Giant Planets and Variable Stars in Globular Clusters

David Thomas Frederick Weldrake

A thesis submitted for the degree of

Doctor of Philosophy

of The Australian National University

Research School of Astronomy & Astrophysics

January 2005
For my Parents, who have been there since day one...
Disclaimer

The work described in this thesis is that of the candidate alone, with the exception of the Colour Magnitude Diagram dataset, which was obtained by K. Freeman and M. Doherty.

David T F Weldrake
21st January 2005
Acknowledgments

Firstly, I wish to thank my main thesis supervisor, Prof. Penny Sackett, for her unfailing support and encouragement over the last three years. Despite difficulty, she always found time for continued progress to be made.

I would also like to thank my second supervisor Prof. Ken Freeman; and thesis advisor Dr. Terry Bridges for their many contributions.

My thanks go out to the Mount Stromlo students; their sense of community have made my time at Stromlo very enjoyable. Craig, Brad, Laura, Josh, Paul, Ewan and Erwin: thank you for the great times.

I would like to thank Matt. His companionship over the last three years have made my time in Canberra some of the best of my life.

Finally, I wish to thank my parents, for their continued support, and my late Grandmother; for the little blue refractor.
Abstract

Over the last decade, 135 extrasolar planets have been discovered, the vast majority found by ongoing radial velocity searches. Of the stars sampled in these searches, \(\sim1\%\) have ‘Hot Jupiter’ planets associated with them. Having masses equivalent to Jupiter yet orbital periods of only a few days, this new class of planet is clearly unlike anything in our Solar System.

Hot Jupiters present us with an intriguing prospect. If the orientation of the planetary orbit is close to edge-on, the planet will periodically transit across the face of its star, resulting in a small drop in brightness. This transit phenomenon has been successfully used for planet detection over the last couple of years, allowing determination of the planetary radius and accurate mass estimates when coupled with radial velocity observations.

To aid understanding of the effect stellar environment plays on Hot Jupiter formation and survivability, this thesis presents the results of a wide-field search for transiting Hot Jupiters in the globular cluster 47 Tucanae. This cluster presents many thousands of stars in a moderate field of view and provides the perfect target for a search of this nature. One previous transit search has been made in the central core of 47 Tuc; using the HST for 8.3 continuous days, Gilliland et.al (2000) expected 17 transits yet found none. This null result suggests that either system metallicity or stellar density may be inhibiting Hot Jupiter formation or survivability in the cluster.

This thesis presents a search for transits with a field of view 250 times larger than the HST search and samples the uncrowded outer halo of the cluster (previously unsampled for transits), providing important constraints on the effect of environment on Hot Jupiter formation. If planets are found, then stellar density would seem responsible for the Gilliland et.al (2000) core null result. If no planets are found to a significant level, the survey would provide strong evidence that system metallicity is the dominant factor. Using the ANU 40\" (1m) telescope at Siding Spring Observatory, a 30.4 night observing run was executed and photometry was derived via differential imaging. The dataset numbers 109,000 cluster (and field) stars for photometric analysis, of which 22,000 are suitable for the transit search. With a custom-written transit detection algorithm and extensive Monte Carlo simulations to model the dataset, seven planets should be detectable if the occurrence rate of Hot Jupiters is the same in the cluster as in the Solar Neighbourhood.

Despite a detailed search, no transit signatures were identified. This result strongly indicates that the low metallicity of the cluster is the dominant factor inhibiting planet formation in 47 Tuc. Current results in the Solar Neighbourhood show that planet frequency is strongly biased towards stars of high metallicity.
This thesis shows that the metallicity trend is likely a universal phenomenon, not only limited to the immediate Solar Neighbourhood and raises questions of whether planets were much rarer in the earlier Universe.

As a side result of the search, 100 variable stars were identified in the field, 69 of which are new discoveries. Subsequent analysis reveals a strong period segregation among the cluster eclipsing binaries, indicating previously unobserved dynamical effects in the cluster. Distance estimates for both 47 Tuc and the SMC are in agreement with previously published values and an independent identification of the binary period-colour relation was observed. Two binaries seem to have low-luminosity companions worthy of followup and one variable is likely a star in the early phases of planetary nebula formation. All of the results presented in this thesis have been published in three separately refereed research papers.
Contents

Disclaimer ... iii
Acknowledgements .. iv
Abstract ... v
List of Figures .. xi
List of Tables ... xv

