PHASE FORMATION AND STRUCTURAL TRANSFORMATION OF STRONTIUM FERRITE SrFeO$_x$

BY

Marek Wojciech Schmidt

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

THE AUSTRALIAN NATIONAL UNIVERSITY

April 2001
Declaration

This thesis does not incorporate any material previously submitted for a degree, or diploma at any university and to the best of my knowledge and belief, does not contain any material previously published or written by another person except where due reference is made in the text.

Marek W. Schmidt
Acknowledgements

The author would like to thank Prof. J.S. Williams of Department of Electronic Materials Engineering, The Australian National University and Prof. S.J. Campbell of the Australian Defence Force Academy for valuable comments on the manuscript of this thesis. Also I would like to express my gratitude to Dr N.J. Welham of Department of Applied Mathematics, ANU for proofreading of the manuscript, a great deal of advice and help given during the entire PhD course. I would like to thank Mr T. Sawkins of Department of Applied Mathematics, ANU and the crew of the Electronics Unit for excellent technical support. Mr D. Lewellyn, Dr S. Stowe, Mr F. Brink and other members of the Electron Microscope Unit, ANU for their great help with the collection of electron microscope micrographs. Dr G. Foran and Dr J. Hesler of the Australian National Beamline Facility in Tsukuba, Japan for their help with the collection of synchrotron x-ray diffraction patterns. Dr A.J. Studer of the Australian National Science and Technology Organization for his help with neutron diffraction experiments. Ms J. Dalco and Mr J. Irwin of the Computer Unit R.S.Phys.S.E., ANU for their help with computer related matters. The author would also thank others who helped directly or indirectly with the process of creating of this thesis.
Abstract

Non-stoichiometric strontium iron oxide is described by an abbreviated formula \(\text{SrFeO}_x \) \((2.5 \leq x \leq 3.0)\) exhibits a variety of interesting physical and chemical properties over a broad range of temperatures and in different gaseous environments. The oxide contains a mixture of iron in the trivalent and the rare tetravalent state. The material at elevated temperature is a mixed oxygen conductor and it, or its derivatives, can have practical applications in oxygen conducting devices such as pressure driven oxygen generators, partial oxidation reactors in electrodes for solid oxide fuel cells (SOFC).

This thesis examines the behaviour of the material at ambient and elevated temperatures using a broad spectrum of solid state experimental techniques such as: x-ray and neutron powder diffraction, thermogravimetric and calorimetric methods, scanning electron microscopy and Mössbauer spectroscopy. Changes in the oxide were induced using conventional thermal treatment in various atmospheres as well as mechanical energy (ball milling).

The first experimental chapter examines the formation of the ferrite from a mixture of reactants. It describes the chemical reactions and phase transitions that lead to the formation of the oxide. Ball milling of the reactants prior to annealing was found to eliminate transient phases from the reaction route and to increase the kinetics of the reaction at lower temperatures. Examination of the thermodynamics of iron oxide (hematite) used for the reactions led to a new route of synthesis of the ferrite from magnetite and strontium carbonate. This chapter also explores the possibility of synthesis of the material at room temperature using ball milling.

The ferrite strongly interacts with the gas phase so its behaviour was studied under different pressures of oxygen and in carbon dioxide. The changes in ferrite composition have an equilibrium character and depend on temperature and oxygen concentration in the atmosphere. Variations of the oxygen content \(x \) were described as a function of temperature and oxygen partial
pressure, the results were used to plot an equilibrium composition diagram. The heat of oxidation was also measured as a function of temperature and oxygen partial pressure.

Interaction of the ferrite with carbon dioxide below a critical temperature causes decomposition of the material to strontium carbonate and SrFe\(_{12}\)O\(_{19}\). The critical temperature depends on the partial pressure of CO\(_2\) and above the critical temperature the carbonate and SrFe\(_{12}\)O\(_{19}\) are converted back into the ferrite. The resulting SrFe\(_{12}\)O\(_{19}\) is very resistant towards carbonation and the thermal carbonation reaction does not lead to a complete decomposition of SrFeO\(_x\) to hematite and strontium carbonate.

