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Abstract

Rational magnetic flux surfaces in fusion (toroidal plasma confinement) devices can

break the magnetic field lines and reconnect them in the form of magnetic islands.

Formation of these magnetic islands can have a serious impact on the plasma con-

finement properties of the device. Islands can in general degrade the confinement

by mixing up different regions of the plasma. However there has been experimental

evidence of confinement improvement by island induced transport barriers, under

certain conditions. Even though there are a large number of theoretical and exper-

imental works on magnetic islands to date, there is clearly a paucity of convincing

experimental understanding on the nature of behaviour of islands in plasma. This

thesis reports detailed experimental studies conducted on the H-1NF heliac stellara-

tor, to gain an in-depth understanding of magnetic islands and their influence in

plasma confinement.

Work reported in this thesis can be mainly divided into three parts: (a) high

resolution imaging of vacuum magnetic islands and flux surfaces of H-1NF, (b) accu-

rate computer modeling of H-1NF magnetic geometry and (c) detailed experiments

on magnetic islands in plasma configurations.

Electron-beam wire-tomography in the H-1NF has been used for the high reso-

lution mapping of vacuum magnetic flux surfaces and islands. Point-to-point com-

parison of the mapping results with computer tracing, in conjunction with an image

warping technique, has enabled systematic exploration of magnetic islands and sur-

faces of interest. A fast mapping technique has been developed, which significantly

viii



Abstract ix

reduced the mapping time and made this technique suitable for mapping at higher

magnetic fields.

Flux surface mapping has been carried out at various magnetic configurations

and field strengths. The extreme accuracy of this technique has been exploited to

understand the nature of error fields, by point-by-point matching with computer

tracing results. This has helped in developing a best-fit computer model for H-1NF

magnetic configurations, which can predict rotational transform correct to three

decimal places. Results from plasma experiments on magnetic configuration studies

are best explained by the new model.

Experiments with low order magnetic islands in plasma configurations yielded

some new results. It has been observed that the low order magnetic islands (m = 2)

near the core of the plasma serve as ‘pockets’ of improved confinement region un-

der favourable conditions. This results in significant profile modifications including

enhancement of the radial electric field near the core to a large positive value. The

characteristics of islands are found to be dependent on the plasma collisionality and

the island width.

Experiments with a magnetic configuration which exhibits no vacuum islands,

but the core rotational transform ( ι) very close to low order rational value, show a

spontaneous transition of the radial electric field near the core to a large positive

value (Er ∼ 5 kV/m), with a strong electric field shear (∼ 700 kV/m2) and lo-

calised improvement in confinement, during the discharge. Evidence indicates that

the transition is driven by the excitation of low order ( ι = 3/2) magnetic islands

near the axis during the plasma discharge, due to the modification of rotational

transform profile by toroidal plasma currents. The situation is similar to the Core

Electron-Root Confinement (CERC) observed during high temperature ECH plasma

discharges on other helical devices. This result provides an experimental evidence

for the hypothesis that the threshold conditions for observing CERC can be reduced

by exciting magnetic islands near the core of the plasma.
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