1 Introduction .. 1
 1.1 Introduction ... 1
 1.2 Extrasolar Planet Trends ... 3
 1.2.1 Metallicity .. 3
 1.2.2 Orbital Eccentricity 6
 1.3 Methods of Planetary Detection 8
 1.3.1 Radial Velocity .. 8
 1.3.2 Transit Photometry 9
 1.3.3 Microlensing ... 18
 1.4 Current Transit Searches .. 19
 1.5 Globular Clusters as Laboratories of Planet Formation 21
 1.5.1 47 Tucanae ... 25
 1.5.2 The HST 47 Tuc Transit Search 26
 1.6 Main Thesis Aims and General Overview 27

2 Observations and Data Reduction 29
 2.1 Introduction ... 29
 2.1.1 Dataset Aims ... 30
 2.2 Telescope and Detector .. 31
2.2.1 Filter and Exposure Times 33
2.3 Expected Results .. 34
2.4 Observations .. 35
 2.4.1 Dataset Properties 37
2.5 Image Reduction .. 38
2.6 Cluster Colour Magnitude Diagram 42
 2.6.1 Calibration ... 43
 2.6.2 Astrometry .. 47
2.7 Chapter Summary ... 49

3 Photometry .. 51
 3.1 Introduction .. 51
 3.2 Photometric Methods 53
 3.2.1 Aperture Photometry 53
 3.2.2 PSF Photometry 54
 3.2.3 Difference Imaging 55
 3.3 Application to the Dataset 57
 3.3.1 Main Pipeline Steps 59
 3.3.2 Resulting Photometric Accuracy 62
 3.4 The Variable Star Detection Method 67
 3.5 Chapter Summary 69

4 Variable Stars in the 47 Tuc field 73
 4.1 Introduction .. 73
 4.2 Catalogue Presentation and Comparisons 76
 4.3 Eclipsing Binaries 82
 4.3.1 Eclipsing Binary Period Segregation 86
 4.3.2 Eclipsing Binary Period-Colour Relation 88
 4.3.3 Cluster Membership and 47 Tuc Distance Determination 90
 4.4 RR Lyraes ... 92
 4.4.1 RR Lyrae Populations and Densities 93
 4.4.2 Small Magellanic Cloud Distance Determination 95
5 Transit Detection Algorithm

5.1 Introduction .. 105
5.2 General Method for Transit Detection 107
 5.2.1 Model Creation and Detection Statistic 108
 5.2.2 Application to the 47 Tuc Dataset 111
5.3 Detection Criteria in the Presence of Noise 115
 5.3.1 Detection Criteria for the 47 Tuc Dataset 119
5.4 Transit Recoverability and False Detection Rates 120
 5.4.1 Applied to the 47 Tuc dataset 121
5.5 Summary and Implications for 47 Tuc 125

6 Hot Jupiter Transit Results

6.1 Transit Expectations: Depths and Duration in 47 Tuc 127
6.2 Expected Number of Hot Jupiter Detections 130
6.3 A Null Result ... 133
 6.3.1 Systematic Detections 134
6.4 Interpretation: the Metallicity Connection 136
 6.4.1 Generalised Null Significance 138
6.5 Chapter Summary and Result Implications 139

7 Thesis Overview and Future Work

7.1 General Thesis Overview 141
 7.1.1 Main Thesis Aims 142
7.2 Observations and Photometry 143
 7.2.1 Difference Imaging 144
 7.2.2 Colour Magnitude Diagram 144
7.3 Detection Algorithms 145
 7.3.1 Lomb-Scargle Periodogram 145
7.3.2 Matched Filter Algorithm 145
7.4 Variable Stars .. 146
7.5 Hot Jupiter Transits 147
 7.5.1 A Null Result: The Metallicity Connection 147
7.6 Future Work ... 148

A Finder Charts .. 149

REFERENCES ... 170
List of Figures

1.1 The radial velocity observations of 51-Pegasi 3
1.2 The apparent metallicity dependence on planet formation 4
1.3 A comparison of metallicities between planet-bearing host stars and field dwarfs 5
1.4 The observed extrasolar planet semi-major-axis-eccentricity trend. 7
1.5 A schematic planetary transit 10
1.6 The variation of observed host star colour during a planetary transit 12
1.7 The transit of HD209458b 13
1.8 The transit of OGLE-TR-56b 14
1.9 The transits of OGLE-TR-113b and OGLE-TR-132b 15
1.10 The geometrical transit probability 16
1.11 The microlensing discovery of OGLE 2003-BLG-235 18
1.12 A colour image of 47 Tucanae 22
1.13 The expected planet recoverability in the HST 47 Tuc transit search 26