The thermally induced oxidation and carbonation reactions cease at room temperature due to sluggish kinetics however, they can be carried out at ambient temperature using ball milling. The reaction routes for these processes are different from the thermal routes. The mechanical oxidation induces two or more concurrent reactions which lead to samples containing two or more phases. The mechanical carbonation on the other hand produces an unknown metastable iron carbonate and leads a complete decomposition of the ferrite to strontium carbonate and hematite.

Thermally and mechanically oxidized samples were studied using Mössbauer spectroscopy. The author proposes a new interpretation of the Sr\(_4\)Fe\(_4\)O\(_{11}\) (\(x = 2.75\)) and Sr\(_8\)Fe\(_8\)O\(_{23}\) (\(x = 2.875\)) spectra. The interpretation is based on the chemistry of the compounds and provides a simpler explanation of the observed absorption lines. The Mössbauer results from a range of compositions revealed the room temperature phase behaviour of the ferrite also examined using x-ray diffraction.

The high-temperature crystal structure of the ferrite was examined using neutron powder diffraction. The measurements were done at temperatures up to 1273 K in argon and air atmospheres. The former atmosphere protects Sr\(_2\)Fe\(_2\)O\(_5\) (\(x = 2.5\)) against oxidation and the measurements in air allowed variation of the composition of the oxide in the range 2.56 ≤ \(x\) ≤ 2.81. Sr\(_2\)Fe\(_2\)O\(_5\) is an antiferromagnet and undergoes phase transitions to the paramagnetic state at 692 K and from the orthorhombic to the cubic structure around 1140 K. The oxidized form of the ferrite also undergoes a transition to the high-temperature cubic form. The author proposes a new structural model for the cubic phase based on a unit cell with the \(Fm\bar{3}c\) symmetry. The new model allows a description of the high-temperature cubic form of the ferrite as a solid solution of the composition end members. The results
were used to draw a phase diagram for the SrFeO$_x$ system.

The last chapter summarizes the findings and suggests directions for further research.
This addendum contains explanations to points raised by examiners.

1. **Question concerning x-ray diffraction lines intensity ratio I(150)/I(161) used to assess iron contamination in section 3.5.1 of the thesis.**

 An intensity ratio of 0.45 for the Fe/Sr=1.01 composition was observed from the x-ray diffraction pattern. Experiments were also conducted on several other samples with different Fe/Sr ratios. In all cases, increasing iron fraction caused an increase in the I(150)/I(161) ratio. Only samples with compositions Fe/Sr=1.01 and 1.05 were shown in the thesis for the sake of brevity to demonstrate the detection threshold. The detection method was designed to screen milled samples and discard those contaminated with iron, not to quantify the contamination level.

 SEM examination of Sr$_2$Fe$_2$O$_5$ powders has shown that Sr$_2$Fe$_2$O$_5$ microcrystals do not develop facets (see Figure 4.17). As a result, the crystals cannot align during x-ray specimen preparation and cause substantial preferred orientation. The fraction of Sr$_4$Fe$_6$O$_{13}$ phase was small and the much larger amount of Sr$_2$Fe$_2$O$_5$ should diminish potential orientation of Sr$_4$Fe$_6$O$_{13}$ crystals, which should be randomly oriented within Sr$_2$Fe$_2$O$_5$ grains.

2. **Question concerning section 3.5.2 of the thesis.**

 During the experimental work the author prepared a variety of Sr-Fe-O samples with compositions in the range 1<Fe/Sr<12 in order to confirm the phase behaviour of the Sr-Fe-O system found in the literature. These experiments were needed to investigate the transient phases occurring during synthesis of SrFeO$_x$ (see section 3.2). Special emphasis was placed on composition ranges around Fe/Sr=1.43 (Sr$_7$Fe$_{10}$O$_{22}$) and Fe/Sr=2 (SrFe$_2$O$_4$). The samples were examined using x-ray diffraction and simple phase identification, based on the diffraction lines, showed that, for these compositions, the Sr-Fe-O system forms only mixtures of two phases, not a single phase as claimed in the cited literature. The lack of the SrFe$_2$O$_4$ phase was also confirmed by the work of Vogel and Evans [A] found after submission of the thesis.

1 The references marked with numerals refer to the bibliography section of the thesis. References marked with letters are additional and are collected at the end of the addendum.

