintain the layout of the menu and to save the user from performing scrolling key presses. A machine learning approach is used to accomplish the prediction task. However, learning in the mobile phone environment produces several difficulties. These are limited availability of training examples, concept drift and limited computational resources. A novel learning approach is presented that addresses these difficulties. This learning approach addresses limited training examples and limited computational resources by employing a highly restricted hypothesis space. Furthermore, the approach addresses concept drift by determining the hypothesis that has been consistent for the longest run of training examples into the past. Under certain concept drift restrictions, an analysis of this approach shows it to be superior to approaches that use a fixed window of training examples. An experimental evaluation on data collected from several users interacting with a mobile phone was used to assess this learning approach in practice. The results of this evaluation are reported in terms of the average number of key presses saved. The benefit of menu-item prediction can clearly be seen, with savings of up to three key presses on every menu interaction.

An extension of the menu-item prediction approach is presented that removes the need to manually specify a restricted hypothesis space. The ap-
approach uses a decision-tree learner to generate hypotheses online and uses the minimum description length principle to identify the occurrence of concept shifts. The identification of concept shifts is used to guide the hypothesis generation process. The approach is compared with the original menu-item prediction approach in which hypotheses are manually specified. Experimental results using the same datasets are reported.

Another adaptive user interface approach is presented that induces shortcuts on a mobile phone interface. The approach is based on identifying shortcuts in the form of macros, which can automate a sequence of actions. A means of specifying relevant action sequences is presented, together with several learning approaches for predicting which shortcut to present to a user. A small subset of the possible shortcuts on a mobile phone was considered. This subset consisted of shortcuts that automated the actions of making a phone call or sending a text message. The results of an experimental evaluation of the shortcut prediction approaches are presented. The shortcut prediction process was evaluated in terms of predictive accuracy and stability, where stability was defined as the rate at which predicted shortcuts changed over time. The importance of stability is discussed, and is used to question the advantages of using sophisticated learning approaches for achieving adaptive user interfaces on mobile phones. Finally, several methods for combining accuracy and stability measures are presented, and the learning approaches are compared with these methods.
Contents

Acknowledgements v
Abstract vii

1 Introduction 1
 1.1 Introduction .. 1
 1.1.1 Motivation .. 1
 1.1.2 Thesis Contributions 3
 1.1.3 Overview of Thesis 5

2 Background 7
 2.1 Intelligent User Interfaces 7
 2.1.1 Adaptive User Interfaces 9
 2.2 Systems with Adaptive User Interfaces 11
 2.2.1 Information-Filtering Adaptive User Interfaces . 12
 2.2.2 Generative Adaptive User Interfaces 18
 2.2.3 Mobile-Device Adaptive User Interfaces 23
 2.3 Machine Learning for User Modelling 23
 2.3.1 Obtaining Sufficient Labelled Training Data ... 25
 2.3.2 Computational Complexity of User Modelling ... 26
 2.3.3 Concept Drift 26

3 Predictive Menu on a Mobile Phone 29
 3.1 Introduction .. 29
 3.2 Adaptive Menu-Based Interface 29
 3.2.1 Interface Predictability and Efficiency 30
3.2.2 Predictive Menu Issues 32
3.2.3 Addressing Predictive Menu Issues 34

3.3 The Learning Setting 34
3.3.1 Loss Model .. 36
3.3.2 On-line Model .. 37
3.3.3 Concept-drift Model 38

3.4 Menu Prediction Approaches 40
3.4.1 First Menu-Item .. 40
3.4.2 First Menu-Item (frequency ordered) 41
3.4.3 Menu-Item Last Selected 43
3.4.4 Most Common Menu-Item 45
3.4.5 Most Common Hypothesis 46
3.4.6 Fixed Window .. 48
3.4.7 Most Recent Correct Hypothesis 50

3.5 Minimising Disagreement 52
3.5.1 Minimising Disagreement and Concept Switches 54
3.5.2 Hypothetical Construct - Being-the-Leader 55
3.5.3 Markov Processes .. 59
3.5.4 Expected Probability of Target-Concept 64
3.5.5 Similarity Between Differing Concepts 65
3.5.6 Most Common Hypothesis: Being-the-Leader 66
3.5.7 Fixed Window: Being-the-Leader 67
3.5.8 Most Recent Correct Hypothesis: Being-the-Leader 68

3.6 Comparison .. 71
3.7 Discussion .. 72
3.8 Experimental Evaluation 73
3.8.1 Smartphone Platform 73
3.9 Results ... 75
3.9.1 Simulation ... 75
3.9.2 Real World Data .. 85
3.10 Related Work ... 94
3.11 Conclusion .. 96
4 MDL Approach for Inducing Hypotheses

4.1 Introduction ... 99
4.2 Minimum Description Length Principle 100
4.3 The Learning Setting ... 101
 4.3.1 MDL Principle and Concept Drift 101
 4.3.2 Codelength Calculation using the MDL Principle 102
4.4 Menu Prediction Approaches 104
 4.4.1 Most Common Hypothesis - MDL 106
 4.4.2 Fixed Window - MDL .. 107
 4.4.3 Most Recent Correct Hypothesis - MDL 108
4.5 Experimental Evaluation ... 108
 4.5.1 Two Users .. 109
 4.5.2 Two Users - Discussion 113
 4.5.3 Scenario ... 114
 4.5.4 Scenario - Discussion 115
4.6 Conclusion .. 125

5 Inducing Action Sequences

5.1 Introduction .. 127
5.2 Predicting User Action Sequences 128
 5.2.1 Action-Sequence Shortcut Induction Issues 129
 5.2.2 Addressing Action-Sequence Induction Issues 133
5.3 The Learning Setting ... 133
 5.3.1 Notation and Approach 134
 5.3.2 Action-Sequence Prediction as a Classification Task 136
 5.3.3 Gain Model .. 137
5.4 Action-Sequence Prediction Approaches 138
 5.4.1 No Shortcut .. 138
 5.4.2 Last Performed ... 138
 5.4.3 Most Frequent .. 139
 5.4.4 Contingency Based ... 140
 5.4.5 C4.5 Based .. 145
 5.4.6 Naive-Bayes Based .. 146
 5.4.7 Hybrid Approach .. 149
CONTENTS

5.5 Experimental Evaluation .. 151
5.5.1 Real World Data ... 151
5.5.2 Results ... 155
5.5.3 Discussion .. 156

5.6 Evaluating Action-Sequence Induction 160
5.6.1 Binary Classification Task .. 161
5.6.2 Stability Measure .. 164
5.6.3 Results ... 165
5.6.4 Discussion .. 165

5.7 Combining Efficiency and Predictability 170
5.7.1 Average ... 170
5.7.2 Harmonic Mean ... 170
5.7.3 Threshold ... 171
5.7.4 Results ... 171
5.7.5 Discussion .. 171

5.8 Conclusion ... 173

6 Conclusion .. 175
6.1 Summary ... 175
6.1.1 Menu Item Prediction .. 175
6.1.2 Action Sequence Prediction 177
6.1.3 Overview .. 178
6.1.4 Further Research .. 179

A ... 181
A.1 Fitts’ law ... 182
A.2 Goals, Operators, Methods, and Selection Rules Model 182

B ... 185

C ... 187

Bibliography ... 189