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Abstract

In this thesis a new approach for characterisation of digital mobile radio channels is
investigated. The new approach is based on recognition of the fact that while the
fading which is characteristic of the mobile radio channel is very rapid, the processes
underlying this fading may vary much more slowly. The comparative stability of these
underlying processes has not been exploited in system designs to date.

Channel models are proposed which take account of the stability of the channel.
Estimators for the parameters of the models are proposed, and their performance is
analysed theoretically and by simulation and measurement.

Bounds are derived for the extent to which the mobile channel can be predicted,
and the critical factors which define these bounds are identified.

Two main applications arise for these channel models. The first is the possibility
of prediction of the overall system performance. This may be used to avoid channel
fading (for instance by change of frequency), or compensate for it (by change of the
signal rate or by power control). The second application is in channel equalisation. An
equaliser based on a model which has parameters varying only very slowly can offer
improved performance especially in the case of channels which appear to be varying so
rapidly that the convergence rate of an equaliser based on the conventional model is
not adequate.

The first of these applications is explored, and a relationship is derived between the
channel impulse response and the performance of a broadband system.





Notation and Symbols

.∗ Complex conjugate
‖ · ‖ Frobenius norm of a matrix or 2-norm of a vector
.+ Moore-Penrose generalised inverse
� Element by element (Hadamard) product
~ Convolution
≡ Equivalence
, Definition
x · y Dot product between two spatial vectors x and y
A Array steering matrix
a Array steering vector
b(·) Scattering function
c Speed of light
CN (·, ·) Complex normally distributed with given mean and covariance
D, d Distances between source points and measurement points
D Diagonal matrix of eigenvalues
E{·} Expectation operator
e. Exponential operator
ei A vector of zeros with 1 in the i-th position
f Discrete channel impulse response co-efficients
g(·) Antenna gain pattern
.H Complex Hermitian conjugate

H
(1)
n (·) Order n Hankel function of the first kind

h System or channel impulse response
In(·) Order n Modified Bessel function of the first kind
I Identity matrix
Jn(·) Order n Bessel function of the first kind
j

√
−1

jn(·) Order n Spherical Bessel function
J Fisher Information matrix
K Row/Column reversing matrix
k Wave number of signal carrier = 2π/λ



x

l Snapshot index
L The number of terms of a finite impulse response channel model

or the number of “snapshots” taken by an array
M The number of sensors in an array
m Array sensor index
N The number of sources or scatterers in the environment of an array
n Source or scatterer index
N (·, ·) Normally distributed with given mean and covariance
P dimension of a covariance or correlation matrix
Pmn (·) Associated Legendre functions
p(t) Transmit pulse shaping function
s(t) s[m] Transmitted signal or transmitted symbol
T System symbol period
.T Matrix or vector transpose
t Time
U(·) Unit step function (Heaviside’s unit function)
u(·) Baseband transmitted signal
v an eigenvector
V Matrix of eigenvectors
W Bandwidth of a baseband transmitted signal
x, y, z 3 dimensional spatial co-ordinates
δ(t) Dirac delta
δi, δi,j , δ[i] Kronecker delta
ε Error in decoded symbol
ζ Gain (attenuation) of a path between transmitter and receiver
η Additive Noise process
θ Arrival angle of a signal (measured from broadside)
λ Wavelength of signal carrier∑

Summation operator
τ Path delay
ωc Carrier frequency
$n Spatial frequency corresponding to path n

ω Baseband channel frequency
cdf cumulative distribution function
pdf probability density function
SNR Signal to Noise Ratio



Contents

Declaration iii

Acknowledgements v

Abstract vii

Notation and Symbols ix

1 Introduction 1

1.1 The Mobile Radio Propagation Channel . . . . . . . . . . . . . . . . . . 1

1.2 Channel Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Prediction Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Approach to Predicting Channel Behaviour . . . . . . . . . . . . 3

1.3 Applications of the Prediction Information . . . . . . . . . . . . . . . . . 3

1.3.1 Avoidance of “bad” channels . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Adaptive Modulation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Parametric Equalisation . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.4 Improved Combining . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Required Prediction Lengths . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Multipath Propagation Models 9

2.1 General Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Single Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Moving Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Time Varying Impulse Response Notation . . . . . . . . . . . . . 11

2.1.4 Multiple Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Stochastic Channel Characterisations . . . . . . . . . . . . . . . . . . . . 14

2.3 Spatial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Spatial Correlation for General Distributions of Scatterers . . . . 18

2.3.2 Three Dimensional Scattering Environment . . . . . . . . . . . . 19

2.3.3 Two Dimensional Scattering Environment . . . . . . . . . . . . . 21



xii CONTENTS

2.3.4 Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Correlation for a Small Number of Scatterers . . . . . . . . . . . 27

2.4 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Real Time Channel Characterisation . . . . . . . . . . . . . . . . . . . . 33

2.6 Deterministic Channel Models . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Narrowband Far Field Sources . . . . . . . . . . . . . . . . . . . 34

2.6.2 Array Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.3 Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.4 Narrowband Near Field Sources . . . . . . . . . . . . . . . . . . . 38

2.6.5 Wide-band Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Source Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.2 Number of Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.3 Near field sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.4 Changes in the Parameters . . . . . . . . . . . . . . . . . . . . . 41

2.8 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Prediction Algorithms 43

3.1 Deterministic Point Sources Channel Model . . . . . . . . . . . . . . . . 43

3.1.1 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 First Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Far field Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 Near Field Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Subspace Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Near Field MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Minimum Norm Spectral Estimation . . . . . . . . . . . . . . . . 56

3.2.5 Principal Components Linear Prediction (PCLP) . . . . . . . . . 57

3.2.6 ESPRIT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Polynomial Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Fixed Sector Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Determining the Model Order N̂ . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 66



CONTENTS xiii

4 Simulations, Measurements and Bounds 67

4.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Prediction Length versus Measurement Segment Length . . . . . 70

4.2.4 Distribution of Prediction Lengths . . . . . . . . . . . . . . . . . 72

4.2.5 Prediction Length versus SNR . . . . . . . . . . . . . . . . . . . 72

4.2.6 Prediction Length versus Number of Samples . . . . . . . . . . . 73

4.2.7 Prediction Length versus Model Order . . . . . . . . . . . . . . . 73

4.2.8 Prediction Length versus Performance Threshold . . . . . . . . . 74

4.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Cramer Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Invertibility of the Fisher Information Matrix . . . . . . . . . . . 82

4.5 Rough Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.1 Scattering formulation . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2 Moving Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.3 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Mutual Information Considerations . . . . . . . . . . . . . . . . . . . . . 93

4.7 Multipath Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.1 General Two Dimensional Multipath Field . . . . . . . . . . . . . 94

4.7.2 Dimensionality of Multipath . . . . . . . . . . . . . . . . . . . . . 96

4.7.3 Bounding the Relative Error . . . . . . . . . . . . . . . . . . . . 97

4.7.4 Dimensionality of 3 Dimensional Field . . . . . . . . . . . . . . . 99

4.7.5 Plane Wave Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7.6 Extrapolation Bounds . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Channel Performance 107

5.1 MLSE Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Reduced Complexity Error Rate Calculation . . . . . . . . . . . . . . . . 112

5.2.1 Minimum Distance Error Events . . . . . . . . . . . . . . . . . . 112

5.2.2 Contributing Error Events . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Algorithm for finding the set U . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.3 Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Symmetry of Contributing Error Events . . . . . . . . . . . . . . . . . . 119



xiv CONTENTS

5.5 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.1 Three Dimensional Slices With One Co-ordinate Fixed . . . . . . 124

5.5.2 Rotating Hyper-plane Three Dimensional Slice . . . . . . . . . . 125

5.6 Effect of Imperfect Channel Knowledge . . . . . . . . . . . . . . . . . . 126

5.6.1 Stochastic Channel Estimate and Noise . . . . . . . . . . . . . . 126

5.6.2 Stochastic transmitted symbols s . . . . . . . . . . . . . . . . . . 129

5.7 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 132

5A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5A.1 The term t1 = fHEHEf . . . . . . . . . . . . . . . . . . . . . . . 133

5A.2 The term t2 = ∆f
HEHE∆f . . . . . . . . . . . . . . . . . . . . . 133

5A.3 The term t3 = 2 Re(fHEHE∆f ) . . . . . . . . . . . . . . . . . . . 134

5A.4 The term t4 = 2 Re(fHEHS∆f ) . . . . . . . . . . . . . . . . . . . 135

5A.5 The term t5 = 2 Re(∆f
HEHS∆f ) . . . . . . . . . . . . . . . . . . 135

5A.6 The term t6 = −2 Re(fHEHη) . . . . . . . . . . . . . . . . . . . 135

5A.7 The term t7 = −2 Re(∆f
HEHη) . . . . . . . . . . . . . . . . . . 136

5A.8 The cross-correlation of t3 and t4 . . . . . . . . . . . . . . . . . . 137

5A.9 The cross correlation of t2 and t5 . . . . . . . . . . . . . . . . . . 137

5A.10 The covariance of t2 and t3 . . . . . . . . . . . . . . . . . . . . . 138

5A.11 The Combined Expression . . . . . . . . . . . . . . . . . . . . . . 138

5B Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5B.1 The term t4 = 2 Re(fHEHS∆f ) . . . . . . . . . . . . . . . . . . . 139

5B.2 The term t5 = 2 Re(∆f
HEHS∆f ) . . . . . . . . . . . . . . . . . . 140

5B.3 The combined expression for random s . . . . . . . . . . . . . . . 140

5C Note on ‘A New Method for Determining “Unknown” Worst-Case Chan-
nels for Maximum Likelihood Sequence Estimation’ . . . . . . . . . . . . 142

6 Conclusions and Further Research 145

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A Contributing Error Events 149

A.1 BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2 4PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 8PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.4 QPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.5 8-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.6 16-QAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.7 16-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.8 Asymmetric Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.8.1 8-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



CONTENTS xv

A.8.2 16-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References 167

Index 181





Chapter 1

Introduction

1.1 The Mobile Radio Propagation Channel

BY an interesting co-incidence the wavelength of the electromagnetic wave used by
a mobile telephone is approximately the same as that of the sound wave which

it is used to transmit. Both electromagnetic waves and pressure waves can reach the
intended receiver by many paths; by line-of-sight propagation and by reflections and
scattering from objects such as buildings and furniture, and also by diffraction. The
difficulty which can be experienced in communicating in a reverberant room is similar
to that experienced in digital mobile communications, although because of different
reflectivities and propagation speeds the “reverberant room” experienced by a mobile
communications system may be an entire city. The human ear is extremely adept at
interpreting corrupted speech signals. The receivers of digital communications signals
are generally less robust.

The presence of several paths by which a signal can propagate between a transmitter
and a receiver is known in mobile communications as multipath propagation. The
received signal is the resulting summation or interference of all the fields incident on
the sensor. Even though the average received power may be large, at particular places,
times and frequencies the complex summation of the fields may result in a very small
signal. This phenomenon is called multipath fading.

Multipath propagation is a principal cause of unreliability of mobile radio systems.
Not only does it cause short term fluctuations in the received signal power, but it
introduces time-dispersion and phase-distortion into the received signal. To obtain the
same performance as an unvarying channel, the fading channel must have a considerably
larger signal to noise ratio (SNR).

In addition the mobile nature of the receiver and/or transmitter causes the channel
characteristics to continually change. This can make adaptive techniques for mitigating
the effects of multipath and limited channel bandwidth (such as equalisation) difficult
to implement.



2 CHAPTER 1. INTRODUCTION

The usual approach used to date in designing systems to operate over fading chan-
nels is simply to allow a large fade-margin when calculating the power budget. Trans-
mitters spend much of the time transmitting several tens of decibels more power than
is actually required. Although simple, this technique has several disadvantages. First,
it produces far more interference than is necessary, with consequent inefficiencies in
channel re-use. Second, it has a dramatic effect on the running time of battery oper-
ated mobile transmitters. Third, it results in higher levels of electromagnetic radiation
exposure to users. Although most studies do not support the hypothesis that cell phone
use is a risk factor for brain tumours, the risk factor for long term heavy users with a
delayed onset cannot be excluded [8, 75, 99, 115]. Hence lower operating power levels
for transmitters in close proximity to users may be desirable.

Another approach, which has been used with considerable success, is to introduce
diversity into the channel, in either time, frequency, space or polarisation. In its most
simple form, diversity involves sending the intended signal more than once, either at a
different frequency, at different time, or from a different location with more than one
transmitting antenna (space diversity is more often achieved with multiple receiving
antennas). If the receiver can be supplied with several replicas of the same information
signal transmitted over independently fading channels, the probability that all the signal
components will fade simultaneously is reduced considerably. The frequencies, times
and locations corresponding to the channels must of course be sufficiently different that
the independence requirement is satisfied (in the case of time diversity, this is achieved
using interleaving). The signal can be recovered by choosing whichever channel is most
reliable at any given instant (selection diversity) or by combining the signals from each
channel. Achieving diversity by sending the same signal multiple times, is in effect
repetition coding. Considerably superior coding techniques may also be used, with
consequent improvements in the effect of the diversity.

1.2 Channel Prediction

This thesis investigates an entirely different approach to the problem of fading channels.

1.2.1 Prediction Concept

The concept is that if the behaviour of the channel is known, the performance of the
system can be optimised for the particular channel being experienced at any instant. Of
course for the system to optimise its performance, information of the channel state must
be common to both the transmitter and the receiver. Since normally only the receiver
has this information, there is a requirement for a feedback channel. Unless the channel
is changing very slowly, the channel state information available to the transmitter will
be outdated, unless the channel behaviour can be predicted a short time into the future.
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Thus there are many situations in mobile communications in which it would be
advantageous for a communications system to have information on when and how a
signal will fade in advance of the fade actually occurring. If the timing of a fade is
known far enough in advance, there will be sufficient time for corrective action to be
negotiated between the transmitter and receiver.

It is perhaps unfortunate that the term prediction is most often used in the mobile
communications literature to mean off-line prediction of the radio coverage which may
be expected in certain topographical areas if base stations of a given type and antenna
configuration are operating in some given locations. Throughout this thesis, the term
prediction is applied strictly to real time prediction.

This concept was first introduced by Vaughan and Bach Andersen in [162], although
there have been a small number of papers published by other researchers since, and
even a newspaper article [67].

1.2.2 Approach to Predicting Channel Behaviour

The approach taken in this thesis to the problem of how channel behaviour is predicted
is discussed in Chapter 2. It may be described briefly as follows.

The key to the approach is finding an appropriate model for the channel. Samples
of the channel information are acquired as the mobile moves through some spatial
trajectory. These samples are used to estimate the parameters of the model. If the
model has been chosen appropriately these parameters will vary much more slowly
than the channel itself. The channel model can thus be used to extrapolate beyond the
region of the measurements.

1.3 Applications of the Prediction Information

The applications of prediction information can be classified loosely into four areas:

1.3.1 Avoidance of “bad” channels

Even for a channel severely degraded by multipath fading, the percentage of time
that a channel is “faded” is comparatively small. (The statistical distribution of the
power level has been the subject of much study and is examined briefly in Section 2.2).
The most basic corrective action which may be taken then is to simply “avoid” times
when the channel does not support reliable communication. This avoidance may take
the form of suspension of transmission for a time, or change of time slot for a time
division multiple access (TDMA) system, or change of frequency for a frequency division
multiple access (FDMA) system (although change of frequency may require prediction
of multiple channels which may not be feasible in some systems).
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This last case has some resemblance to frequency hopping such as is used in the
Groupe Speciale Mobile (GSM) system [122] although with the significant difference
that a change would only be made to a channel which is predicted to offer superior
performance, rather than to a random choice from available channels.

1.3.2 Adaptive Modulation

Another level of sophistication may be applied to the prediction concept; rather than
simply avoiding transmission into channels known to be faded, parameters of the trans-
mission can be adapted on a more continuous basis. These include the power level,
modulation type, and coding. The effect of any one or a combination of these is to
increase the overall efficiency in the use of power and bandwidth. With the increase
in demand for mobile bandwidth, and the growing concern about the effects of non-
ionising radiation among mobile telephony users, these are significant gains. A useful
review of this approach is [40] (although the present author and the authors of [162]
claim originality for what follows).

For example, in truncated channel inversion power control (TCI) [60] transmission is
avoided when the instantaneous received channel power falls below a certain threshold,
and the transmitted power is proportional to the inverse of the fading channel power
when it is above this threshold. Such a power control scheme would of course require
knowledge of the transmitted power level at the receiver so that a correction can be
made for the effects of the power control on calculation of the channel parameters.

Various adaptive modulation schemes have been proposed and analysed [26, 60, 61,
117, 166]. These increase the data rate during periods of high SNR, and decrease the
rate during fades. The variation is typically achieved by varying the constellation
size of a linear modulation between large bandwidth efficient constellations, and small
power efficient ones. The implicit need for prediction for such systems to be viable in
a rapidly changing environment does not appear to have been adequately addressed in
the literature [54].

Transmit diversity is another application of predicted channel information. In the
case of mobile down-link channels, there is more space available at the transmit end
for widely spaced antennas, (although placing multiple antennas on the mobile unit
has advantages also [102], see Section 2.4). Transmit diversity has the potential to be
as effective as receive diversity, provided the channel information is available at the
transmitter. For the same reasons as discussed above, this requires the behaviour of
each of the channels to be predicted.

There is increasing interest in the literature in multiple input multiple output
(MIMO) systems, where there are multiple antennas at both the receiver and trans-
mitter. Several of the proposed methods [118, 119] require channel state information at
the transmitter. Once again, in a time varying channel, this information will generally
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be obsolete unless some form of prediction is used.

1.3.3 Parametric Equalisation

Equalisation of communication channels requires an adaptive algorithm to adjust a
channel model to best reflect the channel impulse response. In the case of linear and
decision feedback equalisation (DFE) this is used to update filters to best compensate
for the intersymbol interference introduced by the channel. This algorithm is usually
the minimum mean square error (MSE) or recursive least squares (RLS) algorithm.

If the system’s variation is slow compared to the algorithm’s convergence time, the
equaliser will be able to adapt to the changing channel.

The popularity of adaptive methods is an indication of the importance of time
varying channel equalisation. Despite their wide use and simplicity, however, they have
a number of limitations. They are derived under the stationarity assumption, and they
do not explicitly take into account the time varying nature of the channel. Thus they
cannot follow rapid changes in the channel or deep fades.

If the channel is varying faster than the algorithm can converge, convergence is
never achieved, and correct equaliser operation is not obtained.

In order to overcome these problems, more elaborate modelling of the time variation
of the coefficients is required. The key here is the same as that used in the prediction
problem above — find a model for the channel, the parameters of which (or some of the
parameters of which) vary more slowly than the channel impulse response itself does.
This is the approach used in [27, 28, 68, 155, 156]. Equalisers which use such a model
for the fading channel may outperform the traditional adaptive schemes. They are not
sensitive to rapid variations or deep fades, since these are anticipated by the model.

The approach just described is not strictly prediction; however the same channel
models and algorithms are applicable. Predicted channel information could in principle
also be used to reduce the latency of an equalisation system, in which case the term
prediction is again applicable.

Receiver forms which make use of predicted channel information are described in
[19]. Equivalent forms exist which do not require channel prediction, and have the
advantage of removing a potential source of error if the prediction is not accurate.
They have been shown in [19] to obtain this advantage at the expense of considerably
more complexity. Once again a reliable prediction method could provide a significant
breakthrough.

Yet another potential application of predicted channel information is in construction
of an optimal receiver. It is well known that a form of optimal digital receiver includes
a matched filter, followed by symbol rate sampling. In the absence of information on
the form a signal has taken as a result of transmission through a channel, the required
filter to match the received pulse is not known. As a result, the suboptimal approach
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of matching to the transmitted pulse is often used. Another approach, which results
in increased complexity, is fractional spaced sampling. An alternative would be to use
predicted channel information along with knowledge of the transmitted pulse shape,
to design the optimal matched filter. The application has the advantage over some of
those listed above that the prediction would only need to be accurate for a very short
time scale.

1.3.4 Improved Combining

An effective technique to overcome the effects of fading is to use spatial diversity —
using multiple receive antennas and combining the multiple independently-faded re-
ceived signals [113, 130, 138]. Such schemes require that the fading process is estimated
(and perhaps tracked) in order to determine the appropriate combiner weights [98].
Under slow fading conditions, fading estimation is often performed by a windowing
and averaging technique. However, because the fading rate is proportional to the car-
rier frequency, for high frequencies the high fading rate requires that a shorter window
length be used. This results in degraded performance. Furthermore, the estimated fad-
ing process obtained by the conventional windowing method also suffers from a time
lag. Unless a decision delay of half the window size is introduced, the lag will also
lead to performance degradation. Using even short term prediction of a channel could
substantially alleviate these difficulties. This approach was first suggested in [74].

1.4 Required Prediction Lengths

In this section the parameters which are used in just one system, GSM, are examined, in
order to determine prediction lengths which would be required in order to be effective.
Other systems, and certainly any future system which incorporated prediction, will of
course have quite different parameters, but this example at least gives an idea of the
range of prediction which could be required [120, 122].

In the “normalised” column of Table 1.1, times have been normalised to the symbol
period T , frequencies to the symbol rate 1/T , and distances to the wavelength λ. The
normalised units allow fair comparison to be made across different systems — the
usefulness and achievability of a certain prediction range will depend on the frequency
of operation, and the number of symbols transmitted inside the time taken to travel
that range.

A mobile transceiver moving at the maximum velocity v travels through vfT/c

wavelengths per symbol period (refer to Table 1.1 for the symbol nomenclature), or
vfDS/c ≈ 0.95–1.03 wavelengths per frame. If the protocol allowed the mobile to
request a change of frequency for instance, in any up-link frame, and the base station
acknowledged the request in the next down-link frame, the mobile would need to have
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GSM Parameter Specification Normalised
T Symbol Period 1/(2705

6) ms 1 T
D Time Slot Period 576.9 µs 156.25 T
f Operating Frequency Down-link 935-960 MHz

Up-link 890-915 MHz
3.45-3.54 kT−1

3.29-3.38 kT−1

∆f Channel Spacing 200 kHz 0.3846 T−1

S Time slots per Frame 8 8
τ Maximum Delay Spread 16 µs 4.33 T
R Maximum Cell Size 35 km (one way) 63 T
v Maximum Travel Speed 250 km/h (69 ms−1) 761-821 µλT−1

δf Maximum Doppler Shift 206-222 Hz 761-821 µT−1

Table 1.1: Parameters of GSM which relate to required prediction ranges.

predicted out to two times the frame duration, or about two wavelengths. In many sit-
uations, the mobile velocity is much less than 250 km/h, and so the required prediction
range correspondingly less.

If fades (minima of narrowband received power) occur about 0.6–0.7λ apart, this
equates to prediction of about three fades, certainly beyond what could be achieved
with knowledge of the current level and its gradient and also beyond the correlation
distance in most situations (see section 2.3).

On the other hand, if only prediction (and backwards prediction) is only within
one time-slot (for example to assist with equalisation), extrapolation forwards and
backwards (58 symbols) in time from the training sequence (of length 26 symbols) is
required. The prediction in this case is only be required to 58vfT/c ≈ 0.044–0.048
wavelengths. There would however be only the duration of the training sequence, or
0.020 wavelengths on which to base the extrapolation.

The conclusion of this section is then, that in a typical system, for prediction to
allow time for negotiation between the transmitter and receiver, it must be accurate for
lengths of the order of a wavelength. This length is small enough to believe prediction
may be feasible and hence profitable, but large enough to believe it may not be trivial.
Prediction for equalisation appliations does not need as great a range, and hence is
easier to achieve.

1.5 Structure of this Thesis

The focus of this thesis is on investigating the nature of the mobile channel in order to
identify channel models which have parameters which vary more slowly over time than
the impulse or frequency responses. Several algorithms are then developed for robust
and accurate channel prediction, and their performance is analysed in various simulated
and experimental scenarios. The implementation of any of the applications discussed
in Section 1.3 is not developed in detail, although reference is made to the applications
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at points at which accuracy of estimation has an impact on their operation, which are
different at times for different applications.

Various multipath channel models are presented in Chapter 2, commencing with
a review of stochastic models. This leads into presentation of the models which are
used for prediction, most of them being deterministic models. These models are fun-
damental to what follows in the remainder of the thesis — they have the properties
that they sufficiently reflect reality that their parameters vary much more slowly than
does the channel impulse response, but are parsimonious and simple enough that the
parameters can be effectively and reliably estimated. The trade-off between optimality
and robustness is an important factor in their design.

New closed form expressions for the correlation of the signal at spatially separated
points are derived. The issue of the number of effective scatterers present in some
models is discussed, as this becomes important later in the thesis.

In Chapter 3 the algorithms are derived in detail. The algorithms are primarily
adaptations of various subspace methods of spectrum estimation and array signal pro-
cessing. Gradient methods are also used. Some of the work which has been published
in this area [6, 41, 45] is discussed. The chapter focusses on narrowband algorithms,
but also shows how the concepts extend to the broadband case.

In Chapter 4 the results of numerical simulations are presented and discussed. The
measurement techniques and equipment are described, and then the results of the
prediction algorithms being applied to the measured data. Conclusions about the
propagation models, both indoor and outdoor, are deduced. Some more theoretical
considerations are then introduced which provide bounds on the accuracy with which
channels may be predicted, and some of the factors which define these bounds are
highlighted. The effect of rough surface scattering is discussed briefly, and a bound is
derived based on consideration of the multipath dimensionality in a defined region.

Chapter 5 moves to a consideration of the prediction accuracy required for just one
application. The performance of a channel as a function of the channel impulse response
is derived for the case where a maximum likelihood sequence estimator (MLSE) is used
for equalisation of the channel. An approximation based on the union of ellipsoids is
described. An algorithm for finding the a priori most likely error events for particular
channels is presented, along with the results of its application.

The effects of imperfect knowledge of a channel as applied to MLSE equalisation
are investigated in detail. A result is derived which allows the probability of error to
be approximated in the case where the channel is not known perfectly.

In Chapter 6 the results of the research are summarised and suggestions are made
to further explore the potential of the prediction concept. The potential for real time
channel prediction to become a significant technology in the future is also evaluated.



Chapter 2

Multipath Propagation Models

IN order to be able to characterise a channel in real time, a model must be proposed
which allows useful parameters to be updated in real time from the available channel

information. In addition, a desirable property of the model is that it has parameters
which change only slowly, thus allowing the channel behaviour to be predicted by
extrapolation of the parameters.

This chapter establishes the models used to characterise the multipath radio prop-
agation channel. It discusses the key difference between stochastic models, which are
used to characterise an environment which consists of an ensemble of channels, and
deterministic models, which characterise the behaviour of a particular instance of a
channel in real time. New closed form results for the spatial correlation of a channel
are presented.

The effect of multipath propagation on channel performance is detailed, and mea-
sures which are used to counteract and even take advantage of multipath propagation
are discussed.

2.1 General Channel Models

2.1.1 Single Path

Suppose a signal s(t) is transmitted, and takes time τ(t) to travel to the receiver. The
received signal will then be given by ζn(t)s(t − τ(t)), where ζn(t) is the gain of the
propagation path. This gain or attenuation factor includes such factors as space loss,
antenna gain and orientation, and polarisation mismatch.

Suppose now that a complex baseband signal s(t) is modulated on a carrier of angu-
lar frequency ωc to obtain Re(s(t)ejωct). The complex baseband signal corresponding
to the received signal Re(r(t)ejωct) for a single path is given by

r(t) = ζn(t)s(t− τ(t))e−jωcτ(t). (2.1)
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For the next few sections, the equations are made more clear by ignoring noise. Noise
will of course be included, with appropriate covariance assumptions, before practical
use is made of the models.

2.1.2 Moving Receiver

If the receiver is moving with respect to some reference location, the delay will change,
so τ(t) = τn − t(v/c) sin θ, where

c is the speed of propagation of the waves (light).
θ is the angle between the direction of propagation of the electromagnetic waves

and the direction of travel of the receiver minus π/2. (This awkward descrip-
tion is to make the terminology consistent with conventions in array process-
ing theory, which will be introduced later, and which are based on elevation
angles rather than azimuth angles).

v is the speed of the receiver. In general both v and θ may be functions of
time if the receiver changes speed or direction or if the transmitter or local
scatterer is close to the receiver, so that the wavefronts must be considered
spherical rather than planar.

Thus the received signal will be

r(t) = ζn(t)s
(

(1 +
v

c
sin θ)t− τn

)
e−jωcτnejtωc

v
c

sin θ. (2.2)

Signals of interest in this thesis are of sufficiently narrow bandwidth (i.e., are slowly
varying) that s ((1 + (v/c) sin θ)t) ≈ s(t) (note that a signal can be wide-band in the
sense defined in Section 2.2 and this approximation still be valid). The modulating
frequency is also generally high enough that the phase of ejωcτn can be considered to
be independent of any practical estimate of τn. This phase is typically incorporated
as a phase term in the attenuation factor ζn, which now becomes complex. The factor
$n = (ωcv sin θ)/c = (2πv sin θ)λ = kv sin θ (where λ is the wavelength of the carrier
signal, and k = 2π/λ is the wave number) is what is known as the Doppler frequency,
measured in radians per second.

Thus the received signal can be expressed as

r(t) = ζn(t)ej$n(t)ts (t− τn(t)) . (2.3)

The term $nt is sometimes expressed as xun where x is the displacement of the
mobile receiver, rather than its velocity, and un is the spatial frequency measured in
radians per metre. This gives the position-dependent behaviour of the received signal
as a function of delay time and position.
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2.1.3 Time Varying Impulse Response Notation

There is some variation in the literature for notation for a time (or shift) varying impulse
response. It is quite common [142, 154] to define h(t, τ) or h(t; τ) as the response of a
system at time t to an impulse at time τ , so the output of a system, given input s(t) is
given by the convolution.

r(t) = h(t, τ)~ s(t) =
∫ ∞
−∞

h(t, τ)s(τ)dτ, (2.4)

or for discrete time

r[m] = h[m, k]~ s[k] =
∞∑

k=−∞
h[m, k]s[k]. (2.5)

These simplify in the time-invariant case to

r(t) =
∫ ∞
−∞

h(t− τ)s(τ)dτ, (2.6)

or in the shift-invariant case to

or r[m] =
∞∑

k=−∞
h[m− k]s[k]. (2.7)

An alternative notation [10] is for h(τ, t) to represent the response of the system at
time t to an impulse at time t − τ . If the transmitted signal s(t) in (2.3) is δ(t − t1),
the received signal will be

r(t) = ζne
j$ntδ(t− τn − t1). (2.8)

The symbol τ is defined as τ = t − t1, and the time-varying impulse response defined
as

h(τ, t) = ζne
j$ntδ(τ − τn). (2.9)

Then (2.4) and (2.5) become

r(t) = h(τ, t)~ s(τ) =
∫ ∞
−∞

h(t− τ, t)s(τ)dτ (2.10)

and

r[m] = h[k,m]~ s[k] =
∞∑

k=−∞
h[m− k,m]s[k]. (2.11)

This notation has two advantages. First, it has greater resemblance to (2.3). Second,
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it has greater consistency with the time-invariant case of (2.6) and the shift-invariant
case of (2.7). It is this notation which is adopted in this thesis.

2.1.4 Multiple Paths

It is assumed that the receiver sees the sum of the effects of all the paths, or equivalently,
the additive interference of waves incident on the receive antenna. Thus the impulse
response may be expressed as a summation of each of the individual impulse responses:

h(τ, t) =
N∑
n=1

ζne
j$ntδ(τ − τn) (2.12)

or expressed as a function of delay time and position as

h(τ, x) =
N∑
n=1

ζne
junxδ(τ − τn). (2.13)

If there is a continuum of sources present, the cumulative effect of all the paths may
be expressed as an integral over both Doppler frequency and delay:

r(t) =
∫∫

ζ($, τ)ej$ts(t− τ)d$dτ (2.14)

=
∫
h(τ, t)s(t− τ)dτ, (2.15)

where the time varying impulse response h(t, τ) is defined as

h(τ, t) =
∫
ζ($, τ)ej$td$, (2.16)

and ζ($, τ) is now a complex-valued function which is continuous in both $ and τ .

The Fourier transform of (2.13) with respect to the base band frequency ω gives
the position dependent transfer function:

H(ω, x) =
∫
h(τ, x)e−jωτdτ =

N∑
n=1

ζne
j(−ωτn+xun). (2.17)

The Fourier transform of (2.13) and (2.17) with respect to the position x gives a
function of delay time and spatial frequency called the scattering function

b(τ, u) =
∫
h(τ, x)e−jxudx = 2π

N∑
n=1

ζnδ(τ − τn)δ(u− un), (2.18)
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Figure 2.1: Fourier transform relations for the mobile channel functions and for their
statistical representations under wide sense stationarity in frequency and position.
(From [163].)
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and the transfer function

B(ω, u) =
∫
H(ω, x)e−jxudx = 2π

N∑
n=1

ζne
−jωτnδ(u− un). (2.19)

These relationships apply where the impulse response and transfer functions are con-
tinuous rather than discrete functions, and are shown on the left of Fig. 2.1. Functions
on opposite corners of the squares are related by two dimensional Fourier transforms.

2.2 Stochastic Channel Characterisations

If the number of paths in the above equations is even moderately large, the impulse
response and transfer function behave in a random fashion, hence statistical approaches
have been used for their characterisation. The autocorrelation function of the impulse
response, for instance, is

Rh(τ1, τ2;x1, x2) = E{h(τ1, x1)h∗(τ2, x2)}. (2.20)

It is often assumed that the channel is wide sense stationary in the frequency do-
main, so the correlation functions do not depend on the choice of frequency ω, but only
on the frequency difference ∆ω. This assumption is equivalent to assuming uncorrelated
scattering in the delay time (τ) domain (the “US” assumption [14]).

Similarly, wide sense stationarity in the spatial domain x corresponds to uncor-
related scattering in the Doppler domain u. This is known in the context of fading
channels as the WSS assumption. These two assumptions together (WSSUS) [14] allow
the convenience of Fourier transform relations, although the validity of the WSSUS
model should always be reviewed in any new situation.

It is assumed in nearly all cases that the statistical quantities being modelled have
zero mean, and so the term covariance could be used instead of correlation.

If the assumption that scattering is uncorrelated for different delays is applied, the
correlation function can be expressed as

Rh(τ,∆x) = Rh(τ ;x, x−∆x)δ(τ1 − τ2). (2.21)

The Fourier relationships between the correlation functions under these conditions
are shown on the right hand side of Fig. 2.1. They are analogous to those of the
instantaneous functions shown in the left part of the figure.

If the autocorrelation RH(∆ω,∆x) is evaluated at ∆x = 0, the spaced-frequency
correlation function1 RH(∆ω) of the channel is obtained. The range of ω over which
RH(∆ω) is essentially non-zero (∆ω)C is known as the coherence bandwidth of the

1This rather unfortunate terminology is from [116, p708].
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channel. This definition is sufficiently loose that a variety of interpretations have been
applied to it [90]. The only use made of the term here is to define a wide-band signal as
one for which the signal bandwidth W is greater than the channel coherence bandwidth,
(W/(∆ω)C > 1) and a narrowband signal as one for which the signal bandwidth is less
than the channel coherence bandwidth (W/(∆ω)C < 1).

There is of course an interesting philosophical question concerning the relationship
between stochastic and deterministic models. To what extent is it appropriate for
instance, to talk about the probability of an event A occurring, when the opportunity
for A to occur or not has already passed? The answer is that it is quite appropriate
if knowledge of whether the event has occurred is not available. The event to which
the probability is assigned is the event B that when knowledge is obtained, it is found
that A did occur. Such a consideration may bear on the discussion of subjective and
objective interpretations of probability, and in particular the propensity interpretation
of probability found in [59, 96, 114, 143], and the objections to it in [127].

The characterisation of communication channels can be thought of in a similar
manner. In principle, given enough knowledge of the distribution of scatterers of (2.12)
it is possible to determine in a deterministic manner how a channel will behave. In
the absence of such knowledge, a stochastic treatment is quite appropriate, and may
be the best that can be hoped for. The stationarity of these statistics is another
question [22, 23], discussed in Section 2.7.

A large part of this thesis is concerned with determining the extent to which this
knowledge can be obtained, and hence a deterministic real time model used.

The essence of stochastic models is that they characterise the ensemble of channels
that a mobile radio receiver may encounter in a region of a particular topography [14,
34, 57, 72, 108]. In stochastic characterisations, the number of paths is assumed to be
large.

Statistical descriptions of the narrowband fading channel envelope have been of
particular interest throughout the history of mobile radio communications. Some of
these are outlined below.

• When a mobile radio channel has a large number of paths, the central limit
theorem can be invoked to deduce that the real and imaginary components of
the random function ζ(ω, τ) each have a normal distribution. The amplitude of a
zero mean complex normal process is Rayleigh distributed [121], hence the term
Rayleigh fading channel [71, 76].

• Where a single dominant line of sight component is present in addition to the
indirect components, the complex normal no longer has zero mean [108] and so
the narrowband channel envelope has a Ricean distribution.

• The central limit theorem applied to the multiplication of random variables has



16 CHAPTER 2. MULTIPATH PROPAGATION MODELS

led to characterisation using the lognormal distribution [71, 109] (the random
variables being the coefficients of reflection in the multiple stages of each path).

• If lognormal variation is introduced into the strength of a Rayleigh distributed
signal, the Suzuki distribution results [70, 71, 109, 144].

• Other distributions which have been applied to the amplitude of the mobile radio
channel, without theoretical justification, but with some empirical justification
are the Nakagami-m [21, 92, 100], the Weibull [167], and the Generalised Gamma
distribution [34].

The usefulness of these characterisation lies in calculating the performance that may
be expected from a system operating in a particular environment. If the parameters
applicable to a particular amplitude distribution in that environment can be estimated
from measurements made in that (or a similar) environment, these parameters can then
be used to calculate an expected bit error ratio (BER).

If the probability of obtaining a particular SNR γ for a particular ensemble of
channels given by one of the above distributions with parameters θ is p(γ;θ), and the
BER for a particular modulation scheme is given by P (γ), then the expected BER for
that ensemble is given by

P (θ) = E{P (γ)} =
∫ ∞

0
P (γ)p(γ,θ)dγ. (2.22)

An example given in [116, p707] is for a Rayleigh distributed amplitude and Binary
Phase Shift Keying (BPSK).

Such methods have demonstrated reliable calculation of the error performance of
systems, and so are useful for system designers in choosing modulation types and cod-
ing schemes, and specifying performance limits. They are also useful to planners for
locating base stations.

2.3 Spatial Correlation

In establishing a relationship between the channel in two neighbouring locations, the
measure typically used is the linear relationship of correlation. Spatial correlation is of
interest for other reasons also — there is growing interest in the literature in the use
of multiple sensors — particularly multiple antennas for transmission and/or reception
of wireless signals. As well as diversity reception [76], this includes such areas as
MIMO systems, spatio-temporal equalisation, adaptive arrays and space-time coding
[50]. Most of the work assumes that each receiving sensor receives uncorrelated signals,
and conversely that the signal received from each transmitting source is uncorrelated.
A widely used “rule” is that half a wavelength separation is required in order to obtain
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de-correlation. This arises from the first null of the sinc(·) function (2.28), which is the
spatial correlation function for a three dimensional diffuse field [32].

This section quantifies this spatial correlation relationship for a narrowband system.
Recall that, by definition, for a narrowband system, the signal bandwidth is less than
the coherence bandwidth of the channel. All of the delays τn of (2.13) can be considered
to be the same, and without loss of generality, set to zero. The correlation function
Rh(∆x) in the case of the single path n is then

Rh(∆x) = E
{
ζne

junxζ∗ne
−jun(x−∆x)

}
= E{ζnζ∗n}ejun∆x . (2.23)

The correlation coefficient, being the normalised covariance, is defined as

ρ(∆x) =
Rh(∆x)√

E{h(x1)h∗(x1)}E{h(x2)h∗(x2)}
= ejun∆x . (2.24)

At this point the azimuth angle φ is introduced, and the Doppler frequency un

expressed as k sin θ cosφ. The correlation coefficient may then be expressed as

ρ(∆x) = ej∆xk sin θ cosφ. (2.25)

If waves are incident from an angular sector Θ, over which the (possibly continuous)
amplitude distribution of the scatterers is ζ(θ, φ) then the correlation coefficient be-
comes

ρ(∆x) =
∫∫

Θ
ζ(θ, φ)ej∆xk sin θ cosφ sin θ dθ dφ (2.26)

In the special case that ζ(θ, φ) = δ(θ − π/2)/(2π) (a uniform ring of scatterers in
the horizontal plane), using (3.915-2) and (8.411-1) of [64]

ρ(∆x) =
1

2π

∫ π

−π
ej∆xk cosφdφ = J0(k∆x) (2.27)

In the special case that ζ(θ, φ) = 1/(4π) (a uniform sphere of scatterers), using
(6.681-8) and (8.464-1&2) of [64]

ρ(∆x) =
1

4π

∫ π

−π

∫ π

0
ej∆xk sin θ cosφ sin θ dθ dφ

=
1
2

∫ π

0
J0(k∆x sin θ) sin θ dθ

=
sin(k∆x)
k∆x

, sinc(k∆x), for k∆x 6= 0, (2.28)

and ρ(0) = sinc(0) , 1.
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2.3.1 Spatial Correlation for General Distributions of Scatterers

Several approaches have been used to find the spatial correlation function in the case
of signals confined to a limited azimuth or elevation [79]. In this section a modal
analysis approach is presented which can obtain closed form expressions for the spatial
correlation function for narrowband signals for a wide variety of scattering distribution
functions.