Indexing of the synchrotron diffraction patterns of Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23} yielded ambiguous results, pointing at two or three different crystal structures. The goodness-of-fit obtained during the indexing procedure was similar for all models, making it impossible to choose one structure. Rietveld refinement was not carried out since the internal structures of Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23} are unknown and a multiple-parameter fit could lead to a wrong solution, despite a good fit (see remarks on the Rietveld method in section 2.3.1).

The use of high-resolution neutron diffraction to study Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23} may have its advantages because of a different scattering mechanism that would enhance structural features associated with oxygen.

4. Questions concerning the choice of symmetry group (Fm\textsubscript{3}c over Pm\textsubscript{3}m).

The problem of the symmetry group of high-temperature cubic SrFeO\textsubscript{x} (x<3) was addressed because of discrepancies in the literature. Shin et al. [159] proposed a perovskite cell for cubic Sr\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5} but later noticed that the cell contains only half the atoms within the oxide molecule (Z=0.5) [165]. The unit cell proposed in the thesis (Fm\textsubscript{3}c) does not overturn completely the previous findings but was constructed to incorporate the chemical makeup of the ferrite.

Atoms building the SrFeO\textsubscript{x} structure are charged when engaged in forming of a chemical compound. The unit cell is usually chosen to contain at least one chemical molecule, as illustrated in publications dealing with room temperature phases Sr\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5}, Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23}: the proposed unit cells always contain whole numbers of molecules as depicted by chemical formulae not their fractions [138,139,160,161]. In the case of high-temperature cubic phases, authors tend to use the abbreviated notation SrFeO\textsubscript{2.5}, SrFeO\textsubscript{2.75} and SrFeO\textsubscript{2.875} to justify the perovskite model [127,128]. However, the only aspect that changes upon the transition to the cubic form is the arrangement of atoms not the chemical makeup. So, the correct chemical formulae of the high-temperature phases are still Sr\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5}, Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23}.

The analysis of cubic SrFeO\textsubscript{x} was based on the results of the neutron powder diffraction experiments. The analysis began with the Sr\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5} phase and was then extended to the other oxygen deficient phases Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11} and Sr\textsubscript{8}Fe\textsubscript{8}O\textsubscript{23}. Cubic neutron diffraction patterns were indexed and the simplest solution gave the small "perovskite" cell with a lattice constant of about 3.9Å. At this stage no assumption
was made as to the atomic layout inside the cell. Since the volume of the cell and the chemical formula of the compound were known, the next step was to assess the number of oxide molecules in the cell. This is a standard procedure in crystal structure determination [56,B]. The number of molecules per cell, Z, the density of crystal ρ, the molecular weight M of the molecule and the volume of the unit cell, V, must fulfill the equation:

\[\rho = \frac{ZM}{N_A V} \]

where \(N_A \) is Avogadro's number. This equation was used to determine Z as:

\[Z = \frac{N_A \rho V}{M} \]

This procedure is equivalent to the density argument presented on page 137. Although the density of the high-temperature phases is difficult to measure, the room temperature values are known (see section 6.2) and the density is not expected to change dramatically with temperature (density should decrease due to lattice expansion). Hence, Z was calculated using the room temperature density of SrFeO\textsubscript{x} and the results are presented in the table:

<table>
<thead>
<tr>
<th>x</th>
<th>Formula</th>
<th>M [g/mol]</th>
<th>(\rho) [g/cm3]</th>
<th>(V_{\text{PEROVSKITE}}) [Å3]</th>
<th>Z</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Sr\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5}</td>
<td>366.93</td>
<td>4.99</td>
<td>63.14</td>
<td>0.52</td>
<td>Volume from Table A.6, T=1223K</td>
</tr>
<tr>
<td>2.75</td>
<td>Sr\textsubscript{4}Fe\textsubscript{4}O\textsubscript{11}</td>
<td>749.86</td>
<td>5.27</td>
<td>60.28</td>
<td>0.26</td>
<td>Volume from Table A.7, T=838K</td>
</tr>
</tbody>
</table>

The Z values obtained were substantially less than unity and the values were very close to \(\frac{1}{2} \) and \(\frac{1}{4} \) respectively. Fractional Z values clearly indicate that the "perovskite" cell, obtained by the direct indexing, is too small. In fact the "perovskite" cell constitutes an asymmetric unit.

