Summary and Final Remarks

The main objective of my PhD studies was to contribute to the understanding of enzymes and their mechanisms. To this end, I applied several computational techniques to the analysis of two different enzymes: DfrB dihydrofolate reductase (DHFR) and methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr).

DfrB DHFR, a bacterial enzyme that confers resistance to the drug trimethoprim, has no sequence or structural homology with the chromosomal DHFR despite both catalysing the reduction of dihydrofolate (DHF) using NADPH as a cofactor. Experimental approaches have failed to provide a structure for the reactive ternary complex DfrB DHFR•DHF•NADPH and, therefore, I combined different computational techniques to generate a model of the structure and test its feasibility.

Two different docking programs (AutoDock and FlexX) were employed to construct the initial model of the ternary complex. As more than one docked structure was in agreement with experimental findings, the feasibility of selected complexes was further analysed using molecular dynamic (MD) simulations. It was found that the ligands dihydrofolate and NADPH show unusual mobility within the active site: the reacting rings adopt a stable stack conformation at the centre of the pore, where there is little if any water access, while the charged tails extend towards the openings, adopting multiple conformations in a solvent-rich environment.

Prompted by these initial findings, a bioinformatic analysis was carried out to understand the possible origin of this peculiar enzyme. The DfrB DHFR family of proteins was found to have no homologues, and to be encoded exclusively as gene cassettes within integrons. Most gene cassettes have an obscure origin, with codon usage and base composition suggesting several sources including eukaryotes, bacteria and viruses. Integrons are thought to be ancient bacterial structures, natural cloning and expression systems likely to have an important
role in bacterial evolution and adaptability. DfrB DHFR is also an atypical enzyme from a structural point of view, consisting of a homotetrameric structure with a single central active-site pore. Each monomer presents an SH3-fold domain; this is a eukaryotic auxiliary domain involved in signalling pathways and protein-protein interactions, but never found before as the unique domain of a protein, let alone as the catalytic one.

All in all, mechanistic, structural and genetic analyses suggest that the DfrB family does not conform to the group of proteins commonly known as enzymes. DfrB DHFR seems to be a ‘minimalist’ catalyst, a protein recently recruited to fulfil a novel function in response to antibacterial drug pressure. This could be just the ‘tip of the iceberg’; continuous challenges to bacterial communities by new antibiotics, chemical pollutants, or other environmental factors may trigger the emergence of novel catalysts with unprecedented functions, currently dormant within integrons.

The second enzyme I studied was methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr). This enzyme catalyses the transfer of a methyl group from CH$_3$THF to the cobalt centre of a corrinoid/iron-sulfur protein (C/Fe-SP). Given the difficulty of the reaction, it has been suggested that the tertiary amine must be activated possibly by protonation at the N5 position. Despite the overall catalytic and structural similarity between MeTr and the cobalt-dependent methionine synthase (MetH), experimental studies on both systems have lead to different, if not contradictory, activation/protonation mechanisms. While CH$_3$THF binding to MeTr has been said to increase the pK$_a$ of N5 and lead to proton uptake, binding to MetH was suggested to have the opposite result, decrease of the pK$_a$ and no net proton exchange. Therefore, in order to explain these seemingly opposing conclusions, I used several of computational tools to study the effect of the protein environment on the protonation behaviour of CH$_3$THF.

Initially, the ability of QM calculations to predict both protonation patterns and pK$_a$s of a series of folate analogues in water was tested. Encouraged by the consistency of these first results with experimental data, I proceeded to study the effect of the protein environment on the protonation properties of CH$_3$THF.
Summary and Final Remarks

A simplified representation of the active site was modelled by including the sidechains of selected residues in QM calculations. The protonation state of the tetrahdro pterin ring of CH₃THF, as well as that of two active-site aspartic residues, was analysed. These fragment calculations suggested that the preferred protonation position on the pterin ring is N₅, as observed in water, regardless of the protonation state of the active-site Asp75 or Asp160 residues. However, the protonation state of these two residues was observed to affect the pKₐ of N₅. When both residues were ionised, the pKₐ of N₅ was predicted to increase by ~3 units, and this was reduced to half when Asp160 was protonated. On the other hand, when Asp75 was protonated the pKₐ of N₅ decreased in 0.4 units compared with its value in solution. Therefore, proton uptake upon CH₃THF binding would be expected to occur only if Asp75 was ionised. As the pKₐs of aspartic acids D75 and D160 are not known, no further inferences can be made at this point.