The expression for the spatial correlation is first recast in a form which is suitable
for applying modal analysis techniques. Consider two sensors located at points x1

and x2, with ‖x2 − x2‖ = ∆x. Let s1(t) and s2(t) denote the complex envelope of the
received signal at the two sensors, respectively. Then the normalised spatial correlation
function between the complex envelopes of the two received signals, is defined by

ρ(x2 − x1) =
E{s1(t)s∗2(t)}
E{s1(t)s∗1(t)}

. (2.29)

Consider a general scattering environment with a large number of scatters distributed
far from the two sensors. If the transmitted signal is a narrowband signal eiωt, then
the received signal at the lth receiver is

sl(t) = ejωt
∫
A(ŷ)e−jkxl·ŷdŷ, l = 1, 2 (2.30)

where ŷ is a unit vector pointing in the direction of wave propagation, and A(ŷ) is the
complex gain of scatterers as a function of direction which captures both the amplitude
and phase distribution. Also note that the integration in (2.30) is over a unit sphere in
the case of a 3-dimensional multipath environment or a unit circle in the 2-dimensional
case. Substitute (2.30) in (2.29) and assume that scattering from one direction is
independent from another direction, to get

ρ(x2 − x1) =
∫
P(ŷ)ejk(x2−x1)·ŷdŷ, (2.31)

where

P(ŷ) =
E{|A(ŷ)|2}∫
E{|A(ŷ)|2}dŷ

, (2.32)

is the normalised average power of a signal received from direction ŷ, or the distribution
function of scatterers over all angles.
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2.3.2 Three Dimensional Scattering Environment

In order to gain a better understanding of spatial correlation, a spherical harmonic
expansion of plane waves in now used, which is given by [31]

ejkx·ŷ = 4π
∞∑
n=0

jnjn(k‖x‖)
n∑

m=−n
Ynm(x̂)Y ∗nm(ŷ), (2.33)

where x̂ = x/‖x‖, jn(r) ,
√
π/2rJn+1/2(r) are spherical Bessel functions, and

Ynm(x̂) ≡ Ynm(θx, φx)

,

√
2n+ 1

4π
(n− |m|)!
(n+ |m|)!

P |m|n (cos θx)ejmφx , (2.34)

where θx and φx are the elevation and azimuth respectively of the unit vector x̂, and
where Pmn (·) are the associated Legendre functions of the first kind. Equations (2.31)
and (2.33) may be combined to obtain

ρ(x2 − x1) = 4π
∞∑
n=0

jnjn(k∆x)
n∑

m=−n
βnmYnm

(
x2 − x1

∆x

)
(2.35)

where

βnm =
∫
P(ŷ)Y ∗nm(ŷ)dŷ. (2.36)

The fact that the higher order spherical Bessel functions (and in Section 2.3.3 the
higher order Bessel functions) have small values for arguments near zero, means that
to evaluate the correlation for points near each other in space, only a few terms in the
sum need to be evaluated in order to obtain a very good approximation.

Three Dimensional Omni-directional Diffuse Field

If waves are incident on the two points from all directions in 3-dimensional space,
then (2.35) reduces to a single term, and so the correlation coefficient is given by
ρ = j0(k∆x) = sinc(k∆x), the same classic result [32] as (2.28). The first zero crossing
is at λ/2.

Uniform Limited Azimuth/Elevation Field

Without loss of generality, the co-ordinate system may be chosen so that θx2−x1 = π/2
and φx2−x1 = 0. If the scatters are uniformly distributed over the sector Ω ∈ {(θ, φ); θ ∈
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π
2 (2-D case) π

4 −
3π
4

π
6 −

5π
6 0−π (3-D case)

Figure 2.2: Spatial Correlation versus Separation for different elevation ranges. This
figure shows that the spread of interference in elevation plays only a secondary role in
influencing spatial correlation and hence diversity within the horizontal plane.

[θ1, θ2], φ ∈ [φ1, φ2]}, then the correlation can be expressed as

ρ(x) =
1

(cos θ1 − cos θ2)

∞∑
n=0

(2n+ 1)jnjn(kr)
(
Pn(0)

∫ θ2

θ1

Pn(cos θ) sin θ dθ

+2
n∑

m=1

(n−m)!
(n+m)!

sin(mφ2)− sin(mφ1)
m(φ2 − φ1)

Pmn (0)
∫ θ2

θ1

Pmn (cos θ) sin θ dθ

)
(2.37)

Note that (2.37) is actually expressible in closed form (the integrals can be evaluated
for example by using recursions in m and n). Hence, this result can be used to build up
the result for a general scattering situation. Any arbitrary scattering can be regarded
as the limiting summation of a weighted set of uniformly distributed incremental solid
angle contributions.

The case where energy is arriving from all azimuth directions (uniformly) but the
elevation spread is in some range of angles either side of zero elevation is shown in
Fig. 2.2. The spatial correlation is shown for four sets of elevation spread: π, π/2, π/3
and 0, each centred on θ = π/2. Generally it can be concluded that multipath spread
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in elevation does not have a great effect on spatial correlation in the horizontal plane.
Multipath which may have some small elevation support (in many practical situations
not much would be expected) may be modelled as only coming from the horizontal
plane.

Spherical Harmonic Model

The distribution function P in (2.32) may be expressed as a weighted sum of orthonor-
mal spherical basis functions

P(ŷ) =
∞∑
n′=0

n′∑
m′=−n′

γn′m′Yn′m′(ŷ), (2.38)

where the coefficients γn′m′ are chosen so that the distribution function is normalised.
In many cases the number of basis functions required to approximate the distribution
function may be quite small. By substitution into (2.36), βnm can be simply expressed
in terms of the coefficients γn′m′ as

βnm =
∫ ∞∑

n′=0

n′∑
m′=−n′

γn′m′Yn′m′(ŷ)Y ∗nm(ŷ)dŷ

= γnm. (2.39)

2.3.3 Two Dimensional Scattering Environment

If the fields arrive only from the azimuthal plane, it is more convenient to consider the
2 dimensional modal expansion [31]

ejkx·ŷ =
∞∑

m=−∞
jmJm(k‖x‖)ejm(φx−φy) (2.40)

where φx and φy are the angles of x and ŷ. Equations (2.31) and (2.40) may be
combined to obtain

ρ(x2 − x1) =
∞∑

m=−∞
αmJm(k∆x)ejmφ12 , (2.41)

where

αm = jm
∫ 2π

0
P(φ)e−jmφdφ, (2.42)

P(φ) is the distribution function equivalent to P(ŷ) in (2.32), and φ12 is the angle of
the vector connecting x1 and x2. Without loss of generality, this can be considered to
be zero.
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φ = π
2 φ = π

3 φ = π
6 φ = 0

Figure 2.3: Spatial Correlation versus Separation (Wavelengths) for an azimuthal source
range of π/3 centred at various values of the azimuth φ. For φ = 0, the source direction
is co-linear with the two points, while for φ = π/2 the source direction is broadside to
the two points. In the upper subfigures, the shaded region indicates the source range,
and the two locations are separated on the horizontal axis. For φ = π/2 the real part of
the correlation coefficient is shown, as the imaginary component is zero. For the other
cases the magnitude is shown.

Two Dimensional Omni-directional Diffuse Field

For the special case of scattering over all angles in the plane containing two points,
(2.41) reduces to a single term, and so the correlation coefficient is given by ρ =
J0(k∆x), another classical result [76]. As can be seen by an examination of Fig. 2.2,
J0(·) and sinc(·) are qualitatively similar.

Uniform Limited Azimuth Field

If energy arrives uniformly from a restricted range of azimuth angles (φ0−∆, φ0 + ∆),

αm = ejm(π/2−φ0) sinc(m∆). (2.43)

This result is equivalent to that derived in [128].

If attention is restricted to multipath only in the horizontal plane and a restricted
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Figure 2.4: The cos2p((φ− φ0)/2) amplitude pattern

range of azimuth angles is considered then one can better understand the effect of a
limited range of multipath and the effect of orientation of the sensors on multipath.
The variation with azimuth angle is shown in Fig. 2.3. Where the correlation contains
an imaginary component, the magnitude has been shown, since it is the magnitude
which provides a measure of the linear relationship between the two signals. The range
of azimuth angles is π/3 centred on the four values of φ: π/2, π/3, π/6 and 0. It is
immediately apparent by comparison with Fig. 2.2 that restricting the azimuthal range
considerably increases the correlation between the signals at the two locations. This
is particularly the case when the two sensors are end-fire relative to the central signal
direction.

von Mises Distributed Field

Non-isotropic scattering in the azimuthal plane may be modelled by the von Mises
distribution [e.g., 1], for which the density is given by

P(φ) =
1

2πI0(κ)
eκ cos(φ−φ0), |φ− φ0| ≤ π, (2.44)

where φ0 represents the mean direction, κ > 0 represents the degree of non-isotropy,
and Im(κ) is the modified Bessel function of the first kind. In this case, using (3.937)
of [64]

αm =
jm

2πI0(κ)

∫ 2π

0
eκ cos(φ−φ0)ejmφdφ

= ejm(π/2−φ0) I−m(κ)
I0(κ)

. (2.45)

cos2p φ Distributed Field

The restriction in the range of angles in which scatterers are located may be due to a
non-isotropic antenna gain pattern. For instance, a real-world amplitude pattern may
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Figure 2.5: Correlation distance for a directional scenario. The directionality is due to
the product of the incident power distribution and the pattern of the antenna.

be approximated by the single lobed pattern [160, 161]

P(φ) = Q cos2p

(
φ− φ0

2

)
, |φ− φ0| ≤ π, (2.46)

where Q is a normalisation constant. Using (335.19) of [66],

αm =
jm22p−1Γ2(p+ 1)

πΓ(2p+ 1)

∫ φ0+π

φ0−π
cos2p

(
φ− φ0

2

)
e−jmφdφ

= ejm(π/2−φ0) Γ2(p+ 1)
Γ(p−m+ 1)Γ(p+m+ 1)

. (2.47)

The half power beam width of this azimuthal pattern is 4 cos−1(2(−1)/(2n)) (see Fig. 2.4).
Defining the correlation distance as the distance at which the correlation coefficient
decreases to

√
1/2, the dependence of this correlation distance on the beam width and

azimuth angle φ0 is easily calculated using this method, and is represented in Fig. 2.5
(similar to Figure 4 of [161]). The correlation can be seen to be (very approximately)
inversely proportional to the beam width of the antennas and/or width of distribution
of the scatterers, and to increase for beams near end-fire to the two locations being
correlated.
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Figure 2.6: Correlation for angle of incidence 60◦ from broadside against separation
of sensors with angular spread of the scattering distribution as parameter, based on a
Laplacian power distribution function.

Laplacian Distributed Field

In [112] the symmetric Laplacian distribution is proposed as a realistic model of the
power distribution function in some circumstances. Here

P(φ) =
Q√
2σ
e−
√

2|φ−φ0|/σ, |φ− φ0| ≤
π

2
, (2.48)

where Q is a normalisation constant. It is straightforward to show that

αm = ejm(π/2−φ0) (1− (−1)dm/2eξFm)
(1 + σ2m2/2)(1− ξ)

(2.49)

where ξ = e−π/(
√

2σ), and Fm = 1 for m even, and Fm = mσ/
√

2 for m odd.

To demonstrate the power of the technique, Figure 5b from [53] is reproduced in
Fig. 2.6, except that the distribution used here is the Laplacian, considered in [53] to be
realistic but mathematically intractable. Approximately 100 terms of the summation
(2.41) were required to obtain results to about 10 significant figures at the largest spatial
separation on the figure (5λ), or 70 terms for 5 significant figures. For separations up
to 2λ only 40–50 terms are required. The angular spread used to distinguish between
the data sets in the figure is defined as the square root of the variance, which for this
distribution is given by

S2
σ =

1
1− ξ

(
σ2 − ξ

4
(π2 + 4σ2 +

√
8πσ)

)
. (2.50)
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Normally Distributed Field

Several researchers [79, 160] have used the truncated normal distribution for modelling
the distribution of scatterers, thus

P(φ) =
Q√
2πσ

e−
(φ−φ0)2

2σ2 , |φ− φ0| ≤
π

2
, (2.51)

where σ is the standard deviation, and Q is a normalisation constant. It can be shown
using (313.6) of [65], and the symmetries of the error function for complex arguments
discussed in [55], that

αm = ejm(π/2−φ0)−m2σ2/2
Re
(

erf
(
π/2+jmσ2
√

2σ

))
erf
(
π/2√

2σ

) . (2.52)

It can be seen that contrary to the assertion of [53], a closed form solution for the
correlation function is available for distribution functions other than the normal (such
as the cos2p φ distribution), and that the normal distribution is neither a simple nor
natural choice. If however, the beam is narrow, a good approximation for the normal
case can be obtained by performing integration over the domain (−∞,∞), since the
tails will cause very little error. In this case using (337.3) of [66], it is straightforward
to show that

αm ≈ ejm(π/2−φ0)−m2σ2/2. (2.53)

Cylindric Harmonic Model

The distribution function P may be expressed as the sum of orthogonal basis functions

P(φ) =
∞∑

k=−∞
γke

jkφ, (2.54)

where the coefficients γk are chosen to that the distribution function is normalised.
In many cases the number of basis functions required to approximate the distribution
function may be quite small. The coefficients αm in (2.41) can be simply expressed in
terms of the coefficients γm as

αm = jm2πγm. (2.55)

2.3.4 Mutual Coupling

If the correlation of interest is between two nearby antennas, rather than between
measurements from one antenna moved to two different locations, there can be mutual



2.3. SPATIAL CORRELATION 27

Figure 2.7: Upper and lower 95% Confidence Intervals for correlation resulting from
a finite number of scatterers in a azimuthal only environment (only the real part is
shown).

coupling effects between the sensors. For a given spacing, mutual coupling of terminated
antennas can actually decrease the correlation between the sensors from that calculated
using the expressions above. One interpretation of this is that the presence of other
antennas creates a slow-wave structure which in effect decreases the wavelength of
the signal in their vicinity, and thus increases the number of wavelengths separation
between the elements. This phenomenon was first reported in [164], and has recently
been reported in [145]. If it proves true in general that mutual coupling effects decrease
correlation, then the closed form expressions of the previous sections may be considered
as upper bounds on the correlation between antennas in an electromagnetic field.

For most situations, the antennas of mobile receivers are omni-directional, and
in urban environments the scattering scenario is approximately isotropic, hence the
correlation distance may not exceed a few tenths of a wavelength.

2.3.5 Correlation for a Small Number of Scatterers

It is of interest also to note that the correlation can resemble that for a uniform diffuse
field, even when the number of paths for a signal is quite small. The case studied here
is for paths incident on the receiving antenna from the azimuthal plane only.

Since the correlation in the case of one path is given by (2.25), a uniform distribution
of φ implies that the probability density function of ρR1, the real part of ρ for one path
is given (using [104, pp126,189]) by finding the probability density for a function of a
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random variable. Thus

pρR1(ρR1) =
∑
m

∑
s=±1

1

2π2 ∆x
λ

√
1− ρ2

R1

√
1− (∆x

λ (m+ s
2π cos−1(ρR1)))2

, (2.56)

where the summation overm is for all values ofm for which |∆x
λ (m+ s

2π cos−1(ρR1))| < 1.
The probability density function for N paths is then given by the N -fold convolution
of the one-path distribution.

Fig. 2.7 shows the 95% confidence intervals of the real part of the correlation func-
tion for the case of a finite number of scatterers which are uniformly distributed in the
azimuthal plane. The curve for N = 5 is produced using N -fold convolution — the
others by Monte Carlo simulation.

It can be seen that even for quite a small number of paths, the correlation, especially
for small separations, can closely resemble that of a diffuse field. Numerous researchers
have also found that the sum of only a small number of sinusoids (e.g., six) is required
in order to produce an approximation to the Rayleigh statistics that are so familiar in
mobile radio literature [15, 76, 110, 111, 126, 133, 135]. In fact it is shown in Section 4.7
that within a certain region, the “illusion” of there being only a small number of
paths is effectively complete. It is also widely assumed in the literature that there
are only a small number of significant scatterers in a typical mobile communications
environment [27, 44, 45, 58, 71]. The experimental justification for this is rather sparse
or may be interpreted as contradicting this assumption [37–39, 47]. The fact that
A =⇒ B of course does not mean that B =⇒ A. The strongest conclusion that
can be drawn is that the familiar distributions and correlations may arise in situations
where there are either many or few paths.

A numerical study of the relationship between correlation and prediction is now
presented. The parameters used for the study are listed here, although the definitions
and methods used are defined later in the thesis. Several sets of data points were syn-
thesised, each covering 10 wavelengths and based on between 5 and 30 point sources
with an SNR of 40 dB. The length of successful prediction for each was calculated
using the methods outlined later in the thesis. Also the root-mean-square (RMS) value
of the estimated correlation function (the mean being taken over 10 wavelengths) was
calculated. These two quantities are shown in a scatter plot in Fig. 2.8. It might have
been expected that there would be some relationship — that if the mean correlation is
high, the channel would be highly predictable. It is clear from Fig. 2.8 that there is no
strong relationship between these two quantities; a scenario may have a small RMS cor-
relation and yet be “predictable”, or a large RMS correlation and be “unpredictable”.
Some other factors which have a greater influence on predictability are discussed later
in Sections 4.2.3 and 4.5.

To conclude this section it is noted that if only a small number of paths is present,
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Figure 2.8: Relationship between Correlation and Prediction Length. Although one
might expect a strong relationship to exist, none is apparent.

the spatial correlation may fall rapidly for increasing separation of points. This does
not necessarily appear to provide a bound to deterministic prediction methods. Such a
method may perform quite well if there are few paths, because there may be only a few
parameters to estimate in order to obtain reliable long-range prediction. Though the
expectations of the spatial correlation and the prediction error may be related, there is
not a strong relationship for individual scenarios.

2.4 Diversity

In this section the important equations relating to diversity are derived, following the
format of [130]. This demonstrates the considerable improvement in performance that
can be obtained using diversity reception of fading signals. Channel prediction may be
considered as a complementary, or in some instances, competing technique, and so the
comparison of these techniques is important.

Just one method of utilising diversity — maximal ratio combining — is treated
here. Other methods are equal gain combining and selection diversity . In equal gain
combining the signals are phase aligned, but not scaled according to their respective
signal to noise ratios. In selection combining, the single signal with the largest signal
to noise ratio is chosen (or the signal choice is changed if the SNR falls below a certain
threshold).

The idea behind diversity is to use several independent copies of a fading signal.
The probability that the combined signal is below the threshold of reliable detection can
in this way be reduced well below that for a single source. In maximal-ratio combining,
optimality is defined as achievement of the maximum possible SNR at the combiner
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output at each instant.

The transmitted signal is denoted by s(t), and the M copies of the received signal
which are denoted by rm(t) have power gm. The noise terms are ηm(t), with noise
power Nm. It is assumed that the noise terms are all independent. Optimality is then
achieved when the weights for each copy of the received signal are given by

αm = χ
g∗m
Nm

(2.57)

where χ is any arbitrary complex constant. In this case the combining results in an
instantaneous output SNR which is the sum of the instantaneous SNRs on the individual
branches: γ =

∑M
m=1 γm. The probability density function (pdf) of the combined SNR

can be derived assuming that the individual branch noise signals are complex normal,
and so the individual branch SNRs are Rayleigh distributed. Since γ and all the γm are
all positive, a Laplace transform may be used to evaluate the characteristic function:

F (s) =
∫ ∞

0
e−sγp(γ)dγ = E{esγ} =

M∏
m=1

E{e−sγm}

=
M∏
m=1

∫ ∞
0

e−sγm
1

Γm
e
− γm

Γk dγm

=
M∏
m=1

1
1 + sΓm

, (2.58)

where Γm is the average SNR for branch m, and it is assumed that each of the γm are
uncorrelated so that the mean of the product is the product of the means. Inversion of
this transform gives

p(γ) =
1

2πj

∫ c+j∞

c−j∞

sγ∏M
m=1(1 + sΓm)

ds c ≥ 0. (2.59)

The integral can be solved using the method of residues . If the Γk are all equal, Γk = Γ,
so that

p(γ) =
1

ΓM
1

(M − 1)!

[
∂M−1

∂sM−1
esγ
]
s=− 1

Γ

=
1

(M − 1)!
γM−1

ΓM
e−

γ
Γ , (2.60)

which is the chi-square distribution of order 2M . If the Γm are all unequal

p(γ) =
M∑
m=1

1
κm

e−
γm
Γm , κm = Γm

M∏
m′=1
m′ 6=m

1− Γm′
Γm

. (2.61)



2.4. DIVERSITY 31

Figure 2.9: Cumulative probability of Maximal Ratio combined signals with 1 to 8
uncorrelated equal SNR branches shown with solid lines from left to right respectively.
The broken lines are the measured data, which have 2, 3, or 4 correlated, unequal SNR
branches.

The cumulative distribution function (cdf) is given by

p(γ < x) =
M∑
m=1

Γm
κm

(
1− e−

x
Γm

)
. (2.62)

The case of correlated signals can be treated by using eigendecomposition of the
signal correlation matrix, which can be estimated from the signal plus noise correlation
matrix. Eigendecomposition is a similarity transform and so conserves the energy of
the original matrix.

The cdf for the equal SNR case is presented in the solid lines of Fig. 2.9 on “Rayleigh
paper” so that the single antenna case is a single straight line.

Antenna diversity is widely used at base stations in mobile communications. At the
mobile, the use of diversity has received some attention, but its commercial use is not
yet widespread. There are two main differences between antenna diversity design for
the base and for the mobile. The first is that usually there is much less space available
at the mobile, particularly if the unit is to be hand-held. The second relates to the
scattering environments. Generally the base station will receive signals from a limited
range of arrival angles, whereas the mobile is often moving in an environment with
many nearby scatterers, and so signals will arrive in a more omni-directional manner.
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Figure 2.10: Floor plan of the indoor measurement environment for evaluating the
effectiveness of diversity in a compact mobile receiver.

As shown in Section 2.3, this results in shorter correlation lengths, and thus a lesser
requirement for large antenna spacing.

An experiment was performed1 to evaluate the diversity performance of a handset
with multiple antennas in an indoor environment. The transmitting frequency used
was 1.9 GHz corresponding to current PCS systems. The transmitting antenna was
a commercially available 1850-1990 MHz bow-tie dipole mounted in front of a ground
plane, vertically polarised and wall mounted at a height of 2.5 m. The receiving handset
had dimensions 100 × 50 × 20 mm rotated at the end of a 1.2 m wooden arm at a
height of 2.2 m. There were two different transmitter and receiver location pairs used,
shown in Fig. 2.10. The antenna configurations included a single centrally mounted
quarter wavelength monopole, and two, three or four co-linear monopoles with outer
monopoles separated by 32 mm. The signals rml received at each of the M antennas
(indexed by m) at each of L positions (indexed by l) was used to estimate the elements
of the signal plus noise correlation matrix using

R̂m1m2 =
1
L

L∑
l=1

r∗m1lrm2l. (2.63)

There are additional issues associated with antenna mutual impedances, and the fact
that only pairs of measurements could be made simultaneously. These are discussed
at greater length in [102]. The noise power was estimated and subtracted to obtain
an estimate of the signal correlation matrix Rsnr = R/σ2

η − I. The eigenvalues of this

1This work was led by Ole Nørklit.
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matrix were then used to estimate the appropriate cdf function for the resulting signal
using maximal ratio combining. These functions are the broken lines in Fig. 2.9. It can
be seen that the two antenna system gives almost ideal performance. This is because
the two antennas have low correlation. The four branch system gives an effective order
of diversity of about 2.5.

It is apparent that the combining schemes at the mobile can give considerable
immunity to fading. As has been discussed in chapter 1, channel prediction may be
able to gain some of the effect of combining by allowing channels to be chosen which
are not experiencing fading conditions. It is worth noting however, that even if perfect
channel prediction information were available for all of a large number of channels from
which one can be chosen, the best that could be hoped for in the way of performance
enhancement would be the same as for a selection diversity scheme.

On the other hand, a prediction scheme requires no additional sensors, and so may
be feasible in some situations where diversity is not. For a MIMO system, where multi-
ple receive sensors are present in any case, prediction may still be of use in overcoming
latency in the estimation of channel information at the transmitter.

2.5 Real Time Channel Characterisation

Real time characterisations of a channel have a different purpose to the stochastic
characterisations discussed above. These allow a system to adapt to the particular
instantaneous channel conditions being experienced. They form the basis of equalisers
and Rake receivers. The parameters of a deterministic model of the channel are updated
in real time and are used to optimise the performance of the receiver by removing as
far as possible the effects of this channel.

Of interest in this thesis are models of the channel which have parameters which
vary more slowly than does the channel itself. The term syndetic1 is here defined
as describing such models. Since the parameters of a syndetic model do not change
rapidly, extrapolation of these parameters allows predictions of channel behaviour for
some time into the future to be obtained in real time.

To be useful for equalisation and adaptation purposes, a model must provide not
merely information on the ensemble of channels in a particular area, but instantaneous
information on the instance of the channel being experienced by the signal in its passage
from the transmitter to the receiver. For this purpose deterministic channel models
are most useful. Although both stochastic and deterministic models are used in this
thesis, the focus is on deterministic models.

1syndetic: (a) serving to unite or connect; connective, copulative., (b) pertaining to or designating
a catalogue, index, etc., which uses cross-references to indicate links between entries. Oxford English
Dictionary.
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2.6 Deterministic Channel Models

If it is assumed that there are a finite number of discrete paths between the transmitter
and receiver, then (2.12) may be used as the basis for a deterministic model.

2.6.1 Narrowband Far Field Sources

The description “far field” is used, because the assumption that the Doppler frequencies
$n are only slowly varying functions of time implies that the angle θn is also only slowly
varying, and hence that the nearest scatterer of each path is a considerable distance
from the receiver. The term “far field” is taken from array-processing theory [77, p113]
and implies that the waves incident on the receiving antenna are plane waves.

If the system has a narrow bandwidth, the delay of each path cannot be individually
resolved. Equation 2.12 then simplifies to

h(τ, t) =
N∑
n=1

ζne
j$ntδ(τ) (2.64)

and so the received signal is

r(t) =
N∑
n=1

ζne
j$nts(t). (2.65)

In a real receiver of course, the received signal is filtered and demodulated (either
synchronously or asynchronously) and the transmitted data is recovered. Provided the
error rate is not too large, it is then simple to calculate s(t) and hence

∑N
n=1 ζne

j$nt.
Although demodulation is not a trivial task, it is not the focus of this thesis. For much
of this thesis then, the assumption is made that the signal s(t) = 1 ∀ t. The received
signal r(t) can thus be treated as instantaneous measurements of the complex channel
gain.

The channel gain function can be sampled in time with period ∆t to obtain the
discrete function

rm =
N∑
n=1

ζne
j$nm + ηm, (2.66)

where the meaning of $n has now changed1 from $n = 2πv sin θ/λ measured in radians
per second, to $n = 2π∆x sin θ/λ measured in radians per sample interval, where
∆x = v∆t/λ is the distance between samples measured in wavelengths.

A noise term ηm has been introduced. It will mostly be assumed that ηm is a
complex normal process with E{ηm} = 0, E{ηm1η

∗
m2
} = σ2

ηδm1m2 , and E{ηm1ηm2} = 0.
1This potential source of confusion is actually not as great as it may at first appear. $ is always

multiplied by either a time or an index, and so the use of the symbol is very obvious from its context.
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That is, it is assumed that the noise is white, or has been whitened after sampling
(e.g., [154, pp60,621] or [116, p552]).

Equation 2.66 can be represented in matrix form as

r = A($)ζ + η, (2.67)

where

r = [r1, r2, . . . , rM ]T ,

A($) =
[

a($1) a($2) . . . a($N )
]
,

a($) =
[
ej$0, ej$1, . . . , ej$(M−1)

]T
,

$ = [$1, $2, . . . , $N ]T ,

ζ = [ζ1, ζ2, . . . , ζN ]T , and

η = [η1, η2, . . . , ηM ]T . (2.68)

2.6.2 Array Processing

At this point it is appropriate to introduce array processing theory. Equation 2.67 is a
familiar form in array processing.

The signal at the mth element of an M element array is represented as the sum of
signals arriving from N sources by the following sum [77]:

rm(t) =
N∑
n=1

ζnGm(θn)sn (t− τm(θn)) + ηm(t), m = 1, 2, . . . ,M, (2.69)

where

ζn = ςne
jψn is the complex attenuation of the n-th source,

θn are the spatial parameters of the n-th source,

Gm(θ) is the gain of the mth sensor at θ,

τm(θ) is the delay of a signal coming from θ towards the m-th sensor,

sn(t) is the signal due to the n-th source, and

ηm(t) is the noise at the m-th sensor.

The data is sampled over a measurement interval T , so that −T/2 ≤ t ≤ T/2. The
Fourier transform of the data over the measurement interval T , defined as

R(ω) ,
1
T

∫ T
2

−T
2

r(t)e−jωtdt, (2.70)
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can be applied to (2.69), resulting in

Rm(ω) =
N∑
n=1

Gm(θn)e−jωτm(θn)ζnSn (ω) +Hm(ω), (2.71)

where Rm(ω), Sn(ω), and Hm(ω), are the Fourier transform of rm(t), sn(t), and ηm(t),
respectively, normalised as in (2.70).

The measurements from each of the m elements can be arranged as a vector to yield

R(ω) =
N∑
n=1

a(ω,θn)ζnSn (t) + H(ω), (2.72)

a(ω,θn) ,
[
G1(θn)e−jωτ1(φ), G2(θn)e−jωτ2(θn), . . . , GM (θ)e−jωτM (θ)

]T
.

The vector a(ω,φn) is called the steering vector of the array. The steering vectors can
then be arranged as a matrix so that (2.72) can be presented as:

R(ω) = A(ω,Θ)Z (ω) +H(ω) (2.73)

M × 1 M ×N N × 1 M × 1

where

A(ω,Θ) , [a(ω,θ1),a(ω,θ2), . . . ,a(ω,θN )] ,

Z(ω) , [ζ1S1 (ω) , ζ2S2 (ω) , . . . , ζNSN (ω)]T , and

Θ , [θ1,θ2, . . . ,θN ] .

This equation may be used as the basis for several different algorithms, such as

1. Extracting the data, sn(t), for n ∈ {1, 2, . . . , N}.

2. Extracting the data, sn(t), in the presence of a other interfering signals sn′(t) for
n′ 6= n.

3. Finding the number of sources, N .

4. Finding the spatial parameters, Θ.

In this thesis it is the last two problems which are of interest. It is assumed (initially
at least) that all of the sources contain the desired signal, and are simply scatterers in
different locations of the same desired signal; that is, there is no interference.

For narrowband signals, the expressions in (2.73) can be considered to be indepen-
dent of frequency. If the sources are in the far field, the spatial parameter vector Θ

is simply the vector of angles θ, and if the array elements are co-linear and regularly
spaced, these can be expressed in terms of Doppler frequencies$ = (2π/λ) sinθ. Hence
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the equation may be considered as the equivalent of (2.67). Thus the measurements of
the channel made by a mobile receiver can be considered to be equivalent to the mea-
surements received by the elements of a stationary array. In other words, the moving
receiver forms a synthetic array .

2.6.3 Linear Prediction

It is apparent from (2.66) for example, that the discrete point sources model is equiva-
lent to the sum of complex sinusoids in noise. Techniques for estimating the parameters
of such a model are well known and are discussed in the next chapter. It is also equiv-
alent to what is known as a predictable process (where prediction is a linear function of
previous data values) or an autoregressive (AR) process. This equivalence follows from
Wold’s Decomposition theorem [105, 106]. A brief rationale for one of the elements of
Wold’s decomposition theorem follows.

For a wide-sense stationary process r[m], the prediction error may be defined as

W = min
ak

E


∣∣∣∣∣r[n]−

∞∑
k=1

akr[n− k]

∣∣∣∣∣
2
 , (2.74)

and a predictable process is defined as one for which W = 0. If the process consists
only of sinusoids, then its spectrum may be expressed as the sum of lines

R(ejω) =
∑
i

αiδ(ω − ωi). (2.75)

The polynomial F may be formed as

F (z) =
∏
i

(1− z−1ejωi) ≡ 1−
∑
k

akz
−k, (2.76)

and the terms R and F may be multiplied to obtain

R(ejω)F (ejω) =
∑
i

αiF (ejωi)δ(ω − ωi) = 0. (2.77)

It can be seen that the resulting mean square error W is zero. Hence there is a close
relationship between the far field point sources model, and standard time-series AR
modelling techniques. The only real difference is that if the process consists of sinusoids
of constant magnitude (i.e., not growing or decaying) then the poles of the prediction
filter are constrained to lie on the unit circle.

If a scattering distribution is truly point sources (sources having infinitesimal phys-
ical extent), so that the Doppler spectrum of the fading process can be expressed as the
sum of lines, then the error in linear prediction of the process is zero! That does not nec-
essarily imply that the prediction coefficients can be perfectly estimated of course, since
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that will depend on the quantity and quality (SNR) of the data available for estimation
of the coefficients. That the sources may not be points is examined in Section 4.5.

2.6.4 Narrowband Near Field Sources

If a mobile receiver is moving near to a point signal source, the wave fronts incident on
the receiving antenna are not planar, but spherical, and the angle θn may vary quite
rapidly. In this case, a model for which the parameters do not vary so rapidly is a near
field model, which includes a parameter relating to the distance to the source.

The spatial parameter vector Θ in this case may be [d1, θ1, d2, θ2, . . . , dN , θN ]T ,
where dn is the distance of the mth source point from some arbitrary reference location,
or [x1, y1, x2, y2, . . . , xN , yN ]T , where xn is the distance along and yn the distance from
some axis of the array.

Just as the far field point source model is equivalent to prediction based on linear
combinations of past measurements, so the near field point source model is equivalent
to prediction based on non-linear combinations of past measurement. If the non-linear
function governing the evolution of the channel is smooth, then a truncated Taylor
series expansion may provide an accurate model. Confining the expansion to linear
and quadratic terms of past values results in the quadratic Volterra series [134]. Appli-
cation of this method to real time channel prediction is investigated in [41]. Another
general technique of parametric nonlinear modelling investigated in [41] is Multivariate
Adaptive Regression Splines (MARS) [52, 91]. Neither of these techniques appear to
offer reliable prediction performance. One of the difficulties is again the large number
of parameters required.

2.6.5 Wide-band Sources

There are several possible approaches to wide-band source modelling. These are based
on either (2.12) or (2.73). In the first approach the entire scenario of scatterers is
modelled as one set. The parameters which must be estimated are the number of paths
N , and N triples (ζn, $n, τn).

In the second approach, the wide-band channel is treated as some integral number
W of narrowband channels. The parameters of this model are WN pairs (ζn, $n). This
approach does not make use of any the spatial “insights” available from the combination
of the delays, but is as simple to implement as any narrowband algorithm.

An alternative to modelling the channel behaviour at different frequencies ωn, is to
model the channel behaviour at different delays τn. This is the approach used in [41].
It is apparent from (2.17) that the parameters h(τ, x) and H(ω, x) have a Fourier
transform relationship, and so are in most respects equivalent.

Obviously both of these approaches can be extended to the near field case by chang-
ing the spatial parameters involved. In general the distance to a source point dn will
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not have a close relationship to its delay τn because dn is the distance of the receiving
antenna from the last reflection/diffraction point, whereas τn is the total path delay
time of the signal since leaving the transmit antenna, which often will involve multiple
reflections (although any particular distance dn must be less than or equal to cτn).

Characterisation of wide-band channels is a generalisation (although not a trivial
one) of narrowband channels. The focus of this thesis is on an initial study of the
feasibility and likely impact of prediction and thus focuses on the narrowband models,
which are more simple to analyse. In Chapter 5 however, the probability of error for
wide-band communications systems is investigated in detail.

2.7 Model Limitations

Even before use is made of the overall channel model proposed, there are several obvious
difficulties, which are briefly discussed here.

These are

1. The sources are often not point sources;

2. The sources are often more in number than it is feasible to estimate the parameters
of;

3. If the sources are in the near field or the sources move or the receiving mobile
turns or accelerates, the model parameters change significantly;

4. Whenever there is a large scale change in the scattering environment, such as
the mobile moving behind a large building, the channel parameters may change
drastically and abruptly.

2.7.1 Source Extent

If an object is conducting, large and smooth, it forms a reflector of the signal. If the
source is distant and small, the mirror image of the signal may then be considered
as a point source. If the size of the object is smaller than the first Fresnel zone for
a particular path, a significant amount of diffraction occurs. This first Fresnel zone
(see Section 2.7.1) is contained by an ellipsoid defined by the locus of points having a
difference between the direct and reflected paths of λ/2. At typical frequencies used
in mobile communications (900MHz, 1800MHz, 2400MHz for example) many objects
such as cars and even buildings (in an outdoor context) are often too small to act
as reflectors [41, p30]. On the other hand, for the objects to be considered as points
they must be either distant or small so that the radiation intercepted by the receiver is
effectively isotropic. In a typical scenario, objects frequently do not satisfy this criterion
either.



40 CHAPTER 2. MULTIPATH PROPAGATION MODELS

Material Reflection Coefficient
Floor 0.2-0.3
Ceiling 0-0.1
External wall 0.025
Internal wall 0.15-0.5
Soft partition 0.25
Elevator wall 0.35

Table 2.1: Reflection coefficients for electromagnetic waves.

2.7.2 Number of Paths

As was discussed in Section 2.3, it appears that despite some assertions to the contrary,
there are often a large number of paths between the transmitter and receiver, and the
distribution of the powers of these paths is such that there is no small subset of the
paths which delivers most of the energy. For the indoor situation a rough analogy may
be made with room acoustics; a 900MHz radio carrier has the same wavelength as a
1KHz tone. Acoustic impulse responses can be simulated using ray tracing techniques,
but only when very high order reflections are included. Since the number of paths
rises exponentially with the order of reflections considered, it is clear that in the audio
situation at least, a realistic approximation must model a large number of paths. In
many cases the data which is available is insufficient to allow estimation of the large
number of parameters corresponding to these paths.

The reflection coefficients used in [88] for modelling of electromagnetic behaviour
of rooms are shown in Table 2.1. These values were obtained through a process of
empirical determination of likely values, and refinement of those values with reference
to the results of the measurement experiments. They are assumed to be an “average”
over all polarisations and angles of incidence. Some of the coefficients used in acoustic
design [16] are shown in Table 2.2. These have been converted from energy absorption
coefficients to amplitude reflection coefficients, assuming that the energy not absorbed
is reflected. Note that this assumption will not always be valid, since transmitted
energy may not be neglected if the material is not on the perimeter of a room, or if
there is a reflective material behind it. Even allowing for this roughness in the analogy,
it is clear from a comparison of these tables that electromagnetic multipath in an office
environment corresponds in the analogy to acoustic reverberation in a heavily carpeted
and curtained room. Even in such a room however, there is still a large amount of
multipath present.

2.7.3 Near field sources

If sources near the trajectory of a mobile receiver are modelled using a far field model,
it is clear that the parameters of that model will vary quite rapidly — thus violating
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Material Reflection Coefficient
Brick Wall, unpainted 0.98
Plaster on wood studs 0.98
Wood panelling 0.89
Carpet, with underlay 0.81

Table 2.2: Reflection coefficients for acoustic waves at 500Hz.

the aim of finding a syndetic model. Thus the near field model appears to have an
advantage. It is however, a less concise model, requiring four real parameters for every
source. Also the non-linear nature of this model causes estimation of these parameters
to be much more difficult (see Section 3.2.2).

In the case of near field sources or a large number of sources of any type, there is a
conflict between the requirements that the model be both syndetic and parsimonious.
The model must be syndetic (having slowly varying parameters) so that the parameters
may be extrapolated to allow prediction. A model which included information on the
position, velocity size, orientation and nature of every scatterer in the vicinity would
have very slowly varying parameters. It would however not be parsimonious — there
would of course be far more parameters than could be estimated from the data, even
if the maximum likelihood solution were instantly available.

2.7.4 Changes in the Parameters

If the receiver moves into or out of the “shadow” of a building, the scattering scenario
can change significantly and rapidly. Clearly such catastrophic (for the predictor)
events form “horizons” beyond which prediction cannot be achieved. The percentage
of the time occupied by such events would make a worthwhile study.

2.8 Summary and Contributions

The underlying model of discrete point sources used in the majority of this thesis has
been presented. The stochastic channel models which are used for “off-line” channel
characterisations have been reviewed, and the need for a different type of channel model
discussed. Spatial correlation and diversity have been discussed.

We itemise some specific contributions made in this chapter:

i. A new method has been presented for calculating the correlation of a narrowband
channel at two spatially separated points for general distributions of scatterers.

ii. It has been explained that reliable prediction requires real time characterisation,
rather than simply ensemble characterisation.
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iii. The fact that many properties of a channel may be reliably simulated with a small
number of discrete sources has led many researchers to believe that in a typical
scenario there are only a small number. The fallacy of this reasoning has been
explained.

iv. The fact has been discovered that the property of a channel that it can be well
predicted (even using linear methods) is not well indicated by spatial correlation.

v. New measurements have been presented indicating the degree of effective diversity
available from multiple receiving antennas on a handset.



Chapter 3

Prediction Algorithms

ANY mobile radio receiver moving through a series of points in space in a multipath
environment will receive a different signal at each of these points. The funda-

mental concept on which the possibility of prediction is based is the use of these points
as the elements of a synthetic array. The samples along a known spatial trajectory can
be used to estimate the parameters of the channel model. The channel model can then
be used to extrapolate beyond the region of the measurements (see Fig. 3.1).

The channel models used for the majority of this thesis have been discussed in
detail in Chapter 2. The algorithms by which the parameters of the channel may be
estimated and then extrapolated are presented in this chapter. Some other models are
also introduced which are used by way of comparison in Chapter 4.

3.1 Deterministic Point Sources Channel Model

In this section the deterministic channel models introduced in Chapter 2 are further
developed by deriving the likelihood function. The derivative of the likelihood function
is also determined, as this is used for optimisation of a solution to the likelihood func-
tion. Other methods which may be used for estimating the parameters of this model
are also developed.

3.1.1 Likelihood Function

For solving any estimation problem, the beginning point is deriving the likelihood
function for the parameters. This is derived in this section and then simplified. Equa-
tion 2.73 is used as a basis.

In some situations the signal is known, but usually sn(t) is unknown. It can be
modelled as a deterministic unknown or as a stochastic process. The noise ηm(t) is
assumed to be a zero mean, complex normal process. If the signals are deterministic,
the term AZ in (2.73) can be regarded as the mean of the complex random process
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Figure 3.1: The prediction concept

Y(ω) where

Y(ωl) ∼ NC (A(ωl,Θ)Z (ωl) ,Cη(ωl)) , (3.1)

and Cη(ω) is the covariance matrix of the noise η at frequency ω.

If the noise is uncorrelated in frequency, the conditional probability density func-
tions corresponding to different frequencies can be multiplied. The likelihood function
of Y is then given by

p(Y) =
∏
l

[
1

πM |Cη(ωl)|
e−(Y(ωl)−A(ωl,Θ)Z(ωl))

HCη(ωl)
−1(Y(ωl)−A(ωl,Θ)Z(ωl))

]
. (3.2)

This can be maximised by minimising the negative log likelihood, or equivalently, the
expression

L(Θ) =
∑
l

(
Y(ωl)−A(ωl,Θ)Z(ωl)

)H
Cη(ωl)−1

(
Y(ωl)−A(ωl,Θ)Z(ωl)

)
. (3.3)

The noise at each sensor is assumed to be uncorrelated. Thus the spatial noise co-
variance matrix Cη(ω) is a diagonal matrix. When the noise at each sensor has equal
variance, the noise covariance matrix is simply a scaled identity matrix σ2

ηI. In reality
these are reasonable assumptions if the noise is primarily thermal noise in the receiver,
and the receivers are identical, and do not have nonlinearities such as Automatic Gain
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Control (AGC).