The bigger cell (\(Fm\overline{3}c \)) was obtained by doubling of the perovskite lattice constant as described in the thesis. The \(Fm\overline{3}c \) unit cell contains whole number of molecules in the case of daltonian phases, \(\text{Sr}_2\text{Fe}_2\text{O}_5 \), \(\text{Sr}_4\text{Fe}_4\text{O}_{11} \) and \(\text{Sr}_8\text{Fe}_8\text{O}_{23} \), and assures electrical neutrality of the \(\text{Sr}_2\text{Fe}_2\text{O}_5 \) cell (see arguments on page 138).

* Volume of the perovskite cell is equal to 1/8 of the \(Fm\overline{3}c \) unit cell volume.
The bigger *Fm3c* cell was chosen because it gives a proper description of the crystal structure and the chemical makeup of the compounds. The proposed cell allows a description of phases with intermediate compositions in terms of a solid solution of the daltonian phases as described in the thesis.

The *Pm3m* cell could be regarded as the unit cell only if we treat atoms as colour balls and neglect the fact that they are electrically charged when engaged in forming of a chemical compound.

5. *Questions concerning Equations (4.14-4.22).*

The experimental data did not allow the oxidation of SrFeO₅ to be examined over the entire composition range 2.5≤x≤3.0 nor an appropriate model to be developed. The composition range was limited to x≤2.75. Two cases were examined: a complete and a partial oxidation of Sr₂Fe₂O₅ to Sr₄Fe₄O₁₁ according to the chemical reaction (4.14).

In the case of complete oxidation the reactant and the product of the reaction are pure solids for which the activities are unity by definition. The equilibrium constant of the reaction is a function of oxygen partial pressure only (Equation (4.16)) [51]. However, this treatment of the oxidation reaction is artificial since a departure from the equilibrium conditions does not lead to a total conversion of Sr₄Fe₄O₁₁ back to Sr₂Fe₂O₅. This simplification was necessary to estimate the line of constant composition x=2.75 on the equilibrium composition diagram (Figure 4.6). This is also the reason why the equilibrium constant K given by Equation (4.15) does not go to 1/pO₂ when x→2.75 and activities of the solids are given by Equations (4.20-4.22).

In the case of partial oxidation we deal with a mixture/solution of two phases Sr₂Fe₂O₅ and Sr₄Fe₄O₁₁, which are in equilibrium with each other and the gas phase. Changes to temperature or partial pressure of oxygen only change the concentration (activities) of the two solids. In this case it was necessary to incorporate activities of solids into Equation (4.15) in order to calculate the equilibrium constant.

6. *Question concerning the phrase "Vacant oxygen sites" (p140 lines 11-12).*

The sentence referring to this aspect should be rephrased. The author meant that, since the oxygen sites are partially occupied at any given time, there must be an unoccupied site(s) somewhere in the crystal lattice. Since SrFeOₓ is an oxygen
conductor, diffusion (hopping) of oxygen between oxygen sites must be easier within
the (400) plane than in the perpendicular direction where oxygen sites are separated
by iron.

7. Question concerning a statement (p141 lines 5-7).

The author meant that crystal structure of any compound can be expressed in
terms of a lower symmetry group e.g. Triclinic P1 (which is true for every structure).
This approach is not elegant because we neglect all symmetry relationships in the
lattice but it is possible to propose. The sentence did not imply that a division of more
symmetric structures by eight would yield a primitive structure.

Additional Bibliography

Fe₂O₃ System. III. The Non-Existence of Single-Phase SrFe₂O₄. J. Magn.

Contents

1 **Introduction** 1
 1.1 A Brief History of Solid Ionics 1
 1.2 Applications of Solid Ionics 3
 1.3 Oxygen Conducting Devices 4
 1.3.1 Pure Ionic Conductors 4
 1.3.2 Mixed Ionic Conductors 9
 1.4 Complex Transition Metal Oxides 10
 1.5 Strontium-Iron-Oxygen System 11
 1.6 Thesis Layout 13