2.1 The CCD layout of WFI 32
2.2 The location of 47 Tuc in the WFI field 36
2.3 The seeing distribution of the 47 Tuc dataset 37
2.4 The seeing of the dataset vs MJD 38
2.5 A sample bias frame used in the image reduction procedure 40
2.6 An sample twilight flatfield frame 41
2.7 A sample dark frame .. 42
2.8 Calibration of the Colour-Magnitude Diagram in V 44
2.9 Calibration of the Colour-Magnitude Diagram in V − I 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>CMD calibration with comparison data</td>
<td>46</td>
</tr>
<tr>
<td>2.11</td>
<td>The magnitude limits of the CMD dataset</td>
<td>47</td>
</tr>
<tr>
<td>2.12</td>
<td>The calibrated CMD dataset for 47 Tucanae</td>
<td>48</td>
</tr>
<tr>
<td>2.13</td>
<td>The derived astrometry for the 47 Tuc field</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>The splitting of the WFI CCDs into sections and subsections for</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>photometric analysis</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>An example subsection frame</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>An example template frame</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>An example subtracted frame</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Photometric precision of the four outer CCDs</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Photometric precision of the four inner CCDs</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>An example raw variable star lightcurve</td>
<td>67</td>
</tr>
<tr>
<td>3.8</td>
<td>An example power spectrum</td>
<td>69</td>
</tr>
<tr>
<td>3.9</td>
<td>The resulting Phase-wrapped variable star</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Variable star amplitude comparison</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Variable star detection limit</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Variable Classification</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Phase-wrapped EcB lightcurves</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>EcB lightcurves continued</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>EcB lightcurves continued</td>
<td>85</td>
</tr>
<tr>
<td>4.7</td>
<td>V78 and V93 lightcurves</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>Eclipsing binary radial distribution</td>
<td>87</td>
</tr>
<tr>
<td>4.9</td>
<td>Period-colour relationship</td>
<td>88</td>
</tr>
<tr>
<td>4.10</td>
<td>47 Tuc distance modulus</td>
<td>91</td>
</tr>
<tr>
<td>4.11</td>
<td>Phase-wrapped RR-Lyrae lightcurves</td>
<td>92</td>
</tr>
<tr>
<td>4.12</td>
<td>RR Lyr lightcurves continued</td>
<td>93</td>
</tr>
<tr>
<td>4.13</td>
<td>RR Lyr lightcurves continued</td>
<td>94</td>
</tr>
<tr>
<td>4.14</td>
<td>RR Lyr lightcurves continued</td>
<td>95</td>
</tr>
<tr>
<td>4.15</td>
<td>RR Lyr period distribution</td>
<td>96</td>
</tr>
<tr>
<td>4.16</td>
<td>RR Lyr Period-Luminosity diagram</td>
<td>97</td>
</tr>
</tbody>
</table>
4.17 V86 Blahzko Effect .. 99
4.18 Phase-wrapped LPV lightcurves 100
4.19 LPV lightcurves continued 101
4.20 Phase-wrapped miscellaneous variable lightcurves 103

5.1 An example model transit with complete temporal coverage ... 109
5.2 A model transit with the actual dataset temporal coverage ... 112
5.3 A model transit with dataset photometric quality 113
5.4 A model transit with the correct phase-wrap 114
5.5 A model transit associated with a star of bad photometric quality 115
5.6 A phase-wrapped model transit of bad quality 116
5.7 The detection significance of the algorithm 117
5.8 The general output of the detection algorithm 118
5.9 The transit recoverability for stars with \(\leq 0.02 \) mag rms photometry 122
5.10 The transit recoverability for stars with 0.02–0.04 mag rms photometry .. 123
5.11 Weighted mean transit recoverability 124
5.12 False detection histogram 125

6.1 The expected depth and duration of planetary transits in 47 Tucanae involving main sequence stars. 129
6.2 The number of expected Hot Jupiter planets detectable in the dataset 132
6.3 The highest significance detection in the transit search 134
6.4 A typical systematic transit detection 135
6.5 The generalised null result, for a variety of Hot Jupiter occurrence rates .. 138

A.1 Variable Star Finder Charts 150
List of Tables

2.1 CCD central equatorial coordinates .. 35
4.1 Table of all detected variable stars .. 78
4.2 Variable stars table continued .. 79
4.3 Table of EcB .. 89
4.4 Table of RR Lyraes ... 98
4.5 Table of LPVs .. 102

6.1 The parameters of 47 Tuc stars suitable for the transit search 128
6.2 The expected number of detectable Hot Jupiter planets in the dataset 133