With these assumptions, and treating all of the frequencies ωl separately, the value
of Z(ω) which minimises L(Θ) is [80, 97]

Z(ω) =
(
AH (ω,Θ) A (ω,Θ)

)−1
AH (ω,Θ) Y (ω)

or A+ (ω,Θ) Y (ω) . (3.4)

where A+ denotes the Moore-Penrose generalised inverse of the matrix A. The first
expression is valid if AHA is full rank which will be the case whenever M ≥ N and
the parameters Θ are unique.

These values of Z(ω) are substituted into equation (3.3), and the assumption made
that Cη(ωl)−1 = I/σ2

l . A projection matrix is defined as

P (ωl,Θ) = A (ωl,Θ)
(
AH (ωl,Θ) A (ωl,Θ)

)−1AH (ωl,Θ)

or A (ωl,Θ) A+ (ωl,Θ) , (3.5)

so that

L(Θ) =
∑
l

1
σ2
l

(
Y(ωl)−P(ωl,Θ)Y (ωl)

)H(
Y(ωl)−P(ωl,Θ)Y (ωl)

)
=
∑
l

1
σ2
l

(
YH(ωl)Y(ωl)−YH(ωl)P (ωl,Θ) Y(ωl)

)
. (3.6)

Use has been made of the fact that the projection matrix P is idempotent. Since YHY

is independent of Θ, the likelihood of a solution is maximised by maximising

L2(Θ) =
∑
l

1
σ2
l

YH(ωl)P (ωl,Θ) Y(ωl). (3.7)

This expression can be further simplified in certain situations. For instance, if the
system is of narrow bandwidth so that the matrix P(ωl,Θ), and the noise power σ2

l

(assumed equal to unity without loss of generality) can be considered to be independent
of frequency, then

L2(Θ) =
∑
l

YH(ωl)P (Θ) Y(ωl)

= tr
(∑

l

YH(ωl)P (Θ) Y(ωl)
)

=
∑
l

tr
(
YH(ωl)P (Θ) Y(ωl)

)
=
∑
l

tr
(
P (Θ) Y(ωl)YH(ωl)

)
= L tr

(
P (Θ) R̂y

)
, (3.8)
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where R̂y = 1
L

∑
l Y(ωl)YH(ωl) is an estimate of the covariance of the measurements

Y(ωl).

If there is only one source, A only has one column, a, so (AHA)−1 is just a scalar,
and the expression can be further simplified to

L2(Θ) =
|a(Θ)y|2

M∑
m=1

|am(Θ)|2
. (3.9)

3.1.2 First Derivative

The first derivative of the likelihood cost function is useful when using gradient methods
for finding the optimal solution.

First the derivative of

L(θ) = yHA(θ)
(
A(θ)AH(θ)

)−1
AH(θ)y

= yHP(θ)y (3.10)

is determined, where A is a simple function of a scalar θ.

Differentiating both sides of C−1C = I with respect to θ gives

∂C−1

∂θ
= −C−1∂C

∂θ
C−1, (3.11)

and this result can be applied to (3.10) to obtain

∂P
∂θ

= A
(
AHA

)(∂A
∂θ

)H
(I−P) + (I−P)

(
∂A
∂θ

)(
AHA

)
AH , (3.12)

and so

∂yHPy
∂θ

= 2Re

(
yHA

(
AHA

)(∂A
∂θ

)H
(I−P) y

)
. (3.13)

Consider now the case of a vector of parameters. Since the steering matrix
A(ω,Θ) = [a(ω,θ1),a(ω,θ2), . . . ,a(ω,θN )], each of the columns of A(ω,Θ) depend
on only one of θn, n = 1, 2, . . . N . It is assumed now that θn is a scalar (as in the far
field situation, where each source has only one spatial parameter), although the result
can be readily extended if this is not the case. Thus

∂A
∂θn

=
∂an
∂θn

eTn , (3.14)
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where eTn = (0, 0, . . . , 1, . . . , 0) contains a 1 only in the n-th position, and so(
∂A
∂θn

)H
= en

(
∂an
∂θn

)H
. (3.15)

Inserting this expression into (3.13) gives

∂
(
yHPy

)
∂θn

= 2 Re

( 1×N︷ ︸︸ ︷
yHA

(
AHA

)−1

N × 1︷︸︸︷
en︸ ︷︷ ︸

1× 1

1×M︷ ︸︸ ︷(
∂an
∂θn

)H M × 1︷ ︸︸ ︷
(I−P) y︸ ︷︷ ︸

1× 1

)
(3.16)

This expression is applied to each of θn, and the results arranged as a vector to obtain

∂
(
yHPy

)
∂Θ

= 2 Re



yHA
(
AHA

)−1 e1

(
∂a1
∂θ1

)H
(I−P) y

yHA
(
AHA

)−1 e2

(
∂a2
∂θ2

)H
(I−P) y

...

yHA
(
AHA

)−1 eN
(
∂aL
∂θN

)H
(I−P) y


= 2 Re

((
yHA

(
AHA

)−1 )� (DH (I−P) y
))
, (3.17)

where

D =
[
∂a(θ1)
∂θ1

,
∂a(θ2)
∂θ2

, . . . ,
∂a(θN )
∂θN

]
, (3.18)

and A�B is simply the element by element, or Hadamard product of two matrices or
vectors.

3.1.3 Far field Sources

For far field sources, it is assumed that the gain of each sensor is the same for all
sources, and the only feature which distinguishes source locations is the relative delay
to each of the sensors of the array. This is simply a function of the source angle and
the sensor location.

The “gain” of each element of the steering vector (refer to equation 2.72) is

Gn(θn)e−jωlτm(θn) = e
+j2πDmn

λl , (3.19)

where λl is the wavelength of the signal at angular frequency ωl, and Dmn is the distance
in the direction travelled by the plane waves between the location of sensor m and the
array reference point (refer to Fig. 3.2). Dmn can be calculated as the distance from the
origin of the intersection of the lines y = cot θx and y = ym − tan θ(x− xm), given by
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Figure 3.2: Geometry for far field sources.

Figure 3.3: Geometry for near field sources.

Dmn = xm sin θn + ym cos θn. The angle θn of the source is taken from some arbitrary
“axis” of the array. For the synthetic array used in this thesis, the angle is from a
perpendicular to the direction of travel. The derivative (for use in equation 3.18) is

∂Amn

∂θn
= j

2π
λl

(xm cos θn − ym sin θn) Amn. (3.20)

3.1.4 Near Field Sources

For near field sources, the delay between a source point and a sensor point is dependent
on the absolute position of the source point. In addition, the amplitude of the signal
from a particular source is also dependent on the distance.

Thus each element of the steering vector (refer to equation 2.72) is

Gn(θn)e−jωlτm(θn) =
1

Dmn
e
−j2πDmn

λl , (3.21)
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where Dmn (referring to Fig. 3.3) is given by

D2
mn = (xm − xn)2 + (ym − yn)2

= d2
n + d2

m − 2dn(xm sin θn + ym cos θm). (3.22)

The derivatives (for use in equation 3.18) are

∂Amn

∂xn
= Amn

(
xm − xn
Dmn

)(
j

2π
λl

+
1

Dmn

)
∂Amn

∂yn
= Amn

(
ym − yn
Dmn

)(
j

2π
λl

+
1

Dmn

)
. (3.23)

Note that the standard half wavelength sensor spacing rule, which guarantees that
no aliasing will occur in the operation of a far field array, is not sufficient to prevent
aliasing in the near field [3] (this is discussed in more detail in Section 3.2.2).

3.1.5 Parameter Estimation

In principle, (3.8) can be used to find the maximum likelihood estimate of the spatial
parameters Θ, and then (3.4) provides a simple linear estimate of the signal parameters
Z. If there are more than say two spatial parameters (two far field sources or one near
field source) the likelihood function has too many dimensions for a global search to
be feasible. The derivative of the likelihood function (from Section 3.1.2) is useful
for optimising a solution only if the starting point for the optimisation is close to the
global maximum because in many situations the likelihood function has a large number
of local maxima. Optimisation using the derivative has been used in this thesis, but
only after a good initial estimate has been obtained using some other method. The
primary means of obtaining this initial estimate was some form of subspace spectral
estimation.

3.2 Subspace Spectral Estimation

Equation 2.66, applicable for sources in the far field of the synthetic array, can be
seen to be simply an expression for the sum of complex sinusoids with additive white
noise. Provided the SNR is sufficient, standard spectral estimation techniques can thus
be applied to estimate the signal Doppler frequencies and amplitudes of each of the
sources. Once these parameters have been estimated the signal prediction is performed
by extrapolation of the sinusoids.

All of the subspace spectral estimation methods commence with an estimate R̂y of
the signal correlation matrix introduced in (3.8), and eigendecomposition of this matrix
or some sub-matrix of it.

In conventional array processing, it is relatively simple to obtain a good estimate
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of this correlation matrix by taking the time average of the correlation between each
pair of array elements (averaging over so called snapshots):

R̂y =
1
L

L∑
k=1

ylyHl . (3.24)

For a synthetic array, the receiver is normally only at each location once, so this option
is not available. Some averaging can be obtained using different frequencies, but as
(3.8) is only valid under the condition that the frequencies are all close, the samples
will not be independent, and so a good estimate of Ry will not be obtained. For far
field sources, the correlation between the signals at two array elements is

E{ym1y
∗
m2
} = E

{(
N∑
n=1

ζne
jm1$n

)(
N∑
n=1

ζne
jm2$n

)∗}

= E

{
N∑

n1=1

N∑
n2=1

ζn1ζ
∗
n2
ej(m1$n1−m2$n2 )

}

= E

{
N∑
n=1

|ζn|2 ej$n(m1−m2)

}
, (3.25)

where the last line follows from uncorrelatedness of the signal complex amplitudes. This
expression is clearly dependent on m only through the difference m1−m2. Thus a good
estimate R̂y of the correlation matrix can be obtained by averaging the correlation over
different pairs of equally spaced sensors. This leads to what is known as the “covariance
method” of estimation the correlation matrix [154, p538]. Unfortunately this does not
hold for near field sources (this is discussed in more detail in Section 3.2.2 where the
MUSIC method is applied to near field sources).

It can be seen from (3.25) that E{ym2y
∗
m1
} = (E{ym1y

∗
m2
})∗, and hence that further

averaging of the correlation between terms m1 and m2 can be obtained by including
the complex conjugate of correlation between terms m2 and m1. This leads to the
“modified covariance” estimate [154, p543]. This increased averaging was found to be
useful in reducing the variance of the parameter estimates.

If the signal samples (array elements) are much more closely spaced than the Nyquist
sampling rate, a smaller correlation matrix can be calculated. If the distance between
array elements is ∆x (and the moving receiver itself is not part of any multiple-reflection
paths) the spatial frequencies are band limited to the range (−2π∆x/λ, 2π∆x/λ]. The
correlation matrix may be constructed based on overlapping sets of samples L times
further apart than the original data, where L < λ/(2∆x). The (M −PL+L)×P data
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matrix is

X =


x(P−1)L+1 . . . xL+1 x1

x(P−1)L+2 . . . xL+2 x2

...
...

...
xM . . . xM−(P−1)L

 . (3.26)

The P × P correlation matrix estimate is then formed as R̂y1 = (M − PL +
L)−1XHX, or for the modified covariance method, using both forward and back-
ward terms, R̂y = (R̂y1 + KR̂∗y1K)/2 where K is a P × P matrix with elements
[K]ij = δi,P+1−j . An integer L larger than unity was found to give some improvement
in estimation accuracy, and a considerable decrease in computation time. Using this
approach ∆x is redefined in subsequent calculations as L times the distance between
adjacent samples. This decreases the correlation matrix size, while still using all the
data to reduce the effect of noise. The improvement in prediction accuracy associated
with a lower model order, while making use of higher rate data would appear to be
functionally equivalent to that observed by Eyceöz et al. [46] for what is called there
“adaptive tracking”. The model used there is for an autoregressive (AR) model, im-
plemented in a recursive fashion. The improved averaging resulting from this approach
removes the need for the low pass filtering, and reduces the clustering of frequencies
around zero reported in [74].

The following few paragraphs are adapted from [154]. From (2.67) the estimated
correlation matrix of the received signals r can written as

Rr = E
{
rrH

}
= E

{
AζζHAH

}
+ E

{
ηηH

}
= ARζAH + σ2

ηI

=
N∑
n=1

(
PnanaHn

)
+ σ2

ηI, (3.27)

where Pn = E{|ζn|2}, Rζ = diag(P1, . . . , PN ) and an is the nth column of A.

Now consider the eigenvectors of the P × P matrix Rr. If the columns of A are
linearly independent, then it is possible to find exactly P − N eigenvectors in the P -
dimensional space that are orthogonal to all the columns of A. If vi denotes one of
these eigenvectors, then

Rrvi =
N∑
n=1

(
PnanaHn vi

)
+ σ2

ηvi = σ2
ηvi (3.28)

since anvi = 0 ∀n. Thus these eigenvectors all correspond to eigenvalues λi = σ2
η. The
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remaining N eigenvectors cannot be orthogonal to the columns of A. Therefore they
lie in the subspace defined by A and have eigenvalues greater than σ2

η. This subspace
is called the signal subspace. The complementary subspace, which is orthogonal to the
signal subspace, is called the noise subspace.

3.2.1 MUSIC

The Multiple Signal Classification (MUSIC) [129] subspace method has the great ad-
vantage over the other methods to be introduced later, that it is readily adapted to
models featuring near field sources, irregular sampling intervals and samples that are
not colinear [20, 129]. This is applicable if the trajectory of a moving receiver is known
and is not a straight line traversed at constant speed (detected by some inertial sensor
for instance).

Given some estimate N̂ of the number of sources present, the eigendecomposition
of R̂r can be represented as

R̂r = V̂Λ̂V̂H , (3.29)

where

V̂ =
[

V̂sig V̂noise

]
, (3.30)

Λ̂ is diagonal and the orthonormal eigenvectors comprising V̂sig correspond to the N̂
largest eigenvalues. A projection matrix for the noise subspace can be formed as

Pnoise = Vnoise

(
VH

noiseVnoise

)−1
VH

noise = VnoiseVH
noise. (3.31)

If a vector lies in the signal subspace, then its projection onto the noise subspace will
be small. The set of possible spatial parameters which can produce vectors lying in
the signal space can be searched for those having such a small projection. For complex
sinusoidal signals (analogous to far field sources) the search is one dimensional, and the
inverse square of the projection magnitude forms what is known as a pseudo-spectrum
since peaks indicate the presence of signal at a given frequency. For near field sources,
the search is two dimensional, but in some situations can still be practical to perform.

The squared magnitude of the projection p of a vector a($) onto the noise subspace
is

‖p‖2 = aVVHVVHa = ‖VHa‖2 (3.32)

and the inverse of this forms the pseudo-spectrum, the location of the N̂ largest peaks
of which are taken as the solution to the estimation problem.
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(a) (b)

Figure 3.4: Contours of the relative error (3.34) which results from calculations of the
channel using the far field approximation for long (a) and short (b) array lengths. The
contour value is 0.01. In both cases the horizontal axis represents distance along the
array axis, and the vertical axis represents distance from the array axis. For short arrays
the dimensions of the “near field region” varies linearly with array length, whereas for
long arrays the dimensions of the near field region varies with the square of the array
length. For this reason, in (a), the axes have been scaled by the square of the array
length, and in (b) by the array length.

3.2.2 Near Field MUSIC

There have been numerous methods proposed to allow the localisation of near field
sources [2, 89, 139]. These were evaluated in the course of the research reported here. It
was found that the approximations which are key to the operation of these methods are
frequently not valid for sources which are truly near (not more than a few wavelengths
from) an array. By contrast MUSIC, (given a good correlation estimate) was found
to perform robust estimation even for very near sources. There are some additional
considerations with using MUSIC for the near field situation. One is the issue, already
mentioned, of estimating the correlation matrix when only one snapshot is available at
any one location in space.

If measurements of the channel are available at more than one frequency, averaging
over different frequencies can be used to overcome this problem. It was found that
useful results could be obtained if the frequency variation allowed at least one 2π phase
rotation in the term e−j2πRmn/λ, which means the frequency range must be at least of
the order of ∆f/f > λ/(2πRmn). There is a conflicting requirement that the percentage
frequency variation be small so that the scattering scenario be essentially the same for
each frequency. This is turn places a limitation on how close the scatterers can be to the
receiving antenna. For instance a 2% frequency variation requires the sources be at least
8 wavelengths distant. In most situations this is not an unreasonable requirement, but



54 CHAPTER 3. PREDICTION ALGORITHMS

(a) (b)

Figure 3.5: Contours of the relative error (3.34) which results from calculations of the
channel using the far field approximation for an array length of 2 wavelengths (a) and
0.01 wavelengths (b). In both cases the horizontal axis represents distance along the
array axis, and the vertical axis represents distance from the array axis. In (a), the
axes have been scaled by the square of the array length, and in (b) by the array length.

the amount of frequency variation over which the scattering scenario can be considered
essentially unchanged is unknown.

The other issue is the two dimensional search. Unlike the far field case there is
no finite search range. There is however, a region beyond which a near field source
becomes indistinguishable from a far field source. Referring to (3.22) when xm � dl,
and the array is linear, so that ym = 0,

Dmn = dl

√
1 +

(
xm
dl

)2

− 2
xm
dl

sin θn

≈ dl − xm sin θn. (3.33)

When this expression is used for Dml in the complex exponent of (3.19), and dl is used
for the multiplicative factor in that equation, the expression for the elements of the
steering vector simplify to the far field case (with a multiplicative factor of e−j2πdl/λ/dl
which is the same for all elements of the array).

The relative error between the near field and far field expressions for a single source
point is thus

ε =

∣∣∣ 1
Dml

e−j
2π
λ
Dml − 1

dl
e−j

2π
λ

(dl−xm sin θ)
∣∣∣∣∣∣ 1

Dml
e−j

2π
λ
Dml
∣∣∣ . (3.34)

Contours of this quantity will contain all the points for which the relative error is larger
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than a certain quantity. This is called here the near field region. The contours are shown
in Fig. 3.4 and Fig. 3.5. For very short arrays the linear dimensions of the near field
region are approximately proportional to the length of the array. For arrays longer
than about a wavelength (subfigure (a) in both figures), which includes most arrays of
practical interest, the linear dimensions of the near field region are proportional to the
square of the array length.

In order to ensure that the error does not exceed 1% it is sufficient for the “pseudo-
spectrum” to be evaluated at all points inside the 1% contour. Although the region is
clearly not semicircular in shape, in practice the “pseudo-spectrum” was evaluated at
all the points in a semicircular region based on a polar grid.

3.2.3 Aliasing

It is well known that if information is not to be lost in sampling a band-limited signal,
the sampling rate must exceed twice the highest frequency in the signal [e.g.,103].
In far field array processing this equates to the requirement that elements be placed
closer than half of one wavelength. If elements are placed further apart than this, an
ambiguity arises in determining the location of sources. For the purposes of prediction,
if the sampling continues at exactly the same spacing, the ambiguity is not apparent,
and does not affect prediction accuracy. In practice, such exact spacing is not likely,
and the possibility of aliasing must be considered.

Although it is not considered elsewhere in this thesis, the observation is made
here that for some time division multiple access (TDMA) systems, for high speeds of
travel and high transmission frequencies it is quite possible that the spacing between
consecutive samples may exceed half of one wavelength. Even for far field sources then,
spatial aliasing may occur. This factor must of course be considered in any real system
design.

For near field sources the situation is considerably more complicated. The Fourier
transform with respect to xm of (3.21) (using (3.876 1&2) of [64]) shows that the
“spatial spectrum” is not band-limited [3]. To reliably localise several sources, the
element spacing may thus need to be considerably smaller than a half wavelength.

For a very few sources which are not near each other however, the nearness of sources
to an array actually helps to resolve the ambiguity. This is demonstrated in Fig. 3.6
which shows the likelihood function (3.7) of bearing angle θ for a source located 30λ
from the centre of an 11 element array. The solid line represents the likelihood function
for the near field model, and the broken line that for the far field model (for the near
field function the dependence on range has been eliminated by taking the maximum
value for any range). The true value of θ is 0.3π radians, and the SNR is 30 dB. In
subfigure (a), the element spacing is 0.49λ, and no aliasing occurs. In subfigure (b)
the element spacing is 0.60λ and the location of the source is ambiguous. In subfigure
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(a) (b) (c)

Figure 3.6: Likelihood Functions (3.7) for near field (solid line) and far field (broken
line) models for array spacings of (a) 0.49λ, (b) 0.60λ and (c) 2.60λ.

(c) the element spacing is 2.60λ. There are now even more aliases present, which the
far field model cannot resolve. The near field model however has no difficulty resolving
the true location. The profile of the likelihood as a function of the range (not shown
here) reveals that the range can also be determined unambiguously. If there are many
sources however, the likelihood function may again become ambiguous.

3.2.4 Minimum Norm Spectral Estimation

For far field sources, when the spatial frequencies are fixed, the projection onto the
noise subspace in (2.68) of a vector a of the form defined in (3.32)

a($) = (ej$0, ej$1, . . . , ej$(M−1))T

can be expressed as the evaluation of a polynomial in ej$. The zeros of the projection
(peaks of the pseudo-spectrum) thus correspond to zeros of this polynomial which lie
on the unit circle. The degree of the polynomial is M , and the number of roots which
correspond to sources is N < M , hence there are also extraneous zeros.

The noise subspace can be characterised by a single vector d = [d0, d1, . . . , dP−1]T

in the noise subspace. The corresponding polynomial is thus D(z) =
∑P−1

p=0 dpz
−p. It

has been shown [84, 85] that if this vector is chosen so that the norm ‖d‖2 is minimised
subject to the constraint that one of the components is fixed (e.g., the first component
is fixed to unity) then the extraneous roots are all inside the unit circle, and are ap-
proximately uniformly distributed around the unit circle. This is a desirable condition
in that it minimises the possible confusion of the true roots and the extraneous roots.

The constraints that the vector lies in the noise subspace and that first term be unity
can be expressed as d = VnoiseVH

noised and dHe1 = 1 where e1 = (1, 0, . . . , 0)T . These
constraints may be combined as dHVnoiseVH

noisee1 = 1. The Lagrangian associated
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with finding the minimum norm may thus be expressed as

L = dHd + ν(1− dHVnoiseVH
noisee1). (3.35)

Equating the derivative to zero gives d − νVnoiseVH
noisee1 = 0. The matrix of noise

eigenvectors can be partitioned as

V̂noise =

[
cH

V↓noise

]
(3.36)

so that c = VH
noisee1, and so d0 = 1 = νcHc, which implies that the Lagrange multiplier

ν = 1/(cHc) and so the vector d is then given by

d =

[
1

V↓noisec/(c
Hc)

]
. (3.37)

The frequency estimates are formed by finding the N̂ roots of the prediction filter

G(z) = 1 +
P−1∑
p=1

gpz
−p (3.38)

with the largest absolute value (i.e., closest to the unit circle), and projecting these
along radii onto the unit circle (i.e., taking only the complex argument and replacing
the complex magnitude by unity).

3.2.5 Principal Components Linear Prediction (PCLP)

The Wold decomposition theorem [169] (see Section 2.6.3) states that a general random
process can be written as a sum of a regular process, having a continuous spectrum and a
predictable process, having a discrete spectrum. Linear prediction of a noiseless process
is thus functionally equivalent to estimating the parameters of the discrete frequency
components. This is utilised in the principal components linear prediction method of
spectrum estimation [157, 158] .

The linear prediction coefficients are the solution to the normal equations Rrd = 0.
For P > N , the solution is not unique, but for reasons similar to those in Section 3.2.4,
the minimum-norm solution to the equation is desirable. The correlation matrix esti-
mate and the vector d can be partitioned so that the normal equations can be expressed
as [

f −rH

−r R↘

][
1
d↓

]
= 0. (3.39)

Since the first component d0 is constrained to be equal to one, minimisation of ‖d‖2
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is equivalent to minimisation of ‖d↓‖2. When noise is present, the eigenvectors corre-
sponding to the noise subspace are effectively eliminated by using the rank N̂ Moore-
Penrose generalised inverse. If the N̂ largest eigenvalues and the corresponding eigen-
vectors of R↘ are λ1, λ2, . . . , λN̂ and v1,v2, . . . ,vN̂ then

d↓ = R↘+(N̂)r = −
N̂∑
n=1

(
vHn r
λn

)
vn. (3.40)

As with the minimum norm procedure, the frequency estimates are obtained by pro-
jecting the zeros of the filter along a radius to the unit circle.

3.2.6 ESPRIT Algorithm

In the Estimation of Signal Parameters via Rotational Invariance (ESPRIT) technique
[125] use is made of the structure of the signal matrix A (see equation (2.68)). Sub-
matrices of the matrix A are taken; deleting the top row to obtain A↓ and the bottom
row to obtain A↑. Ξ is defined as Ξ = diag

(
e−j$1 , e−j$2 , . . . , e−j$N̂

)
, so A↓ = A↑Ξ.

The signal matrix A and the signal eigenvectors span the same subspace, and hence
can be related by the expression V̂sigΨ = A. Sub-matrices of the matrix of eigenvectors
spanning the signal subspace (V̂sig) are obtained by deleting the top row to obtain V↓sig
and the bottom row to obtain V↑sig.

It is simple to show that V↑sigΨ = A↑, and V↓sigΨ = A↓, and hence that V↓sig =
V↑sig

(
ΨΞΨ−1

)
. This can be rearranged as V↓sig = V↑sigΦ where Φ = ΨΞΨ−1. Φ can

be calculated from the first relationship, and from the second, the eigenvalues of Φ are
the diagonal elements of Ξ.

Φ can be estimated using the least squares approach as

ΦLS =
(
V↑Hsig V↑sig

)−1
V↑Hsig V↓sig (3.41)

or the total least squares approach; if the singular value decomposition of the matrix[
V↑sigV

↓
sig

]
can be written as

[
E↑sigE

↓
sig

]
= UΥ

[
V11 V12

V21 V22

]
, (3.42)

then the total least squares solution is ΦTLS = V12V−1
22 [62, pp595ff ].

In [6] the magnitude of the roots is retained; in effect, the roots are not projected
onto the unit circle. While this may increase the likelihood of a solution (by decreasing
the MSE), whether the freedom to include decaying or growing sinusoids is appropriate
or not depends on the validity of the far field model to the particular situation — data
based on the Doppler frequencies of far field sources will only contain complex sinusoids
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of constant amplitude.

3.3 Gaussian Model

Although the focus in this thesis is on the discrete point sources channel model, other
models have also been considered, and are explained in the following sections.

If there is a continuum of far field scatterers (e.g., [30]) surrounding a receiving
antenna, the summation of signals such as (2.1) in (2.66) for example may be replaced
by an integral;

rm = sm

∫ π

−π
ζ(θ, tm)e−jωcτm(θ)dθ + ηm, (3.43)

or equivalently, assuming as before that the signal sm = 1∀m, and arranging the
samples as a vector

r =
∫ π

−π
ζ(θ)a(θ)dθ + ηm (3.44)

where a(θ) = [e−jωcτ1(θ), e−jωcτ2(θ), . . . , e−jωcτM (θ)]T and other terms are as defined in
(2.68). The following assumptions are made about the complex attenuation function
ζ(θ):

A-1 ζ(θ) is a random function.

A-2 E{ζ(θ)} = 0.

A-3 ζ(θ) is independent for different angles, so the probability density functions have
the property:

p(ζ(θ1), ζ(θ2)) = p(ζ(θ1))p(ζ(θ2)). (3.45)

Using assumption A-1 and A-3 and appealing to the central limit theorem, r can be
assumed complex normal. Using assumption A-2, the mean of r is zero. The correlation
matrix Rr of r is given by

E
{
rrH

}
=
∫ π

−π

∫ π

−π
a(θ1)a(θ2)HE {ζ(θ1)ζ(θ2)∗} dθ1dθ2

=
∫ π

−π

∫ π

−π
a(θ1)a(θ2)Hrζ(θ1)δ(θ1 − θ2)dθ1dθ2

=
∫ π

−π
a(θ)a(θ)Hrζ(θ)dθ, (3.46)
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where rζ(θ) is the variance of ζ at direction θ, and the first equality holds due to
assumptions A-2 and A-3. The model can thus be expressed as a sequence of complex
normal samples:

r ∼ CN (0,Rr) . (3.47)

The prediction algorithm corresponding to this method is now presented. The vector
y here represents the measured complex signal envelope, and the vector x represents
the predicted signal. If x and y are jointly complex normal vectors with zero mean,
and z = [xTyT ]T , then

z ∼ CN (0,Cz) , Cz =

[
Cx Cxy

CH
xy Cy

]
. (3.48)

The minimum mean square error estimator (MMSE) for x given y when Cy is invertible
is given by the conditional expectation

x̂ = E {x|y} = CxyC−1
y y. (3.49)

When Cy is singular, (i.e., with rank of r < N) inversion is undefined and the Moore-
Penrose generalised inverse of C, C+ is used. This is shown as follows. Define the zero
mean complex normal r × 1 vector, g, with a correlation matrix, Cg = Ir such that:

y = Dg, (3.50)

where D is an N × r matrix given by

D = U1

√
λ1, (3.51)

and where U1 and λ1 are given in the following eigendecomposition of Cy

Cy = [U1U2]

[
λ1 0

0 0

]
[U1U2]H . (3.52)

Since y is completely defined by g, x̂ = E [x|y] = E [x|g] = CxgC−1
g g = Cxgg.

Looking for a solution in a similar form to that of (3.49), (x̂ = CxyC̃yy) will lead to
the choice of C̃y given by

C̃y = D
(
DHD

)−2
DH = U1λ

−1
1 UH

1 , (3.53)

which is the Moore-Penrose generalised inverse of Cy.

The estimation error of x given by e = x̂−x is a zero mean complex normal vector
with correlation matrix Cee = Cx − CxyC̃yCyx. When r = N the estimation error



3.4. POLYNOMIAL PREDICTION 61

correlation matrix is given by

Cee = Cx −CxyC−1
y Cyx. (3.54)

In the eigendecomposition of Cy, eigenvalues smaller than those required to include a
certain percentage (the majority) of the energy in the signal are taken to be zero.

The correlation between the signal at any two points in space may be modelled, for
example, as the Bessel function J0 [76], so the ij−th element of the matrices Cxy and
Cy are given by J0

(
(i− j)2π∆x

λ

)
. As shown in Section 2.3, this correlation function

occurs when the scatterers are distributed uniformly in a plane surrounding the receiver.

Rather than assume that the correlation function is fixed, an alternative technique
is to attempt to estimate the correlation function from the data. This is essentially
the same as estimating a high order autoregressive (AR) model, and using this for
prediction.

3.4 Polynomial Prediction

A simple polynomial prediction model may also be used. A complex polynomial of
order N̂ is fitted to the data using the subset B of a Vandermonde matrix

B(N) =


1 11 12 . . . 1
20 21 22 . . . 2(N−1)

...
...

...
...

M0 M1 M2 . . . M (N−1)

 , (3.55)

and the array of polynomial coefficients b = [b0, b1, . . . , bN̂−1
]T so that r = B(N̂)b.

The least squares solution to this equation found in order to perform prediction is

b̂(N̂) =
(
B(N̂)HB(N̂)

)−1
B(N̂)Hr.

The order N̂ of the polynomial used in this method was chosen using a form of the
MDL criterion (see section 3.6) appropriate to the polynomial model:

N̂ = arg min
N

M log
(

1
M

∣∣∣Re
(
rHr− rHB(N)b̂(N)

)∣∣∣)+N log(2M). (3.56)

3.5 Fixed Sector Prediction

The performance of prediction based on point source models depends critically on the
accuracy of the spatial frequencies involved, since error in frequency becomes more and
more apparent as the attempted prediction range increases. This will be shown in more
detail in Section 4.4.

A method of prediction which has been independently suggested in discussion by
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various researchers [163] is to assume that all the sources within a certain sector sur-
rounding the receiver can be approximated by a single source at the centre of the sector.
This approach turns out to be unworkable, for reasons which will be explained in this
section. The approach does however provide an insight into the importance of accurate
spatial frequency estimation.

Suppose that the sources in a sector of size 2∆θ are modelled by a single source at
the centre of the sector at angle θ0. The model is most in error if the actual source
location is at the edge of the sector at θ0±∆θ (if the sector is large and if there are a large
number of sources present in the sector, it is actually possible to find an arrangement of
sources which will produce a model with a larger error than a single source at the edge
of the sector, but this possibility is ignored here). The Doppler frequencies measured
in radians per sample interval, $ and $̂, correspond to the source locations θ0 and
θ0±∆θ respectively (using the relationship $ = (2π∆x sin θ)/λ). If the signal samples
are r = (rm1 , rm2 , . . . rmM )T , the signal amplitude is ζ and the samples are indexed
m = (m1,m2, . . . ,mM )T , then the received signal is given by r = aζ = ζej$m. Using
(3.4), the source amplitude will be estimated as ζ̂ = aHr/M = (e−j$̂mT

)r/M , and the
predicted signal as r̂ = ζ̂ej$̂m. In this section and in Section 4.4 ej· where · is a matrix
or vector means exponentiation of the elements of a vector or matrix, rather than the
matrix exponential. The squared error at sample position mf can be calculated as

|ε(mf )|2 =
∣∣∣ζej$mf − ζ̂ej$̂mf ∣∣∣2

= |ζ|2
∣∣∣∣∣ej$mf − 1

M

∑
m

ej($−$̂)mej$̂mf

∣∣∣∣∣
2

= |ζ|2
1 +

∣∣∣∣∣ 1
M

∑
m

ej($−$̂)m

∣∣∣∣∣
2

− 2 Re

(
ej($−$̂)mf

1
M

∑
m

ej($−$̂)m

) ,

(3.57)

which can be seen to depend on the Doppler frequencies only through the frequency
difference ∆$ = $− $̂. An implication of this is that to achieve about the same error
for each sector, the sectors must be arranged so that each occupies an equal range of
Doppler frequencies. When θ is small, ∂$/∂θ is large, so the sectors must be small,
whereas when θ is large (i.e., the source direction is orthogonal to the direction of
travel), the sectors can be larger.

For a fixed error ε(mf ), this expression can be rearranged to obtain an allowed error
∆$ as a function of the prediction point index mf . If the prediction point is expressed
as a percentage of the measurement segment length, the allowed error multiplied by
M − 1 is independent of the actual value of M . This function is shown in Fig. 3.7

If the distance between samples is ∆x, then the range of possible Doppler frequencies
is from −2π∆x/λ to 2π∆x/λ. If the frequency range covered by each sector is 2∆$,
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Figure 3.7: The allowed error ∆$ in $ if a given prediction range is required. The
allowed channel error ∆r is expressed as a fraction of the actual channel value. Note
that when multiplied by M − 1, the error ∆$ is independent of the actual number of
samples M .

then the number of sectors required and thus the number of complex parameters in
the model is 2π∆x/(λ∆$). Since the synthetic array spans a distance of (M − 1)∆x,
the number of samples needed to reconstruct the signal, and therefore the number of
independent samples available, is approximately 2(M −1)∆x/λ. For this number to be
greater than the number of parameters requiring estimation, it is then required that

∆$
M − 1

2π
>

1
2
. (3.58)

It is obvious from Fig. 3.7, that for reasonable error levels and prediction ranges, this
requirement is not met. For data which has any reasonable level of noise, estimating a
larger number of parameters than the number of uncorrelated data samples available
is not a robust procedure.

If the number of sectors N and the sector locations are fixed, the steering matrix
for these sector locations can be calculated a priori, as well as its generalised inverse.
If m = (m1,m2, . . . ,mM )T and $ = ($1, $2, . . . $N )T , then A = ejm$

T
.

Similarly if m2 = (m1,m2, . . . ,mM , . . . ,mM2)T represents the indices of the syn-
thetic array extended to include the predicted data points, then A2 = ejm2$T

is the
steering vector for the extended array. Since r = Aζ + η, the estimated source am-
plitudes are given by ζ̂ = A+r and so the estimated (predicted) signal is given by
r̂ = A2ζ̂ = A2A+r.
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If ∆x = λ/2, the frequencies $ define an orthogonal set of sinusoids, and so esti-
mating the source complex amplitudes ζ amounts to performing a discrete time Fourier
transform (DTFT). The inverse of the DTFT is periodic, and so extrapolation based
on the DTFT is simply repeating the data that has already been received, possibly
with a period depending on the number of sectors, and thus possibly different to the
data collection interval. If the number of sectors is smaller than the number of data
samples (N < M), the repeated data sets overlap, and if N > M , the repeated data
sets are separated by zeros.

If ∆x < λ/2, the sinusoids in the set defined by $ are no longer orthogonal.
Although the data inside the measurement segment is accurately represented, the es-
timated amplitudes are very large. For data outside the measurement segment, these
large amplitudes no longer cancel each other, and so very large signals are predicted.

The behaviour in each of these cases is demonstrated by the following examples of
A2A+. For the left matrix, ∆x/λ = 0.5 and for the right matrix ∆x/λ = 0.1. In both
cases N = 5, M = 4, and M2 = 8.

(
A2A+

)
0.5

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


,

(
A2A+

)
0.1

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 3.7 −5.4 3.7
−3.6 12.5 −16.3 8.3
−8 26.4 −31.9 14.3
−13.6 43.5 −49.9 20.8


(3.59)

It is reasonable to conclude then, that a method which assigns source bin locations
before the data has been received, is not able to provide reliable prediction.

3.6 Determining the Model Order N̂

One of the problems in array processing is that of determining the model order, i.e.,
the number of sources. Determining the number of sources is necessary since all the
parameters of the model are required for prediction to be possible. The number of
sources cannot be estimated via the maximum likelihood criteria, since allowing a higher
degree of freedom will only increase the likelihood. However, the Akaike information
criterion [4] and the Minimum Description Length (MDL) [124, 131] criterion both
address the problem by using the likelihood function penalised by a function of model
order. The MDL criteria is known to be both unbiased and consistent. A specific choice
of the parameters to be the eigenvalues (λ1 > λ2 · · · > λP ) and the eigenvectors of the
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Figure 3.8: An example of a channel locus, showing the boundary that might be used
for labelling the sample data for a support vector classification. The axes are the real
and imaginary parts of the complex narrowband channel gain. If the locus enters the
circular region within the next x wavelengths, the training data may be labelled as
“will fade”.

correlation matrix yields the version of the MDL by Wax and Kailath [165]. This is
the method chosen in this thesis, so N̂ is given by

N̂ = arg min
N

− log


 ∏P

i=N+1λ
1

P−N
i

1
P−N

∑P
i=N+1λi

(P−N)(M−PL+L)


+
1
2
N(2P −N) log(M − PL+ L). (3.60)

3.7 Support Vector Machines

Support vector machines [24, 33, 36] are a relatively recent development in the field of
machine learning. Briefly, support vector machines provide a method of performing lin-
ear classification or regression using a hyperplane in a feature space defined by a kernel
function. The loss function to be minimised in finding this hyperplane is usually some
form of “ε-insensitive” loss function. In many applications support vector machines are
efficient, have good generalisation performance, and produce sparse representations of
the classification or regression hypothesis. Since the kernel (the map into feature space)
may be a non-linear function, support vector machines are a particularly efficient way
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of modelling data in a non-linear way. Once a regression hypothesis has been formed
on the basis of a sequential data set, it may be used for extrapolation or prediction of
that data set.

This approach has been used on some of the data measured for this thesis in [69].
The prediction performance does not appear to improve on the linear methods pre-
sented here. However, the possibilities of using support vector machines in channel
modelling have not yet been fully explored. For instance, if narrowband predicted
channel information was to be used simply to provide advanced warning of fades, the
problem could be simplified to a classification — a sequential set of channel measure-
ments could be classified on the basis of whether or not the channel power became less
than some threshold within the next x wavelengths. An example threshold is shown
graphically in Fig. 3.8.

3.8 Summary and Contributions

The subspace methods of estimating the parameters of several channel models have
been outlined in this chapter. Also several other channel models, together with their
estimation algorithms have been presented. The algorithms will be used in Chapter
4 to assess the effectiveness of the models in allowing channel prediction. Most of
the algorithms are well known in the literature. However, we itemise some specific
contributions made in this chapter:

i. A concise expression has been derived for the first derivative of the likelihood
function of the spatial parameters of discrete point sources models.

ii. A simple but novel method has been presented for estimating the correlation ma-
trix which considerably enhances the effectiveness of subspace methods of spectral
estimation.

iii. The notion that sources in a particular region (e.g., angular sector) can be rep-
resented by a single “effective” source is prevalent. New insights have been pre-
sented into this concept which show that for prediction purposes, such a model
will generally be inadequate.

iv. The difficulty of performing estimation of the parameters of a near field model
from a synthetic array has been highlighted.



Chapter 4

Simulations, Measurements and

Bounds

THIS chapter presents the results of applying the models and algorithms of the
previous chapters to several simulated and measured channels. Several different

parameters, both of the channel and the mobile receiver, are adjusted to evaluate the
effect of these on the reliability of channel prediction. These parameters include the
SNR, the length of the mobile trajectory over which data is collected, and the number
of discrete point sources present in the environment.

Several criteria are proposed for the evaluation of prediction accuracy, and one of
these is chosen for the more extensive investigation of the remainder of the chapter.

The Cramer Rao bound for prediction accuracy is derived, which confirms the con-
clusions resulting from the simulations. A bound based on consideration of multipath
dimensionality is also derived.

Some other factors are discussed which may limit prediction in some situations.
One of these is rough surface scattering, and this is investigated in detail.

4.1 Performance Measures

The performance criterion chosen here is the distance (in wavelengths) for which the
predicted and actual signal envelopes are within 20% of the root mean square (RMS)
value of the envelope in the measurement segment. As can be seen in the example of
prediction behaviour presented in Fig. 4.1, this may be a pessimistic criterion in many
occasions, since the error even in the measurement segment may exceed 20%, especially
when the SNR of the data is small.

The performance measure used in [6] (distance for which the predicted and actual
signal envelopes are within 5% of the maximum amplitude value in the measurement
segment) is not feasible for the SNR values considered here.