2 **Experimental** 15
 2.1 Thermogravimetry 15
 2.2 Calorimetry 16
 2.3 X-Ray and Neutron Powder Diffraction 17
 2.3.1 The Rietveld Method 19
 2.3.2 Crystal Size and Strain 23
 2.3.3 Phase Identification 25
 2.3.4 Experimental Geometries 26
 Bragg-Brentano Diffractometer 27
 Synchrotron Radiation 28
 Neutron Diffractometer 28
 2.4 Electron Microscopy 29
 2.5 Mössbauer Spectroscopy 29
 2.5.1 Isomer Shift (IS) 30
 2.5.2 Quadrupole Splitting (QS) 31
 2.5.3 Magnetic Splitting 31
 2.5.4 Experimental Procedure 32
 2.6 Ball Milling 32
 2.7 Miscellaneous Methods 33
 2.7.1 Specific Surface Area 33
 2.7.2 Vibrating Sample Magnetometer (VSM) 34
 2.7.3 Thermodynamical Calculations 34
3 Formation of SrFeO$_x$

3.1 Choice of Reactants ... 35

3.2 The Reaction .. 36

3.2.1 Morphology .. 38

3.2.2 Thermodynamics of Hematite and an Alternative Route of Synthesis of Sr$_2$Fe$_2$O$_5$ 40

3.3 Heat of Formation ... 43

3.4 Mechanochemical Synthesis 44

3.5 Iron Contamination .. 45

3.5.1 Detection Procedure ... 46

3.5.2 Other Strontium Ferrites 47

3.6 Preparation Routine .. 48

3.7 Summary .. 49

4 Interaction with Gaseous Species 50

4.1 Composition Determination 51

4.1.1 Reference Phase .. 51

4.1.2 Oxygen Assay ... 52

4.1.3 In Situ Determination .. 54

4.2 Thermal Oxidation .. 56

4.2.1 Equilibrium Composition 56

4.2.2 Equilibrium Composition Diagram 60

4.2.3 Heat of Oxidation .. 66

4.2.4 Adjustment of Composition 70

An Ideal Method ... 70

Other Methods ... 71

4.3 Mechanical Oxidation ... 74

4.3.1 Milling ... 74

4.3.2 The Reaction ... 75

Reaction Rate ... 77

4.3.3 Structure and Morphology 79

Crystal Structure ... 79

Crystal Size and Strain .. 81

Amorphous Phase .. 82

Morphology .. 83

Surface Adsorption .. 83

4.4 Thermal Carbonation ... 85

4.4.1 Atmosphere Characteristics 86

4.4.2 The Reaction ... 87

Reaction Route and Kinetics .. 88

SrFe$_{12}$O$_{19}$ and Carbon Dioxide 91

Morphology .. 91

4.5 Mechanical Carbonation .. 93

4.5.1 The Reaction ... 94

4.5.2 Nature of the Unknown Carbonate 96
CONTENTS

4.5.3 Morphology and Surface Adsorption 97
4.6 Summary ... 98

5 Mössbauer Spectroscopy 100
5.1 Thermally Oxidized Ferrites 100
5.1.1 $\text{Sr}_4\text{Fe}_4\text{O}_{11}$ Phase ($x = 2.75$) 101
5.1.2 $\text{Sr}_3\text{Fe}_8\text{O}_{23}$ Phase ($x = 2.875$) 104
5.1.3 Two Phase Regions 105
5.2 $\text{Sr}_2\text{Fe}_2\text{O}_5$ Phase ($x = 2.5$) 106
5.3 Mechanically Oxidized Ferrites 109
5.4 Thermally and Mechanically Carbonated Ferrites 111
5.5 Published High-Temperature Spectra 111
5.6 Summary ... 112

6 Room Temperature Phases of SrFeO_x 114
6.1 Phase Behaviour 114
6.2 Density .. 118
6.3 Crystal Structure 119
6.4 Summary ... 122

7 High Temperature Crystal Structure of SrFeO_x 123
7.1 Preliminary Calorimetric Study 124
7.2 Structure of $\text{Sr}_2\text{Fe}_2\text{O}_5$ 124
7.2.1 Phase Transitions 125
7.2.2 Sample and Data Treatment 126
7.2.3 Results of Scattering Experiments 127
 Lattice Parameters 128
 Atomic Layout of the Orthorhombic Phase 129
 The Magnetic Structure 133
 The Cubic Phase 137
7.2.4 Transition to the Cubic Form 143
7.3 Structure of SrFeO_x in Air 145
7.3.1 Sample Treatment and Analysis Methods 146
7.3.2 Results of Experiments 148
 Lattice Constant and Density 149
7.4 Summary and Conclusions 152
 7.4.1 Nature of the Cubic Phase 152
 7.4.2 Equilibrium Phase Diagram 155
 7.4.3 Density and Thermal Expansion of the Ferrite .. 158