In a complementary approach, and with the objective of incorporating a more realistic representation of the protein environment, ONIOM calculations were carried out. The final energies suggested that the aspartic acid residues D75 and D160 are likely to be protonated before the ligand. However, the specific pKₐs at which these events may occur are uncertain.

Finally, a series of free energy calculations were done to compare the relative stability of different protonated forms of CH₃THF in both water and within the protein environment. These studies showed that the relative interaction energies of different protonated form of the ligand within the protein environment are similar to those observed in water. The calculation of relative binding energies did not lead to meaningful conclusions, because of the magnitude of the energies and the associated errors.

In order to explain the apparently contradictory activation mechanism of CH₃THF within MeTr and MetH further studies to establish the protonation state and pKₐ of active-site aspartic residues are necessary. The calculations done so far suggest that either proposal, increasing of the pKₐ or decreasing the pKₐ of CH₃THF upon protein binding, could be possible depending on the protonation state of active-site aspartates.
During my PhD studies I have applied a series of computational tool to the study of two enzymes, DfrB DHFR and MeTr. I hope that the results I have presented highlight the versatility and importance of computational biology in the analysis of enzymes and their mechanisms. These approaches not only complement traditional experimental studies, but also allow us to obtain an atomic explanation of the phenomena measured empirically. With constantly increasing computer power, and the development of new and more accurate algorithms, the importance of computational approaches in the study of complex biological systems, such as enzymes, is expected only to increase in the foreseeable future.
References

References

209. Frimurer TM, Peters GH, Iversen LF, Andersen HS, Moller NP, Olsen OH: Ligand-induced conformational changes: improved predictions of
ligand binding conformations and affinities. *Biophys J* 2003, **84**:2273-2281.

References

276. Roxstrom G, Velazquez I, Paulino M, Tapia O: DNA structure and fluctuations sensed from a 1.1ns molecular dynamics trajectory of a
References

293. Gilson MK, Honig B: Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. *Proteins* 1988, **4**:7-18.

366. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP: The development and use of quantum-mechanical molecular-models.76. AM1 - a new

209. Wang W, Wang J, Kollman PA: What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to

442. Cummins PL, Gready JE: Computational methods for the study of enzymic reaction mechanisms III: A perturbation plus QM/MM

469. Howell EE: **Searching sequence space: two different approaches to dihydrofolate reductase catalysis.** *ChemBiochem* 2005, 6:590-600.

493. Sunde M: Prevalence and characterization of class 1 and class 2
integrons in *Escherichia coli* isolated from meat and meat products
494. Barlow RS, Pemberton JM, Desmarchelier PM, Gobius KS: Isolation and
characterization of integron-containing bacteria without antibiotic
495. Amyes SG, Smith JT: The purification and properties of the
trimethoprim-resistant dihydrofolate reductase mediated by the R-
496. Stone D, Smith SL: The amino acid sequence of the trimethoprim-
resistant dihydrofolate reductase specified in *Escherichia coli* by R-
497. Fierke CA, Johnson KA, Benkovic SJ: Construction and evaluation of
the kinetic scheme associated with dihydrofolate reductase from
498. Miller GP, Benkovic SJ: Stretching exercises--flexibility in dihydrofolate
dihydrofolate reductase with subunit structure. *J Biol Chem* 1979,
254:6222-6225.
500. Posner BA, Li L, Bethell R, Tsuji T, Benkovic SJ: Engineering specificity
for folate into dihydrofolate reductase from *Escherichia coli*.
mutations at phenylalanine-153 and isoleucine-155 partially suppress
the effects of the aspartate-27-->serine mutation in *Escherichia coli*
502. Bradrick TD, Beechem JM, Howell EE: Unusual binding stoichiometries
and cooperativity are observed during binary and ternary complex
formation in the single active pore of R67 dihydrofolate reductase, a
503. Reece LJ, Nichols R, Ogden RC, Howell EE: Construction of a synthetic
gene for an R-plasmid-encoded dihydrofolate reductase and studies
on the role of the N-terminus in the protein. *Biochemistry* 1991,
30:10895-10904.
504. Matthews DA, Smith SL, Baccanari DP, Burchall JJ, Oatley SJ, Kraut J:
Crystal structure of a novel trimethoprim-resistant dihydrofolate
reductase specified in *Escherichia coli* by R-plasmid R67.
505. Narayana N, Matthews DA, Howell EE, Xuong N: A plasmid-encoded
dihydrofolate reductase from trimethoprim-resistant bacteria has a
506. Cannon WR, Garrison BJ, Benkovic SJ: Electrostatic characterization of
enzyme complexes: Evaluation of the mechanism of catalysis of
507. Howell EE, Shukla U, Hicks SN, Smiley RD, Kuhn LA, Zavodszyk MI:
One site fits both: a model for the ternary complex of folate +
NADPH in R67 dihydrofolate reductase, a D2 symmetric enzyme. *J

