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Abstract

In this thesis a new approach for characterisation of digital mobile radio channels is
investigated. The new approach is based on recognition of the fact that while the
fading which is characteristic of the mobile radio channel is very rapid, the processes
underlying this fading may vary much more slowly. The comparative stability of these
underlying processes has not been exploited in system designs to date.

Channel models are proposed which take account of the stability of the channel.
Estimators for the parameters of the models are proposed, and their performance is
analysed theoretically and by simulation and measurement.

Bounds are derived for the extent to which the mobile channel can be predicted,
and the critical factors which define these bounds are identified.

Two main applications arise for these channel models. The first is the possibility
of prediction of the overall system performance. This may be used to avoid channel
fading (for instance by change of frequency), or compensate for it (by change of the
signal rate or by power control). The second application is in channel equalisation. An
equaliser based on a model which has parameters varying only very slowly can offer
improved performance especially in the case of channels which appear to be varying so
rapidly that the convergence rate of an equaliser based on the conventional model is
not adequate.

The first of these applications is explored, and a relationship is derived between the

channel impulse response and the performance of a broadband system.






Notation and Symbols

Complex conjugate

|-l Frobenius norm of a matrix or 2-norm of a vector

T Moore-Penrose generalised inverse

O] Element by element (Hadamard) product

® Convolution

= Equivalence

£ Definition

Ty Dot product between two spatial vectors  and y

A Array steering matrix

a Array steering vector

b(-) Scattering function

c Speed of light

CN(-,-) Complex normally distributed with given mean and covariance
D,d Distances between source points and measurement points
D Diagonal matrix of eigenvalues

E{-} Expectation operator

e Exponential operator

€; A vector of zeros with 1 in the i-th position

f Discrete channel impulse response co-efficients
g(+) Antenna gain pattern

Complex Hermitian conjugate
H,(LI)(-) Order n Hankel function of the first kind

h System or channel impulse response
In(") Order n Modified Bessel function of the first kind
I Identity matrix

In(+) Order n Bessel function of the first kind

j V-1

Jn() Order n Spherical Bessel function
J Fisher Information matrix
K Row/Column reversing matrix

k Wave number of signal carrier = 27/



l Snapshot index
L The number of terms of a finite impulse response channel model
or the number of “snapshots” taken by an array
M The number of sensors in an array
m Array sensor index
N The number of sources or scatterers in the environment of an array
n Source or scatterer index
N(-,-)  Normally distributed with given mean and covariance

dimension of a covariance or correlation matrix

P () Associated Legendre functions

p(t) Transmit pulse shaping function

s(t) sfm]  Transmitted signal or transmitted symbol

T System symbol period

T Matrix or vector transpose

t Time

U(-) Unit step function (Heaviside’s unit function)
u(+) Baseband transmitted signal

v an eigenvector

A Matrix of eigenvectors

w Bandwidth of a baseband transmitted signal
T,Y, 2 3 dimensional spatial co-ordinates

o(t) Dirac delta

9i,0;,5,0[1] Kronecker delta

€ Error in decoded symbol

¢ Gain (attenuation) of a path between transmitter and receiver
n Additive Noise process

0 Arrival angle of a signal (measured from broadside)
A Wavelength of signal carrier

> Summation operator

T Path delay

We Carrier frequency

Wn Spatial frequency corresponding to path n

w Baseband channel frequency

cdf cumulative distribution function

pdf probability density function

SNR Signal to Noise Ratio
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