In order to obtain a performance measure for a particular set environment the
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Figure 4.1: Example of Prediction Behaviour. The graph shows the magnitude of the
measured and predicted channel and the prediction error. Only the measured data to
the left of the first vertical line is used for prediction. The region between the two
vertical lines is where the predicted envelope is within 20% of the actual envelope. The
RMS level of the measured envelope has been scaled to 1, so prediction is said to “fail”
when the error first exceeds 0.2.

mean of the prediction length for individual scenarios is used. An alternative measure
which has some merit is to consider the expected error in the prediction segment. The
prediction gain is defined in [17] as

G(t) =
E{|(r(t)− E{r(t)}|2}
E{|r(t)− r̂(t)|2}

, (4.1)

sometimes expressed in decibels. In order to obtain a distance-independent perfor-
mance measure, the prediction length can then be defined as the distance at which the
prediction gain falls below a certain threshold. In an experimental context this measure
is only defined when there is sufficient data for an expectation to be calculated. This
measure is in some ways similar to the previous one, but is not so suitable for small
data sets where the expectations are harder to estimate. It does have the advantage
however that the Cramer Rao bound of this measure is readily calculable. This is done
in Section 4.4

Another performance measure which was considered, but not presented here, is the
distance for which the cumulative error between the predicted and actual envelopes
is less than some ratio of the RMS value in the measurement segment. This has the
advantage of not “disqualifying” a prediction for error of large magnitude but very
short duration. This measure could be appropriate if the prediction information were
to be used to negotiate a change in power level, modulation or coding, for example.

Another performance measure could be devised involving the accuracy in time of
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the estimates of envelope magnitude minima (i.e., fades), especially those fades of more
than a certain depth. This measure would be particularly appropriate if the use to be
made of the prediction information was to avoid serious fades, for example, by changing
channels.

4.2 Simulations

The performance of each of the algorithms was investigated using simulation. In this
section the simulations are described and the results are presented.

4.2.1 Simulation Setup

Simulations are used to provide a comparison of the performance of each algorithm.
The simulations used a set of N far field sources with amplitudes taken from a complex
normal distribution of variance 1/N . The expected power of the simulated signal is
thus unity (similar experiments with all sources of equal amplitude give almost identical
results). Unless specified otherwise, the number of sources N is 5, 10, 20 and 100, the
number of measurement points M is 40, the SNR is 20 dB, the measurement segment
length (M − 1)∆ is λ/3 or 10λ, and N̂ is chosen by the MDL criterion. The number of
independent scenarios used to find the mean performance is 3000.

4.2.2 Simulation Results

In this section are some general comments which apply to all of the results. Specific
comments about each study are in the following sections.

Some of the results presented in this section use a combination of the subspace
methods, where the subspace method yielding the lowest MSE in the measurement
segment is chosen for any particular scenario. In some cases the gradient calculated
in Section 3.1.2 was used to improve the parameter estimates. In almost all cases an
improvement was found, but the improvement was not great, and this is not discussed
further.

Many of the graphs presented show a decrease in performance as the measurement
segment length increases above about 1λ. This decrease is partly an artefact of the
spacing between samples increasing; the inter-sample spacing is the same in the predic-
tion segment as in the measurement segment and so the prediction length is observed
as zero if it is less than the inter-sample distance. The decrease is also due to the
increase in model order chosen using MDL for longer measurement segments. It may
be more appropriate in some situations with long measurement segments to limit the
model order to achieve more robust, if not always optimal prediction.
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Figure 4.2: Prediction Performance versus Measurement Segment Length using a sub-
space method (PCLP) for different numbers N of far field sources.

4.2.3 Prediction Length versus Measurement Segment Length

In Fig. 4.2 and Fig. 4.3 the prediction performance is presented as a function of the
length (in wavelengths) of the measurement segment. The prediction lengths of interest
are those well over 0.1λ and the graphs appear highly variable below this range because
of the small distances on the logarithmic scale.

Fig. 4.2 shows the performance of the PCLP algorithm based on the deterministic
far field point sources model. Most subspace methods have very similar (though slightly
inferior) performance to the PCLP algorithm and so are not shown.

Fig. 4.3 presents the results for some other prediction algorithms — polynomial
prediction, linear prediction for the stochastic channel model based on an assumed
J0(2π(x/λ)) correlation function, and the trivial estimator which is to continue the
channel at the last measured complex value. It can be seen that none of these methods
is capable of reliable prediction to any significant range even if the actual number of
sources is very small.

None of the methods achieved prediction beyond about 0.2λ until the length of the
measurement segment exceeds 2λ (this is true even when the actual source locations
are known perfectly as shown in Fig. 4.3(b)). For longer measurement segments, the
subspace methods showed significant prediction performance, the prediction length
rising rapidly with increasing measurement segment length (between 1.2 and 1.7th
power). Where the number of actual sources is very large however, the prediction
performance does not increase. A practical limitation for prediction appears to be
the number of sources being large, which means that a long measurement segment
is required. In practice long measurement segments become impractical because it is
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(a) (b)

Figure 4.3: Prediction Performance versus Measurement Segment Length using some
other algorithms: (a) Polynomial Prediction, Linear Prediction based on an assumed
J0(.) correlation , and the trivial “constant value” predictor. The number of sources
N is 5, but other values of N give very similar results. (b) the Discrete Point Sources
model where the locations of the sources are known perfectly, but the amplitudes and
phases must be estimated.

unlikely that sources remain unmoving over trajectories of many wavelengths, except
perhaps at very high carrier frequencies, where a given trajectory traverses a larger
number of wavelengths.

The polynomial and stochastic prediction methods seemed to show no increase in
prediction performance as the length of the measurement segment increased. As the
number of sources increases one would expect that the assumptions used in deriving the
stochastic model (Section 3.3) become progressively more applicable. The performance
of all the prediction methods then becomes severely limited.

The significant conclusion from this experiment is that if the number of sources
is large, prediction over distances more than a few tenths of a wavelength may not be
achievable. This is true even in Fig. 4.3(b) where the source locations are known per-
fectly, and it is only the complex amplitudes which must be estimated. It is widely
asserted in the literature that the number of significant sources in a typical mobile
communications environment is small [58, 71], possibly because many of the statistical
measures (correlation, probability density etc.) of a real channel can be simulated with
only a small number of sources [76], and within a small region it is impossible to dis-
tinguish a small number of paths from a large number (see Section 4.7). Though there
may be many small sources, a significant source in this context is a single source which
contributes a large proportion of the total received energy. The experimental justifi-
cation that these are usually few is rather sparse or may be interpreted as suggesting
that there are usually many sources [38, 47]. For the relatively new application of “long
range” channel prediction, the number of sources can be seen to be pivotal. Simply
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Figure 4.4: An example of the sample probability density function. The Measurement
Segment Length is 11.8λ and the number of far field sources N = 5.

because a channel model constructed with few sources is realistic in some respects, does
not imply that it is realistic in all respects (see Section 2.3.5). More definitive bounds
on prediction length are derived in Section 4.4.

The remainder of the results of this section are all based on prediction using the
subspace methods of estimating the parameters of the far field point sources model.

4.2.4 Distribution of Prediction Lengths

Fig. 4.4 presents an example distribution of the prediction lengths. In most of the
experiments it was found that a large number of scenario samples (typically between
6% and 16%) result in zero successful prediction length. Fig. 4.4 is presented with a
logarithmic axis, and appears to suggest that the prediction lengths are exponentially
distributed, and this appearance is often found. Although the Kolmogorov Smirnov
test [5] rejects the exponential distribution hypothesis, the mean prediction length
is achieved or exceeded in about 37% of cases, as an exponential distribution would
suggest.

The distribution of prediction lengths is of interest because it influences the use-
fulness of the prediction information. For instance, a large mean prediction length
resulting from a few very “successful” predictions is not very useful if most of the time
the prediction length is very short.

4.2.5 Prediction Length versus SNR

Fig. 4.5 presents the prediction performance as a function of SNR for a long measure-
ment segment (10λ) and a short measurement segment (λ/3). These results show that
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(a) (b)

Figure 4.5: Prediction Length versus SNR for (a) a Long Measurement Segment 10λ
(b) a Short Measurement Segment(λ/3). The lowest MSE of the subspace algorithms
was used for both experiments.

if the measurement segment is long enough for prediction to exceed about 0.2λ, then
a significant increase in SNR is accompanied by a significant increase in prediction
performance. If the measurement segment is short however, SNR does not improve
the prediction significantly (at very high SNR, prediction will improve, but such SNR
could not be expected in practice). Once again the conclusion is reached that the mea-
surement segment length must be at least several wavelengths for prediction to become
feasible.

4.2.6 Prediction Length versus Number of Samples

Fig. 4.6(a) presents the prediction length when the number of measurement samples
is varied, while the measurement segment length remains fixed. The SNR of each
sample is made to vary as the number of sensors varies, so as to keep the overall
collected SNR constant, using the expression SNR = SNR0−10 log10(M/M0). The
figure shows that once there are sufficient sensing points to ensure sampling every half
wavelength, there is no advantage in denser sampling, other than that the overall SNR
is increased (though denser sampling is an advantage if the sources are in the near field
of the synthetic array [3] which comprises the measurement segment). This “average”
SNR increase supports forming the covariance matrix using the method proposed in
Section 3.2, since this allows all the measurement data to be used without increasing
the size of the matrix or the order of model used.

4.2.7 Prediction Length versus Model Order

Although in other simulations the model order is selected by using the MDL criterion,
graphs of prediction performance versus model order show that under some circum-
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(a) (b)

Figure 4.6: (a) Prediction Length versus Number of Samples with the Measurement
Segment Length fixed at 10λ. (b) Prediction Performance versus Order of the Model
used for Prediction N̂ for PCLP, ESPRIT and Linear Prediction based on an AR model.
The upper curve of each type is for N = 5, and the lower curve for N = 10.

stances, superior prediction can be obtained via a different order selection criterion
(Fig. 4.6(b)). Selecting a model with slightly more sources than are actually present in
the data does not seriously degrade performance, as perhaps one would expect; mod-
elling some noise as a signal of small amplitude will not change the overall prediction
performance. On the other hand, gross over-estimation of the model order can lead to
predictions which depart from the actual channel data very rapidly (see Section 4.2.2).
The ESPRIT algorithm has greater sensitivity to over-estimation of the model order
than the other subspace estimation methods.

Results based on an AR model (see Section 3.3) similar to that used in [46] are
also shown in Fig. 4.6(b). In this case, the PCLP method is used, but the Doppler
frequencies are not estimated by finding the roots of the prediction filter of (3.38).
Instead the filter described by (3.38) is simply used to predict the future values linearly.
It can be seen that the performance is very similar to that of the original subspace
method, although the optimal model order is not identical. The AR method has the
considerable advantage of being relatively simple to convert to an adaptive (Kalman
filter) form. This technique has been explored in [41].

4.2.8 Prediction Length versus Performance Threshold

Fig. 4.7(a) shows once again the prediction length as a function of the measurement
segment length. The number of sources N is 5 in each case. The different curves are
for different values of the threshold used to define the prediction length. As one would
expect, if greater accuracy is required, the available prediction length is much smaller.
Although noise is added to the data in the measurement segment (SNR of 20 dB), the
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(a) (b)

Figure 4.7: Prediction Length presented for various different thresholds used to define
the Prediction Length. Greater required accuracy drastically reduces the available
prediction length, but the overall trend is very similar.

comparison between the actual and predicted data in the prediction segment is made on
the basis of noiseless data. Though they are vertically offset, the curves have a similar
shape for different performance criteria, which is true of all the results presented in this
section.

Fig. 4.7(b) shows the same scenario with the prediction length defined as the dis-
tance at which the prediction gain (4.1) falls below some threshold. Once again, the
overall trend can be seen to be quite similar, although the curves tend to be more broken
since the prediction gain may not achieve the required threshold for any range inside
the prediction interval. It can be seen then that the conclusions from the simulations
are not greatly influenced by the performance threshold chosen.

4.3 Measurements

In this section are presented the results of applying the prediction algorithms to mea-
sured channel data. The measurements were taken at several frequencies, mostly 1.92
and 5.9 GHz. There were three different locations used — inside a laboratory, outdoors,
and inside a large workshop.

A HP8753 network analyser was used to measure the channel attenuation. The
transmit antennas used were a Rohde & Schwarz crossed log-periodic antenna and a
Huber & Suhner patch PCS antenna. The receiving antenna was a tuned monopole on
a circular ground plane of 350mm diameter. The receiving antenna was moved along
a 3 metre linear trajectory using a Parker Hann. Corp. Compumotor linear servo. A
Mini-Circuits ZHL-1042J or ZHL-1724HLN Low Noise amplifier was used to increase
the transmitter and/or receiver power when the SNR was low.

The subspace algorithms were applied to a series of data points measured in the lab-
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Figure 4.8: The transmitting antenna outdoors showing the amplifier and the polari-
sation control unit.

Figure 4.9: The synthetic receiving array outdoors. The monopole is in the centre of a
circular ground plane. The network analyser and servo control apparatus are located
under the table.
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Figure 4.10: The synthetic receiving array in a workshop.

oratory (an irregularly shaped room of dimensions approximately 19×10×3 metres) at
1.92 GHz (λ=0.156 m). The measured SNR was 40 dB. The segment of data presented
in this analysis is typical for measurements made in this and several other indoor and
outdoor locations. The channel was measured at 999 points spaced evenly over the 3
metre distance. Averaging of 50 scenarios was obtained by starting the measurement
segment at different points in the data set, and by using different but relatively close
frequencies. The likelihood of each frequency estimate $̂ was increased by use of a
gradient method before estimating the amplitudes ζ̂.

The results are shown in Fig. 4.11, with upper and lower 95% confidence limits.
Prediction does not appear to improve significantly with increasing measurement seg-
ment length. There are several likely explanations for this. The first explanation is
that the sources are not sufficiently static. The sources may be too close to the receiver
for the far field model to be valid, or the sources may themselves move (the former is
more likely in this case as the measurements were performed at night with the labora-
tory unoccupied). The second explanation is that the model is valid, but the number
of sources is large. As the simulations show, if the sources are many, prediction is
limited even for long measurement segments. It would be expected that if there are
many sources, the field becomes equivalent to a diffuse field, the narrow-band channel
data becomes effectively a normal process, and prediction is confined to the correlation
distance. If the scatterers are uniformly distributed in angle, this correlation distance
is approximately λ/5 (see Fig. 2.2). A third possibility is that rough surface effects
(Section 4.5) may be significant.

Fig. 4.12 presents the evolution of spatial frequencies throughout this typical sce-
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Figure 4.11: Measured prediction range for measurements in laboratory.

Figure 4.12: Spatial Doppler frequency and Prediction Length for a measured channel.



4.4. CRAMER RAO BOUNDS 79

nario. To produce the graph the number of parameters is fixed with N̂ = 7, P = 8,
L = 18, and the prediction segment length is 3 wavelengths. The mean prediction range
for this example is 0.185 wavelengths. The symbols representing the spatial frequencies
are circles, and the radius of each is proportional to the estimated magnitude of the
source. The frequencies outside the range ±1 cycles per wavelength may result from
moving scatterers or from multiple reflections between the receiving antenna assembly
and nearby reflectors. The spatial frequencies appear to evolve fairly slowly, and when
this is the case, good prediction is achievable. It is interesting to compare the “saw-
tooth” appearance to the prediction range in some regions of the lower plot with the
areas of rapid change in frequency in the upper plot. Whenever there is a rapid change
which cannot be anticipated by the previous data, prediction beyond the point of rapid
change cannot be achieved.

The results for the measurements made in the workshop and outdoors are not shown
here. However the following observations are made. Most of the measurements made
in the workshop were at 5.9GHz. The higher frequency has the effect of “contracting”
the near field region of the synthetic array, thus making the far field assumption more
valid. However, at this higher frequency rough surface scattering effects are much more
significant (see Section 4.5). Typical prediction lengths were observed to be lower than
those presented above.

The outdoors measurements unfortunately suffered from significant amounts of
noise, even when amplifiers were used, because of the low powers and large distances
involved. The power loss was both propagation loss and cable loss. The latter could
be overcome by the use of rubidium clocks. These were not available however. From
the data which was available it appears that the prediction range is quite limited.
Since there were many trees in the vicinity, rough surface effects may once again be
significant.

The measurements used for [6] (one of the very first implementations of real-time
prediction) were obtained. It was found that it was possible to reproduce the results
of that paper only by performing an interpolation step as described by the authors.
This interpolation however appears to produce misleading results. The interpolation
filter actually incorporates information from future values into each of the interpolated
values. The prediction filter estimated from the data is actually recovering the param-
eters of the interpolation filter, rather than parameters of the original measurements.
Since the interpolation filter parameters do not change, good prediction is obtained.
This however does not indicate reliable prediction of the original channel.

4.4 Cramer Rao Bounds

In this section a bound is derived for the variance of the estimate of a predicted channel
based on the estimation of the component sinusoids. This is done by first finding the



80 CHAPTER 4. SIMULATIONS, MEASUREMENTS AND BOUNDS

Fisher information matrix for the model parameters, and thus a bound on the variance
of their estimates. This variance is then used to calculate a bound on the actual channel
estimate.

The model of far field narrowband sources is equivalent to complex sinusoids in
noise. The parameters to be estimated are the amplitudes ςn and phases ψn (or the
complex amplitudes ζn = ςne

jψn) and the frequencies $n of N complex sinusoids in
noise from M regularly spaced samples.

The measured samples are given by

r[m] =
N∑
n=1

ςne
jψnej$nm + η[m], m = 0, . . . ,M − 1, (4.2)

where η[m] is a white complex normal noise with variance σ2
η. Let m = (0, 1, . . . ,M −

1)T and r = (r0, r1, . . . , rM−1). The signal r is thus a complex normal random vector
with mean

µ =
N∑
n=1

rn =
N∑
n=1

ςne
jψnej$nm (4.3)

and variance C = σ2
ηI. In this section as in Section 3.5, ej· where · is a matrix or vector

means exponentiation of the elements of a vector or matrix, rather than the matrix
exponential. The parameter vector ξ = (ς1, ψ1, $1, . . . , ςN , ψN , $N )T . Using Bangs’
formula [9, 80, 141], the elements of the Fisher information matrix are given by

[J(ξ)]ij = tr
[
C−1∂C

∂ξi
C−1 ∂C

∂ξj

]
+ 2 Re

[
∂µH

∂ξi
C−1 ∂µ

∂ξj

]
=

1
σ2
η

2 Re
[
∂µH

∂ξi

∂µ

∂ξj

]
. (4.4)

Differentiating with respect to each of the parameters,

∂µ

∂ςn
=

rn
ςn

∂µ

∂ψn
= jrn

∂µ

∂$n
= jm� rn. (4.5)
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Thus the Fisher information matrix consists of 3× 3 blocks of the form:

2
σ2
η

Re

ej(ψn1−ψn2 )

 1 jςn2 jςn2

−jς∗n1
ς∗n1
ςn2 ς∗n1

ςn2

−jς∗n1
ς∗n1
ςn2 ς∗n1

ςn2

�
∑
m

ejm($n2−$n1 )

 1 1 m

1 1 m

m m m2



 (4.6)

where n1 and n2 are the row and column indices for the 3× 3 blocks. This expression
simplifies for the diagonal blocks (where n1 = n2 = n) to

2
σ2
η

 M 0 0
0 ς2

nM ς2
n

∑
mm

0 ς2
n

∑
mm ς2

n

∑
mm

2

 . (4.7)

If m were to range from (1−M)/2 to (M − 1)/2 this further simplifies to

2
σ2
η

diag

(
M, ς2

nM, ς2
n

∑
m

m2

)
=

2
σ2
η

diag
(
M, ς2

nM, ς2
n

(M − 1)M(M + 1)
12

)
(4.8)

(and when N = 1, the entire J is given by equation 4.8).

Suppose now that each time the estimation is performed, the true parameter values
being estimated are different, drawn randomly from the following distributions. The
amplitudes ςn are iid Rayleigh variables and ψn are iid uniform over (−π, π] (this means
that the complex amplitude ζn = ςne

jψn is zero-mean complex normal with variance
of say σ2

ς ). The frequencies $n = (2π∆x sin θn)/λ, where θn are iid uniform over
(−π/2, π/2] and 0 < 2π∆x/λ < π.

The prediction error for sample m is

|ε[m]|2 =

∣∣∣∣∣
N∑
n=1

sne
jψnej$nm −

N∑
n=1

ŝne
jψ̂nej$̂nm

∣∣∣∣∣
2

. (4.9)

Taking a first order approximation for ε[m] (this idea is from [10])

ε[m] ≈
N∑
n=1

∂r[m]
∂ςn

εςn +
∂r[m]
∂ψn

εψn +
∂r[m]
∂$n

ε$n

=
N∑
n=1

ςne
jψnej$nm

[
εςn
sn

+ jεψn + jmε$n

]
(4.10)
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so

|ε[m]|2 =
N∑

n1=1

N∑
n2=1

ςn1ςn2e
j(ψn1−ψn2 )ejm($n1−$n2 )

(
εςn1

ςn1

+ jεψn1
+ jmε$n

)(
εςn2

ςn2

− jεψn2
− jmε$n2

)
. (4.11)

Taking the expectation, one obtains

E
(
|ε[m]|2

)
=

N∑
n1=1

N∑
n2=1

ςn1ςn2e
j(ψn1−ψn2 )ejm($n1−$n2 )hn1n2 , (4.12)

where hn1n2 is the sum of the elements of the matrix
1

ςn1 ςn2

−j
ςn1

−jm
ςn2

j
ςn2

1 m
jm
ςn2

m m2

� (J−1
)
n1n2

(4.13)

and
(
J−1

)
n1n2

is the 3 × 3 block of the Fisher inverse with n1 and n2 being the row
and column indices of the 3× 3 blocks in this inverse. This assumes of course that the
bound is nearly achieved so that E{(ξ − ξ̂)(ξ − ξ̂)H} − J−1 is not merely a positive
semi-definite matrix, but close to the zero matrix.

For a large prediction range (large m), the most critical parameter is the frequency
$, since the variance of this estimate is multiplied in (4.13) by m2 to calculate the
overall prediction error.

4.4.1 Invertibility of the Fisher Information Matrix

Numerical calculation of the bound described above leads to the discovery that a large
proportion of the Fisher information matrices are very poorly conditioned. It is con-
jectured in [123] that the Fisher information matrix is singular only if two or more
of the tone frequencies are equal, modulo 2π, assuming M is large enough. In any
estimation problem, the Fisher information matrix being singular indicates that there
is some redundancy in the parameterisation — in this case two sinusoids having the
same frequency. Conditions affecting the likelihood of the Fisher information matrix
being close to singular are the number of sources present N , the number of elements in
the virtual array M , and the length of the virtual array (M − 1)∆x. The symbol p is
now defined as the proportion of well conditioned Fisher information matrices (given
the distributions of the parameters described above).

It was found that provided the number of samples M is sufficient, M has no further
effect on p. Contours of p expressed as a percentage are shown in Fig. 4.13(a), for
(M − 1)∆x = 2λ.
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(a) (b)

Figure 4.13: (a) Contours of the percentage of well conditioned Fisher information
matrices for a measurement segment length of 2λ, showing the effect of the number of
sensors in the array. (b) The number of sensors M required to achieve independence
from M for different measurement segment lengths. The least squares line gives M >
13x0.4 where x is the measurement segment length expressed in wavelengths. The
criterion for “well conditioned” is that the LINPACK reciprocal condition estimate [168]
be larger than 10−15.

A similar graph was produced for various values of the measurement segment length,
and the required number of samples M required to reach independence of M was noted.
The results of this are shown in Fig. 4.13(b).

After ensuring that the number of samples was not a limiting factor, the effect of
the measurement segment length was investigated, and this is shown in Fig. 4.14(a).
The shaded region represents the region where the number of real parameters being
estimated is less than the number of real data values supplied, assuming that there are
two independent real values per half wavelength of measurement segment.

The graphs in Fig. 4.13 and Fig. 4.14 clearly indicate that if the number of pa-
rameters is too large, the Fisher information matrix is singular, and the variance of
the parameter estimates is unbounded. In an actual system however, the number of
sources being modelled would actually be smaller. To evaluate a realistic bound then,
the number of parameters being estimated must be kept to about the same as would
be the case in a real system. Hence the parameters of the largest N sources out of N ′

are estimated. If there are more sources, the remaining N ′ −N are treated as noise.

The problem now is to evaluate the effective “noise power” of these remaining
sources. If the complex amplitudes ζn = ςne

jψn are zero-mean complex normally dis-
tributed, then so also will be ζnejm$n . The power of all the sources is normalised to 1.
The power of un-modelled sources is the variance of the sum of the N smallest out of N ′

iid zero-mean, complex normal variables. If for each of these variables zn = xn + jyn,



84 CHAPTER 4. SIMULATIONS, MEASUREMENTS AND BOUNDS

(a) (b)

Figure 4.14: (a) Contours of the percentage of Fisher information matrices showing
the effect of variation of the measurement segment length. (b) The value to which the
number of sources must be reduced by combining nearby sources in order to obtain
well conditioned Fisher information matrices.

and z =
∑

n zn,

var(z) = E

(∑
n

zn
∑
n

z∗n

)
(4.14)

= E

(∑
n1

∑
n2

zn1z
∗
n2

)
(4.15)

=
∑
n

(
x2
n + y2

n

)
(4.16)

which is simply the mean of the sum of exponentially distributed variables, each with
pdf fa(a) = N ′e−N

′aU(a). The cdf of each is thus Fa(a) = (1 − e−N
′a)U(a) (U(a)

denotes the unit step function).

The density of the n-th smallest of a set of such random variables, (the n-th order
statistic an) is given by [81, 107]

fan(a) =
N ′!

(n− 1)!(N ′ − n)!
(Fa(a))n−1(1− Fa(a))N

′−nfa(a)

=
N ′!N ′

(n− 1)!(N ′ − n)!
(1− e−N ′a)n−1(e−N

′a)N
′−n+1U(a). (4.17)

The mean of this distribution can be calculated as

E(an) =
∫ ∞

0

N ′!N ′

(N ′ − n)!(n− 1)!
(1− e−N ′a)n−1(e−N

′a)N
′−n+1 a da, (4.18)

which can be arranged using a binomial expansion of 1 − e−N ′a, and (3.381-4) of [64]
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Figure 4.15: The variance of the sum of the N smallest out of N ′ zero mean complex
normal iid random variables, where the variance of the sum of N ′ is 1.

as

E(an) =
(N ′ − 1)!
(N ′ − n)!

n−1∑
i=0

1
i!(n− 1− i)!

(−1)i
∫ ∞

0
(e−u)N

′−n+1+i u du

=
(N ′ − 1)!
(N ′ − n)!

n∑
i=1

(−1)i−1

(i− 1)!(n− i)!
1

(N ′ − n− i)2
. (4.19)

The mean of the sum of N of these variables (being the sum of the means) is

E

(
N∑
n=1

an

)
=

N∑
n=1

n∑
i=1

(N ′ − 1)!(−1)i−1

(N ′ − k)!(i− 1)!(k − i)!(N ′ − k − i)2
. (4.20)

Although this expression is exact, in practice it is not usable for large N ′ because the
terms being added become extremely large, while their sum is in the range [0, 1]. It
was found that quadrature of the expression (obtained by the substitution v = e−N

′a

into equation 4.18 and then summation over n)

∫ 1

0
log v

N∑
n=1

(N ′ − 1)!
(n− 1)!(N ′ − n)!

(1− v)n−1vN
′−n dv (4.21)

is much more robust (the integrand is well behaved, even near v = 0) and can be rapidly
computed. It appears in fact that the variance of this sum is relatively insensitive to
(though not independent of) the actual value of N ′ provided the ratio N/N ′ is kept
constant, as shown in Fig. 4.15.

The power of the sources not parameterised has two effects. First it decreases the
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(a) (b)

Figure 4.16: A prediction length bound derived from the CRLB on prediction error
as a function of Measurement Segment Length for various values of the number N ′

of sources present. In (a) the number of sources has been limited so that 50% of all
scenarios have well conditioned Fisher information matrices. In (b) sources very near
other sources have been combined.

overall SNR, and secondly it causes an increase in the error between the predicted and
actual signal.

If ε1[m] is the error that would be expected in the case where N = N ′ and for unity
SNR, and Q is the power of the “ignored” sources where the power of all sources is also
unity, the expected error now becomes

E (|ε[m]|2) = E

∣∣∣∣∣
N∑
n=1

ςne
jψnej$nm −

N∑
n=1

ς̂ne
jψ̂nej$̂nm +

N ′∑
n=N

ςne
jψnej$nm

∣∣∣∣∣
2


= E

∣∣∣∣∣
N∑
n=1

ςne
jψnej$nm −

N∑
n=1

ς̂ne
jψ̂nej$̂nm

∣∣∣∣∣
2
+ E

∣∣∣∣∣
N ′∑
n=N

ςne
jψnej$nm

∣∣∣∣∣
2


= (σ2 +Q)E
{
|ε1[m]|2

}
+Q. (4.22)

In the following results N is constrained so that for any given value of the measure-
ment segment length, at least 50% of the Fisher information matrices are invertible,
and the remaining N ′−N sources are treated as noise in the manner described above.

Recall that in Section 4.1 the performance criterion chosen is the mean of the
distances at which the error magnitude first exceeds 20% of the RMS signal level.
The criterion used here is a threshold on the expected error or prediction gain. It was
shown in Section 4.2.8 that these criteria lead to similar if not identical results provided
the thresholds are chosen appropriately. The prediction length here is defined as the
distance at which the expected error magnitude squared first exceeds 0.04 of the RMS
signal level. The number of array elements is M = 51 and the SNR is 20dB. The results
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are shown in Fig. 4.16(a).

An alternative approach to the problem of singular Fisher information matrices is
to combine into a single source any pairs of sources which are located near each other.
In the form of the Cramer Rao bound presented so far, co-located sources cause an
ambiguity in estimation of the parameters. In a real prediction scenario however, co-
located sources can be simply combined into a single source. A trial was conducted
to utilise this fact, commencing with a large number of sources. The sources were
successively combined on the basis of their proximity (measured as the difference in
Doppler frequency) until the Fisher information matrix became well conditioned. The
results from using this procedure are presented in Fig. 4.14(a). The shaded region of
this figure is the region where the number of real parameters being estimated is less than
or equal to the number of real independent data points available. The average curve is
quite similar to the edge of the shaded region, which indicates that the approximation
based on the number of independent real parameters is a good one. The bound found
using this procedure is shown in Fig. 4.16(b). It can be seen by comparison of (a) and
(b) of Fig. 4.16 that the two approaches for obtaining a bound produce very similar
results.

In can be concluded then, that despite the difficulties presented in deriving a well
conditioned Fisher information matrix, the Cramer Rao bound provides a means of
obtaining a bound on the performance of prediction based on a narrowband far field
point sources model. It appears immediately that if the number of sources is large,
the range of reliable prediction is practically negligible. The results of the simulations
presented in Section 4.2 (in particular Fig. 4.2) show close agreement with these bounds.
Other conclusions are discussed in that section.

4.5 Rough Surface Scattering

This section presents some results on the influence that rough surface scattering may
be expected to play on the predictability of a channel.

A model used for prediction of a mobile channel in this thesis and in other works [40,
140, 151] is that of discrete far field point sources. Prediction based on extrapolation
of the complex sinusoids corresponding to each of these point sources may be shown
(via the Wold decomposition [106], see Section 2.6.3) to be functionally equivalent to
linear prediction, except that the roots of the prediction polynomial are fixed at unity
magnitude so the sinusoids have fixed amplitude rather than being allowed to decay or
grow.

It is of interest to know to just what extent the mobile channel can be predicted,
and what are the fundamental limitations on prediction range. It has been shown in
sections 4.2.3 and 4.4 that one of the fundamental limitations results from the number of
scatterers. If there are many scatterers, the useful prediction range is seriously limited.
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Another limitation may arise for models which assume the scatterers are discrete
points. Such models assume that each point reflecting the signal to the receiver is either
small enough to behave as a point, or large and smooth enough to behave as a reflector
of a point. In practice, many objects fall in between these extremes, and produce a
non-isotropic reflection. For the surface to be large enough to behave as a reflector it
must have dimensions at least the size of the first Fresnel zone (see Section 2.7.1).

Even if a surface is large enough to be considered as a reflector, it may not be
smooth enough. A criterion commonly used for determining whether the surface may
be considered smooth is the Rayleigh criterion — that waves reflected from the upper
and lower and lower extremes of a surface differ in phase by less than π/2 [12] (some
authors insist the maximum allowed phase difference is only π/8). This criterion may
be expressed as J < π/2, where

J , 4π
σξ
λ

sinψ (4.23)

is called the Rayleigh parameter, λ is the radiation wavelength, ψ is the grazing angle
of the reflection and σξ is the depth of the surface. In many models of rough surfaces
the height of the roughness is considered a normal process, with the height standard
deviation equal to σξ.

In this section it is shown that even surfaces classified as smooth according to the
Rayleigh criterion produce diffuse radiation components large enough to be a limiting
factor in channel prediction.

4.5.1 Scattering formulation

Rough surface scattering is a subject of investigation characterised by the need for many
simplifying assumptions in order to produce useful results. However, the assumptions
made here are justifiable in many situations. The details of the small perturbation
model used in this section may be found in [11] and the reader is referred to this work
for details. The barest essentials of the method are presented here. An outline and
references of other models may be found in [82].

The surface S is assumed horizontal, and the height is modelled as a zero mean
random process z = ξ(r), where r is a vector lying in the plane z = 0.

The total field reflected by the surface may be considered to be the sum of a specular
and a diffuse component. Define σr to be the correlation distance of the surface, and
k = 2π/λ to be the wavenumber. For large scale fluctuations in the surface (kσr � 1),
the ratio of the power of the diffuse component to the power of the specular component
is J 2 (from (10.45) of [11]).

For a random surface, the diffuse component of the field is essentially a random
process. Of interest here is the correlation of this component at spatially separated
points R and R′ (refer to Fig. 4.17).
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Figure 4.17: Geometry for rough surface scattering to two locations. S is a horizontal
surface, the source is located at point (0, 0, z0), and measured at points R = (0, 0, z)
and R′ = (0, 0, z′). The unit vectors α and β point in the directions of incidence and
specular reflection respectively. The points of specular reflection are separated by ∆r0

The field scattered by a rough surface may be calculated by using the boundary
condition for the electric field E on the surface, which is assumed to be perfectly
conducting:

(N ×E)z=ξ(r) = 0, (4.24)

where N is the unit vector normal to the surface z = ξ(r). The tangential field
components fully define the field in all space. If the deviation of the surface from the
mean plane is small, this boundary condition may be transferred to the plane z = 0,
and using perturbation theory, the diffuse component of the field results from the
perturbation of the surface. The field may be integrated over the surface S to obtain
the diffuse scattered field as

u(R) =
k2

π

∫
S

ejkR1R2

R1R2
F̂(α,β)ξ(r)dr, (4.25)

where F̂(α,β) is a slowly varying function of the unit vectors α and β (not detailed
here) and the geometry terms are as illustrated in Fig. 4.17.

If the surface irregularities possess sufficiently large linear (horizontal) dimensions
that only a small region of integration is essential near the point of specular reflection
r0, so that kσr � 1, the argument of the exponential may be expanded as a power
series, giving the diffuse component of the field as

u(R) =
vk2 sin2ψ

πR1R2
ejkR1R2

∫
S
ej

k
R

(x2 sin2 ψ+y2)ξ(r0 + r)dr, (4.26)

where v is a constant multiplier which depends on the polarisation of the source antenna
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Figure 4.18: Geometry of moving receiver.

and the receiver assembly, and R = 2R1R2/(R1 +R2). When the assumption (used in
this section) that kσr � 1 is valid, polarisation does not have a significant impact on
the correlation.

The height function ξ(r) is random, and hence the field u(R) is also random. How-
ever, the correlation

K(R,R′) =
E{u(R)u∗(R′)}
E{|u(R)|2}

(4.27)

can be expressed in terms of the normalised correlation of the surface, which is assumed
here to be homogeneous (hence stationary) and isotropic,

W (ρ) =
E{ξ(r0)ξ(r0 + ρ)}

E{|ξ(r0)|2}
. (4.28)

The correlation function of the diffuse field is given by a rather complicated expression.
However, for small separations, non-grazing propagation, and assuming the integration
is over an area at least as large as the first Fresnel zone, it can be shown (see (16.9)
and (16.21) of [11]) that

K(R,R′) ≈ e−jk∆R0W (∆r0), (4.29)

where ∆r0 is the separation of the points of specular reflection r0 and r′0, and ∆R0 is
the difference in the total path length between the source and the two receiving points
R and R′ (see Fig. 4.17).

4.5.2 Moving Receiver

Consider a receiver moving through the field scattered by a rough surface. The spatial
correlation between two points on its trajectory will depend on both the grazing angle
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Figure 4.19: The influence of rough surface correlation distance on predictability of
the channel, for various values of roughness. In this scenario, the number of scattering
surfaces N = 5, the received SNR is 20dB, the number of measurements M = 40, the
trajectory length is 6λ.

of the scattering, and the angle between the scattered radiation and the movement of
the receiver. The geometry is shown in Fig. 4.18. The receiver is assumed to be far
from the scatterer so that ψ ≈ ψ′. It can be shown that the distance between the points
of specular reflection when the receiver moves distance ∆x is given by

∆r0 ≈ ∆x
cos θ
sinψ

R1

R1 +R2
. (4.30)

It can be seen from (4.30) then, that for small grazing angles ψ the distance between
the points of specular reflection is large, and so the correlation is small. However, the
amplitude of the diffuse component, which is proportional to J is also small, so that
on the whole as ψ decreases the diffuse field provides less of an impediment to channel
prediction.

4.5.3 Numerical Study

In this section the effect of rough surface scattering is investigated for an example sce-
nario. A narrowband signal was reflected by N = 5 scatterers, and received with SNR
of 20dB at points on a straight mobile trajectory with consecutive measurement points
being ∆x = 0.15λ apart. The surface correlation function was assumed to have the
form W (ρ) = e−|ρ|

2/σ2
r . Each scatterer had a magnitude |ζn| (ζn are complex normal)

corresponding to the specular component, which was constant throughout the trajec-
tory, and a diffuse component umn which was also complex normal, and had magnitude
|ζnJn|, and spatial correlation given by (4.29). The scatterer had bearing θn and was
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assumed to be sufficiently far from the receiver that the θn did not change signifi-
cantly throughout the trajectory. The angles θn and ψn were uniformly distributed on
(−π/2, π/2]. The ratio of distances R1/(R1 + R2) was uniformly distributed on (0, 1].
(In practice multiple scattering leads to a more diffuse field, and the last scatterer is
likely to be closer to the receiver, so the assumption here is a conservative one). Each
of the M values of the resulting narrowband channel was synthesised according to

rm =
N∑
n=1

(ζn + umn)ejkm∆x sin θn . (4.31)

Each source amplitude was scaled so that E{|rm|2} = 1. The prediction technique used
was the principal components linear prediction (PCLP) [157] technique as implemented
in Section 4.2.2. The channel data for samples after the 40th was then predicted using
data from the first 40 (i.e., from the first 6 wavelengths), and the point was recorded
at which the error first exceeded 0.2. The mean of such distances over 3000 scenarios is
presented in Fig. 4.19 (an alternative graph of the distance at which the mean square
error over the scenarios exceeds a certain threshold is very similar to Fig. 4.19). Each
line in the figure is for a different value of roughness σξ. For the left-most region of the
figure kσr = 2π, so for most of the figure the validity condition kσr � 1 is satisfied.

Since | sinψ| < 1, and σξ/λ < 1/8, all of the surface roughness conditions presented
in the figure qualify as smooth, according to the Rayleigh criterion. Most of the as-
sumptions made also favour high correlations in the diffuse component of the scattered
field. It is obvious however, that even these surfaces can have a serious effect on the
predictability of the channel. For instance, at 900MHz, the top trace, (σξ = λ/64) cor-
responds to surface irregularities of the order of only 5mm. If the correlation distance
σr is of the order of 3λ (about 1 metre), the mean prediction distance is decreased to
one third of the perfectly smooth case. Such roughness is likely to be encountered in
many situations in practice, in trees, roads and buildings. A table of typical surface
variances and correlation distances which may be encountered in practice is presented
in Table 4.1.

4.5.4 Conclusion

The effect of scattering from rough surfaces has been investigated by modifying the
discrete point sources model to take account of rough surfaces being involved in signal
reflection. It has been shown that even surfaces which are only slightly rough (accord-
ing to the Rayleigh criterion) produce a diffuse reflection which can provide a serious
barrier to real-time channel prediction. This is consistent with the conclusion reached
in Section 4.2.3, since a rough surface is equivalent to a large number of scatterers,
found there to be a significant limitation.
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900 MHz 2400 MHz
Surface σξ/λ σr/λ σξ/λ σr/λ

Road 0.02 0.02 0.06 0.06
Brick Wall 0.02 0.2 0.06 0.6
Wall with Windows 0.3 3 0.8 8
Trees 0.09 0.09 0.2 0.2
Shelving 0.3 0.9 0.8 2.4

Table 4.1: Typical values of surface variance (σξ) and correlation distance (σr).

4.6 Mutual Information Considerations

This section (largely motivated by [42]) provides a brief overview of the approach which
may be used to calculate a bound on the range of accurate prediction based on mutual
information considerations. These are independent of the method of prediction used,
and so in a sense form “absolute” bounds.

A bound on the gain (4.1) of an arbitrary predictor has been proposed in [17]. The
predictor predicting L steps forward into the future, with memory of m values (m may
be infinite) has gain limited by

G(L) ≤ 22(Mr~r(L)+∆) or GdB(L) ≤ 20 log10(2)(Mr~r(L) + ∆) (4.32)

where

∆ =
1
2

log2(2πeE{r(t)− E{r(t)}})−H(r(t)) (4.33)

is the difference between the entropy of r(t) and a normal variable with the same vari-
ance, and Mr~r(L) is the mutual information between the past values ~r(t) = (r(t), r(t−
τ1), r(t−τ2), . . . , r(t−τm))T , and the predicted value r(t+L). The mutual information
is this case is defined as

Mr~r(L) ,
∫
p(r(t+ L), ~r) log2

(
p(r(t+ L), ~r)
p(r(t+ L))p(~r)

)
dr(t+ L)d~r. (4.34)

where p(·, ·) and p(·) represent the appropriate joint and marginal density functions.

The mutual information Mr~r and the entropy H(r(t)) can be estimated from the
data, using the algorithm proposed in [18] or [51]. This requires estimation of multidi-
mensional density functions, and hence is a procedure subject to the “curse of dimen-
sionality”1 [13]. Without an large amount of data, it becomes infeasible to estimate
the density functions. The dimensions are double the order of the predictor since the

1The phrase “curse of dimensionality” is used to describe either the problems associated with the
feasibility of density estimation in many dimensions, or the complexity of computations connected with
certain types of signal processing.
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values of the base band channel are complex.