8 Conclusions .. 160
8.1 Summary of the Most Important Findings 160
8.2 Application of the SrFeO_x System 163
8.3 Directions for Future Research 164
List of Figures

1.1 A schematic of a pure ionics electrochemical device. 5
1.2 Theoretical efficiency of a perfect heat engine and fuel cells as a function of temperature. 7
1.3 A schematic of a mixed ionics electrochemical device. 9
1.4 The ternary diagram for the Sr-Fe-O system. 12

2.1 The instrumental breadth of Philips PW1050 diffractometer as a function of scattering angle. 26

3.1 X-ray diffraction patterns of the hand ground hematite-strontium carbonate mixture annealed for different periods and a pattern of milled a mixture fired for 1 h at 1473 K. 37
3.2 Thermogravimetric traces of reactions in the hand-ground and the milled hematite-strontium carbonate mixtures. 38
3.3 Scanning electron microscope images of hematite, strontium carbonate and the hand-ground and the milled mixtures. ... 39
3.4 The calculated decomposition temperature of hematite as a function of the oxygen partial pressure. 41
3.5 Thermogravimetric traces of reactions in the hand-ground and the milled magnetite-strontium carbonate mixtures. 42
3.6 Scanning electron microscope images of magnetite, the hand-ground and the milled magnetite-strontium carbonate mixtures. 43
3.7 Calculated molar fractions of Sr₄Fe₆O₁₃ and Sr₂Fe₂O₅ as a function of the iron to strontium ratio in the sample. 46
3.8 X-ray diffraction patterns of pure Sr₂Fe₂O₅ and ferrites with excess iron after annealing. 48

4.1 An example raw thermogravimetric data used for determination of the equilibrium composition of SrFeOₓ. 58
4.2 The equilibrium composition of SrFeOₓ as a function of tem- perature under different partial pressures of oxygen. 59
4.3 The Ellingham plot of Sr₄Fe₄O₁₁. 62
4.4 The Ellingham plots of PtO, Ag₂O and Sr₄Fe₄O₁₁ oxides. 63
4.5 Logarithm of the equilibrium constant as a function of recip- rocal temperature. .. 64
4.6 The equilibrium composition diagram of the SrFeOₓ system. 65
LIST OF FIGURES

4.7 An example oxidation peak of Sr$_2$Fe$_2$O$_5$ measured in air at 1073 K............................... 67
4.8 The enthalpy of Sr$_2$Fe$_2$O$_5$ oxidation as a function of temperature in air and oxygen atmospheres. 68
4.9 The DTA trace of the phase transition in Sr$_2$Fe$_2$O$_5$ at 1140 K. 69
4.10 A thermogravimetric trace of the reduction of SrFeO$_x$ ($x = 2.81$). 73
4.11 X-ray diffraction patterns of Sr$_2$Fe$_2$O$_5$ milled in oxygen. 75
4.12 The oxygen content of the ferrite as a function of milling time. 76
4.13 The logarithm of the reactant fraction in the mechanically oxidized SrFeO$_x$ as a function of milling time. 79
4.14 The cubic lattice constant of the product of Sr$_2$Fe$_2$O$_5$ oxidation as a function of milling time. 80
4.15 The average crystal size and lattice strain of Sr$_2$Fe$_2$O$_5$ and the product of its oxidation as a function of milling time. 81
4.16 The integrated intensity ratio of the amorphous phase peak to the (110) cubic line as a function of milling time in mechanically oxidized Sr$_2$Fe$_2$O$_5$. 82
4.17 Scanning electron microscope images of Sr$_2$Fe$_2$O$_5$ milled in oxygen for different periods of time. 84
4.18 The calculated oxygen partial pressure due to dissociation of CO$_2$ as a function of temperature. 86
4.19 A thermogravimetric trace of the reaction of Sr$_2$Fe$_2$O$_5$ with CO$_2$. 88
4.20 A thermogravimetric trace of the hematite-strontium carbonate mixture heated in CO$_2$. 89
4.21 The extent of the carbonation reaction of Sr$_2$Fe$_2$O$_5$ as a function of annealing time. 90
4.22 Scanning electron microscope images of Sr$_2$Fe$_2$O$_5$ annealed in CO$_2$ at 1073 K for 45 h. 92
4.23 X-ray diffraction patterns of Sr$_2$Fe$_2$O$_5$ milled in CO$_2$ for various periods of time. 94
4.24 Thermogravimetric traces of Sr$_2$Fe$_2$O$_5$ milled in CO$_2$ for various periods of time. 96
4.25 Scanning electron microscope images of Sr$_2$Fe$_2$O$_5$ milled in CO$_2$ for 256 h. 98