559. Stokes HW, O'Gorman DB, Recchia GD, Parsekian M, Hall RM: Structure and function of 59-base element recombination sites

References

621. Lu WP, Schiau I, Cunningham JR, Ragsdale SW: Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the

622. Menon S, Ragsdale SW: *Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from* *Clostridium thermoaceticum* *during acetate biosynthesis.* *Biochemistry* 1998, **37**:5689-5698.

624. Roberts DL, James-Hagstrom JE, Garvin DK, Gorst CM, Runquist JA, Baur JR, Haase FC, Ragsdale SW: *Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in* *Clostridium thermoaceticum:* *CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase.* *Proc Natl Acad Sci USA* 1989, **86**:32-36.

628. Seravalli J, Zhao S, Ragsdale SW: *Mechanism of transfer of the methyl group from (6S)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from* *Clostridium thermoaceticum: a key step in the Wood-Ljungdahl pathway of acetyl-CoA synthesis.* *Biochemistry* 1999, **38**:5728-5735.

629. Zhao S, Roberts DL, Ragsdale SW: *Mechanistic studies of the methyltransferase from* *Clostridium thermoaceticum: origin of the pH dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein.* *Biochemistry* 1995, **34**:15075-15083.

631. Matthews RG, Banerjee RV, Ragsdale SW: *Cobamide-dependent methyl transferases.* *Biofactors* 1990, **2**:147-152.

632. Zhao S, Ragsdale SW: *A conformational change in the methyltransferase from* *Clostridium thermoaceticum* *facilitates the methyl transfer from (6S)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein in the Acetyl-CoA pathway.* *Biochemistry* 1996, **35**:2476-2481.

634. Casarotto MG, Basran J, Badii R, Sze KH, Roberts GC: Direct measurement of the pKa of aspartic acid 26 in Lactobacillus casei dihydrofolate reductase: implications for the catalytic mechanism. *Biochemistry* 1999, **38**:8038-8044.

K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;

647. Gready JE: Theoretical-Studies on Pteridines.2. Geometries, Tautomer,
Ionization and Reduction Energies of Substrates and Inhibitors of

648. Poe M: Acidic dissociation constants of folic acid, dihydrofolic acid, and

RL: Dissociation constants for dihydrofolic acid and
dihydrobiopterin and implications for mechanistic models for

650. Kallen RG, Jencks WP: Dissociation constants of tetrahydrofolic acid. J

University of California, San Francisco; 2004.

652. Kollman PA, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A: The
development/application of a ’minimalist’ organic/biochemical
molecular mechanic force field using a combination of ab initio
calculations and experimental data. In Computer Simulation of

653. Braun H, Pfeiferer W: Polarographic investigations of aromatic

654. Pfeiferer W, Zondler H: Synthese und eigenschaften blockierter 7,8-

655. Whiteley JM, Huennekens FM: 2-amino-4-hydroxy-6-methyl-7,8-
dihydropteridine as a model for dihydrofolate. Biochemistry 1967,
6:2620-2625.

656. Braun H, Pfeiferer W: Polarographic investigations of 7,8-

657. Yamamoto H, Hutzenlaub W, Pfeiferer W: Synthesis and properties of
pterinopteridine and 2,4-diaminopteridine mono-N-oxides and di-N-