A program to implement the algorithm described in [18] was obtained from the
author, but insufficient data was available to implement the algorithm. An area of pos-
sible future research however, is to derive bounds on the prediction gain from theoretical
consideration of the mutual information rather than measured data. The theoretical
analysis could be based on near field situations for example.

4.7 Multipath Dimensionality

This section derives a bound on the extent to which a mobile channel can be predicted
based on the properties of the wave equation in a finite region of space. The con-
cept is introduced in Sections 4.7.1 to 4.7.5, included here from [78] with permission.
Section 4.7.6 is an original extension of this work.

A theoretical model is presented which can be applied to any narrowband multipath
environment regardless of the number or nature of the multipath sources. It is shown
that there is an intrinsic dimensionality to a narrowband multipath field in a region of
space of a given size. This is used to show that there is an upper limit on the degree
of multipath richness which can exist within that area.

It is shown that the field in a given area of space can be represented by relatively
few terms of a functional expansion, the number of which represent the dimensionality.
Furthermore, it is possible to synthesise an arbitrary field as accurately as desired
using an appropriate combination of arbitrary sources, near field or far field, discrete
or continuous.

This result is then used to provide an indication of the accuracy with which the
knowledge of the field inside a region can be used to deduce knowledge of the field
outside the region.

4.7.1 General Two Dimensional Multipath Field

Consider two dimensional (2D) narrowband multipath interference in a region of some
given size. This models the situation in three dimensions where the multipath is re-
stricted to the horizontal plane, having no components arriving at large elevations. As
such, the multipath field is height invariant. The multipath signals may have sources
which are near field or far field, specular or diffuse. Polar co-ordinates are used to rep-
resent a point in space x ≡ (‖x‖, φx). The field, F (x; k), is a function of the position
and the wave number, k = 2π/λ, and is a solution to the Helmholtz wave equation in
polar co-ordinates [35], the most general solution of which is

F (x; k) =
∞∑

n=−∞
αn Jn(k‖x‖) ejnφx (4.35)
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where αn are complex constants independent of position and Jn(·) is the order n Bessel
function [94]. That is, in (4.35) the field strength at a point x is represented as a
weighted sum of orthogonal basis functions.

Plane and circular waves are examples of 2D waves which can be expressed in the
form (4.35). A single plane wave with complex amplitude ap and propagation direction
φp has αn = apj

ne−jnφp [31, p.66]. A single circular wave with source position vector,
yp ≡ (‖yp‖, φp), has αn = ape

−jnφpH
(1)
n (k‖yp‖) [31, p.66] where H(1)

n (·) is the order n
Hankel function of the first kind.

The application of (4.35) is now illustrated with fields generated by a superposition
of P plane waves. Let plane wave of index p have complex amplitude ap and propagation
direction φp with normalised direction η̂p ≡ (cosφp, sinφp). The field strength at x is
then given by

F (x; k) =
P∑
p=1

ape
−jkx·η̂p (4.36)

=
P∑
p=1

ap

∞∑
n=−∞

jnJn(k‖x‖)ejn(φx−φp) (4.37)

where (4.36) is a Cartesian form and (4.37) is the polar equivalent. Note (4.37) is in
the form of (4.35) with

αn =
P∑
p=1

apj
ne−jnφp =

P∑
p=1

ape
−jn(φp−π/2). (4.38)

Similarly, a field of P circular waves, where yp ≡ (‖yp‖, φp) is the position vector of
the source of index p, is given by

F (x; k) =
P∑
p=1

ap
ejk‖x−yp‖

‖x− yp‖
=

P∑
p=1

ap

∞∑
n=−∞

H(1)
n (k‖yp‖) Jn(k‖x‖)ejn(φx−φp) (4.39)

and for the representation (4.35)

αn =
P∑
p=1

apH
(1)
n (k‖yp‖)e−jnφp . (4.40)

A field of plane and circular waves could also be formed by linearly combining (4.37)
and (4.39) to obtain an equation of the form of (4.35), with αn the weighted sum of
(4.38) and (4.40).

The Bessel functions Jn(·) for n ≥ 1 in (4.35) have a spatial high pass character
(J0(·) is spatially low pass). That is, as illustrated in Fig. 4.20, Jn(z) starts small
increasing monotonically to its maximum at arguments around O(n) before decaying
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Figure 4.20: High pass character of the Bessel functions J8(z) and J80(z) versus argu-
ment z (horizontal axis is on a logarithmic scale). Also shown are the combination of
three bounds.

asymptotically to zero as z → ∞ (oscillating as it does so). Also shown in Fig. 4.20
are limits imposed by three upper bounds on |Jn(z)|: 1/n!(z/2)n, 0.6748851/n1/3 and
0.7857468704/z1/3 [86].

4.7.2 Dimensionality of Multipath

The aim now is to quantify the complexity of an arbitrary multipath field F (x; k) in a
circular region of radius R wavelengths by defining the effective dimensionality of the
field. This is achieved by truncating the series in (4.35) and determining the minimum
number of terms, 2N + 1, for the field FN (x; k), so generated, to be within a specified
error, ε, of the actual field F (x; k). Thus, the approximate field strength FN (x; k) is
defined by the finite sum

FN (x; k) =
N∑

n=−N
αnJn(k‖x‖)ejnφx , (4.41)

where the approximation is to be sufficiently accurate within the region ‖x‖ ≤ R.

Fig. 4.21 shows the actual field strength of the sum of 30 plane waves, as in (4.36),
over a 3λ× 3λ area, compared with the same field represented by the truncated series
in (4.41) with αn given by (4.38) and N = 7. Clearly FN (x; k) can model F (x; k) very
well in a finite region about the origin.
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(a) (b)

Figure 4.21: Example of accuracy of truncation in (4.41) shown by isosurfaces of field
amplitude. The actual field (a) (4.36) has 30 component plane waves in random direc-
tions. The approximate field (b) (4.41) has 2N+1 = 15 plane waves. The approximate
field is within 1 × 10−3 of the actual field for R/λ ≤ 0.3890 (the circular region high-
lighted in each subfigure).

4.7.3 Bounding the Relative Error

Consider the magnitudes of the αn coefficients for a superposition of a possibly infinite
number of plane waves indexed by p with amplitudes ap. From (4.38)

|αn| ≤
∣∣∣∑

p

apj
ne−jn(φp−π2 )

∣∣∣ ≤∑
p

|ap| (4.42)

The RHS of (4.42) is an upper bound on the field strength at any point being the sum
of the amplitudes of the plane waves constituting the given wave field. On physical
grounds the field is assumed to be bounded at all points in space which implies

∑
p |ap| <

B. Without loss of generality take B = 1, amounting to a normalisation such that the
field strength is bounded by unity. Hence |αn| ≤ 1 ∀n.

To form a relative error, first bound the peak amplitude of the multipath field to
unity. This implies from the foregoing considerations, that |αn| ≤ 1,∀n. Define the
error between the actual and approximate fields by εN (x). Then

εN (x) =
∣∣F (x; k)− FN (x; k)

∣∣ =
∣∣ ∑
|n|>N

αn Jn(k‖x‖) ejnφx
∣∣

≤
∑
|n|>N

∣∣Jn(k‖x‖)
∣∣ = 2

∑
n>N

∣∣Jn(k‖x‖)
∣∣ (4.43)

Now a bound on |Jn(·)| is required for n > N . For integer n ≥ 0, the order n Bessel
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function is given by [83]

Jn(z) =
∞∑
`=0

(−1)`(z)2`+n

22`+n `! (`+ n)!
, n ≥ 0. (4.44)

From [94, p.192], for n > −1/2

Jn(z) =
1

√
π Γ(n+ 1

2)

(z
2

)n∫ +1

−1
ejλz(1− λ2)n−

1
2 dλ

≤ 1
√
π Γ(n+ 1

2)

(z
2

)n∫ +1

−1
(1− λ2)n−

1
2 dλ (4.45)

where Γ(·) is the Gamma function. From (15.24) of [136], the integral (4.45) is equal
to
√
π Γ(n+ 1/2)/Γ(n+ 1). Thus,

Jn(z) ≤ 1
Γ(n+ 1)

(z
2

)n
, (4.46)

and so Jn(·) is always bounded by the first term in (4.44). An example of this upper
bound is shown in Fig. 4.20 for J8(·) and J80(·).

By using the Stirling lower bound on n! [83] |Jn(k‖x‖)| can be bounded as

∣∣Jn(k‖x‖)
∣∣ ≤ (k‖x‖)n

2nn!
≤ 1√

2πn

(
ke‖x‖

2n

)n
≤ ρ(N,R)n√

2π(N + 1)
, n > N, ‖x‖ ≤ R. (4.47)

where

ρ(N,R) =
keR

2(N + 1)
=

πeR/λ

(N + 1)
. (4.48)

Substituting (4.47) and (4.48) into (4.43) and choosing N large enough such that
ρ(N,R) < 1, the following bound on the error for given values of N and R is obtained:

εN (x) ≤

√
2

(N + 1)π
· ρ(N,R)N+1

1− ρ(N,R)
, ∀‖x‖ ≤ R. (4.49)

The restriction on ρ(N,R) gives a lower bound on N

N > (πe)R/λ− 1. (4.50)

With N thus selected F (x; k) and FN (x; k) are essentially indistinguishable within
‖x‖ ≤ R. Since 2N+1 basis elements are used, 2N+1 characterises the dimensionality.

The dimensionality of fields of radius R/λ ≤ 3, for error thresholds between 10−1

and 10−4 are shown in Fig. 4.22. The number of extra terms required to achieve an
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Figure 4.22: MinimumN required for different error thresholds ε, as given by theoretical
bounds (4.49) and (4.50), for increasing values of radius R/λ.

error of 10−4 over an error of 10−1 is relatively small. For R/λ = 1, the minimum
values of N required are 10 and 15, respectively, meaning that just 10 extra terms give
3 orders of magnitude improvement in accuracy.

Simulation results for the relationship between N and the error ε between actual
and approximate fields of radius R/λ = 1 are shown in Fig. 4.23. Simulated actual
fields had from P = 4 to 50 plane wave components. The error appears to converge,
regardless of the value of P at around N = 10.

The following observations may be made

1. Field complexity or dimensionality, (2N + 1), increases linearly with R/λ.

2. The actual number of terms required to represent an arbitrary field to high ac-
curacy is relatively small. The addition of just a few terms can give orders of
magnitude improvement in the relative error.

3. Any wave field, including a a diffuse field, consisting of any number of actual wave
components may be represented by relatively few parameters.

4.7.4 Dimensionality of 3 Dimensional Field

The dimensionality for a three dimensional (3D) field can be similarly specified. The
general equation for a three dimensional wave, using spherical co-ordinates is

F (x; k) =
∞∑
n=0

n∑
m=−n

αn(k)jn(k‖x‖)Ynm(x̂)Y ∗nm(ŷ), (4.51)
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Figure 4.23: Average error between actual and approximate fields, as in (4.36) and
(4.41) for up to P = 50 plane waves and N ≤ 15 for R/λ = 1.

where Ynm(·) is a spherical harmonic function (2.34), x̂ is the unit vector in the direction
of the position x, ŷ is the unit vector in the direction of the source at y, and jn(·) is
the order n spherical Bessel function, related to the ordinary Bessel function by

jn(r) =
√
π

2r
Jn+ 1

2
(r). (4.52)

The spherical Bessel function is bounded by the first term of the Taylor expansion, in
a similar way to the ordinary Bessel function. Thus, using the Sterling bound for the
Gamma function [83]

jn(k‖x‖) ≤
√

π

2k‖x‖

(
k‖x‖

2

)(n+ 1
2

)

Γ(n+ 3
2)

=
√
e

2
1

2n+ 1

(
keR

2N + 1

)n
r ≤ R, n ≤ N. (4.53)

In the 2D case it was assumed that |αn| ≤ 1. It may be similarly assumed in this case
that Ynm(.) ≤ 1. Defining ρ(N,R) , keR/(2N + 1),

εn = |F (x; k)− FN (x; k)|

≤
∞∑

n=N+1

(2n+ 1)|jn(k‖x‖)|

≤
∞∑
N+1

√
e

2

(
keR

2N + 1

)n
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≤
(√

e

2

)
ρ(N,R)N+1

1− ρ(N,R)
, ρ(R,N) < 1. (4.54)

The upper bound on ρ(R,N) gives a lower bound for N as

N >
keR

2
− 1

2
(4.55)

This bound is very similar to that for the two dimensional case. Note however, that since
(4.51) involves a double summation, the number of independent parameters required
increases with the square of N .

4.7.5 Plane Wave Synthesis

Equation (4.41) shows that an arbitrary wave field in a given region can be represented
by a finite number of terms, regardless of the complexity of the scattering environment.
Such a field can also be closely approximated by an appropriate combination of plane
waves.

Once the coefficients αn in (4.41) are determined for the field of interest, one can use
(4.38) to define a set of plane waves producing the same αn’s over the critical indices
|n| ≤ N . Let α = [α−N , · · · , αn, · · · , αN ]T and a = [a1, · · · , ap, · · · , aP ]T . Define the
diagonal matrix Θ = diag[jN , · · · , jn, · · · , j−N ] and the Vandermonde matrix

V =



ejNφ1 · · · ejNφp · · · ejNφP

...
...

...
...

...
e−jnφ1 · · · e−jnφp · · · e−jnφP

...
...

...
...

...
e−jNφ1 · · · e−jNφp · · · e−jNφP


. (4.56)

Equation 4.38 may be written in matrix form as

Θα = Va. (4.57)

As each of the φp’s are distinct, it is known that V is non-singular. Thus, given specific
α, V and Θ, (4.57) can always be solved for a. Therefore, at most P = 2N + 1 plane
waves from arbitrary directions can synthesise an arbitrary field over a region ‖x‖ ≤ R
whenever N ≈ (πe)R/λ.

The following observations can be made

1. There are an infinite number of plane wave combinations which can represent
a given field F (x; k). The choice of directions {φp} is arbitrary provided the
directions are distinct.

2. By choosing φp = 2pπ/P , V in (4.56) becomes a scaled discrete Fourier transform
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matrix and the plane wave weights, ap, can be efficiently computed using the FFT
from the weights αn.

3. The result is not restricted to plane waves. Any superposition of sources can be
used, such as a superposition of near field point sources, etc.

4.7.6 Extrapolation Bounds

Consider now a circular (2D) region of radius R, in which the field F (x; k) = F (r, φ)
is known to within some tolerance. The set of αn may be estimated from this field
knowledge by integration around any circle of radius r

αn =
1

2πJn(kr)

∫ π

−π
F (r, φ)e−jnφ dφ. (4.58)

Suppose that

F̂ (x) = F (x) + η(x) (4.59)

where η(x) is some random process representing any inaccuracy in the knowledge of
F (x). It is assumed that η(x) = η(r, φ) is a wide sense stationary process and has an
autocorrelation function with respect to φ of Ψ(r, φ), with Fourier transform

Ψ̃(r, n) =
1

2π

∫ π

−π
Ψ(r, φ)e−jnφ dφ. (4.60)

Note that since η(r, φ) is periodic in φ, so also is Ψ(r, φ), and so the appropriate Fourier
transform is a Fourier series discrete in n. This may be represented as

Ψ(r, φ) FS⇐⇒
φ↔n

Ψ̃(r, n) (4.61)

It is known that the Fourier transform of Ψ(r, φ) is also the magnitude squared of the
Fourier transform of η(r, φ). From (4.58), it follows that

α̂n − αn =
1

2πJn(kr)

∫ π

−π
η(r, φ)e−jnφ dφ. (4.62)

Taking the expectation of the correlation between two such terms

E{(α̂n1 − αn1)(α̂n2 − αn2)∗}

=
1

(2π)2Jn1(krn1)Jn2(krn2)

∫ π

−π

∫ π

−π
E{η(rn1 , φ1)η∗(rn2 , φ2)} ej(n2φ2−n1φ1) dφ1 dφ2

=
1

(2π)2Jn1(krn1)Jn2(krn2)

∫ π

−π

∫ π

−π
Ψ(rn1 , φ1 − φ2) ej(n2φ2−n1φ1) dφ1 dφ2

=
1

(2π)2Jn1(krn1)Jn2(krn2)

∫ π

−π
ejφ2(n2−n1) 2πΨ̃(rn1 ,−n1) dφ2
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=
1

Jn1(krn1)Jn2(krn2)
Ψ̃(rn1 ,−n1)δn1,n2 (4.63)

The notation Ψ(rn1 , φ1 − φ2) in the above derivation hides the dependence of Ψ(r, φ)
on rn2 as well as rn1 . However, the presence of the Kronecker delta in the last line
assures that the final result only depends on one value of rn.

The expected error in reconstructing the signal F̂ (r, φ) from the calculated values
of αn is now

E{|F̂ (r, φ)− F (r, φ)|2}

= E


∣∣∣∣∣
∞∑

n=−∞
(α̂n − αn)Jn(kr)ejnφ

∣∣∣∣∣
2


=
∞∑

n1=−∞

∞∑
n2=−∞

E{(α̂n1 − αn1)(α̂n2 − αn2)∗}Jn1(kr)Jn2(kr)ejφ(n1−n2)

=
∞∑

n=−∞

J2
n(kr)

J2
n(krn1)

Ψ̃(rn1 ,−n), (4.64)

where the notation rn1 has been retained from (4.63) to indicate the radius at which
the integration (4.58) is performed to estimate the values of αn. This distance may or
may not be the same as r.

Once the values of αn are known, (4.35) may be used in estimate the field at any
radius. Clearly the error in (4.64) can be minimised by choosing rn1 so that J2

n(krn1)
is a maximum. If the field is only known for areas inside the region r < R1, however,
the values of J2

n(krn1) which can be achieved are quite small, and so the resulting error
is large.

If it is assumed that the correlation function Ψ(·, ·) is radially symmetric, it may
be expressed as a function ξ(ρ) of the radius, so that, expressing η(r, φ) in Cartesian
co-ordinates ηxy(x, y),

E
{
ηxy(x, y)η∗xy(x− x0, y − y0)

}
= ξ

(√
x2

0 + y2
0

)
. (4.65)

The correlation with respect to the angle φ is then

Ψ(r, φ0) = E{η(r, φ)η∗(r, φ− φ0)}

= E{ηxy(r cosφ0, r sinφ0)η∗xy(r cos(φ− φ0), r sin(φ− φ0))}

= ξ
((

(r cosφ− r cos(φ− φ0))2 + (r sinφ− r sin(φ− φ0))2
) 1

2

)
= ξ

(√
2r
√

1− cosφ0

)
. (4.66)

If, to give a symbolically tractable example, the radially symmetric correlation function
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is specified by

ξ(ρ) = κ exp(−ρ2/(2σ2
η)), (4.67)

then using (512-5b) of [66] the Fourier transform of Ψ(r, φ) is given by

Ψ̃(r, n) =
κ

2π

∫ π

−π
e−r

2(1−cosφ0)/σ2
ηejnφ0 dφ0

= κe−r
2/σ2

ηIn

(
r2

σ2
η

)
(4.68)

where In(·) is the modified Bessel function of the first kind.

For the field F (r, φ) to be estimated to within the accuracy ε, the values of N for
which (4.41) must be evaluated is known to be limited by (4.49). Provided that r ≤ R,
values of rn1 < R can be chosen so that the error is kept relatively small. If r > R

the expected error can become very large. This is shown by a numerical experiment
in Fig. 4.24. The “normal shaped” example correlation function (4.67) given is used,
with κ = 1, and ση = λ/(2π) so that r/ση = rk. The value of N was chosen according
to (4.49) so that ε < 0.2. The error is then calculated according to (4.64). It can be
seen from Fig. 4.24 that the error remains very low while ever r < R, but as soon as
extrapolation is attempted outside the region of knowledge, the error rapidly increases.
The range of useful extrapolation may be considered to be those values of r for which
the error is of the same order as that in the region of known field r < R. This is shown
in Fig. 4.24 as the values of expected error ≤ 1. It can be seen from the figure that
the range of useful extrapolation does increase slowly as R increases.

These results can be derived for the case of a three dimensional field. Similar results
can also be derived using any analytic orthonormal basis.

4.7.7 Conclusions

It was shown in [78] that inside a circular or spherical region, any narrowband field
(even a diffuse field) can be reconstructed to within a certain tolerance with only a finite
number of sources. The number of sources, called the dimensionality scales linearly with
the radius of the region.

It has been shown in this section that although in principle, extrapolation of the
knowledge of the field beyond the region is possible, the error rapidly becomes pro-
hibitive. This situation is somewhat different to the prediction situation presented
elsewhere in this thesis. The conclusions however, are entirely consistent with those of
Sections 4.2.3 and 4.4, that if the number of paths is large (and so the field may be
considered as effectively diffuse) the prediction range is severely limited.
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Figure 4.24: The expected error in the reconstructed field as the radius of the extrap-
olation increases, for various radii of known field. The small marks for the values at
which r = R indicate that although the expected error increases rapidly when r > R,
the error stays within that of the known region for a slightly larger extent r −R as R
increases.

4.8 Summary and Contributions

The effectiveness of the proposed channel models in providing a real time syndetic char-
acterisation of both simulated and measured channels has been evaluated. Some factors
which may limit real time prediction have been identified. The following conclusions
have been drawn:

i. The number of significant scatterers is a vital factor in the viability of long range
channel prediction. If there are many scatterers accurate prediction may be lim-
ited to only a small fraction of one wavelength. As seen in Chapter 3 this situation
may occur in practice more often than is commonly realised.

ii. The parameters associated with sources near the receiver may vary rapidly.

iii. Many surfaces in both indoor and outdoor mobile environments possess sufficient
roughness to have a significant impact on the predictability of channels.

iv. Macroscopic changes in the scattering environment, such as shadowing, are in
general unpredictable, and the frequency of such changes has a significant effect
on the expected prediction range.

We itemise some specific contributions made in this chapter:

i. The limiting factors to long range prediction listed above, have been identified
and quantified.
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ii. The Cramer Rao bound for the variance of channel prediction error has been
derived.

iii. The first application of the theory of rough surface scattering to the problem of
channel prediction has been presented.

iv. The error which may be encountered in extrapolation of a field beyond a known
circular or spherical region has been presented.



Chapter 5

Channel Performance

PREVIOUS chapters have examined the feasibility and limitations of real time
channel prediction. One of the most simple applications of the prediction in-

formation is in “avoidance” of channels which are known in advance to offer poor
performance. This avoidance could take the form of simply suspending transmission
for a short time, changing time slot (in a TDMA system) or changing frequency (in a
FDMA system).

However, the relationship between the performance of a communication system
and the channel over which it operates is not a simple one. For even a moderately
broadband system, the system error rate depends not only on the total signal power
available from the channel to the receiver (and thus the SNR), but also on how this
power is distributed in the channel impulse response.

For a system to be able to determine when a channel should be avoided, it must have
an efficient method of relating a channel impulse response to the system performance.

In this chapter such a method is derived. It is assumed that a linear modulation
scheme is used, and that Maximum Likelihood Sequence Estimation (MLSE) such as
implemented using the Viterbi algorithm is used for equalisation. MLSE has been
analysed here because it defines (under the conditions of a static, perfectly known
channel) a lower bound on the error probability [48, 56]. Analysis could equally well
be performed for different systems, such as those using continuous phase modulations
and/or linear or decision feedback equalisation, although such analysis would take quite
a different form from that derived here. It is also assumed that inaccuracy in the
predicted channel information can be ignored. Section 5.6 examines the effect of channel
estimation errors on the error rate prediction accuracy.

Previous analyses of the probability of error of systems using MLSE [7, 87, 93, 116,
132] have focussed on the “worst case” channel. These give an approximation to the
channel error probability where the channel is unknown. A much better approximation
can be obtained when the channel is known. To give one example only, the worst-case
length 7 QPSK channel needs transmission power 11.4 dB greater than the best-case
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Figure 5.1: Structural representation of the communications system, possibly with
multiple receive antennas, and possibly with fractional spaced sampling.

channel of the same length to achieve the same error rate.
In this chapter it is assumed that the channel is varying in time slowly enough for

it to be considered unchanged for several symbol periods. From the previous chapters,
where the focus has been on the time-varying nature of the mobile channel, it can
be seen that this assumption is not always valid. If the channel information used
for equalisation is continually updated [19, 25], the long error events discussed in the
analysis below would not contribute to the overall error rate as much as the analysis
predicts.

5.1 MLSE Error Probability

This section introduces the terminology used in this chapter and derives the probability
of error for a particular system operating with a particular channel.

The system used in this chapter is represented in Fig. 5.1. Note that there may be
multiple received data points corresponding to each transmitted symbol due to the use
of multiple receiving antennas and/or fractionally spaced sampling.

The data is linearly modulated using a constellation such as one of the those repre-
sented in the left column of Fig. 5.2. The alphabet of symbols available is denoted by
A. The alphabet of possible symbol errors or differences is denoted by D, represented
in the right column of Fig. 5.2. The symbols si obtained are shaped by some transmit
filter with impulse response p(t). If a symbol is input to the system at time t = iT , the
output of the transmit filter will be p(t)~δ(t− iT ) = p(t− iT ). If the impulse response
of the channel (note the notation from Section 2.1.3) is h(τ, t), then the received signal
will be

r(t) =
∫ ∞
−∞

h(τ, t)p(t− iT − τ)dτ, (5.1)

and the output of a receive filter of impulse response pr(t) will then be

y(t) = r(t)~ pr(t)

=
∫ ∞
−∞

r(τ ′)pr(t− τ ′)dτ ′
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Modulation Difference
Alphabet Alphabet

BPSK

4-PAM

8-PAM

16-PAM

QPSK

8-PSK

16-PSK

16-QAM

Multiplicity Key

Figure 5.2: Modulation and Difference Alphabets
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=
∫ ∞
−∞

∫ ∞
−∞

pr(t− τ ′)p(τ ′ − τ − iT )h(τ, τ ′)dτdτ ′. (5.2)

Following symbol period sampling, the discrete time response at j to an impulse at i
is then

f [j − i, j] =
∫ ∞
−∞

∫ ∞
−∞

pr(jT − τ ′)p(τ ′ − τ − iT )h(τ, τ ′)dτdτ ′. (5.3)

The response of the system to the symbol sequence si, for a shift-invariant channel,
with a discrete impulse response having L non-zero values, will then be

yi =
L∑
l=1

fisi−l+1 + ηi (5.4)

where ηi is a zero-mean complex normal noise, independent of the data si, which is
assumed to have been whitened, so that E{ηj} = 0 and E{ηiη∗j } = δijσ

2
η. (Some of the

results to follow allow the noise to have a more general correlation).

Equation 5.4 may be represented in matrix form as

y = Fs + η = Sf + η, (5.5)

where

y = (y1, y2, . . . , yR |, . . . , yR+L−1)T ,

s = (s2−L, . . . , | s1, s2, . . . , sR)T ,

η = (η1, η2, . . . , ηR |, . . . , ηR+L−1)T ,

f = (f1, f2, . . . , fL)T ,

F =



fL fL−1 . . . f1 0 . . . 0

0 fL
... f2 f1 . . .

...
...

...
...

...
. . .

0 . . . 0 fL
...

...

0 . . . 0 0 fL
...

...
...

...
. . . fL−1

0 . . . 0 0 0 0 fL


, and (5.6)
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S =



s1 s0 . . . sL−2

s2 s1
...

...
...

. . .

sR
...

...

sR+1 sR
...

...
. . . sR−1

sR+L−1 . . . . . . sR


. (5.7)

The vectors and matrices have been partitioned above to separate regions which may
be included or omitted depending on whether it is appropriate in the context to assume
that symbols preceding and following a block, (sL−2, . . . , s0), (sR+1, . . . , sR+L−1), and
(yR+1, . . . , yR+L−1) are zero or non-zero.

When (sL−2, . . . , s0) and (sR+1, . . . , sR+L−1) are zero, F is a (R+L−1)×R matrix
given by the right two blocks of (5.6). The maximum likelihood data estimate is given
by

ŝ = arg min
s

{
‖y − Fs‖ : s ∈ AR

}
. (5.8)

Suppose that there exists an interval of R symbols such that the transmitted se-
quence s and estimated sequence ŝ are identical before and after the interval, but differ
in the positions 1 and R and some symbols in between. This is what has become
known [49] as an error event. Define e = ŝ − s, E = Ŝ − S, and ε = Fe = Ef . Note
that (eL−2, . . . , e0) and (eR+1, . . . , eR+L−1) are zero. The probability of the event is the
probability that the maximum likelihood metric of ŝ is smaller than that of s:

P (E) = P (‖y − Fŝ‖ ≤ ‖y − Fs‖)

= P (‖Fs + η − Fŝ‖ ≤ ‖Fs + η − Fs‖)

= P
(
‖ε+ η‖2 ≤ ‖η‖2

)
= P

(
‖ε‖2 + 2 Re(εHη) ≤ 0

)
. (5.9)

If the covariance of η is Cη = σ2
ηI, then the variance of εHη is

Var
{
εHη

}
= E

{
(ηHε)H(ηHε)

}
= εHCηε = ‖ε‖2σ2

η. (5.10)

The variance of the real part of this will thus be 1
2‖ε‖

2σ2
η, and so Var

{
2 Re(εHη)

}
=

2‖ε‖2σ2
η. The probability of a real zero-mean normal random variable of variance

σ2
η being less than k is erfc(−k/(

√
2ση))/2, where the complementary error function
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erfc(x) = 1/(
√
π)
∫∞
x e−t

2
dt, so

P (E) =
1
2

erfc
(
‖ε‖
2ση

)
. (5.11)

It is convenient to define the distance δ of a particular error event e for a particular
channel f by [116, p 619]

δ2(e, f) =
‖ε‖2

‖f‖2
=
‖Ef‖2

‖f‖2
=

fHAf
fHf

(5.12)

or by

δ2(e, f) =
‖Fe‖2

‖f‖2
=

eHΦe
fHf

, (5.13)

where the square Hermitian Toeplitz matrices A and Φ are A = EHE, and Φ = FHF.
For the purpose of comparing channels of different impulse responses, it is also useful
to confine attention to channels having the same power, so frequently it is assumed
that the channel is “normalised” so that fHf = 1, and consequently δ(e, f) = ‖ε‖.

The overall probability of a symbol error is bounded and well approximated by the
weighted sum over all possible error events of the pair-wise error probabilities given by
(5.11):

Pe(f) ≤
∑

e∈DR

1
2
w(e) erfc

(
δ(e, f)

2ση

)
(5.14)

where w(e) is the average multiplicity and error weight of e. The multiplicity is the
proportion of time that the transmitted sequence makes error event e possible. The
diagrams on the right hand side of Fig. 5.2 show the number of possible ways that a
single symbol error can occur i.e., w(er). The multiplicity of a longer error event is then
w(e) =

∏R
r=1w(er), assuming that each data symbol is equally likely in each symbol

period. The error weight is simply the number of errors a particular error event causes.
Note that for a given value of R, some error events may occur several times, and this
must be taken into account in calculating the multiplicity of each error event.

5.2 Reduced Complexity Error Rate Calculation

5.2.1 Minimum Distance Error Events

Equation 5.14 must be evaluated over all possible error events, which is an infinite sum,
since there is in principle no limit to the length of error event R. Even a summation
for a moderate finite length R may be impractical, especially for the larger modulation
alphabets.
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One approximation to the error rate is given by the rate for the worst case channel.
The pairwise error probability of error of (5.11) is largest when δ(e, f) is smallest. From
(5.12) this clearly occurs when the channel f is the eigenvector corresponding to the
minimum eigenvalue of A(e).

The search through possible error events for the minimum distance error event,
which minimises the minimum eigenvalue of A(e) has been the subject of some investi-
gation [87, 132]. The trouble with this analysis is that the resulting error rate estimate
is a very poor and pessimistic estimate. As has already been mentioned, the difference
in power between the worst-case and best-case channels required to achieve the same
rate can be very large. For a length L = 7 QPSK channel the difference is 11.4 dB.
The difference is larger for longer impulse responses and for more spectrally efficient
modulations.

5.2.2 Contributing Error Events

The very “short” tail of the normal distribution results in the error probability of
(5.14) being well approximated (for medium to high SNR) by the single term of the
sum which has the largest likelihood of occurrence. The approximation is even better
if the summation is over those few terms which have the largest likelihood. This term
(or terms) can be found rapidly if it is known to belong to a small set U of significant
error events. The set U is the smallest set of error events which consists of those e so
that for all eN 6∈ U , and for all f , there exists an eU ∈ U such that

δ (eU , f) 6 δ (eN , f) . (5.15)

Note that the same δ (eU , f) does not need to be less than δ (eN , f) for every value of f .
There needs only to be for a given f , some eU ∈ U such that the condition is satisfied.

Once such a set U of error events has been found, the error performance of the
system can be easily approximated by finding the error rate caused by the most probable
element of that set. The method of obtaining the performance estimate for a particular
channel f is thus to evaluate (5.14) for the e1 ∈ U for which δ(e1, f) is smallest.

An iso-surface of the exact error performance for the modulation Binary Phase Shift
Keying (BPSK), and L = 3 is shown in Fig. 5.3(a). All points on the surface represent
channels with a symbol error probability of 3×10−5. An approximation to this surface
based on just three error sequences is shown in Fig. 5.3(b).

Note that for a fixed distance δ such as unity, (5.12) defines an ellipsoid in the
space of impulse response coefficients f . The axes of this ellipsoid are aligned with
the eigenvectors of A, and the lengths of the semi-axes are the inverse of the square
roots of the eigenvalues of A (i.e., the inverse of the singular values of E). Since A is
Hermitian, its eigenvalues are real. An error event consisting of a single symbol error
defines a sphere.
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(a) (b)

Figure 5.3: Iso-surface of bit error rate for BPSK (left) and an approximation based on
the union of ellipsoids (right). The three axes represent the impulse response compo-
nents of a discrete channel of length three. The error rate probability is 3× 10−5 and
the SNR of the best channel is 11 dB. Each of the ellipsoids corresponds to a particular
error event.

The set U defined in (5.15) can be visualised as the minimum set of ellipsoids
required to contain the union of all ellipsoids.

5.3 Algorithm for finding the set U

The set of error events required to approximate the error of all error events can be
found using the algorithm described in this section.

5.3.1 Stage 1

The first stage is, for a given length of error event R, to search through all possible
sequences, and eliminate duplication of the matrix A. There are several error sequences
which will produce the same A. For large R this is quite computationally intensive, par-
ticularly for large difference alphabets (e.g., 16-PSK has 129 elements in the difference
alphabet). The computation time rises exponentially with R.

Sequences containing (but not ending with) a sequence of zeros of length ≥ L − 1
need not be included. This is because after such a sequence of zero errors (i.e., correct
transmissions), a MLSE equaliser will be in the all zero state, and so the behaviour
is already covered by another sequence (although as mentioned in Section 5.1 this
duplication must be allowed for in calculating the multiplicity of the error event).

Restricting the search of error events to only those of length R or less may mean
that a valid member of the set is omitted. Provided however that R is chosen to be
sufficiently large, the inaccuracy in the performance approximation will be small [87,
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Figure 5.4: Another representation of the resemblance between the actual error rate
and the union of ellipsoids approximation.

pp22,122]. In fact it is shown in [87] that very long error events, although having a very
small distance δ may only occur under very specific conditions in the transmitted data
sequence which have such small probability of occurrence that their contribution to the
overall error probability is negligible. The probability of their occurrence becomes even
less significant if the channel is not static.

5.3.2 Stage 2

The second stage of the algorithm is to eliminate all of the matrices A which dominate
any others.

The following definition of positive semidefinite partial ordering from [73, p469] is
used

Definition 1 Let A1,A2 be n × n Hermitian matrices. We write A1 � A2 if the
matrix A1 −A2 is positive definite.

If A1 � A2, then for any n ×m matrix T, THA1T � THA2T. If T is a vector,
m = 1, and the relation � is simply >. The positive definiteness of A1 −A2 can be
established by checking that all its eigenvalues are positive [73, p402].

The analogy with the ellipsoids is that the ellipsoid defined by A1 is entirely con-
tained within that defined by A2, and so it is not a member of that minimum set
required to define the union.

Since pairs of sequences are being compared in this stage, the computation time
required here rises with the square of the number of matrices A(e) found in stage 1.
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Figure 5.5: An ellipse (broken line) which is not contained by either of two others, and
yet does not contribute to the union.

Hence this stage is also quite computationally intensive. However, many of the matrices
can be quickly eliminated by comparison with the largest sphere; if the smallest singular
value is larger than the radius of the sphere, further search is not required.

5.3.3 Stage 3

Having eliminated all sequences which define ellipsoids which are entirely contained
within others still leaves many others, which, while they are not contained by any
other single ellipsoid, are still entirely contained by the union of all ellipsoids, and do
not add to that union. An illustration of this behaviour is shown in Fig. 5.5.

The smallest set which does define the union is generally much smaller than the set
of matrices which do not dominate any others. Hence the third stage of the algorithm is
to perform further elimination so the smallest set required to define the union remains.

One method of performing this elimination is to find a set of points on the unit
(hyper-) sphere in the space of f , and perform a search over the surface of the sphere to
find the sequence with the smallest distance δ at every point. This will find the smallest
set required to define the union provided there isn’t too much numerical inaccuracy,
and the grid is fine enough. Unfortunately for dimensions greater than R11 or C5 the
operation becomes too time consuming with the computational power available. The
search grid consequently becomes rather coarse, and the probability that a potentially
significant error event is missed increases.

Another method which will eliminate some sequences, but perhaps not necessarily
result in the smallest possible set, is to consider triples of error sequences. Consider
three matrices A1, A2 and A3 corresponding to three different error events e1, e2 and
e3 respectively, and δ2

i (f) = fHAif for i = 1, 2, 3. The intersections of the pairs δ2
i = δ2

j

all exist since otherwise one of the matrices would have been eliminated in stage 2. If
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however

δ2
1 < δ2

3 for all the points of the intersection δ2
2 = δ2

3 , and

δ2
2 < δ2

3 for all the points of the intersection δ2
1 = δ2

3

then e3 cannot belong to the set U .

Each of the requirements above can be established in the following manner. For the
first requirement, for example, it must be shown that the minimum of fH(A1−A3)f < 0,
subject to the constraint that fH(A2 − A3)f = 0, and the constraint that fHf = 1.
Using the method of Lagrange multipliers, the solution is points at which the derivative
of augmented function

χ = fH(A1 −A3)f − ν1

(
fH(A2 −A3)f

)
− ν2

(
fHf

)
(5.16)

is zero. Taking the derivative

∂χ

∂f
= 2 [(A1 −A3)− ν1 (A2 −A3)− ν2I] f (5.17)

and so at the solution

[(A1 −A3)− ν1 (A2 −A3)] f = ν2f . (5.18)

In other words, ν2 is an eigenvalue and f an eigenvector of the matrix (A1 − A3) −
ν1(A2 − A3). The solution to (5.16) can thus be obtained by finding the value of
ν1 for which the normalised eigenvector corresponding to the maximum eigenvalue of
(A1 − A3) − ν1 (A2 −A3) satisfies δ23 = fH(A2 − A3)f = 0. When this solution is
found

fH(A1 −A3)f = fH(A1 −A3)f − ν1

(
fH(A2 −A3)f

)
= ν2fHf

= ν2, (5.19)

where the first and second lines follow from the constraint conditions. Thus if the value
of the eigenvalue ν2 at this point is less than zero, the condition is satisfied.

It may happen that there is no value of ν1 for which an eigenvector is a solution
to δ23 = 0. It is then sufficient to find any solution to δ23 = 0, and find the sign of
fH(A1 −A3)f .

There will frequently be a discontinuity in δ23 = fH(A2−A3)f for the value at which
the maximum (or minimum) eigenvalue has algebraic multiplicity of two. Since at any
point near this discontinuity there are two distinct eigenvectors, it seems reasonable to
suppose (and it was found in practice) that the geometric multiplicity of the eigenvalue
was also two. In other words [73, p58] there will be two eigenvectors which span a
space of dimension two, and hence the value of δ23 may assume a range of values. If
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(a) (b)

Figure 5.6: Solution to the constrained optimisation using Lagrange multipliers. The
Lagrange multiplier ν2 (a) and the product f(A2 − A3)f (b) are presented as func-
tions of the multiplier ν1. The values corresponding to the maximum eigenvalue are
represented by the crosses and to the minimum eigenvalue by circles. Here L = 4,
e1 = (1,−1, 1, 0, 0, 0)T , e2 = (1,−1, 0, 0, 0)T , and e3 = (1, 0, 0, 0)T .

the values an each side of the discontinuity are opposite in sign (as shown in Fig. 5.6)
it may not be obvious that δ23 may take the value 0 and hence be a solution to the
equation.

In all the situations tried however, the following was found to be true. Let νd be the
value of ν1 at which a discontinuity occurs, let ε be a small positive real value, let f1 be
the normalised eigenvector corresponding to the minimum eigenvalue for ν1 = νd − ε,
and let f2 be the normalised eigenvector corresponding to the minimum eigenvalue for
ν1 = νd + ε. It was found that the space spanned by f1 and f2 as ε → 0 is the same
as the eigenspace of the minimum eigenvalue at ν1 = νd. A normalised vector in this
space has the form

v = αf1 ±
√

1− α2f2 (5.20)

where α ∈ [−1, 1] and so

δ23 =
(
αf1 ±

√
1− α2f2

)H
(A2 −A3)

(
αf1 ±

√
1− α2f2

)
= α2fH1 (A2 −A3) f1 + (1− α2)fH2 (A2 −A3) f2

± α
√

1− α2
(
fH1 (A2 −A3) f2 + fH2 (A2 −A3) f1

)
. (5.21)

Not only are f1 and f2 orthogonal, but fH1 (A2 −A3) f2 = 0. Hence at the point of
discontinuity δ23 may take on the values of f1(A2 −A3)f1 (when α = ±1) or f2(A2 −
A3)f2 (when α = 0) and any value in between. The range of δ23 is thus precisely those
values between the end points of the discontinuity. If these values are opposite in sign,
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the range includes 0.

In principle this technique could be extended to take into account four or more er-
ror events. However, the number of Lagrange multipliers was found to prevent simple
computation. In practice, the last stage of elimination was performed by extensive mul-
tidimensional search. The possibility remains that some sequences have been missed.

5.4 Symmetry of Contributing Error Events

The algorithm described in Section 5.3 was implemented and tried for various channel
lengths L, various sequence lengths R and various modulation schemes (see Appendix
A). It was then observed that all of the sequences required to estimate the error of a
system had a symmetry property. The nature of the symmetry is elaborated in the
following conjecture.