5.1 Room temperature Mössbauer spectra of thermally oxidized SrFeO$_x$ as a function of composition. 102
5.2 Refined parameters of the Mössbauer spectra of the two phase SrFeO$_x$ samples as a function of composition in the range of $2.750 \leq x \leq 2.915$. 107
5.3 Room temperature Mössbauer spectrum of Sr$_2$Fe$_2$O$_5$. 108
5.4 Room temperature Mössbauer spectra of mechanically oxidized SrFeO$_x$ as a function of milling time. 110
6.1 X-ray diffraction patterns of Sr$_2$Fe$_2$O$_5$, Sr$_4$Fe$_4$O$_{11}$ and samples with intermediate compositions. .. 115
6.2 Calculated molar fractions of Sr$_2$Fe$_2$O$_5$ and Sr$_4$Fe$_4$O$_{11}$ in SrFeO$_x$ as a function of the oxygen content. 116
6.3 Calculated molar fractions of Sr$_4$Fe$_4$O$_{11}$ and Sr$_8$Fe$_8$O$_{23}$ as a function of the average oxygen content x. 117
6.4 Calculated molar fractions of Sr$_8$Fe$_8$O$_{23}$ and SrFeO$_3$ as a function of the average oxygen content x. 117
6.5 Density of SrFeO$_x$ as a function of composition at room temperature. .. 118
6.6 High-resolution synchrotron x-ray diffraction pattern of Sr$_4$Fe$_4$O$_{11}$. ... 121
6.7 High-resolution synchrotron x-ray diffraction pattern of Sr$_8$Fe$_8$O$_{23}$. ... 121
7.1 Temperatures of phase transitions in SrFeO$_x$ as a function of the initial composition x. .. 125
7.2 The DSC trace of Sr$_2$Fe$_2$O$_5$ obtained by heating at constant rate of 30 K/min in argon. .. 126
7.3 Reduced orthorhombic lattice constants of Sr$_2$Fe$_2$O$_5$ as a function of temperature. .. 129
7.4 Unit cell volume of Sr$_2$Fe$_2$O$_5$ as a function of temperature. 130
7.5 Volume thermal expansion coefficient of orthorhombic Sr$_2$Fe$_2$O$_5$ as a function of temperature. .. 131
7.6 Examples of refined neutron diffraction patterns of Sr$_2$Fe$_2$O$_5$ collected below and above the Néel point. 132
7.7 A view of the Sr$_2$Fe$_2$O$_5$ structure along the orthorhombic c axis drawn using polyhedra. ... 134
7.8 The refined magnetic moment of iron in the antiferromagnetic Sr$_2$Fe$_2$O$_5$ as a function of temperature. .. 136
7.9 The refined neutron diffraction pattern of cubic Sr$_2$Fe$_2$O$_5$ at 1223 K. ... 139
7.10 Thermal motion of atoms in the cubic unit cell of Sr$_2$Fe$_2$O$_5$ at 1223 K. ... 140
7.11 The cubic lattice constant of Sr$_2$Fe$_2$O$_5$ as a function of temperature. ... 141
7.12 The refined two phase neutron diffraction pattern of Sr$_2$Fe$_2$O$_5$ at 1148 K. ... 144
7.13 A schematic division of the orthorhombic structure of Sr$_2$Fe$_2$O$_5$ into blocks containing two distorted cubic cells. 145
7.14 The cell edge ratios and angles of the distorted cubic cells of Sr$_2$Fe$_2$O$_5$ in the orthorhombic lattice as a function of temperature. .. 146
7.15 Contents of the block obtained by the division of the orthorhombic Sr$_2$Fe$_2$O$_5$ lattice using the schematic shown in Figure 7.13. 147
7.16 The oxygen content of SrFeO$_x$ as a function of temperature in air. .. 148
7.17 The refined neutron diffraction pattern of cubic SrFeO$_x$ at 873 K in air. .. 150
7.18 The lattice constant and the cell volume of cubic SrFeO$_x$ as a function of temperature in air. 152
7.19 The volume thermal expansion coefficient of cubic SrFeO$_x$ as a function of temperature in air. 153
7.20 The lattice constant of the cubic ferrite in equilibrium with air as a function of the tetravalent iron fraction. . 154
7.21 The calculated density of cubic SrFeO$_x$ in equilibrium with air as a function of its composition. 155