Conjecture 1 Let K be the R × R matrix with elements [K]ij = δi,R+1−j. All of the
length R members e of the set U which define the union of ellipsoids have the symmetry
property that for some real θ, e = ejθKe∗

Premultiplication by K reverses the order of the elements of the vector e, so that the
conjecture in effect says that the second half of a sequence e which has the minimum
distance for a certain channel is the mirror image of the conjugate of the first half, to
within some rotation allowed by the set of symbols in the difference alphabet. (The
rotational symmetry of the difference alphabet turns out to be the same as that of the
modulation alphabet).

The conjecture is made more credible by the fact that the minimiser of (5.13) over
a continuous set of complex vectors has this symmetry property. In the continuous case
the minimisation is constrained to be over vectors having norm of 1, or alternatively
the minimisation is of a Rayleigh quotient

eHΦe
eHe

. (5.22)

The matrix Φ = FHF is clearly Hermitian and so has real eigenvalues [73, p170].
The Toeplitz structure of F results in Φ being also Toeplitz. Matrices which are both
Toeplitz and Hermitian are members of a larger class of matrices symmetric about both
main diagonals, called persymmetric matrices [62, p193] for which

KΦ = Φ∗K. (5.23)
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where K is as defined in Conjecture 1. If v is some eigenvector of Φ corresponding to
a unique eigenvalue %, then Φv = %v, and so

KΦv = %Kv

Φ∗Kv = %Kv

ΦKv∗ = %Kv∗ (5.24)

Clearly Kv∗ is an eigenvector of Φ corresponding to the real eigenvalue %. Since this
eigenvalue is distinct, and v has the same norm as Kv∗, it follows that

v = ejθKv∗ (5.25)

for some angle θ which is not necessarily the same for all of the eigenvectors. The
symmetry property still holds when the eigenvalues are not distinct, although this is
not so simple to prove [87].

Since the minimiser of the Rayleigh quotient is an eigenvector of Φ, it must have
the same symmetry property. For minimisation over a discrete set (one of the difference
alphabets of Fig. 5.2), there is the additional constraint that the elements of e belong
to the discrete set, but the norm 1 constraint is removed. It is not obvious that the
symmetry property necessarily holds, although it frequently does hold.

There is an additional complication: the minimisers appear to have the symmetry
property only for their non-zero portion. Specifying a channel f specifies a family of
square matrices Φ of different sizes R×R, the smaller ones of which are sub-matrices
of the larger ones. Since they are Toeplitz, they all have the persymmetric property.
In searching for a error event e which has the smallest distance δ(e, f) for a particular
channel f , the length R of e, and hence the size of Φ, is free to change.

The symmetry property is not only of academic interest. If all of the error events
with minimum distance have this symmetry, then the range of value of R which can be
searched is considerably extended. The total number of error events of length R is

Nn = (Ns − 1)2NsR−2 (5.26)

where Ns is the number of symbols in the alphabet. The number of symmetric error
events for even R is

Nm = (Ns − 1)N
R−2

2
s Nq (5.27)

where Nq is the number of angles as rotational symmetry of the difference alphabet.

When R is odd, the centre error symbol of a symmetric sequence can only be one
for which a rotation is the same as the conjugate. For most difference alphabets used,
including QPSK, but excluding 16-QAM and higher orders of QAM, for each difference
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Figure 5.7: The Ratio of All Error Events of length ≤ R to those which are symmetric

symbol there is exactly one rotation (allowed by the symmetry of the alphabet) which
will have the same effect as conjugation. For 16-QAM there are some difference symbols
for which no rotations have the same effect as conjugation. The difference 0 will allow
any rotation. If the number of non-zero difference symbols which have a conjugate
rotation is Nr, then the number of symmetric error events of length R is

Nm = (Ns − 1)N
R−1

2
s (Nq +Nr − 1). (5.28)

The ratio of the total number of error events less than or equal to R, to the number
of error events having the conjugate symmetric property is shown in Fig. 5.7. Clearly
R can be considerably extended by searching only the symmetric error events.

In a real system however, error events with large values of R will not really be
significant. Such an error event will have the lowest distance for a set of channels
which have a very small probability of occurrence. For the error event to contribute
significantly the channel would have to remain within this small set of channels for the
duration of at least R times the symbol period. For systems of even moderate rates of
change, this will preclude long error events.

Considerable time and effort was spent in the search for either a proof or a counter
example for the conjecture (over 6 months of 500MHz Intel processor time was spend in
searching for counter examples). The following paragraphs are a disappointingly trivial
report to show for the effort. Eventually several counter examples were found. These
are listed in Appendix A in Section A.8.

The difficulty of stating results with confidence here is highlighted by the fact that
it cannot yet be stated with certainty that these are in fact counter examples — only
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(a) (b)

Figure 5.8: Union of Ellipsoids for 4-PAM, L=4. In (a) θ = 0.86π (equation 5.39). In
(b) f4 = −0.59 (equation 5.30).

that for some channels these non-symmetric error events have a distance less than any
symmetric error events of the length searched. There could be a longer sequence with
lower distance which does have the symmetry property. The issue of channel variation
of course makes sequences of large R only of academic interest, as mentioned above.

The counter examples (if indeed they are counter examples) were only found for the
modulation schemes 8-PSK and 16-PSK. This leaves the tantalising possibility that the
conjecture does hold under some conditions. It is somewhat surprising that these two
modulation schemes should furnish the counter examples, since these have more “dense”
difference alphabets, which one might have expected to more closely approximate the
continuous case, where it is known that the minimising vector does have the symmetry
property.

5.5 Visualisation

There are very few error events which contribute to the union for channels for which
L = 3. For channels with more interesting behaviour, the number of dimensions (the
number of discrete time channel coefficients) is greater than 3, and so visualisation of
the union of ellipsoids is difficult. Some diagrams have been produced to enable some
insight into the structure of the union in higher dimensions. These diagrams involve
taking a two or three dimensional slice through a higher dimensional object.

If A is a real symmetric matrix with positive eigenvalues, then the equation fHAf =
1 describes an ellipsoid centred on the origin. For most of the matrices A described in
this thesis A is also Toeplitz. If the first row of such a matrix is [r1, r2, . . . , rL], then
the equation fHAf = 1 can be expanded for some lower dimensional cases as:
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(a) (b)

Figure 5.9: Union of Ellipsoids for QPSK, L=3, equation (5.41). In (a) θ1 = −0.68π,
θ2 = 0.05π, θ3 = 0. In (b) θ1 = 0.72π, θ2 = 0.86π, θ3 = 0.

3-D:

r1(f2
1 + f2

2 + f2
3 ) + 2r2(f1f2 + f2f3) + 2r3f1f3 = 1 (5.29)

4-D:

r1(f2
1 + f2

2 + f2
3 + f2

4 ) + 2r2(f1f2 + f2f3 + f3f4) + 2r3(f1f3 + f2f4) + 2r4f1f4 = 1
(5.30)

5-D:

r1(f2
1 + f2

2 + f2
3 + f2

4 + f2
5 ) + 2r2(f1f2 + f2f3 + f3f4 + f4f5)

+2r3(f1f3 + f2f4 + f3f5) + 2r4(f1f4 + f2f5) + 2r5(f1f5) = 1. (5.31)

If some of the coefficients fi are fixed, these expressions can be rearranged as an equation
for an ellipse:

1 = p1(x2 + y2) + 2p2xy + 2p3x+ 2p4y + p5 (5.32)

or a three dimensional ellipsoid:

1 = p1(x2 + y2 + z2) + 2p2xy + 2p3xz + 2p4yz + 2p5x+ 2p6y + 2p7z + p8. (5.33)

where x, y, z are those coefficients which are not fixed.
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(a) (b)

Figure 5.10: Union of Ellipsoids for 8-PSK, L=3, equation (5.41). In (a) θ1 = −0.26π,
θ2 = −0.58π, θ3 = 0. In (b) θ1 = 0.79π, θ2 = 0.89π, θ3 = 0.

5.5.1 Three Dimensional Slices With One Co-ordinate Fixed

If an ellipse described by the quadratic form xTAvx where

Av =

 a1 a2 a3

a2 a1 a4

a3 a4 a1

 , (5.34)

is translated to the point x = (x0, y0, z0)T , the resulting equation is

1 = a1

(
x2 + y2 + z2

)
+ 2a2xy + 2a3xz + 2a4yz

− 2x (a1x0 + a2y0 + a3z0)− 2y (a2x0 + a1y0 + a4z0)− 2z (a3x0 + a4y0 + a1z0)

+ a1

(
x2

0 + y2
0 + z2

0

)
+ 2a2x0y0 + 2a3x0z0 + 2a4y0z0. (5.35)

Equating the coefficients with those of (5.33):

k =
a1

p1
=
a2

p2
=
a3

p3
=
a4

p4

=
a1x0 + a2y0 + a3z0

−p5
=
a2x0 + a1y0 + a4z0

−p6
=
a3x0 + a4y0 + a1z0

−p7

=
1− a1(x2

0 + y2
0 + z2

0)− 2(a2x0y0 + a3x0z0 + a4y0z0)
1− p8

. (5.36)

This equation can be solved to obtain

 x0

y0

z0

 = −

 p1 p2 p3

p2 p1 p4

p3 p4 p1


−1  p5

p6

p7

 (5.37)
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and

k =
1

1− p8 + p1(x2
0 + y2

0 + z2
0) + 2(p2x0y0 + p3x0z0 + p4y0z0)

(5.38)

The coefficients for a1, a2, a3 and a4 are then obtained by multiplying the corresponding
pi by k.

Many drawing packages allow a co-ordinate transformation matrix to be specified.
Points on the ellipsoid defined by Av satisfy xTAvx = 1. If the matrix of orthonor-
mal eigenvectors of Av is V, and the corresponding diagonal matrix of eigenvalues is
D, then it is easy to show that the matrix VD−

1
2 transforms the unit sphere to the

required ellipsoid. A three dimensional slice produced in this way for 4-PAM is shown
in Fig.5.8(b).

5.5.2 Rotating Hyper-plane Three Dimensional Slice

An alternative visualisation can be obtained by viewing the intersection of the union
with a three dimensional hyper-plane which passes through the origin and rotates
around one of the axes (note that once again the intersection will be an ellipsoid,
but now centred on the origin). For example, if f1 = x, f2 = y, f3 = z cos θ and
f4 = z sin θ, then (5.30) leads to

r1(x2 + y2 + z2) + 2r2(xy + yz cos θ + z2 sin θ cos θ)

+ 2r3(xz cos θ + yz sin θ) + 2r4xz sin θ = 1. (5.39)

By equating coefficients of the terms in x, y and z, the matrix describing the
resulting three dimensional ellipsoid is

E =

 r1 r2 r3 cos θ + r4 sin θ
r2 r1 r2 cos θ + r3 sin θ

r3 cos θ + r4 sin θ r2 cos θ + r3 sin θ r1 + r2 sin(2θ)

 . (5.40)

Such a slice for 4-PAM is shown in Fig.5.8(a).

This technique may also be used to view the complex three dimensional space. The
angles θ1, θ2 and θ3 define the angles made by the real part of the channel coefficient axes
to each of the drawing axes x, y and z, so that f1 = xejθ1 , f2 = yejθ2 and f3 = zejθ3 .
If the first row of the Toeplitz Hermitian matrix A is (a1, a2 + jb2, a3 + jb3), then the
equation fHAf = 1 can be shown to be equivalent to xTEx = 1 where x = (x, y, z)
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and the symmetric matrix

E =



a1
a2 cos(θ2 − θ1)
−b2 sin(θ2 − θ1)

a3 cos(θ3 − θ1)
−b3 sin(θ3 − θ1)

a2 cos(θ2 − θ1)
−b2 sin(θ2 − θ1)

r1
a2 cos(θ3 − θ2)
−b2 sin(θ3 − θ2)

a3 cos(θ3 − θ1)
−b3 sin(θ3 − θ1)

a2 cos(θ3 − θ2)
−b2 sin(θ3 − θ2)

r1


. (5.41)

The pairs of differences in (5.41) are not uniquely defined. This can be seen by observing
that if the pairs of differences (α1, α2, α3)T = T(θ1, θ2, θ3)T , the matrix T is singular.
Thus in Fig. 5.9 (for QPSK) and Fig. 5.10 (8-PSK), θ3 is chosen as zero.

5.6 Effect of Imperfect Channel Knowledge

In the previous sections it was assumed that, though the channel was noisy and disper-
sive, it was static, and perfectly known. In a mobile environment at least, this is never
true.

Firstly, the channel is seldom static. Recall that the aim of the research presented
in this thesis is to investigate the extent to which the behaviour of a rapidly varying
channel can be predicted.

Secondly the channel is never perfectly known. Much research has been reported
over the previous few decades on the performance of channel estimation techniques.
This has included research on the optimal choice of training sequences, and the design
and evaluation of many “blind” equalisation schemes; their convergence rates and excess
error.

In this section the effect on system error probability of imperfect channel is investi-
gated. The results obtained are similar to those of Gorokhov [63] but are more general,
and in many cases more accurate. The derivations are explained in Appendices 5A and
5B at the end of this chapter. Another approach to the problem of imperfect channel
information, based on considerations of mutual information is contained in [95]. Apart
from these two papers, little has been published on this important problem.

5.6.1 Stochastic Channel Estimate and Noise

The symbols used here are similar to those of Section 5.1. s is a vector of transmitted
symbols and f is a discrete time impulse response. Their respective convolution matrices
S and F are as defined in (5.6) and (5.7). η is a vector of additive noise, y is a vector
of received signal, with

y = Fs + η = Sf + η. (5.42)
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The probability of a particular error event when the channel knowledge is perfect is the
probability that the maximum likelihood metric of ŝ 6= s is smaller than that of s, or

P (E) = P (‖y − Fŝ‖ ≤ ‖y − Fs‖). (5.43)

If the estimate of the channel is f̂ 6= f (with convolution matrix F̂), the probability of
a particular error event is

P (E) = P (‖y − Ŝf̂‖ ≤ ‖y − Sf̂‖)

= P (‖Sf − Ŝf̂ + η‖ ≤ ‖Sf − Sf̂ + η‖)

= P (‖Sf − Sf̂ + Sf̂ − Ŝf̂ + η‖ ≤ ‖Sf − Sf̂ + η‖)

= P (‖−S∆f −Ef̂ + η‖2 ≤ ‖−S∆f + η‖2)

= P
(
‖Ef̂‖

2
+ 2 Re

(
f̂HEHS∆f − f̂HEHη

)
< 0
)

= P
(
‖ε̂‖2 + 2 Re

(
ε̂HS∆f − ε̂Hη

)
< 0
)

= P (χ < 0), (5.44)

where E = Ŝ− S, ∆f = f̂ − f , ε̂ = Ef̂ , and χ = ‖ε̂‖2 + 2 Re(ε̂HS∆f − ε̂Hη).

The exact distribution of χ involves products of two normal random variables, one
of which has zero mean. The distribution of the product y of two normal random
variables, x1 ∼ N (0, σ2

1), x2 ∼ N (µ2, σ
2
2), calculated using the Mellin convolution

is presented in [137, p136]. The true distribution can be shown to be very close to
the normal distribution if the non-zero mean µ2 > 4σ2. This will be true provided the
channel estimation error is a few times smaller than the actual channel impulse response
values. An estimate of the probability (5.44) is now derived based on the assumption
that the distribution of the product is close to normal. Even when the distribution of
just one product is not close to normal, the sum of many of these products leads to
asymptotic normality and so an accurate result may be assured.

The following assumptions are used here and in Section 5.6.2.

1. The channel estimate f̂ is an unbiased normal estimate of f , so that ∆f ∼
CN (0,Cf ).

2. The noise is also complex normal so that η ∼ CN (0,Cη).

3. The channel length L is sufficient that the distribution of the quantity being
compared with zero in (5.44) is approximately normal.

4. The channel estimation error is statistically independent of the noise. Whenever
the received signal is used for estimating the channel this is not strictly true.
However, the channel estimate is usually based on a much larger block of data
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than the duration of one error event, and so such an estimate f̂ will have little
correlation with η.

In [63] use is made of several assumptions in addition to these to show that Ef̂ =
Ef(1 + ξT ) where ξT converges in probability to zero (ξT

p−→ 0). The weakness in
making these assumptions is that the convergence depends on the length L of the
channel more than does Assumption 3 above. In effect, the dependence of ε̂ on the
random variable ∆f is neglected.

The approach of this section is to take account of this dependence, and to use the χ
in (5.44) to approximate the true distribution under the assumption that the resulting
distribution is approximately normal. The result of the analysis is the following theorem
which is proved in Appendix 5A.

Theorem 1 Let ∆f ∈ CL with ∆f ∼ CN (0,Cf ), η ∈ CR+L−1 with η ∼ CN (0,Cη),
and with ∆f and η independent. Let S ∈ C(R+L−1)×L and E ∈ C(R+L−1)×L be fixed
matrices and let f ∈ CL. Define ε̂ = E(f + ∆f ), and χ = ‖ε̂‖2 + 2 Re(ε̂HS∆f − ε̂Hη).
Then the mean of χ is

E{χ} = ‖ε‖2 + tr(GCf ) + tr(HCf ), (5.45)

and the variance of χ is

V {χ} = tr((GCf )2) + tr((HCf )2) + 2εH(ŜCf Ŝ
H

+ Cη)ε+ 21T ((ECfEH)�Cη)1,
(5.46)

where Ŝ = S + E, H = EHS + SHE, ε = Ef , G = EHE and 1 = (1, 1, . . . , 1)T .

If the distribution of χ was normal, the probability of the error event occurring,
being the probability that χ is less than zero, would be

P (E) =
1
2

erfc


(‖ε‖2 + tr(GCf ) + tr(HCf ))√√√√ tr((GCf )2) + tr((HCf )2)

+21T ((ECfEH)�Cη)1 + 2εH(ŜCf Ŝ
H

+ Cη)ε

 (5.47)

The distribution of χ was investigated numerically, and compared with the normal
distribution using the Kolmogorov Smirnov test for many different values of E, S, f ,
Cf and Cη. The distribution was found to be a very good fit to normal, even with
small values of L. Thus even though the distribution of χ is not strictly normal, (5.47)
provides a reliable estimate of the probability of a particular error event occurring.

The expression is of limited usefulness, however, since it includes the transmitted
symbol sequence s (actually a convolution matrix S of s) as an explicit parameter. To
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Modulation Variance
BPSK 1/4
4-PAM 5/4
8-PAM 21/4
16-PAM 85/4
QPSK 1/2
8-PSK 2
16-PSK 2
16-QAM 5/2

Table 5.1: Variances of Modulation Schemes.

obtain the average probability of a particular error event requires averaging over all
possible transmitted error sequences s. The next section then derives a similar mean
and variance where s is also a random quantity.

5.6.2 Stochastic transmitted symbols s

In this section the probability of an error event is derived under the conditions that
the noise η, the channel estimate error ∆f and the transmitted symbol sequence s are
all stochastic unknown complex quantities, with zero mean and known variance. The
variance of a white symbol sequence composed of symbols from the modulation schemes
shown in Fig. 5.2 is shown in Table 5.1

The assumptions used in this section are the same as in Section 5.6.1, with the
additional assumptions that

5. Successive transmitted symbols are independent (the data s is “white”) so that
{sis∗j} = σ2

sδij .

6. The data s and the channel estimate ∆f are uncorrelated.

The following theorem is proved in Appendix 5B.

Theorem 2 Let ∆f ∈ CL with ∆f ∼ CN (0,Cf ), η ∈ CR+L−1 with η ∼ CN (0,Cη),
s ∈ CR with s ∼ CN (0, σ2

sI) and with ∆f , η and s all independent. Let E ∈ C(R+L−1)×L

be a fixed matrix, and let f ∈ CL. Define the convolution matrix S of s using (5.7),
ε̂ = E(f + ∆f ), and χ = ‖ε̂‖2 + 2 Re(ε̂HS∆f − ε̂Hη). Then the mean of χ is

E{χ} = ‖ε‖2 + tr(GCf ) (5.48)

and the variance of χ is

V {χ} = tr((GCf )2) + 2εH(ECfEH + Cη + σ2
sCs)ε

+ 21T ((ECfEH)� (Cη + σ2
sCs

∗))1 + 2σ2
s1

T (ECf � (EC)∗s)1, (5.49)
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where ε = Ef , G = EHE, the ij-th element of the matrix Cs is

[Cs]ij =
L∑
p=1

L∑
q=1

p−q=i−j
1≤i−p+1≤R

[Cf ]pq, (5.50)

the ij-th element of the matrix (EC)s is

[(EC)s]ij =
R+L−1∑
p=1

L∑
q=1

p−q=i−j
1≤i−p+1≤R

[ECf ]pq, (5.51)

and 1 = (1, 1, . . . , 1)T , of length L or R+ L− 1.

If the distribution of χ was normal, the probability of the error event corresponding
to E occurring would be

P (E) =
1
2

erfc


‖ε‖2 + tr(GCf )√√√√ tr((GCf )2) + 2εH(ECfEH + Cη + σ2

sCs)ε
+21T ((ECfEH)� (Cη + σ2

sCs
∗))1 + 2σ2

s1
T (ECf � (EC)∗s)1

 .

(5.52)

The true distribution was investigated numerically, as in Section 5.6.1, but this time
the distribution was found not to converge so rapidly to normality. Though in some
respects resembling a normal distribution, the left tail tends to be steeper than the
right tail. Despite this, the expression (5.52) still provides a useful approximation to
the actual error probability.

This is demonstrated in a simple example. The modulation scheme is 8-PSK, and
the error event e being investigated is the single (R = 1) error a (refer to Fig. A.1 in
Appendix A). The actual channel is given by fl = exp(−3l/L), normalised to have
unit power, and L = 4. The channel error covariance matrix is Cf = 0.01I, and
the noise covariance Cη = 0.1I. The density function of χ estimated from numerical
experiment of 4× 106 transmissions, and the normal distribution with the same mean
and variance (calculated using (5.48) and (5.49)) are compared in Fig. 5.11. The
probability of the error event occurring is p(E) = p(χ < 0). The two cumulative
distribution functions are compared in Fig. 5.12. The probability of error for both the
simulated and approximated cases is 1.48× 10−4. The approximation here appears to
be quite accurate. One would expect that for larger values of L the approximation
would be more accurate, since the distribution of χ converges to the normal. The
approximated probability of longer error events may not be so accurate however.
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Figure 5.11: Comparison of the density functions estimated from numerical experiment
(solid line), and a normal distribution (dotted line) with parameters calculated using
(5.48) and (5.49). The dashed line is the distribution used in (5.53).

Note that in [63] it is assumed that
√
K(f̂ − f) d−→ CN (0,Cf ), where K is the

number of data samples from which the estimate f̂ of the channel f is obtained.1 If
Cf is assumed to tend to zero in this manner, except in the calculation of Cs, and
Cη = σηI the probability of error becomes

P (E) =
1
2

erfc

(
‖ε‖2√

2 (σ2
s2εHCsε+ 2εHCηε)

)

=
1
2

erfc

(
‖ε‖
2ση

(
1 +

εHCsε

‖ε‖2
σ2
s

σ2
η

)− 1
2

)
(5.53)

which is very similar to the expression obtained in [63]. It can be seen from Fig. 5.11
and Fig. 5.12 that while the distribution corresponding to this simplification is close
to the true distribution, the cumulative distribution used to calculate p(χ < 0) is quite
inaccurate.

The problem of finding a set of error events U smaller than DR for which to evaluate
the sum (5.14) when the channel knowledge is imperfect remains to be investigated.
It is quite possible that a similar approach to that used in Section 5.2 would prove
effective.

From this section it is concluded that even in a situation where the channel impulse
response is not perfectly known, the symbol error rate can be determined from the
inaccurate channel estimate and some estimate of the channel estimation error.

1A useful method of choosing a training sequence to minimise the error in a channel estimate is
described in [29].
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Figure 5.12: Comparison of the cumulative distribution functions estimated from nu-
merical experiment (solid line), and a normal distribution (dotted line) with parameters
calculated using (5.48) and (5.49). The dashed line is the distribution used in (5.53).
Although the approximate expression of (5.53) results in a good approximation to the
true density (Fig 5.11), the cumulative distribution near zero is much better represented
by (5.48) and (5.49).

5.7 Summary and Contributions

In this chapter the application of predicted channel information to predicting the error
rate of a broad-band system has been considered.

We itemise some specific contributions made in this chapter:

i. A new insight into the error behaviour of a broad-band system has been presented
— that the error performance can be accurately estimated from knowledge of the
channel and of the relatively small set of error events which contribute most of
the errors.

ii. A method has been proposed which allows the set of contributing error events
to be found in a way which is channel independent, so the information, once
calculated may be incorporated into a real system, so that it can predict its own
performance. The set of such error events for some uncoded modulation schemes
has been found.

iii. The approach has been extended to the case where the channel information is
inaccurate, and an asymptotic expression derived which allows the probability of
occurrence of an error event in such a situation to be estimated.



5A Proof of Theorem 1

Proof

The aim of this appendix is to find the mean and variance of χ, where χ = ‖ε̂‖2 +
2 Re(ε̂HS∆f − ε̂Hη).

Expanding the expression for χ

χ = fHEHEf + ∆f
HEHE∆f + 2 Re(fHEHE∆f ) + 2 Re(fHEHS∆f )

+ 2 Re(∆f
HEHS∆f )− 2 Re(fHEHη)− 2 Re(∆f

HEHη). (5.54)

For convenience of reference, the following terms are defined:

t1 = fHEHEf

t2 = ∆f
HEHE∆f

t3 = 2 Re(fHEHE∆f )

t4 = 2 Re(fHEHS∆f )

t5 = 2 Re(∆f
HEHS∆f )

t6 = −2 Re(fHEHη)

t7 = −2 Re(∆f
HEHη)

χ = t1 + t2 + t3 + t4 + t5 + t6 + t7. (5.55)

The terms t1, . . . , t7 are examined to find their mean and variance, and the covariances
of pairs of terms.

5A.1 The term t1 = fHEHEf

This term is constant, and so has mean t1, and zero variance.

5A.2 The term t2 = ∆f
HEHE∆f

Since E{∆f ∆f
H} = Cf , it follows that

E{∆f
HEHE∆f} = E{tr(E∆f ∆f

HEH)}

= tr(ECfEH)

= tr(EHECf ). (5.56)

The variance of this term can be found by considering the eigendecomposition of
ECfEH which can be expressed as ECfEHV = VD. Then if g = VHE∆f , and
E{ggH} = D, the elements of g are uncorrelated, with variances given by E{gig∗i } =
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σ2
i . Then

E{∆f
HEHE∆f ∆f

HEHE∆f} = E{gHVHVggHVHVg}

= E{gHggHg}

= E


(

L∑
i=1

|gi|2
)2


=
L∑
i=1

E
{
|gi|4

}
+ 2

L∑
i=1

∑
j 6=i

E{|gi|2|gj |2}. (5.57)

At this point it is necessary to know the expectation of x4 for x ∼ N (0, σ2
x), n ∈ N.

Using the integral (3.381-4) of [64]

E(xn) =
∫ ∞
−∞

xn
1√

2πσ2
x

e
− x2

2σ2
x dx =

{
σnx(n− 1)!! n even
0 n odd,

(5.58)

where n!! = 1.3.5. · · · .n. For complex z = x+ jy ∼ CN (0, σ2
z),

E(|z|4) = E{(x4 + y4 + 2x2y2}

= E

{
3(

1
2
σ2
z)

2 + 3(
1
2
σ2
z)

2 + 2(
1
2
σ2
z)

2

}
= 2σ4

z . (5.59)

Thus

L∑
i=1

E
{
|gi|4

}
+ 2

L∑
i=1

∑
j 6=i

E{|gi|2|gj |2} =
L∑
i=1

2σ4
i + 2

L∑
i=1

∑
j 6=i

σ2
i σ

2
j

= tr(D2) + (tr(D))2

= tr((EHECf )2) + (tr(EHECf ))2. (5.60)

Therefore the variance of t2 is given by

V (t2) = tr((EHECf )2). (5.61)

5A.3 The term t3 = 2 Re(fHEHE∆f )

The only random part of this term is ∆f , which has zero mean, and hence

E{2 Re(fHEHE∆f )} = 0. (5.62)
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If α = fHEHE, then

V {2 Re(fHEHE∆f )}

= V {2 Re(α∆f )}

= E{(αH∆f + ∆fα)2}

= E{αH∆f ∆f
Hα+ tr(αH∆f ∆f

Hα) +αH∆f ∆f
Tα∗ +αT∆f

∗∆f
Hα}

= 2αHCfα

= 2fHEHECfEHEf . (5.63)

5A.4 The term t4 = 2 Re(fHEHS∆f )

Identical reasoning to that for t3 shows that

E{2 Re(fHEHS∆f )} = 0, and (5.64)

V {2 Re(fHEHS∆f )} = 2fHEHSCfSHEf . (5.65)

5A.5 The term t5 = 2 Re(∆f
HEHS∆f )

If H = EHS + SHE, then

E{2 Re(∆f
HEHS∆f )} = E{∆f

HH∆f}

= E{tr(H∆f ∆f
H)}

= tr(HCf ). (5.66)

If H, being Hermitian, is written in the form H = XHX, then using the same reasoning
as for Section 5A.2 the variance is

V {2 Re(∆f
HEHS∆f )} = tr((XHXCf )2)

= tr((HCf )2) (5.67)

In fact H can only be written as H = XHX if the eigenvalues are positive. Equa-
tion 5.67 is valid even if some eigenvalues are non-positive, and a proof is simple to
construct using an almost identical approach to that of Section 5A.9.

5A.6 The term t6 = −2 Re(fHEHη)

The only stochastic part of this term is the zero mean noise η. Following Section 5A.3,

E{−2 Re(fHEHη)} = 0 (5.68)
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and

V {−2 Re(fHEHη)} = 2fHEHCηEf (5.69)

5A.7 The term t7 = −2 Re(∆f
HEHη)

Using the assumption that the channel estimation error is statistically independent of
the noise

E{−2 Re(∆f
HEHη)} = 0, (5.70)

and if h = E∆f

V {(∆f
HEHη)} = E{hHηηHh}

= E


(

L∑
i=1

h∗i ηi

) L∑
j=1

η∗jhj


=

L∑
i=1

L∑
j=1

E{h∗ihjη∗j ηi}

=
L∑
i=1

L∑
j=1

E{h∗ihj}E{η∗j ηi}

= 1T ((ECfEH)�Cη)1 (5.71)

where 1 = (1, 1, . . . , 1)T . Use has again been made of the assumption that hi and ηi

are independent, so that the variance of their product is equal to the product of their
variances [81, p245]. If Cη is diagonal, E{η∗i ηj} will be zero for i 6= j, and so

L∑
i=1

L∑
j=1

E{h∗ihj}E{η∗j ηi} =
L∑
i=1

E{h∗ihi}E{η∗i ηi}

= tr(ECfEHCη). (5.72)

Taking the real part halves this variance, and doubling the value quadruples the vari-
ance, so

V {−2 Re(∆f
HEHη)} = 21T ((ECfEH)�Cη)1 (5.73)

(or 2 tr(ECfEHCη) when Cη is diagonal).
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5A.8 The cross-correlation of t3 and t4

The expression to be evaluated here is

E{2 Re(fHEHE∆f )2 Re(fHEHS∆f )∗}

= E{(fHEHE∆f + ∆f
HEHEf)(fHEHS∆f + ∆f

HSHEf)}

= E{fHEHS∆f ∆f
HEHEf + fHEHE∆f + ∆f

HSHEf}

= 2 Re(fHEHECfSHEf). (5.74)

The third line follows from the fact that E{∆f
T∆f} = E{∆f

H∆f
∗} = 0.

5A.9 The cross correlation of t2 and t5

Recall from Section 5A.5 H = EHS + SHE. The eigendecomposition (different from
that of Section 5A.2) of Cf is written as CfV = VD, and g = VH∆f , so that
E{ggH} = D, so the elements of g are uncorrelated, with variances given by E{gig∗i } =
σ2
i .

If G′ = VHEHEV, and H′ = VH(EHS + SHE)V, then

E{∆f
HEHE∆f 2 Re(∆f

HEHS∆f )}

= E{(gHVHEHEVg)(gHVH(EHS + SHE)Vg)}

= E{(gHG′g)(gHH′g)}

= E


 L∑
i=1

L∑
j=1

g∗iG
′
ijgj

( L∑
k=1

L∑
l=1

g∗kH
′
klgl

)
=

L∑
i=1

L∑
j=1

L∑
k=1

L∑
l=1

E
{
g∗i g
∗
kgjglG

′
ijH

′
kl

}
=

L∑
i=1

L∑
k=1

σ2
i σ

2
kG
′
jjH

′
kk

=

(
L∑
i=1

σ2
iG
′
jj

)(
L∑
k=1

σ2
kH
′
kk

)
= tr(G′D) tr(H′D)

= tr(EHECf ) tr(HCf ). (5.75)

Note that only those terms of the quadruple summation are non-zero for which both
i = j and k = l, and if the elements of g are independent (they are jointly normal and
uncorrelated) and have zero mean, the variance of the product is the product of the
variances.
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5A.10 The covariance of t2 and t3

Using the eigendecomposition of Section 5A.2, allowing c = fHEHE, gi = xi+ jyi, and
ci = ai + jbi,

E{∆fEHE∆f fEHE∆f} = E{gHgbHg}

= E

{
L∑
k=1

L∑
l=1

(x2
k + y2

k)(xl + jyl)(al − jbl)

}
. (5.76)

It can be seen that each of the terms involved in this expression involves an odd power
of a zero mean normal random variable, and from (5.58) the expectation of each of
these is zero. Hence the covariance of terms t2 and t3 is zero.

If is fairly straightforward to show that all of the remaining cross correlations are
also zero.

5A.11 The Combined Expression

Given that the only terms with non-zero means are t1, t2 and t5, and the only pairs
of terms with non-zero cross correlation are (t1, t2), (t1, t5), (t2, t5) and (t3, t4), the
mean and variance of the combined expression χ can be readily calculated. Recall that
H = EHS + SHE. Setting ε = Ef and G = EHE,

E{χ} = E{t1 + t2 + t5}

= fHEHEf + tr(EHECf ) + tr(HCf )

= ‖ε‖2 + tr(GCf ) + tr(HCf ), (5.77)

and

V {χ} = E{χ2} − (E{χ})2

= tr((EHECf )2) + 2fHEHECfEHEf + 2fHEHSCfSHEf + tr((HCf )2)

+ 2fHEHCηEf + 21T ((ECfEH)�Cη)1 + 2 tr(EHECf ) tr(HCf )

+ 4 Re(fHEHECfSHEf)− 2 tr(EHECf ) tr(HCf )

= tr((GCf )2) + tr((HCf )2)

+ 2εH(ECfEH + SCfSH + ECfSH + SCfEH + Cη)ε

+ 21T ((ECfEH)�Cη)1

= tr((GCf )2) + tr((HCf )2) + 2εH(ŜCf Ŝ
H

+ Cη)ε

+ 21T ((ECfEH)�Cη)1. (5.78)



5B Proof of Theorem 2

Proof

The terms are the same as in Appendix 5A, but the variance of the terms involving
s are different.

5B.1 The term t4 = 2 Re(fHEHS∆f )

As before, this term has zero mean. To calculate the variance, the combination of S

and ∆f is first investigated:

[S∆f ∆f
HSH ]ij =

L∑
p=1

L∑
q=1

Sip∆fp(∆f
H)qSHqj

=
L∑
p=1

L∑
q=1

si−p+1s∗j−q+1∆fp∆∗fq

= σ2
s

∑
p−q

=i−j

[Cf ]pq, (5.79)

where the last line follows from

• The definition of S in (5.7)

• The assumption of whiteness of s, so that {sis∗j} = σ2
sδij

• The assumption that ∆f and s are uncorrelated.

If the data block is of finite size, the summation over p and q is further limited by the
fact that si = 0 for i < 1 and for i > R. Thus the summation is more strictly over
p− q = i− j where i+ 1−R ≤ p ≤ i. The following definition of the ij-th element of
the matrix Cs is then convenient:

[Cs]ij =
L∑
p=1

L∑
q=1

p−q=i−j
1≤i−p+1≤R

[Cf ]pq. (5.80)

It follows that

E{(fHEHS∆f )∆fHSHEf} = σ2
sε
HCsε (5.81)

The variance of t4 is then given by

V {2 Re(fHEHS∆f )} = E{2 Re(fHEHS∆f )2 Re(fHEHS∆f )}

= 2σ2
sε
HCsε (5.82)
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5B.2 The term t5 = 2 Re(∆f
HEHS∆f )

Once again, the mean of this term is zero. The variance is derived using

V {∆f
HEHS∆f}

= E{∆f
HEHS∆f ∆f

HSHE∆f}

= E


L∑
i=1

L∑
j=1

R+L−1∑
k=1

R+L−1∑
l=1

L∑
m=1

L∑
n=1

∆fi∆fj∆
∗
fn∆∗fmSkmSHnlE

H
ikElj


= E


L∑
i=1

L∑
j=1

R+L−1∑
k=1

R+L−1∑
l=1

L∑
m=1

L∑
n=1

∆fi∆fj∆
∗
fn∆∗fmsk−m+1s∗l−n+1E

H
ikElj


=

L∑
i=1

L∑
j=1

R+L−1∑
k=1

R+L−1∑
l=1

L∑
m=1

L∑
n=1

(CfmnCfji + CfjnCfmi)σ2
sδm−n,k−lE

H
ikElj

= σ2
s

R+L−1∑
k=1

R+L−1∑
l=1

L∑
m=1

L∑
n=1

δm−n,k−l
(
Cfmn(ECfEH)lk + (ECf )ln(CfEH)mk

)

= σ2
s

R+L−1∑
k=1

R+L−1∑
l=1

ECfEH
∑
m−n
=k−l


+ σ2

s

(
R+L−1∑
l=1

L∑
n=1

ECf

R+L−1∑
k=1

L∑
m=1

[ECf
∗]kmδk−m,l−n

)
= σ2

s(1
H(ECEH �Cs

∗)1 + 1H(ECf � (EC)∗s)1) (5.83)

where the elements of the matrix (EC)s are defined by

[(EC)s]ij =
R+L−1∑
p=1

L∑
q=1

p−q=i−j
1≤i−p+1≤R

[ECf ]pq (5.84)

and the vector 1 = (1, 1, . . . , 1)T is of length appropriate to the context, which may be
L or R+ L− 1. The variance of t5 is thus given by

V {2 Re(∆f
HEHS∆f )} = 2σ2

s(1
T (ECfEH �Cs

∗)1 + 1T (ECf � (EC)∗s)1) (5.85)

5B.3 The combined expression for random s

It is fairly straightforward to show that all of the terms of the expression χ = t1 + t2 +
t3 + t4 + t5 + t6 + t7 have zero cross correlation. The mean χ is given by

E{χ} = ‖ε‖2 + tr(GCf ) (5.86)
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and the variance by

V {χ} = tr((GCf )2) + 2εH(ECfEH + Cη + σ2
sCs)ε

+ 21T ((ECfEH)� (Cη + σ2
sCs

∗))1 + 2σ2
s1

T (ECf � (EC)∗s)1 (5.87)



5C Note on ‘A New Method for Determining “Unknown”

Worst-Case Channels for Maximum Likelihood Se-

quence Estimation’

In [132] a method is presented for finding the minimum distance error events and
channels. Although the algorithm appears to be have been successful in the example of
BPSK for channels of length up to L = 10, there is an error in the proof of the theorem
which forms the basis of the method. Theorem 2 of the paper states that if m ≥ 2, and
p1 and p2 are integers such that p1 > p2 ≥ m− 1, then B

(m,l)
p1 ≥ B(m,l)

p2 .

B
(m,l)
p is defined as

B(m,l)
p =



min
gm ∈ Γm, êm+p−1 ∈ Ωm+p−1

∥∥∥∥∥∥∥
 M(1)

m

M(2)
m,p

M(3)
m,p

gm

∥∥∥∥∥∥∥
2

, if p ≥ m

min
gm ∈ Γm, êm+p−1 ∈ Ωm+p−1

∥∥∥∥∥
(

M(1)
m

M(3)
m,p

)
gm

∥∥∥∥∥
2

, if p = m− 1

(5.88)

where

êm+p−1 = (ê0, ê1, . . . , êm+p−2)T ∈ Ωm+p−1, (5.89)

Ωn is the set of possible error events of length n, which for PAM modulations, as
considered in this paper, can be expressed as

Ωn =
{

(y0, y1, . . . , yn−1)T ∈ Rn×1 :

y0, y1, · · · , yn−1 ∈ {−l,−l + 1, · · · , l} , y0, yn−1 6= 0
}
,

(5.90)

gm is a channel description of length m, the domain of which is given by

gm = (g0, g1, . . . , gm−1)T ∈ Γm, (5.91)

where

Γm =

{
(y0, y1, . . . , ym−1)T ∈ Cm×1 :

m−1∑
k=0

|yk|2 = 1

}
, (5.92)

M(1)
m is an m− 1 by m matrix whose (i, j) entry is equal to êi−j if i ≥ j and equal to 0

if i < j, M(2)
m,p is a p−m+ 1 by m matrix whose (i, j) entry is equal to êm+i−j−1, and

M(3)
m,p is an m − 1 by m matrix whose (i, j) entry is equal to êm+p+i−j−1 if i ≤ j − 1

and equal to 0 if i > j − 1.
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Since p1 > p2 ≥ m− 1, M(2)
m,p1 may be expressed as

M(2)
m,p1

=

[
M̂(2)

m,p1

M̃(2)
m,p1

]
(5.93)

where M̂(2)
m,p1 is a sub-matrix of M(2)

m,p1 containing the first (p2−m+1) rows, and M̃(2)
m,p1

containing the last (p1 − p2) rows. The proof (which is presented in the paper) of the
theorem then requires that

min
gm ∈ Γm, êm+p−1 ∈ Ωm+p−1

∥∥∥∥∥∥∥
 M(1)

m

M̂(2)
m,p

M(3)
m,p

gm

∥∥∥∥∥∥∥
2

= B(m,l)
p2

(5.94)

However, this is not always true. The left and right hand sides of (5.94) (when p ≥ m−1)
are

e0 0 . . . 0
...

. . . . . .
...

em−2 . . . e0 0

em−1 em−2 . . . e0

...
. . . . . .

...
ep2−1 . . . ep2−m

0 em+p1−2 . . . ep1

...
. . . . . .

...
0 . . . 0 em+p1−2



6=



e0 0 . . . 0
...

. . . . . .
...

em−2 . . . e0 0

em−1 em−2 . . . e0

...
. . . . . .