7.22 A phase diagram of the SrFeO$_x$ system. 156
7.23 The calculated densities of cubic SrFeO$_x$ in air and Sr$_2$Fe$_2$O$_5$ in argon as a function of temperature. 158
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Practical energy densities of liquid and solid state batteries.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Operational modes of the solid oxide fuel cells</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Literature references to strontium ferrites</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Refinable phase parameters in the Rietveld method</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Refinable global parameters in the Rietveld method</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition of SrFeO$_x$ samples and annealing conditions used for their preparation</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>The reaction rate constants for two stages of the mechanical oxidation of Sr$_2$Fe$_2$O$_5$</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>The components of the room temperature Mössbauer spectra of the thermally oxidized SrO$_x$</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>Hyperfine parameters of Sr$_2$Fe$_2$O$_5$ at room temperature.</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Components of the Mössbauer spectra of the mechanically oxidized ferrites at different stages of milling.</td>
<td>111</td>
</tr>
<tr>
<td>7.1</td>
<td>Results of the fitting of the orthorhombic lattice parameters of Sr$_2$Fe$_2$O$_5$ with polynomials.</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>Coordinates of atoms in the orthorhombic unit cell of Sr$_2$Fe$_2$O$_5$ varied during the Rietveld refinement.</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>Coordinates of atoms in the cubic unit cell of Sr$_2$Fe$_2$O$_5$ used for the Rietveld refinement.</td>
<td>138</td>
</tr>
<tr>
<td>7.4</td>
<td>Bond lengths in the cubic form of Sr$_2$Fe$_2$O$_5$ as a function of the lattice constant.</td>
<td>141</td>
</tr>
<tr>
<td>7.5</td>
<td>Coordinates of atoms in the unit cell used for the refinement of cubic Sr$_2$Fe$_2$O$_5$ in the $Pm3m$ symmetry group.</td>
<td>142</td>
</tr>
<tr>
<td>7.6</td>
<td>Coordinates of atoms in the unit cell of cubic SrFeO$_x$ used for the Rietveld refinement.</td>
<td>149</td>
</tr>
<tr>
<td>7.7</td>
<td>Polynomial coefficients describing the temperature dependence of the cubic lattice constant and the cell volume of SrFeO$_x$ in air.</td>
<td>151</td>
</tr>
<tr>
<td>7.8</td>
<td>The extrapolated density and lattice constant of cubic SrFeO$_x$ in the equilibrium with air.</td>
<td>152</td>
</tr>
</tbody>
</table>
A.1 Results of Rietveld refinement of $\text{Sr}_2\text{Fe}_2\text{O}_5$ spectra in the temperature range 293–678 K. .. 167
A.2 Results of Rietveld refinement of $\text{Sr}_2\text{Fe}_2\text{O}_5$ spectra in the temperature range 723–1148 K. .. 168
A.3 Octahedral bond lengths and angles in $\text{Sr}_2\text{Fe}_2\text{O}_5$ as a function of temperature. .. 169
A.4 Tetrahedral bond lengths and angles in $\text{Sr}_2\text{Fe}_2\text{O}_5$ as a function of temperature. .. 170
A.5 Strontium polyhedron bond lengths in $\text{Sr}_2\text{Fe}_2\text{O}_5$ as a function of temperature. .. 171
A.6 Rietveld refinement results for the cubic $\text{Sr}_2\text{Fe}_2\text{O}_5$ phase at different temperatures. .. 172
A.7 Results of Rietveld refinement of cubic SrFeO_x at different temperatures in air. .. 173