...
ep2−1 . . . ep2−m

0 em+p2−2 . . . ep2

...
. . . . . .

...
0 . . . 0 em+p2−2



. (5.95)

The last block (corresponding to M(3)
m,p1) of each matrix is not the same, and the

operation

min
gm ∈ Γm, êm+p−1 ∈ Ωm+p−1

‖Mgm‖2 (5.96)

will not usually produce equality of these two expressions.





Chapter 6

Conclusions and Further

Research

IN this chapter the conclusions of this research are summarised, and further research
directions are outlined.

6.1 Conclusions

The problem of real time characterisation of the mobile fading channel has been con-
sidered in detail. The primary objective has been to determine the extent to which the
mobile channel can be predicted for short time periods into the future. The method
has been to develop models which firstly allow estimation of the model parameters, and
secondly have parameters which do not change rapidly, and so allow channel prediction.

One might expect that the extent of spatial correlation would provide a bound for
the range of accurate prediction. It was concluded in Section 2.3.5 that this is not true
in general. The range of accurate prediction may be very long or very short in scenarios
where the extent of spatial correlation is either large or small.

In the case of a moving receiver and far field point sources, and for moderate SNR,
the subspace algorithms (Section 3.2) provide an excellent method of estimating the
parameters of a simple channel model which allows good channel prediction. These
may be enhanced by gradient methods (Section 3.1.2).

It has been shown in Sections 4.2.3 and 4.4 that the range of channel prediction de-
pends critically on the number of significant scatterers. This conclusion is supported by
both simulations and considerations of the Cramer Rao bound. The idea is widespread
in the literature that in many circumstances in mobile communications there are only
a few significant scatterers. In Section 2.3.5 it has been shown that the reason usually
given for this assertion is not well founded.

The parameters of a far field model which correspond to near field sources may
change too rapidly to allow long range prediction. While array processing techniques
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may be used to estimate the parameters of a near field model, it has been shown
in Section 3.2.2 that they are problematical in the case of the single array snapshot
provided by the trajectory of a single moving receiver.

The effect of even moderately rough surfaces has also been shown in Section 4.5 to
be a limiting factor in long range channel prediction.

It is known (see Section 4.7) that the field in a relatively small region can be
recreated to within a given tolerance with only a small number of sources. This result
has been used in Section 4.7.6 to show that the error encountered in extrapolation of
the field beyond the region grows rapidly with extrapolation distance.

In the light of the above discoveries, and the experience of prediction with measured
channel data (Section 4.3) it is concluded that while prediction of the mobile multipath
channel may indeed be feasible in some situations, for only a small proportion of the
time can a system predict more than one fade into the future. Factors which can limit
the range of useful prediction include the presence of a large number of significant
scatterers, macroscopic changes in the scattering environment, and the presence of
rough surfaces.

An alternative method of overcoming multipath fading is space diversity, discussed
in Chapter 2. Given the advanced state this technique, and the feasibility of incorporat-
ing multiple antennas on a compact handset (shown by the experiments in Section 2.4),
and the limitations of prediction discovered in the research so far, it is likely that this
technique will enter the market place long before channel prediction. However, channel
prediction may yet have an alternative or complementary role; alternative, where mul-
tiple antennas may not be feasible; and complementary, where the multiple antennas
may be treated as an array to provide superior information on the scattering environ-
ment than could be obtained by one moving antenna alone, or where prediction can
optimise the channel choice made in a selection diversity system.

It has been shown in Section 5.1 that predicted channel information can be used
to predict system performance, although the relationship between channel information
and system performance can be a non-trivial one. A method has been presented which
allows the performance to be calculated in a relatively efficient manner provided that
the “contributing” error events are known. An algorithm for finding these has been
presented in Section 5.3, along with results which may be useful for some simple mod-
ulation schemes (Appendix A). The problem of estimating the system performance in
the case of channel estimation error has also been examined and it has been shown in
Section 5.6 how reliable indications of system performance can be obtained.

6.2 Future Research

Based on the material in this thesis three specific research directions are here proposed
which could lead to a deeper understanding of real time channel characterisation.
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The nature of the mobile channel

The actual probability density of the power of sources in a typical mobile scenario re-
mains largely unknown. It has been pointed out that many researchers have assumed
with perhaps inadequate justification that there are only a few significant discrete
sources. This represents one extreme of the density function. The other extreme is
a completely diffuse (if not omni-directional) field. This problem requires consider-
ably more investigation that it has received to date. It would require a considerable
investment in both measurement equipment and either arrays or directional antennas.

With better knowledge of the channel, models based on distributed sources may
also be developed and usefully applied.

The frequency of macroscopic changes in the scattering environment (e.g., changes
in shadowing) has a direct impact on the frequency of prediction failures. This requires
measurement equipment capable of storing very long data records. In a private corre-
spondence with Torbjörn Ekman and Mikael Sternad (authors of [43]) it would appear
that they are investigating this problem.

Adaptive algorithms have not been considered in this thesis. In this context, adap-
tive algorithms are ones which can efficiently use previous estimates of model param-
eters, and adjust these as new data becomes available. If a model is found for which
the parameters vary relatively slowly, then adaptive techniques ought to work well.
As mentioned in Section 4.2.7, the linear model is readily adapted to an adaptive al-
gorithm. Future work should include some assessment of the effectiveness of such a
technique. A situation in which adaptive algorithms will not work well is of course the
situation where there are abrupt and radical changes in the scattering environment,
and thus the model parameters. Some results of the application of adaptive techniques
have already been presented by the authors mentioned above.

The use of support vector machines (see Section 3.7) for either regression or clas-
sification of channel data has not been investigated at great length. This is another
area in which significant progress may be made. Progress is of course subject to certain
bounds, which are the subject of the next suggested research area.

Bounds

Some bounds have already been derived based on several assumptions about the nature
of the mobile channel. Other approaches may also be helpful. For instance, bounds
on the prediction range may be found based on theoretical considerations of the mu-
tual information for near field situations, rather than trying to estimate the mutual
information from data records.

Another area of useful research is into the confidence with which predictions can
be made. It would be very useful for a channel predictor to be able to estimate this
confidence, so that predicted channel information may be used judiciously.
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Applications

The area of applications has been touched in Chapter 5, but there is still a lot more
which could be explored. Some obvious steps include simulation of systems which use
predicted channel information in some way — for power control or data rate control,
or request for change of frequency for example. Another system which should be
investigated is a Multiple Input Multiple Output system. Such systems are of great
interest to researchers at present, and real time channel characterisation if not channel
prediction may have an important part to play in optimising their performance.

The problem of efficiently calculating the error rate from a channel estimate when
the channel estimate is in error requires further investigation.

The prediction accuracy requirements for various applications need to be quantified
in greater detail than has been done here.

Equalisation based on a channel model with only slowly varying parameters (pro-
posed in Section 1.3.3) has not been explored. Since only a small range of prediction
is required for such a technique to perform well, this may be profitable research area.
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Contributing Error Events

IN this appendix is presented the set of error events which will contain the worst case
error event for any channel. It should be noted that in every case each listed error

event actually represents all possible error events that can be generated by rotation
of the listed sequence around the centre of the difference alphabet. For instance, for
QPSK, the error event (1, j) has the same distance for a given channel as has (j,−1),
(−1,−j) and (−j, 1), but only the error event (1, j) is listed.

Note also that the complete error event actually consists of the listed sequence
followed by L − 1 zeros. It is only after this number of correctly interpreted symbols
that the paths of a Viterbi equaliser can be considered to have converged, and the error
event is complete.

The number in each entry is the percentage of unit power channels for which the
corresponding error event has the smallest distance. These percentages do not corre-
spond to a uniform distribution of all channels since the grid used has more points
close to the poles of the unit hyper-sphere, and fewer points near its equator. The
percentages do however give some indication of the likely contribution of each error
event to the overall error rate.

A dash indicates the sequence does not have the smallest distance for any channels,
whereas a zero indicates that it has the smallest distance for less than 0.05% of the

Modulation Type Symmetric Sequences Non-symmetric sequences
BPSK 18 16
4PAM 14 8
8PAM 12 7
QPSK 14 9
8PSK 10 5

16QAM 10 5
16PSK 8 4

Table A.1: Length of sequences searched for contributing error events
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channels tried. Some sequences which appear added at the end of each table are those
which produce a minimum worst case distance, and therefore must contribute to the
union, but were not detected in the search.

The maximum length of error sequences for which the search was conducted are
listed in table A.1.

A.1 BPSK

L 2 3 4 5 6 7 8 9 10 11

1 100 83 83.6 81.9 82.6 82.4 82.4 79.9 80.7 84.3

1, 1 - 8.5 5.2 4.7 4.6 4.7 4.9 4.8 3.6 3.7

1,−1 - 8.5 5.2 4.7 4.6 4.7 4.9 4.8 3.6 3.7

1, 1, 1 - - 3 2.2 1.8 1.6 1.5 2.1 2.1 1.6

1,−1, 1 - - 3 2.2 1.8 1.6 1.5 2.1 2.1 1.6

1, 0, 1 - - - 1.7 1.3 1.1 1 1.3 1.2 1

1, 0,−1 - - - 1.1 0.9 0.7 0.6 1.1 0.8 0.4

1, 1, 1, 1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1,−1, 1,−1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1, 1, 1, 1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1,−1, 1,−1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1, 1, 0,−1,−1 - - - - 0.2 0.2 0.1 0.2 0.3 0.1

1,−1, 0, 1,−1 - - - - 0.2 0.2 0.1 0.2 0.3 0.1

1, 0, 1, 0, 1 - - - - - 0.2 0.2 0.2 0.2 0.1

1, 0, 0, 1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0, 0,−1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0,−1, 0, 1 - - - - - 0.2 0.1 0.2 0.2 0.1

1, 1, 1, 1, 1, 1 - - - - - 0.2 0.2 0.1 0.2 0.2

1,−1, 1,−1, 1,−1 - - - - - 0.2 0.2 0.1 0.2 0.2

1, 0, 1, 1, 0, 1 - - - - - 0 - 0 0 0

1, 0, 1,−1, 0,−1 - - - - - 0 - 0 0 0

1, 1, 1, 0,−1,−1,−1 - - - - - 0 0 0 0 0

1,−1, 1, 0,−1, 1,−1 - - - - - 0 0 0 0 0

1, 1,−1,−1, 1, 1 - - - - - 0 0 0 - -

1,−1,−1, 1, 1,−1 - - - - - 0 0 0 - -

1, 1, 1, 1, 1, 1, 1 - - - - - - 0.1 0.1 0.1 0.1

1,−1, 1,−1, 1,−1, 1 - - - - - - 0.1 0.1 0.1 0.1

1, 1, 0, 0, 1, 1 - - - - - - 0 0 0.1 0

1,−1, 0, 0, 1,−1 - - - - - - 0 0 0.1 0

1, 1, 0,−1, 0, 1, 1 - - - - - - 0 0 0 0

1,−1, 0, 1, 0,−1, 1 - - - - - - 0 0 0 0

1, 1,−1,−1, 1, 1,−1,−1 - - - - - - 0 0 - -

1,−1,−1, 1, 1,−1,−1, 1 - - - - - - 0 0 - -

1, 0, 1, 0, 1, 0, 1 - - - - - - - 0.1 0.1 0

1, 0,−1, 0, 1, 0,−1 - - - - - - - 0.1 0.1 0

1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - 0 0 0

1,−1, 1,−1, 1,−1, 1,−1 - - - - - - - 0 0 0

1, 0, 0, 0, 1 - - - - - - - 0 0 0

1, 0, 0, 0,−1 - - - - - - - 0 0 0

1, 1, 0,−1,−1, 0, 1, 1 - - - - - - - 0 0.1 0

1,−1, 0, 1,−1, 0, 1,−1 - - - - - - - 0 0.1 0

1, 1, 0,−1,−1,−1, 0, 1, 1 - - - - - - - 0 0 0

1,−1, 0, 1,−1, 1, 0,−1, 1 - - - - - - - 0 0 0

1, 1,−1,−1 - - - - - - - 0 - 0

1,−1,−1, 1 - - - - - - - 0 - 0

1, 1, 0,−1, 0, 1, 0,−1,−1 - - - - - - - 0 0 -

1,−1, 0, 1, 0,−1, 0, 1,−1 - - - - - - - 0 0 -

1, 0, 0, 1, 0, 0, 1 - - - - - - - - 0 0

1, 0, 0,−1, 0, 0, 1 - - - - - - - - 0 0

1, 0,−1,−1, 1, 1, 0,−1 - - - - - - - - 0 -

1, 0,−1, 1, 1,−1, 0, 1 - - - - - - - - 0 -

1, 1, 0, 0, 0,−1,−1 - - - - - - - - 0 0

1,−1, 0, 0, 0, 1,−1 - - - - - - - - 0 0

1, 1, 1, 0, 0,−1,−1,−1 - - - - - - - - 0 -

1,−1, 1, 0, 0, 1,−1, 1 - - - - - - - - 0 -

1, 1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−1, 1,−1, 1,−1, 1 - - - - - - - - 0 0

1, 1, 1, 1, 0,−1,−1,−1,−1 - - - - - - - - 0 0

1,−1, 1,−1, 0, 1,−1, 1,−1 - - - - - - - - 0 0

1, 1, 0,−1,−1,−1,−1, 0, 1, 1 - - - - - - - - 0 -

1,−1, 0, 1,−1, 1,−1, 0, 1,−1 - - - - - - - - 0 -
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L 2 3 4 5 6 7 8 9 10 11

1, 1, 1, 0,−1,−1, 0, 1, 1, 1 - - - - - - - - 0 -

1,−1, 1, 0,−1, 1, 0,−1, 1,−1 - - - - - - - - 0 -

1, 0,−1, 0, 1, 0,−1, 0, 1 - - - - - - - - - 0

1, 0, 1, 0, 1, 0, 1, 0, 1 - - - - - - - - - 0

1, 0, 1, 0, 0, 0,−1, 0,−1 - - - - - - - - - 0

1, 1, 1, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 1,−1, 1 - - - - - - - - - 0

1, 1, 1, 0, 0, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 0, 0, 1,−1, 1 - - - - - - - - - 0

1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1 - - - - - - - - - 0

1, 1, 1, 0,−1,−1,−1, 0, 1, 1, 1 - - - - - - - - - 0

1, 0, 1,−1, 1,−1, 1,−1, 1, 0, 1 - - - - - - - - - 0

1,−1, 1, 0,−1, 1,−1, 0, 1,−1, 1 - - - - - - - - - 0

1, 0,−1,−1, 0, 1, 1, 0,−1 - - - - - - - - - 0

1, 0,−1, 1, 0,−1, 1, 0,−1 - - - - - - - - - 0

A.2 4PAM

L 2 3 4 5 6 7 8 9 10 11

1 100 97.1 83.6 81.9 82.6 82.4 82.4 79.9 80.7 84.3

1, 1 - 1.4 5 4.6 4.5 4.5 4.8 4.6 3.6 3.7

1,−1 - 1.4 5 4.6 4.5 4.5 4.8 4.6 3.6 3.7

1, 2, 2, 1 - 0 0.2 0.1 0.1 0.1 0 0.2 - -

1,−2, 2,−1 - 0 0.2 0.1 0.1 0.1 0 0.2 - -

1, 1, 1 - - 3 2.1 1.7 1.5 1.5 2 2.1 1.6

1,−1, 1 - - 3 2.1 1.7 1.5 1.5 2 2.1 1.6

1, 2, 3, 3, 2, 1 - - 0 0 0 0 0 0.1 - -

1,−2, 3,−3, 2,−1 - - 0 0 0 0 0 0.1 - -

1, 2, 3, 3, 3, 2, 1 - - 0 0 0 0 0 0 - -

1,−2, 3,−3, 3,−2, 1 - - 0 0 0 0 0 0 - -

1, 0, 1 - - - 1.7 1.3 1 1 1.3 1.2 1

1, 0,−1 - - - 1.1 0.9 0.7 0.6 1.1 0.8 0.4

1, 1, 1, 1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1,−1, 1,−1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1, 1,−1,−2, 0, 2, 1,−1,−1 - - - 0 - 0 0 0 - 0.1

1,−1,−1, 2, 0,−2, 1, 1,−1 - - - 0 - 0 0 0 - 0.1

1, 2, 1,−1,−2,−1 - - - 0 0 0 0 - - -

1,−2, 1, 1,−2, 1 - - - 0 0 0 0 - - -

1, 2, 2, 2, 2, 1 - - - 0 0 0 0 0 - -

1,−2, 2,−2, 2,−1 - - - 0 0 0 0 0 - -

1, 2, 1 - - - 0 0 0 - - - -

1,−2, 1 - - - 0 0 0 - - - -

1, 2, 2, 2, 1 - - - 0 0 0 0 0 - -

1,−2, 2,−2, 1 - - - 0 0 0 0 0 - -

1, 1, 1, 1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1,−1, 1,−1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1, 1, 0,−1,−1 - - - - 0.2 0.1 0.1 0.2 0.3 0.1

1,−1, 0, 1,−1 - - - - 0.2 0.1 0.1 0.2 0.3 0.1

1, 0, 2, 0, 2, 0, 1 - - - - 0 0 0 0 - -

1, 0,−2, 0, 2, 0,−1 - - - - 0 0 0 0 - -

1, 2, 3, 3, 2, 0,−2,−3,−3,−2,−1 - - - - 0 0 0 0 - 0

1,−2, 3,−3, 2, 0,−2, 3,−3, 2,−1 - - - - 0 0 0 0 - 0

1, 2, 1,−1,−1, 1, 2, 1 - - - - 0 0 - - - -

1,−2, 1, 1,−1,−1, 2,−1 - - - - 0 0 - - - -

1, 0, 1, 0, 1 - - - - - 0.2 0.2 0.2 0.2 0.1

1, 0, 0, 1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0, 0,−1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0,−1, 0, 1 - - - - - 0.2 0.1 0.2 0.2 0.1

1, 1, 1, 1, 1, 1 - - - - - 0.2 0.2 0.1 0.2 0.2

1,−1, 1,−1, 1,−1 - - - - - 0.2 0.2 0.1 0.2 0.2

1, 0, 1, 1, 0, 1 - - - - - 0 - 0 0 0

1, 0, 1,−1, 0,−1 - - - - - 0 - 0 0 0

1, 1, 2, 1, 1 - - - - - 0 0 0 0.1 0

1,−1, 2,−1, 1 - - - - - 0 0 0 0.1 0

1, 1, 2, 2, 2, 2, 1, 1 - - - - - 0 0 0 0 -

1,−1, 2,−2, 2,−2, 1,−1 - - - - - 0 0 0 0 -

1, 1, 1, 0,−1,−1,−1 - - - - - 0 0 0 0 0

1,−1, 1, 0,−1, 1,−1 - - - - - 0 0 0 0 0

1, 1,−1,−1, 1, 1 - - - - - 0 0 0 - -

1,−1,−1, 1, 1,−1 - - - - - 0 0 0 - -

1, 2, 2, 1,−1,−2,−2,−1 - - - - - 0 - - - -

1,−2, 2,−1,−1, 2,−2, 1 - - - - - 0 - - - -
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L 2 3 4 5 6 7 8 9 10 11

1, 2, 2, 2, 2, 2, 1 - - - - - 0 - 0 - -

1,−2, 2,−2, 2,−2, 1 - - - - - 0 - 0 - -

1, 2, 3, 3, 3, 3, 3, 2, 1 - - - - - 0 0 0 - -

1,−2, 3,−3, 3,−3, 3,−2, 1 - - - - - 0 0 0 - -

1, 2, 2, 2, 3, 3, 2, 2, 2, 1 - - - - - 0 - - - -

1,−2, 2,−2, 3,−3, 2,−2, 2,−1 - - - - - 0 - - - -

1, 2, 1,−1,−2,−2,−1, 1, 2, 1 - - - - - 0 - - - -

1,−2, 1, 1,−2, 2,−1,−1, 2,−1 - - - - - 0 - - - -

1, 1, 1, 1, 1, 1, 1 - - - - - - 0.1 0.1 0.1 0.1

1,−1, 1,−1, 1,−1, 1 - - - - - - 0.1 0.1 0.1 0.1

1, 1, 0, 0, 1, 1 - - - - - - 0 0 0.1 0

1,−1, 0, 0, 1,−1 - - - - - - 0 0 0.1 0

1, 1, 0,−1, 0, 1, 1 - - - - - - 0 0 0 0

1,−1, 0, 1, 0,−1, 1 - - - - - - 0 0 0 0

1, 1, 2, 2, 2, 1, 1 - - - - - - 0 0 0 0

1,−1, 2,−2, 2,−1, 1 - - - - - - 0 0 0 0

1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1 - - - - - - 0 0 0 0

1,−1, 1,−2, 2,−2, 2,−2, 2,−1, 1,−1 - - - - - - 0 0 0 0

1, 2, 2, 1, 0,−1,−2,−2,−1 - - - - - - 0 0 - -

1,−2, 2,−1, 0, 1,−2, 2,−1 - - - - - - 0 0 - -

1, 1,−1,−1, 1, 1,−1,−1 - - - - - - 0 - - -

1,−1,−1, 1, 1,−1,−1, 1 - - - - - - 0 - - -

1, 0, 1, 0, 1, 0, 1 - - - - - - - 0.1 0.1 0

1, 0,−1, 0, 1, 0,−1 - - - - - - - 0.1 0.1 0

1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - 0 0 0

1,−1, 1,−1, 1,−1, 1,−1 - - - - - - - 0 0 0

1, 0, 0, 0, 1 - - - - - - - 0 0 0

1, 0, 0, 0,−1 - - - - - - - 0 0 0

1, 1, 0,−1,−1, 0, 1, 1 - - - - - - - 0 0.1 0

1,−1, 0, 1,−1, 0, 1,−1 - - - - - - - 0 0.1 0

1, 1, 0,−1,−1,−1, 0, 1, 1 - - - - - - - 0 0 0

1,−1, 0, 1,−1, 1, 0,−1, 1 - - - - - - - 0 0 0

1, 1,−1, 0, 2, 0,−1, 1, 1 - - - - - - - 0 - -

1,−1,−1, 0, 2, 0,−1,−1, 1 - - - - - - - 0 - -

1, 2, 3, 3, 3, 3, 3, 3, 2, 1 - - - - - - - 0 - -

1,−2, 3,−3, 3,−3, 3,−3, 2,−1 - - - - - - - 0 - -

1, 1, 1, 0,−1,−2,−2,−1, 0, 1, 1, 1 - - - - - - - 0 - 0

1,−1, 1, 0,−1, 2,−2, 1, 0,−1, 1,−1 - - - - - - - 0 - 0

1, 1, 2, 2, 3, 2, 2, 1, 1 - - - - - - - 0 - -

1,−1, 2,−2, 3,−2, 2,−1, 1 - - - - - - - 0 - -

1, 1, 2, 2, 2, 2, 2, 1, 1 - - - - - - - 0 0 0

1,−1, 2,−2, 2,−2, 2,−1, 1 - - - - - - - 0 0 0

1, 1, 1, 2, 2, 2, 2, 1, 1, 1 - - - - - - - 0 - -

1,−1, 1,−2, 2,−2, 2,−1, 1,−1 - - - - - - - 0 - -

1, 0,−2,−1, 2, 2,−1,−2, 0, 1 - - - - - - - 0 - -

1, 0,−2, 1, 2,−2,−1, 2, 0,−1 - - - - - - - 0 - -

1, 1, 0,−1, 0, 1, 0,−1,−1 - - - - - - - 0 0 -

1,−1, 0, 1, 0,−1, 0, 1,−1 - - - - - - - 0 0 -

1, 0, 0, 1, 0, 0, 1 - - - - - - - - 0 0

1, 0, 0,−1, 0, 0, 1 - - - - - - - - 0 0

1, 0,−1,−1, 1, 1, 0,−1 - - - - - - - - 0 -

1, 0,−1, 1, 1,−1, 0, 1 - - - - - - - - 0 -

1, 1, 1, 2, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−2, 1,−1, 1 - - - - - - - - 0 0

1, 1, 0, 0, 0,−1,−1 - - - - - - - - 0 0

1,−1, 0, 0, 0, 1,−1 - - - - - - - - 0 0

1, 1, 1, 1, 2, 1, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−1, 2,−1, 1,−1, 1 - - - - - - - - 0 0

1, 1, 1, 0, 0,−1,−1,−1 - - - - - - - - 0 -

1,−1, 1, 0, 0, 1,−1, 1 - - - - - - - - 0 -

1, 1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−1, 1,−1, 1,−1, 1 - - - - - - - - 0 0

1, 1, 1, 1, 0,−1,−1,−1,−1 - - - - - - - - 0 0

1,−1, 1,−1, 0, 1,−1, 1,−1 - - - - - - - - 0 0

1, 1, 0,−1,−1,−1,−1, 0, 1, 1 - - - - - - - - 0 -

1,−1, 0, 1,−1, 1,−1, 0, 1,−1 - - - - - - - - 0 -

1, 1, 1, 0,−1,−1, 0, 1, 1, 1 - - - - - - - - 0 -

1,−1, 1, 0,−1, 1, 0,−1, 1,−1 - - - - - - - - 0 -

1, 1,−1,−1 - - - - - - - - - 0

1,−1,−1, 1 - - - - - - - - - 0

1, 0,−1, 0, 1, 0,−1, 0, 1 - - - - - - - - - 0

1, 1, 0, 1, 2, 1, 0, 1, 1 - - - - - - - - - 0

1,−1, 0,−1, 2,−1, 0,−1, 1 - - - - - - - - - 0

1, 0, 1, 0, 1, 0, 1, 0, 1 - - - - - - - - - 0

1, 0, 1, 0, 0, 0,−1, 0,−1 - - - - - - - - - 0
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L 2 3 4 5 6 7 8 9 10 11

1, 1, 1, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 1,−1, 1 - - - - - - - - - 0

1, 1, 1, 0, 0, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 0, 0, 1,−1, 1 - - - - - - - - - 0

1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1 - - - - - - - - - 0

1, 1, 1, 0,−1,−1,−1, 0, 1, 1, 1 - - - - - - - - - 0

1, 0, 1,−1, 1,−1, 1,−1, 1, 0, 1 - - - - - - - - - 0

1,−1, 1, 0,−1, 1,−1, 0, 1,−1, 1 - - - - - - - - - 0

1, 0,−1,−1, 0, 1, 1, 0,−1 - - - - - - - - - 0

1, 0,−1, 1, 0,−1, 1, 0,−1 - - - - - - - - - 0

1, 3, 3, 0,−2, 0, 3, 3, 1 - - - - - 0 0 0 0 0

1,−3, 3, 0,−2, 0, 3,−3, 1 - - - - - 0 0 0 0 0

A.3 8PAM

L 2 3 4 5 6 7 8 9 10 11

1 100 83 83.6 81.9 82.6 82.4 82.4 79.9 80.7 84.3

1, 1 - 8.2 5 4.6 4.5 4.5 4.8 4.6 3.6 3.7

1,−1 - 8.2 5 4.6 4.5 4.5 4.8 4.6 3.6 3.7

1, 2, 2, 1 - 0.4 0.2 0.1 0.1 0.1 0 0.2 - -

1,−2, 2,−1 - 0.4 0.2 0.1 0.1 0.1 0 0.2 - -

1, 1, 1 - - 3 2.1 1.7 1.5 1.5 2 2.1 1.6

1,−1, 1 - - 3 2.1 1.7 1.5 1.5 2 2.1 1.6

1, 2, 3, 3, 2, 1 - - 0 0 0 0 0 0.1 - -

1,−2, 3,−3, 2,−1 - - 0 0 0 0 0 0.1 - -

1, 2, 3, 4, 4, 4, 3, 2, 1 - - 0 0 0 0 0 0 - -

1,−2, 3,−4, 4,−4, 3,−2, 1 - - 0 0 0 0 0 0 - -

1, 3, 5, 6, 6, 5, 3, 1 - - 0 0 0 0 - - - -

1,−3, 5,−6, 6,−5, 3,−1 - - 0 0 0 0 - - - -

1, 2, 3, 3, 3, 2, 1 - - 0 0 0 0 0 0 - -

1,−2, 3,−3, 3,−2, 1 - - 0 0 0 0 0 0 - -

1, 0, 1 - - - 1.7 1.3 1 1 1.3 1.2 1

1, 0,−1 - - - 1.1 0.9 0.7 0.6 1.1 0.8 0.4

1, 1, 1, 1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1,−1, 1,−1 - - - 0.7 0.7 0.6 0.6 0.7 1.2 0.7

1, 1,−1,−2, 0, 2, 1,−1,−1 - - - 0 - 0 0 0 - 0.1

1,−1,−1, 2, 0,−2, 1, 1,−1 - - - 0 - 0 0 0 - 0.1

1, 2, 1,−1,−2,−1 - - - 0 0 0 0 - - -

1,−2, 1, 1,−2, 1 - - - 0 0 0 0 - - -

1, 2, 2, 2, 2, 1 - - - 0 0 0 0 0 - -

1,−2, 2,−2, 2,−1 - - - 0 0 0 0 0 - -

1, 2, 3, 4, 5, 5, 5, 4, 3, 2, 1 - - - 0 0 0 0 - - -

1,−2, 3,−4, 5,−5, 5,−4, 3,−2, 1 - - - 0 0 0 0 - - -

1, 2, 3, 4, 4, 3, 2, 1 - - - 0 0 0 - 0 - -

1,−2, 3,−4, 4,−3, 2,−1 - - - 0 0 0 - 0 - -

1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1 - - - 0 0 - - - - -

1,−2, 3,−4, 5,−6, 6,−5, 4,−3, 2,−1 - - - 0 0 - - - - -

1, 2, 3, 4, 5, 5, 4, 3, 2, 1 - - - 0 0 - - 0 - -

1,−2, 3,−4, 5,−5, 4,−3, 2,−1 - - - 0 0 - - 0 - -

1, 2, 1 - - - 0 0 0 - - - -

1,−2, 1 - - - 0 0 0 - - - -

1, 3, 5, 6, 5, 3, 1 - - - 0 0 0 0 - - -

1,−3, 5,−6, 5,−3, 1 - - - 0 0 0 0 - - -

1, 2, 2, 2, 1 - - - 0 0 0 0 0 - -

1,−2, 2,−2, 1 - - - 0 0 0 0 0 - -

1, 1, 1, 1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1,−1, 1,−1, 1 - - - - 0.3 0.4 0.3 0.3 0.5 0.4

1, 1, 0,−1,−1 - - - - 0.2 0.1 0.1 0.2 0.3 0.1

1,−1, 0, 1,−1 - - - - 0.2 0.1 0.1 0.2 0.3 0.1

1, 0, 2, 0, 2, 0, 1 - - - - 0 0 0 0 - -

1, 0,−2, 0, 2, 0,−1 - - - - 0 0 0 0 - -

1, 2, 3, 3, 2, 0,−2,−3,−3,−2,−1 - - - - 0 0 0 0 - 0

1,−2, 3,−3, 2, 0,−2, 3,−3, 2,−1 - - - - 0 0 0 0 - 0

1, 2, 1,−1,−1, 1, 2, 1 - - - - 0 0 - - - -

1,−2, 1, 1,−1,−1, 2,−1 - - - - 0 0 - - - -

1, 2, 3, 4, 4, 4, 4, 3, 2, 1 - - - - 0 0 0 0 - -

1,−2, 3,−4, 4,−4, 4,−3, 2,−1 - - - - 0 0 0 0 - -

1, 3, 5, 6, 5, 2,−2,−5,−6,−5,−3,−1 - - - 0 0 0 - - - -

1,−3, 5,−6, 5,−2,−2, 5,−6, 5,−3, 1 - - - 0 0 0 - - - -

1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1 - - - - 0 0 - 0 - -

1,−2, 3,−4, 5,−5, 5,−5, 4,−3, 2,−1 - - - - 0 0 - 0 - -

1, 0, 1, 0, 1 - - - - - 0.2 0.2 0.2 0.2 0.1
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L 2 3 4 5 6 7 8 9 10 11

1, 0, 0, 1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0, 0,−1 - - - - - 0.2 0.1 0.2 0.1 0.1

1, 0,−1, 0, 1 - - - - - 0.2 0.1 0.2 0.2 0.1

1, 1, 1, 1, 1, 1 - - - - - 0.2 0.2 0.1 0.2 0.2

1,−1, 1,−1, 1,−1 - - - - - 0.2 0.2 0.1 0.2 0.2

1, 0, 1, 1, 0, 1 - - - - - 0 - 0 0 0

1, 0, 1,−1, 0,−1 - - - - - 0 - 0 0 0

1, 1, 2, 1, 1 - - - - - 0 0 0 0.1 0

1,−1, 2,−1, 1 - - - - - 0 0 0 0.1 0

1, 1, 2, 2, 2, 2, 1, 1 - - - - - 0 0 0 0 -

1,−1, 2,−2, 2,−2, 1,−1 - - - - - 0 0 0 0 -

1, 1, 1, 0,−1,−1,−1 - - - - - 0 0 0 0 0

1,−1, 1, 0,−1, 1,−1 - - - - - 0 0 0 0 0

1, 1,−1,−1, 1, 1 - - - - - 0 0 0 - -

1,−1,−1, 1, 1,−1 - - - - - 0 0 0 - -

1, 2, 2, 1,−1,−2,−2,−1 - - - - - 0 - - - -

1,−2, 2,−1,−1, 2,−2, 1 - - - - - 0 - - - -

1, 2, 2, 2, 2, 2, 1 - - - - - 0 - 0 - -

1,−2, 2,−2, 2,−2, 1 - - - - - 0 - 0 - -

1, 2, 3, 3, 3, 3, 3, 2, 1 - - - - - 0 0 0 - -

1,−2, 3,−3, 3,−3, 3,−2, 1 - - - - - 0 0 0 - -

1, 2, 2, 2, 3, 3, 2, 2, 2, 1 - - - - - 0 - - - -

1,−2, 2,−2, 3,−3, 2,−2, 2,−1 - - - - - 0 - - - -

1, 3, 5, 6, 6, 6, 6, 6, 5, 3, 1 - - - - - 0 - - - -

1,−3, 5,−6, 6,−6, 6,−6, 5,−3, 1 - - - - - 0 - - - -

1, 2, 4, 5, 6, 5, 4, 2, 1 - - - - - 0 - - - -

1,−2, 4,−5, 6,−5, 4,−2, 1 - - - - - 0 - - - -

1, 2, 1,−1,−2,−2,−1, 1, 2, 1 - - - - - 0 - - - -

1,−2, 1, 1,−2, 2,−1,−1, 2,−1 - - - - - 0 - - - -

1, 1, 1, 1, 1, 1, 1 - - - - - - 0.1 0.1 0.1 0.1

1,−1, 1,−1, 1,−1, 1 - - - - - - 0.1 0.1 0.1 0.1

1, 1, 0, 0, 1, 1 - - - - - - 0 0 0.1 0

1,−1, 0, 0, 1,−1 - - - - - - 0 0 0.1 0

1, 1, 0,−1, 0, 1, 1 - - - - - - 0 0 0 0

1,−1, 0, 1, 0,−1, 1 - - - - - - 0 0 0 0

1, 1, 2, 2, 2, 1, 1 - - - - - - 0 0 0 0

1,−1, 2,−2, 2,−1, 1 - - - - - - 0 0 0 0

1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1 - - - - - - 0 0 0 0

1,−1, 1,−2, 2,−2, 2,−2, 2,−1, 1,−1 - - - - - - 0 0 0 0

1, 2, 2, 1, 0,−1,−2,−2,−1 - - - - - - 0 0 - -

1,−2, 2,−1, 0, 1,−2, 2,−1 - - - - - - 0 0 - -

1, 1,−1,−1, 1, 1,−1,−1 - - - - - - 0 - - -

1,−1,−1, 1, 1,−1,−1, 1 - - - - - - 0 - - -

1, 3, 5, 5, 3, 1 - - - - - - 0 - - -

1,−3, 5,−5, 3,−1 - - - - - - 0 - - -

1, 0, 1, 0, 1, 0, 1 - - - - - - - 0.1 0.1 0

1, 0,−1, 0, 1, 0,−1 - - - - - - - 0.1 0.1 0

1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - 0 0 0

1,−1, 1,−1, 1,−1, 1,−1 - - - - - - - 0 0 0

1, 0, 0, 0, 1 - - - - - - - 0 0 0

1, 0, 0, 0,−1 - - - - - - - 0 0 0

1, 1, 0,−1,−1, 0, 1, 1 - - - - - - - 0 0.1 0

1,−1, 0, 1,−1, 0, 1,−1 - - - - - - - 0 0.1 0

1, 1, 0,−1,−1,−1, 0, 1, 1 - - - - - - - 0 0 0

1,−1, 0, 1,−1, 1, 0,−1, 1 - - - - - - - 0 0 0

1, 1,−1, 0, 2, 0,−1, 1, 1 - - - - - - - 0 - -

1,−1,−1, 0, 2, 0,−1,−1, 1 - - - - - - - 0 - -

1, 2, 3, 3, 3, 3, 3, 3, 2, 1 - - - - - - - 0 - -

1,−2, 3,−3, 3,−3, 3,−3, 2,−1 - - - - - - - 0 - -

1, 1, 1, 0,−1,−2,−2,−1, 0, 1, 1, 1 - - - - - - - 0 - 0

1,−1, 1, 0,−1, 2,−2, 1, 0,−1, 1,−1 - - - - - - - 0 - 0

1, 1, 2, 2, 3, 2, 2, 1, 1 - - - - - - - 0 - -

1,−1, 2,−2, 3,−2, 2,−1, 1 - - - - - - - 0 - -

1, 1, 2, 2, 2, 2, 2, 1, 1 - - - - - - - 0 0 0

1,−1, 2,−2, 2,−2, 2,−1, 1 - - - - - - - 0 0 0

1, 1, 1, 2, 2, 2, 2, 1, 1, 1 - - - - - - - 0 - -

1,−1, 1,−2, 2,−2, 2,−1, 1,−1 - - - - - - - 0 - -

1, 0,−2,−1, 2, 2,−1,−2, 0, 1 - - - - - - - 0 - -

1, 0,−2, 1, 2,−2,−1, 2, 0,−1 - - - - - - - 0 - -

1, 1, 0,−1, 0, 1, 0,−1,−1 - - - - - - - 0 0 -

1,−1, 0, 1, 0,−1, 0, 1,−1 - - - - - - - 0 0 -

1, 0, 0, 1, 0, 0, 1 - - - - - - - - 0 0

1, 0, 0,−1, 0, 0, 1 - - - - - - - - 0 0

1, 0,−1,−1, 1, 1, 0,−1 - - - - - - - - 0 -

1, 0,−1, 1, 1,−1, 0, 1 - - - - - - - - 0 -
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L 2 3 4 5 6 7 8 9 10 11

1, 1, 1, 2, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−2, 1,−1, 1 - - - - - - - - 0 0

1, 1, 0, 0, 0,−1,−1 - - - - - - - - 0 0

1,−1, 0, 0, 0, 1,−1 - - - - - - - - 0 0

1, 1, 1, 1, 2, 1, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−1, 2,−1, 1,−1, 1 - - - - - - - - 0 0

1, 1, 1, 0, 0,−1,−1,−1 - - - - - - - - 0 -

1,−1, 1, 0, 0, 1,−1, 1 - - - - - - - - 0 -

1, 1, 1, 1, 1, 1, 1, 1, 1 - - - - - - - - 0 0

1,−1, 1,−1, 1,−1, 1,−1, 1 - - - - - - - - 0 0

1, 1, 1, 1, 0,−1,−1,−1,−1 - - - - - - - - 0 0

1,−1, 1,−1, 0, 1,−1, 1,−1 - - - - - - - - 0 0

1, 1, 0,−1,−1,−1,−1, 0, 1, 1 - - - - - - - - 0 -

1,−1, 0, 1,−1, 1,−1, 0, 1,−1 - - - - - - - - 0 -

1, 1, 1, 0,−1,−1, 0, 1, 1, 1 - - - - - - - - 0 -

1,−1, 1, 0,−1, 1, 0,−1, 1,−1 - - - - - - - - 0 -

1, 1,−1,−1 - - - - - - - - - 0

1,−1,−1, 1 - - - - - - - - - 0

1, 0,−1, 0, 1, 0,−1, 0, 1 - - - - - - - - - 0

1, 1, 0, 1, 2, 1, 0, 1, 1 - - - - - - - - - 0

1,−1, 0,−1, 2,−1, 0,−1, 1 - - - - - - - - - 0

1, 0, 1, 0, 1, 0, 1, 0, 1 - - - - - - - - - 0

1, 0, 1, 0, 0, 0,−1, 0,−1 - - - - - - - - - 0

1, 1, 1, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 1,−1, 1 - - - - - - - - - 0

1, 1, 1, 0, 0, 0, 1, 1, 1 - - - - - - - - - 0

1,−1, 1, 0, 0, 0, 1,−1, 1 - - - - - - - - - 0

1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1 - - - - - - - - - 0

1, 1, 1, 0,−1,−1,−1, 0, 1, 1, 1 - - - - - - - - - 0

1, 0, 1,−1, 1,−1, 1,−1, 1, 0, 1 - - - - - - - - - 0

1,−1, 1, 0,−1, 1,−1, 0, 1,−1, 1 - - - - - - - - - 0

1, 0,−1,−1, 0, 1, 1, 0,−1 - - - - - - - - - 0

1, 0,−1, 1, 0,−1, 1, 0,−1 - - - - - - - - - 0

1, 3, 5, 6, 6, 6, 6, 5, 3, 1 - - - - 0 - - - - -

1,−3, 5,−6, 6,−6, 6,−5, 3,−1 - - - - 0 - - - - -

1, 4, 7, 6, 0,−6,−6, 0, 6, 7, 4, 1 - - - - - 0 0 - - -

1,−4, 7,−6, 0, 6,−6, 0, 6,−7, 4,−1 - - - - - 0 0 - - -

1, 4, 7, 6, 1,−2, 1, 6, 7, 4, 1 - - - - - - - 0 0 0

1,−4, 7,−6, 1, 2, 1,−6, 7,−4, 1 - - - - - - - 0 0 0

A.4 QPSK

L 2 3 4 5 6

1 100 93.9 94.8 92.8 100

1,−1 - 1.3 1 1.3 0

1, 1 - 1.3 1 1.3 0

1,−j - 1.2 0.9 1 -

1, j - 1.2 0.9 1 -

1,−1− j, j - 0.3 0.2 0.3 -

1, 1− j,−j - 0.3 0.2 0.3 -

1, 1 + j, j - 0.3 0.2 0.3 -

1,−1 + j,−j - 0.3 0.2 0.3 -

1,−1, 1 - - 0.2 0.2 0

1, 1, 1 - - 0.2 0.2 0

1,−j,−1 - - 0.2 0.2 -

1, j,−1 - - 0.2 0.2 -

1, 0, 1 - - - 0 0

1, 0,−1 - - - 0 0

1,−1, 1,−1 - - - 0.1 0

1, 1, 1, 1 - - - 0.1 0

1,−j,−1, j - - - 0.1 -

1, j,−1,−j - - - 0.1 -

1, 0,−j - - - 0 -

1, 0, j - - - 0 -

1,−1− j, j, 1− j,−1 - - - 0 -

1, 1− j,−j,−1− j,−1 - - - 0 -

1, 1 + j, j,−1 + j,−1 - - - 0 -

1,−1 + j,−j, 1 + j,−1 - - - 0 -

1,−1, 1,−1, 1 - - - - 0

1, 1, 1, 1, 1 - - - - 0

1,−1, 0, 1,−1 - - - - 0
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L 2 3 4 5 6

1, 1, 0,−1,−1 - - - - 0

1,−1− j, 0,−1 + j, 1 - - - 0 0

1, 1− j, 0, 1 + j, 1 - - - 0 0

1, 1 + j, 0, 1− j, 1 - - - 0 0

1,−1 + j, 0,−1− j, 1 - - - 0 0

A.5 8-PSK

The nomenclature of [87, p30] has been used for the error events in the case of 8-PSK.
This is represented in Fig. A.1. q is the factor required to rotate by 1/8 of a revolution
which is (1 + j)/

√
2. The question marks represent sequences which for some channels

have distance virtually indistinguishable from that of some other sequence for the same
channel, and so cannot with confidence be excluded.

Figure A.1: Labelling of difference symbols for 8-PSK

L 2 3 4 5 6

a 100 91.5 92.5 89.7 82.8

a, q4a - 1.1 0.9 1.1 4.8

a, a - 1.1 0.9 1.1 4.7

a, q5a - 1.1 0.8 1 -

a, qa - 1.1 0.8 1 -

a, q7a - 1.1 0.8 1 -

a, q3a - 1.1 0.8 1 -

a, q6a - 1 0.7 0.9 -

a, q2a - 1 0.7 0.9 -

a, q7b, q6c, q6b, q6a - 0 0 - -

a, q6b, q4c, q2d, qc, b, q7a - 0 - - -

a, q2b, q4c, q6d, qc, q4b, q7a - 0 - - -

a, q4b, c, q4d, qc, q6b, q3a - 0 0 ? 0

a, b, c, d, qc, q2b, q3a - 0 0 ? 0

a, q3b, q6c, qd, q5c, qb, q5a - 0 0 0 0

a, q4b, c, q5b, q2a - 0 0 - -

a, b, c, qb, q2a - 0 0 - -

a, q3b, q6c, q2b, q6a - 0 0 - -

a, q6b, q4c, q3b, q2a - 0 0 - -

a, q2b, q4c, q7b, q2a - 0 0 - -

a, a, a - - 0.2 0.2 1.8

a, q4a, a - - 0.2 0.2 2

a, q7c, q7c, a - - 0 0 0

a, q7b, q6c, q5d, q5c, q5b, q5a - - 0 0 0

a, q7a, q6a - - 0.2 0.2 -

a, q3a, q6a - - 0.2 0.2 -
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L 2 3 4 5 6

a, q5a, q2a - - 0.2 0.2 -

a, qa, q2a - - 0.2 0.2 -

a, q6a, q4a - - 0.1 0.2 -

a, q2a, q4a - - 0.1 0.2 -

a, q7a, q5a - - 0 0 -

a, q2a, q5a - - 0 0 -

a, q6a, q3a - - 0 0 -

a, qa, q3a - - 0 0 -

a, q5a, qa - - 0 0 -

a, q7a, q7a - - 0 0 -

a, qa, qa - - 0 0 -

a, q3a, q7a - - 0 0 -

a, q5b, q2c, q7d, q5c, q3b, qa - - 0 - -

a, qb, q2c, q3d, q5c, q7b, qa - - 0 - -

a, q4b, qa - - 0 - -

a, b, qa - - 0 - -

a, q7b, q7a - - 0 - -

a, q3b, q7a - - 0 - -

a, q6b, q5a - - 0 - -

a, q2b, q5a - - 0 - -

a, q5b, q2c, b, q6a - - 0 - -

a, qb, q2c, q4b, q6a - - 0 - -

a, q5b, q3b, qb, q7a - - 0 - -

a, qb, q3b, q5b, q7a - - 0 - -

a, q5b, q2b, q7b, q5a - - 0 - -

a, qb, q2b, q3b, q5a - - 0 - -

a, 0, a - - - 0 1.3

a, 0, q4a - - - 0 0.9

a, q4a, a, q4a - - - 0.1 -

a, a, a, a - - - 0.1 0.7

a, q3c, q7c, q4a - - - 0 0

a, q7a, q5a, q3a, q2a - - - 0 -

a, q3a, q5a, q7a, q2a - - - 0 -

a, q2a, q4a, q6a - - - 0.1 -

a, q6a, q4a, q2a - - - 0.1 -

a, q5a, q2a, q7a - - - 0 -

a, q7a, q6a, q5a - - - 0 -

a, qa, q2a, q3a - - - 0 -

a, q3a, q6a, qa - - - 0 -

a, 0, q6a - - - 0 -

a, 0, q2a - - - 0 -

a, 0, q5a - - - 0 -

a, 0, q7a - - - 0 -

a, 0, qa - - - 0 -

a, 0, q3a - - - 0 -

a, q4a, qa, q5a - - - 0 -

a, a, q7a, q7a - - - 0 -

a, a, qa, qa - - - 0 -

a, q4a, q7a, q3a - - - 0 -

a, q7a, q7a, q6a - - - 0 -

a, qa, qa, q2a - - - 0 -

a, q3a, q7a, q2a - - - 0 -

a, q6a, q3a, qa - - - 0 -

a, q6a, q5a, q3a - - - 0 -

a, q2a, q3a, q5a - - - 0 -

a, q2a, q5a, q7a - - - 0 -

a, q7a, q5a, q4a - - - 0 -

a, qa, q3a, q4a - - - 0 -

a, q3a, q5a, a - - - 0 -

a, q5a, q3a, a - - - 0 -

a, q5a, qa, q5a, q2a - - - 0 -

a, q7a, q7a, q7a, q6a - - - 0 -

a, q3a, q7a, q3a, q6a - - - 0 -

a, qa, qa, qa, q2a - - - 0 -

a, q5a, q3a, qa, q6a - - - 0 -

a, qa, q3a, q5a, q6a - - - 0 -

a, q6a, q3a, a, q6a - - - 0 -

a, q2a, q3a, q4a, q6a - - - 0 -

a, q6a, q5a, q4a, q2a - - - 0 -

a, q2a, q5a, a, q2a - - - 0 -

a, a, q7a, q6a, q6a - - - 0 -

a, q4a, q7a, q2a, q6a - - - 0 -

a, q4a, qa, q6a, q2a - - - 0 -

a, a, qa, q2a, q2a - - - 0 -

a, qa, q3a, q4b, q5b, q7a, qa, q2a - - - 0 -
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a, q7a, q5a, q3b, q2b, qa, q7a, q6a - - - 0 -

a, q3a, q5a, q7b, q2b, q5a, q7a, q2a - - - 0 -

a, q4a, a, q4a, a - - - - 0.5

a, a, a, a, a - - - - 0.3

a, q4a, q7a, q3a, q6a, q2a - - - - 0

a, q7c, q7c, a, q4a, q3c, q3c, q4a - - - - 0

a, q3c, q7c, q4a, q4a, q7c, q3c, a - - - - 0

a, q4b, b, q4b, qa - - - - 0

a, q7a, q5a, q4a, q2a, qa - - - - 0

a, q3a, q5a, a, q2a, q5a - - - - 0

a, q4c, qc, q7a - - - 0 0

a, c, qc, q3a - - - 0 0

a, qc, q3c, q6a - - - 0 0

a, q5c, q3c, q2a - - - 0 0

a, q3b, q7b, q3b, q7a - - - - ?

a, q4a, qa, q5a, q2a, q6a - - - - ?

a, q5a, q3a, a, q6a, q3a - - - - ?

a, qa, q3a, q4a, q6a, q7a - - - - ?

a, q6c, q5c, q5a - - - - 0

a, q2c, q5c, qa - - - - 0

A.6 16-QAM

L 2 3 4 5 6

1 100 93.9 94.8 92.8 100

1,−1 - 1.3 1 1.3 0

1, 1 - 1.3 1 1.3 0

1,−j - 1.2 0.9 1 -

1, j - 1.2 0.9 1 -

1,−1− j, j - 0.3 0.2 0.3 -

1, 1− j,−j - 0.3 0.2 0.3 -

1, 1 + j, j - 0.3 0.2 0.3 -

1,−1 + j,−j - 0.3 0.2 0.3 -

1,−2, 2,−2, 2,−2, 2,−2, 1 - 0 - - -

1,−2j,−2, 2j, 2,−2j,−2, 2j, 1 - 0 - - -

1, 2, 2, 2, 2, 2, 2, 2, 1 - 0 - - -

1, 2j,−2,−2j, 2, 2j,−2,−2j, 1 - 0 - - -

1,−1, 1 - - 0.2 0.2 0

1, 1, 1 - - 0.2 0.2 0

1,−j,−1 - - 0.2 0.2 -

1, j,−1 - - 0.2 0.2 -

1,−1− j, 2j, 1− j,−1 - - 0 0 -

1, 1− j,−2j,−1− j,−1 - - 0 0 -

1, 1 + j, 2j,−1 + j,−1 - - 0 0 -

1,−1 + j,−2j, 1 + j,−1 - - 0 0 -

1,−2, 2,−1 - - 0 0 0

1, 2, 2, 1 - - 0 0 0

1,−2j,−2, j - - 0 - -

1, 2j,−2,−j - - 0 - -

1,−1− j,−1 + j, 2 + j,−2j,−2, 1 + 2j, 1− j,−1− j, j - - 0 - -

1, 1− j,−1− j,−2 + j, 2j, 2, 1− 2j,−1− j,−1 + j, j - - 0 - -

1, 1 + j,−1 + j,−2− j,−2j, 2, 1 + 2j,−1 + j,−1− j,−j - - 0 - -

1,−1 + j,−1− j, 2− j, 2j,−2, 1− 2j, 1 + j,−1 + j,−j - - 0 - -

1,−1− j,−1 + j, 1 + j, 1− j,−1− j,−1 + j, 1 + j,−j - - 0 - -

1, 1− j,−1− j,−1 + j, 1 + j, 1− j,−1− j,−1 + j, j - - 0 - -

1, 1 + j,−1 + j,−1− j, 1− j, 1 + j,−1 + j,−1− j,−j - - 0 - -

1,−1 + j,−1− j, 1− j, 1 + j,−1 + j,−1− j, 1− j, j - - 0 - -

1,−2, 3,−3, 2,−1 - - 0 0 0

1, 2, 3, 3, 2, 1 - - 0 0 0

1,−2, 3,−3, 3,−3, 3,−2, 1 - - 0 - -

1, 2, 3, 3, 3, 3, 3, 2, 1 - - 0 - -

1,−j,−1, j - - - 0.1 -

1, j,−1,−j - - - 0.1 -

1,−1, 1,−1 - - - 0.1 0

1, 1, 1, 1 - - - 0.1 0

1, 0,−j - - - 0 -

1, 0, j - - - 0 -

1, 0, 1 - - - 0 0

1, 0,−1 - - - 0 0

1,−1− j, j, 1− j,−1 - - - 0 -

1, 1− j,−j,−1− j,−1 - - - 0 -



A.6. 16-QAM 159

L 2 3 4 5 6

1, 1 + j, j,−1 + j,−1 - - - 0 -

1,−1 + j,−j, 1 + j,−1 - - - 0 -

1,−1− j, 2j, 1− 2j,−2 + j, 2,−1− j, j - - - 0 -

1,−1− j, 2j, 2− j,−2− j, 2j, 1− j,−1 - - - 0 -

1, 1− j,−2j,−2− j,−2 + j, 2j, 1 + j, 1 - - - 0 -

1, 1− j,−2j,−1− 2j,−2− j,−2,−1 + j, j - - - 0 -

1, 1 + j, 2j,−1 + 2j,−2 + j,−2,−1− j,−j - - - 0 -

1, 1 + j, 2j,−2 + j,−2− j,−2j, 1− j, 1 - - - 0 -

1,−1 + j,−2j, 2 + j,−2 + j,−2j, 1 + j,−1 - - - 0 -

1,−1 + j,−2j, 1 + 2j,−2− j, 2,−1 + j,−j - - - 0 -

1,−1− j, 1 + j,−1− 2j, 2j,−2j,−1 + 2j, 1− j,−1 + j, 1 - - - 0 -

1, 1− j, 1− j, 1− 2j,−2j,−2j,−1− 2j,−1− j,−1− j,−1 - - - 0 -

1, 1 + j, 1 + j, 1 + 2j, 2j, 2j,−1 + 2j,−1 + j,−1 + j,−1 - - - 0 -

1,−1 + j, 1− j,−1 + 2j,−2j, 2j,−1− 2j, 1 + j,−1− j, 1 - - - 0 -

1,−1− j, 2j, 2− 2j,−3, 2 + 2j,−2j,−1 + j, 1 - - - 0 -

1, 1− j,−2j,−2− 2j,−3,−2 + 2j, 2j, 1 + j, 1 - - - 0 -

1, 1 + j, 2j,−2 + 2j,−3,−2− 2j,−2j, 1− j, 1 - - - 0 -

1,−1 + j,−2j, 2 + 2j,−3, 2− 2j, 2j,−1− j, 1 - - - 0 -

1,−1− j, j, 1,−1− j, j, 1,−1− j, j - - - 0 -

1, 1− j,−j,−1,−1 + j, j, 1, 1− j,−j - - - 0 -

1, 1 + j, j,−1,−1− j,−j, 1, 1 + j, j - - - 0 -

1,−1 + j,−j, 1,−1 + j,−j, 1,−1 + j,−j - - - 0 -

1,−j,−1, 1 + j, 1− j,−1− j, j, 1,−j - - - 0 -

1,−j,−1,−1 + j, 1 + j, 1− j,−j,−1, j - - - 0 -

1, j,−1,−1− j, 1− j, 1 + j, j,−1,−j - - - 0 -

1, j,−1, 1− j, 1 + j,−1 + j,−j, 1, j - - - 0 -

1,−1,−1, 2, 0,−2, 1, 1,−1 - - - 0 0

1, 1,−1,−2, 0, 2, 1,−1,−1 - - - 0 0

1,−2, 3,−3, 3,−2, 1 - - - 0 0

1, 2, 3, 3, 3, 2, 1 - - - 0 0

1,−2, 1, 1,−2, 1 - - - 0 0

1, 2, 1,−1,−2,−1 - - - 0 0

1,−2, 2,−2, 2,−1 - - - 0 0

1, 2, 2, 2, 2, 1 - - - 0 0

1,−2, 1 - - - 0 0

1, 2, 1 - - - 0 0

1,−1, 1,−1, 1 - - - - 0

1, 1, 1, 1, 1 - - - - 0

1,−1, 0, 1,−1 - - - - 0

1, 1, 0,−1,−1 - - - - 0

1,−1, 2,−2, 3,−2, 2,−1, 1 - - - - 0

1, 1, 2, 2, 3, 2, 2, 1, 1 - - - - 0

1, 0, 1,−1, 0,−1, 1, 0, 1 - - - - 0

1, 0, 1, 1, 0, 1, 1, 0, 1 - - - - 0

1,−2, 2,−2, 1 - - - - 0

1, 2, 2, 2, 1 - - - - 0

1,−1, 2,−1, 1, 1,−1, 2,−1, 1 - - - - 0

1, 1, 2, 1, 1,−1,−1,−2,−1,−1 - - - - 0

1, 0, 2, 0, 2, 0, 2, 0, 1 - - - - 0

1,−1,−1, 1, 1,−1,−1, 1, 1,−1 - - - - 0

1, 1,−1,−1, 1, 1,−1,−1, 1, 1 - - - - 0

1, 0,−2, 0, 2, 0,−2, 0, 1 - - - - 0

1, 0, 1,−1, 1,−1, 1, 0, 1 - - - - 0

1, 0, 1, 1, 1, 1, 1, 0, 1 - - - - 0

1,−2, 1, 1,−1,−1, 2,−1 - - - - 0

1, 2, 1,−1,−1, 1, 2, 1 - - - - 0

1,−1, 1,−2, 2,−2, 2,−1, 1,−1 - - - - 0

1, 1, 1, 2, 2, 2, 2, 1, 1, 1 - - - - 0

1,−1,−1, 1, 2,−2,−1, 1, 1,−1 - - - - 0

1, 1,−1,−1, 2, 2,−1,−1, 1, 1 - - - - 0

1,−1− 2j,−1 + 2j, 1− j,−1 + j, 1− j,−2 + j, 2 + j,−j - - - 0 -

1,−2− j, 1 + 2j, 1− j,−1− j,−1 + j, 2 + j,−1− 2j, j - - - 0 -

1, 2− j, 1− 2j,−1− j,−1 + j, 1 + j, 2− j, 1− 2j,−j - - - 0 -

1, 1− 2j,−1− 2j,−1− j,−1− j,−1− j,−2− j,−2 + j, j - - - 0 -

1, 1 + 2j,−1 + 2j,−1 + j,−1 + j,−1 + j,−2 + j,−2− j,−j - - - 0 -

1, 2 + j, 1 + 2j,−1 + j,−1− j, 1− j, 2 + j, 1 + 2j, j - - - 0 -

1,−2 + j, 1− 2j, 1 + j,−1 + j,−1− j, 2− j,−1 + 2j,−j - - - 0 -

1,−1 + 2j,−1− 2j, 1 + j,−1− j, 1 + j,−2− j, 2− j, j - - - 0 -

1,−1− 3j,−3 + 3j, 3,−2, 2,−3, 3 + 3j, 1− 3j,−1 - - - - 0

1,−3− j, 3 + 3j,−3j,−2, 2j, 3,−3− 3j, 1 + 3j,−j - - - - 0

1, 3− j, 3− 3j,−3j,−2, 2j, 3, 3− 3j, 1− 3j,−j - - - - 0

1, 1− 3j,−3− 3j,−3,−2,−2,−3,−3 + 3j, 1 + 3j, 1 - - - - 0

1, 1 + 3j,−3 + 3j,−3,−2,−2,−3,−3− 3j, 1− 3j, 1 - - - - 0

1, 3 + j, 3 + 3j, 3j,−2,−2j, 3, 3 + 3j, 1 + 3j, j - - - - 0

1,−3 + j, 3− 3j, 3j,−2,−2j, 3,−3 + 3j, 1− 3j, j - - - - 0
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1,−1 + 3j,−3− 3j, 3,−2, 2,−3, 3− 3j, 1 + 3j,−1 - - - - 0

A.7 16-PSK

Again the nomenclature of [87, p30] has been used for the error events in the case of
16-PSK. This is represented in Fig. A.2. q is the factor required to rotate by 1/16 of a
revolution which is (

√
2 +
√

2 + j
√

2−
√

2)/2.

Figure A.2: Labelling of difference symbols for 16-PSK

L 2 3 4 5 6

a 100 90.3 91.4 87.5 82.6

a, a - 0.6 0.5 0.6 4.6

a, q8a - 0.6 0.5 0.6 4.6

a, qa - 0.6 0.5 0.7 -

a, q15a - 0.6 0.5 0.7 -

a, q9a - 0.6 0.5 0.7 -

a, q7a - 0.6 0.5 0.7 -

a, q2a - 0.6 0.4 0.6 -

a, q10a - 0.6 0.4 0.6 -

a, q14a - 0.6 0.4 0.6 -

a, q6a - 0.6 0.4 0.6 -

a, q13a - 0.6 0.4 0.5 -

a, q5a - 0.6 0.4 0.5 -

a, q3a - 0.6 0.4 0.5 -

a, q11a - 0.6 0.4 0.5 -

a, q12a - 0.6 0.4 0.6 -

a, q4a - 0.6 0.4 0.6 -

a, q3b, q7b, q11a - 0 0 - -

a, q11b, q7b, q3a - 0 0 - -

a, q9b, q2b, q12a - 0 0 - -

a, q13b, q11b, q9a - 0 0 - -

a, q5b, q11b, qa - 0 0 - -

a, q7b, q14b, q6a - 0 0 0 0

a, q14b, q12b, q11a - 0 0 - -

a, q10b, q4b, q15a - 0 0 - -

a, q2b, q4b, q7a - 0 0 - -

a, q2b, q5b, q8a - 0 0 - -

a, q11b, q6b, q2a - 0 0 - -

a, q6b, q12b, q3a - 0 0 - -

a, q10b, q5b, a - 0 0 - -

a, q6b, q13b, q4a - 0 0 - -

a, q8a, a - - 0.1 0.1 1.8

a, a, a - - 0.1 0.1 1.8

a, q15b, q15b, q15a - - 0 0 0.1
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a, q8b, c, q8c, qb, q10a - - 0 0 -

a, q7c, q14e, q6e, q15c, q8a - - 0 0 0

a, q15c, q14e, q14e, q15c, a - - 0 - -

a, q7b, q15b, q8a, q4a, q12b, q4b, q12a - - 0 - -

a, q14a, q12a - - 0.1 0.1 -

a, q6a, q12a - - 0.1 0.1 -

a, q10a, q4a - - 0.1 0.1 -

a, q2a, q4a - - 0.1 0.1 -

a, q9a, q2a - - 0.1 0.1 -

a, qa, q2a - - 0.1 0.1 -

a, q15a, q14a - - 0.1 0.1 -

a, q7a, q14a - - 0.1 0.1 -

a, q13a, q10a - - 0.1 0 -

a, q5a, q10a - - 0.1 0 -

a, q11a, q6a - - 0.1 0 -

a, q3a, q6a - - 0.1 0 -

a, q12a, q8a - - 0.1 0.2 -

a, q4a, q8a - - 0.1 0.2 -

a, q14a, q13a, q11a - - 0 0 -

a, q6a, q13a, q3a - - 0 0 -

a, q10a, q3a, q13a - - 0 0 -

a, q2a, q3a, q5a - - 0 0 -

a, q12a, q7a, q3a - - 0 0 -

a, q12a, q9a, q5a - - 0 0 -

a, q4a, q9a, q13a - - 0 0 -

a, q4a, q7a, q11a - - 0 0 -

a, q13a, q11a, q8a - - 0 0 -

a, q5a, q11a, a - - 0 0 -

a, q3a, q5a, q8a - - 0 0 -

a, q11a, q5a, a - - 0 0 -

a, q9a, qa, q10a - - 0 0 -

a, qa, qa, q2a - - 0 0 -

a, q15a, q15a, q14a - - 0 0 -

a, q7a, q15a, q6a - - 0 0 -

a, a, q15a, q15a - - 0 0 -

a, q8a, q15a, q7a - - 0 0 -

a, q8a, qa, q9a - - 0 0 -

a, a, qa, qa - - 0 0 -

a, q13a, q9a, q6a - - 0 0 -

a, q5a, q9a, q14a - - 0 0 -

a, q11a, q7a, q2a - - 0 0 -

a, q3a, q7a, q10a - - 0 0 -

a, q14a, q11a, q9a - - 0 0 -

a, q6a, q11a, qa - - 0 0 -

a, q10a, q5a, q15a - - 0 0 -

a, q2a, q5a, q7a - - 0 0 -

a, q9a, q3a, q12a - - 0 0 -

a, qa, q3a, q4a - - 0 0 -

a, q15a, q13a, q12a - - 0 0 -

a, q7a, q13a, q4a - - 0 0 -

a, q10a, q3a - - 0 0 -

a, q2a, q3a - - 0 0 -

a, q15a, q13a - - 0 0 -

a, q7a, q13a - - 0 0 -

a, q9a, qa - - 0 0 -

a, qa, qa - - 0 0 -

a, q15a, q15a - - 0 0 -

a, q7a, q15a - - 0 0 -

a, q13a, q11a - - 0 0 -

a, q5a, q11a - - 0 0 -

a, q11a, q5a - - 0 0 -

a, q3a, q5a - - 0 0 -

a, q13a, q9a - - 0 0 -

a, q5a, q9a - - 0 0 -

a, q11a, q7a - - 0 0 -

a, q3a, q7a - - 0 0 -

a, q8b, qb, q10a - - 0 - -

a, b, qb, q2a - - 0 - -

a, qb, q2b, q4a - - 0 - -

a, q12b, q8b, q5a - - 0 - -

a, q4b, q8b, q13a - - 0 - -

a, q12b, q9b, q6a - - 0 - -

a, q13b, q10b, q8a - - 0 - -

a, q5b, q10b, a - - 0 - -

a, q14b, q13b, q12a - - 0 - -
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a, q14b, q13b, q12b, q11a - - 0 - -

a, q6b, q13b, q4b, q11a - - 0 - -

a, q10b, q5b, b, q11a - - 0 - -

a, q2b, q5b, q8b, q11a - - 0 - -

a, q15b, q14b, q14a - - 0 0 0

a, 0, a - - - 0 1.3

a, 0, q8a - - - 0 0.9

a, a, a, a - - - 0 0.7

a, q8a, a, q8a - - - 0 0.7

a, b, c, c, qb, q2a - - - 0 0

a, q7b, q15b, q8a, q5a, q13b, q5b, q13a - - - 0 -

a, q15b, q15a, q7a, q6b, q6a - - - 0 0

a, q7b, q15a, q15a, q6b, q14a - - - 0 -

a, q14a, q10a, q6a, q4a - - - 0 -

a, q6a, q10a, q14a, q4a - - - 0 -

a, q7b, q15b, q7b, q15b, q7a - - - 0 0

a, q9a, q6a, q15b, q9a, q6a, q15a - - - 0 -

a, qa, q6a, q7b, q9a, q14a, q15a - - - 0 -

a, q8b, qb, q11a, q9a, q2b, q11b, q4a - - - 0 0

a, q7b, q14b, q5a, q8a, q14b, q5b, q13a - - - 0 -

a, q15b, q14b, q13a, q7a, q5b, q4b, q4a - - - 0 -

a, q15b, q14b, q13a, q8a, q6b, q5b, q5a - - - 0 -

a, q15b, q15a - - - 0 0

a, q7b, q15a - - - 0 0

a, q12a, q8a, q4a - - - 0 -

a, q4a, q8a, q12a - - - 0 -

a, q14a, q12a, q10a - - - 0 -

a, q6a, q12a, q2a - - - 0 -

a, q10a, q4a, q14a - - - 0 -

a, q2a, q4a, q6a - - - 0 -

a, 0, q12a - - - 0 -

a, 0, q4a - - - 0 -

a, q9a, q2a, q11a - - - 0 -

a, qa, q2a, q3a - - - 0 -

a, q15a, q14a, q13a - - - 0 -

a, q7a, q14a, q5a - - - 0 -

a, 0, q15a - - - 0 -

a, 0, q7a - - - 0 -

a, 0, q9a - - - 0 -

a, 0, qa - - - 0 -

a, 0, q14a - - - 0 -

a, 0, q2a - - - 0 -

a, 0, q10a - - - 0 -

a, 0, q6a - - - 0 -

a, 0, q3a - - - 0 -

a, 0, q13a - - - 0 -

a, 0, q11a - - - 0 -

a, 0, q5a - - - 0 -

a, q9a, q4a, q13a - - - 0 -

a, qa, q4a, q5a - - - 0 -

a, q15a, q12a, q11a - - - 0 -

a, q7a, q12a, q3a - - - 0 -

a, q13a, q12a, q9a - - - 0 -

a, q5a, q12a, qa - - - 0 -

a, q11a, q4a, q15a - - - 0 -

a, q3a, q4a, q7a - - - 0 -

a, q8a, q2a, q10a - - - 0 -

a, a, q14a, q14a - - - 0 -

a, a, q2a, q2a - - - 0 -

a, q8a, q14a, q6a - - - 0 -

a, q13a, q10a, q7a - - - 0 -

a, q5a, q10a, q15a - - - 0 -

a, q11a, q6a, qa - - - 0 -

a, q3a, q6a, q9a - - - 0 -

a, q12a, q6a, q2a - - - 0 -

a, q12a, q10a, q6a - - - 0 -

a, q4a, q6a, q10a - - - 0 -

a, q4a, q10a, q14a - - - 0 -

a, q14a, q14a, q12a - - - 0 -

a, q6a, q14a, q4a - - - 0 -

a, q2a, q2a, q4a - - - 0 -

a, q10a, q2a, q12a - - - 0 -

a, q14a, q10a, q8a - - - 0 -

a, q6a, q10a, a - - - 0 -

a, q10a, q6a, a - - - 0 -
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L 2 3 4 5 6

a, q2a, q6a, q8a - - - 0 -

a, q8a, qa, q10a, q2a - - - 0 -

a, a, qa, q2a, q2a - - - 0 -

a, a, q15a, q14a, q14a - - - 0 -

a, q8a, q15a, q6a, q14a - - - 0 -

a, q13a, q8a, q5a - - - 0 -

a, q5a, q8a, q13a - - - 0 -

a, q3a, q8a, q11a - - - 0 -

a, q11a, q8a, q3a - - - 0 -

a, q12a, q9a, q6a, q2a - - - 0 -

a, q12a, q7a, q2a, q14a - - - 0 -

a, q4a, q9a, q14a, q2a - - - 0 -

a, q4a, q7a, q10a, q14a - - - 0 -

a, q9a, a, q9a - - - 0 -

a, qa, a, qa - - - 0 -

a, q15a, a, q15a - - - 0 -

a, q7a, a, q7a - - - 0 -

a, q14a, q13a, q12a, q10a - - - 0 -

a, q6a, q13a, q4a, q10a - - - 0 -

a, q10a, q3a, q12a, q6a - - - 0 -

a, q2a, q3a, q4a, q6a - - - 0 -

a, q14a, q11a, q8a, q6a - - - 0 -

a, q6a, q11a, a, q6a - - - 0 -

a, q10a, q5a, a, q10a - - - 0 -

a, q2a, q5a, q8a, q10a - - - 0 -

a, q8a, a, q9a, qa, q9a - - - 0 -

a, a, a, q15a, q15a, q15a - - - 0 -

a, a, a, qa, qa, qa - - - 0 -

a, q8a, a, q7a, q15a, q7a - - - 0 -

a, q12a, q8a, q3a, q15a, q11a - - - 0 -

a, q12a, q8a, q5a, qa, q13a - - - 0 -

a, q4a, q8a, q11a, q15a, q3a - - - 0 -

a, q4a, q8a, q13a, qa, q5a - - - 0 -

a, q9a, qa, q9a, q2a - - - 0 -

a, qa, qa, qa, q2a - - - 0 -

a, q15a, q15a, q15a, q14a - - - 0 -

a, q7a, q15a, q7a, q14a - - - 0 -

a, q13a, q9a, q5a, q2a - - - 0 -

a, q5a, q9a, q13a, q2a - - - 0 -

a, q11a, q7a, q3a, q14a - - - 0 -

a, q3a, q7a, q11a, q14a - - - 0 -

a, q12a, q6a, a, q12a - - - 0 -

a, a, q14a, q12a, q12a - - - 0 -

a, q8a, q14a, q4a, q12a - - - 0 -

a, q12a, q10a, q8a, q4a - - - 0 -

a, q8a, q2a, q12a, q4a - - - 0 -

a, a, q2a, q4a, q4a - - - 0 -

a, q4a, q6a, q8a, q12a - - - 0 -

a, q4a, q10a, a, q4a - - - 0 -

a, q14a, q12a, q9a, q7a, q5a - - - 0 -

a, q6a, q12a, qa, q7a, q13a - - - 0 -

a, q2a, q4a, q7a, q9a, q11a - - - 0 -

a, q10a, q4a, q15a, q9a, q3a - - - 0 -

a, q14a, q14a, q14a, q12a - - - 0 -

a, q6a, q14a, q6a, q12a - - - 0 -

a, q10a, q2a, q10a, q4a - - - 0 -

a, q2a, q2a, q2a, q4a - - - 0 -

a, q14a, q12a, q11a, q9a, q7a - - - 0 -

a, q6a, q12a, q3a, q9a, q15a - - - 0 -

a, q10a, q4a, q13a, q7a, qa - - - 0 -

a, q2a, q4a, q5a, q7a, q9a - - - 0 -

a, q10a, q6a, q2a, q12a - - - 0 -

a, q2a, q6a, q10a, q12a - - - 0 -

a, q9a, q4a, q15a, q8a - - - 0 -

a, qa, q4a, q7a, q8a - - - 0 -

a, q13a, q12a, q11a, q8a - - - 0 -

a, q5a, q12a, q3a, q8a - - - 0 -

a, q9a, q3a, q13a, q6a - - - 0 -

a, qa, q3a, q5a, q6a - - - 0 -

a, q15a, q12a, q9a, q8a - - - 0 -

a, q7a, q12a, qa, q8a - - - 0 -

a, q11a, q4a, q13a, q8a - - - 0 -

a, q3a, q4a, q5a, q8a - - - 0 -

a, q15a, q13a, q11a, q10a - - - 0 -

a, q7a, q13a, q3a, q10a - - - 0 -
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L 2 3 4 5 6

a, q13a, q11a, q9a, q6a - - - 0 -

a, q5a, q11a, qa, q6a - - - 0 -

a, q11a, q5a, q15a, q10a - - - 0 -

a, q3a, q5a, q7a, q10a - - - 0 -

a, q9a, qa, q11a, q3a, q12a - - - 0 -

a, qa, qa, q3a, q3a, q4a - - - 0 -

a, q13a, q10a, q6a, q3a, a - - - 0 -

a, q5a, q10a, q14a, q3a, q8a - - - 0 -

a, q2a, q5a, q6a, q9a, q11a - - - 0 -

a, q10a, q5a, q14a, q9a, q3a - - - 0 -

a, q14a, q11a, q10a, q7a, q5a - - - 0 -

a, q6a, q11a, q2a, q7a, q13a - - - 0 -

a, q3a, q6a, q10a, q13a, a - - - 0 -

a, q11a, q6a, q2a, q13a, q8a - - - 0 -

a, q15a, q15a, q13a, q13a, q12a - - - 0 -

a, q7a, q15a, q5a, q13a, q4a - - - 0 -

a, a, a, a, a - - - - 0.3

a, q8a, a, q8a, a - - - - 0.3

a, q8a, 0, a, q8a - - - - 0.2

a, a, 0, q8a, q8a - - - - 0.2

a, q8b, b, q9a - - - - 0.1

a, q15c, q14e, q13g, q13g, q14e, q15c, a - - - - 0

a, q7c, q14e, q5g, q13g, q6e, q15c, q8a - - - - 0

a, q15a, q9a, q7b, q6a, a, q15a - - - - 0

a, q7a, q9a, q15b, q6a, q8a, q15a - - - - 0

a, q7b, q14c, q6c, q14b, q6a - - - - 0

a, q15b, q15b, q15b, q15a - - - - 0

a, q7b, q15b, q7b, q15a - - - - 0

a, q15a, q10a, q8a, q3a, q2a - - - - 0

a, q7a, q10a, a, q3a, q10a - - - - 0

a, q7b, q15a, a, q7b, q15a - - - - 0

a, q15b, q15a, q8a, q7b, q7a - - - - 0

a, q15b, q15b, q15b, q15b, q15a - - - - 0

a, q15c, q14e, q13g, q14e, q15c, a - - - - 0

a, q7c, q14e, q5g, q14e, q7c, a - - - - 0

a, b, c, qc, q2c, q3c, q4b, q5a - - - - 0

a, q8b, c, q9c, q2c, q11c, q4b, q13a - - - - 0

a, q9a, q6a, a, q13a, q6a - - - - 0

a, b, qb, q3a, q9a, q10b, q11b, q12a - - - - 0

a, q15b, q15b, b, b, a - - - - 0

a, q15b, q14b, q12b, q11b, q11a - - - - 0

a, q8b, b, q7b, q15b, q8a - - - - 0

a, q7b, q15b, q8b, b, q8a - - - - 0

a, q7b, q14b, q4b, q11b, q3a - - - - 0

a, q15b, q14a, q8a, q6a, a, q14b, q14a - - - - 0

a, q7b, q14a, a, q6a, q8a, q14b, q6a - - - - 0

A.8 Asymmetric Sequences

The following sequences which do not have the symmetry property conjectured in Sec-
tion 5.4 were found for the 8-PSK and 16-PSK modulation schemes.

A.8.1 8-PSK

L 4 5

a, q5a, qa 12 11.5

a, q6a, q3a 12.8 10.4

a, q7a, q5a 13.2 10.4

a, q7a, q7a 12 11.5

a, qa, qa 12 11.5

a, qa, q3a 12.8 10.4

a, q2a, q5a 13.2 10.4

a, q3a, q7a 12 11.5

a, q3a, q7a, q3a - 1

a, q2a, q4a, q7a - 1

a, qa, q3a, q5a - 1

a, qa, qa, qa - 1

a, a, qa, q2a - 1

a, q7a, q7a, q7a - 1
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L 4 5

a, q7a, q6a, q6a - 1

a, q7a, q5a, q3a - 1

a, q6a, q4a, qa - 1

a, q5a, qa, q5a - 1

a, q4a, qa, q6a - 1

a, q4a, q7a, q2a - 1

A.8.2 16-PSK

L 3 4 5

a, q15b, q15b, a 0.2 0.1 0

a, q7b, q15b, q8a 0.2 0.1 0

a, qb, q2b, q3a 0 0 -

a, q9b, q2b, q11a 0 0 -

a, q13b, q10b, q7a 0 0 -

a, q3b, q7b, q12a 0 - -

a, q2a, q3a - 0 0

a, q10a, q3a - 0 0

a, q7a, q13a - 0 0

a, q15a, q13a - 0 0

a, qa, qa - 0 0

a, q9a, qa - 0 0

a, q7a, q15a - 0 0

a, q15a, q15a - 0 0

a, q5a, q11a - 0 0

a, q13a, q11a - 0 0

a, q3a, q5a - 0 0

a, q11a, q5a - 0 0

a, q5a, q9a - 0 0

a, q13a, q9a - 0 0

a, q3a, q7a - 0 0

a, q11a, q7a - 0 0

a, q2a, q2a, q3a - 0 0

a, q10a, q2a, q11a - 0 0

a, q7a, q15a, q5a - 0 0

a, q15a, q15a, q13a - 0 0

a, qa, q3a, q3a - 0 -

a, q9a, q3a, q11a - 0 -

a, q7a, q13a, q5a - 0 -

a, q15a, q13a, q13a - 0 -

a, q5a, q9a, q15a - 0 0

a, q5a, q11a, q15a - 0 0

a, q13a, q9a, q7a - 0 0

a, q13a, q11a, q7a - 0 0

a, q3a, q5a, q9a - 0 0

a, q3a, q7a, q9a - 0 0

a, q11a, q5a, qa - 0 0

a, q11a, q7a, qa - 0 0

a, q2a, q5a, q6a - 0 0

a, q10a, q5a, q14a - 0 0

a, q7a, q12a, q2a - 0 0

a, q15a, q12a, q10a - 0 0

a, q5a, q12a, q2a - 0 0

a, q13a, q12a, q10a - 0 0

a, q3a, q4a, q6a - 0 0

a, q11a, q4a, q14a - 0 0

a, q5a, q8a, q12a - 0 0

a, q13a, q8a, q4a - 0 0

a, q11a, q8a, q4a - 0 0

a, q5b, q10b, q15a - 0 -

a, q2b, q5b, q9a - 0 -

a, q10b, q5b, qa - 0 -

a, q6b, q13b, q5a - 0 -

a, q14b, q13b, q13a - 0 -

a, q10a, q3a - 0 0

a, q2a, q3a - 0 0

a, q15a, q13a - 0 0

a, q7a, q13a - 0 0

a, q9a, qa - 0 0

a, qa, qa - 0 0

a, q15a, q15a - 0 0

a, q7a, q15a - 0 0

a, q13a, q11a - 0 0
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L 3 4 5

a, q5a, q11a - 0 0

a, q11a, q5a - 0 0

a, q3a, q5a - 0 0

a, q13a, q9a - 0 0

a, q5a, q9a - 0 0

a, q11a, q7a - 0 0

a, q3a, q7a - 0 0

a, q2a, qa, q2a - - 0

a, q10a, qa, q10a - - 0

a, q7a, a, q6a - - 0

a, q15a, a, q14a - - 0

a, qa, qa, qa - - 0

a, q9a, qa, q9a - - 0

a, q7a, q15a, q7a - - 0

a, q15a, q15a, q15a - - 0

a, qa, q2a, q2a - - 0

a, q9a, q2a, q10a - - 0

a, qa, q4a, q4a - - 0

a, q9a, q4a, q12a - - 0

a, q5a, q9a, q13a - - 0

a, q13a, q9a, q5a - - 0

a, q7a, q12a, q4a - - 0

a, q7a, q14a, q6a - - 0

a, q7a, q13a, q3a - - 0

a, q15a, q12a, q12a - - 0

a, q15a, q14a, q14a - - 0

a, q15a, q13a, q11a - - 0

a, q3a, q7a, q11a - - 0

a, q11a, q7a, q3a - - 0

a, q5a, q11a, qa - - 0

a, q13a, q11a, q9a - - 0

a, q2a, q4a, q5a - - 0

a, q10a, q4a, q13a - - 0

a, q3a, q5a, q7a - - 0

a, q11a, q5a, q15a - - 0

a, qa, q15a, q15a - - 0

a, q9a, q15a, q7a - - 0

a, q5a, q10a, q14a - - 0

a, q13a, q10a, q6a - - 0

a, q7a, qa, q9a - - 0

a, q15a, qa, qa - - 0

a, q3a, q6a, q10a - - 0

a, q11a, q6a, q2a - - 0

a, q5a, q7a, q11a - - 0

a, q13a, q7a, q3a - - 0

a, q2a, q3a, q4a - - 0

a, q10a, q3a, q12a - - 0

a, q7a, q14a, q4a - - 0

a, q15a, q14a, q12a - - 0

a, q3a, q9a, q13a - - 0

a, q11a, q9a, q5a - - 0

a, q5a, q8a, q14a - - 0

a, q5a, q10a, a - - 0

a, q13a, q8a, q6a - - 0

a, q13a, q10a, q8a - - 0

a, q3a, q8a, q12a - - 0

a, q3a, q8a, q10a - - 0

a, q3a, q6a, q8a - - 0

a, q11a, q8a, q2a - - 0

a, q11a, q6a, a - - 0
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