GROUNDWATER BALANCE MODELLING WITH DARCY’S LAW

Wendy Denise Welsh

May 2007

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University
This thesis is my original work, except where otherwise acknowledged in the text. Some of the work in this thesis was undertaken prior to my graduate enrolment at The ANU. The steady state GAB model was developed from December 1996 to 2000 and was first published in 2000, and the Bowen model was developed during 2000 to 2002 and was first published in 2002. The development of the transient GAB model commenced in 2002. This work has not previously been submitted for a degree or diploma in any institution of higher education.

Wendy Welsh
May 2007
Acknowledgements

The work for this thesis was undertaken at the Bureau of Rural Sciences, Australian Government Department of Agriculture, Fisheries and Forestry, while I was enrolled with the Integrated Catchment Assessment and Management Centre, School of Resources, Environment and Society, The Australian National University. I thank the Bureau and the Centre for their support and for providing very stimulating working environments.

This work would not have been possible without the data provided by the Queensland Department of Natural Resources and Water, the NSW Department of Natural Resources, the SA Department of Water, Land and Biodiversity Conservation, the NT Department of Natural Resources, Environment and the Arts, the Department of Primary Industries and Resources of SA, BHP Billiton Olympic Dam Operations and the Queensland Herbarium.

Particularly, I thank my supervisory panel, consisting of Professor Anthony Jakeman (Chair), Dr Barry Croke and Professor John Norton for their guidance. Their interest, encouragement and generous support are greatly appreciated.

Special thanks go to Linda Foster, Michael Williams, Lloyd Sampson and John Hillier for facilitating access to data; to Linda Foster, Michael Williams, Lloyd Sampson, Ross S. Brodie, Leon Leach, Adrian Werner and Andrew Durick for providing feedback on this research; to Jay Punthakey for useful advice in the early stages of the GAB modelling; to John Doherty for his assistance with the use of his PEST software; to Simon Knapp for his assistance with the use of S-Plus & R software; to Selwyn Smith for his dedication to providing abundant and accurate measurements from GAB water bores in NSW; to Eloise Nation for reviewing the manuscript; and to the other graduate students for their assistance and support.

Finally, I would like to acknowledge the support of those closest to me, Don, Steven and Jono.
ABSTRACT

The sustainability of groundwater resources is important for the environment, the economy and communities where surface water is scarce. It is a hidden resource, but additional information can be extracted by combining groundwater measurements and lithological information with groundwater flow equations in groundwater models. The models convert data and knowledge about the groundwater systems into information, such as relative inflow and outflow rates and water-level predictions that can be readily understood by groundwater managers.

The development of models to effectively inform groundwater management policies is, however, a complex task that presents a fundamental scientific challenge. This thesis presents methods and results for water balances calculated using groundwater flow models. Groundwater flow modelling methods and approaches are discussed, and their capabilities and limitations are reviewed. Two groundwater systems are studied for the Great Artesian Basin (GAB) and for the irrigation area near Bowen, Queensland. Three approaches to water balance modelling are applied in comprehensive model-development frameworks that take into account model objectives, data and knowledge availability and sensitivity analysis techniques. The three models show numerical methods of increasing complexity. The Bowen study area is well-suited to the least-complex method because data collection has been a priority there. As a contrast, the GAB is a large, poorly-monitored basin for which more knowledge of the groundwater system can be gained from its simulation by the steady state and transient groundwater flow models. The Bowen impact assessment model calculates dynamic historical water balances. The GAB aquifer models are high-complexity representations of the groundwater system that include predicted responses of the system to changes in hydrological conditions. These are comprehensive and well-documented attempts to model these systems. They provide a platform for scenario investigation and future improvements.

Darcy’s Law was used in a GIS (Geographic Information System) to calculate dynamic water balances for an aquifer near the Queensland town of Bowen. This is the first time this approach has been applied to generate a complete groundwater balance. Over the period 1989-1997 the model estimates average total inflows to be 87% groundwater recharge by rainfall and irrigation return flow, 12% river recharge and 1% inflow across the study area boundary. Outflows are estimated to be 66% evapotranspiration, 28% water bore discharge, 4% discharge to the ocean and 2% groundwater loss to rivers. Analyses show that evapotranspiration is the most uncertain parameter value. The GIS method was found to be useful for calculating water balances more accurately than analytical methods, because of their simplifying assumptions, and less time consuming than the more complex numerical models developed for the GAB aquifer.
For the GAB, a steady state numerical model was developed and tested and predictive scenarios were run. The purpose of this modelling was both to gain a better understanding of the water balance of the GAB and to provide a tool that could predict water level recoveries under different bore rehabilitation scenarios. The model complexity is greater than in any previous numerical groundwater model of the GAB. In particular, the model uses more data, extends over a larger area and uses a generally finer discretisation than previous models. For the nearest surface artesian aquifer in 1960 the model estimates total inflows to be 60% groundwater recharge and 40% diffuse vertical inter-aquifer leakage. The model estimates outflows to be 53% diffuse vertical leakage, 43% water bore discharge, 3% spring discharge and 1% discharge to the ocean. Analyses show that the model is most sensitive to changes in horizontal hydraulic conductivity and recharge. The model-predicted heads match field measurements with a Scaled RMS error of 0.8%, which is well within the guideline error of 5%. The predictive scenarios show net vertical leakage into the aquifer decreasing and net vertical leakage out of the aquifer increasing, as bore flows are reduced. These estimates of inflows and outflows complement other studies of the Basin and add to our understanding of its hydrodynamics. In this way the water balance helps provide a sound basis for the development of GAB groundwater management plans and policies. Through its water level recovery predictions, the model has also been used to support the GAB Sustainability Initiative.

A transient numerical model of the GAB was also developed and tested, and predictive scenarios were run. This model builds on the steady state model, and is more complex, with a calibration period (1965-1999) that is longer than in any previous GAB model. During calibration the model observations were expressed and weighted so that the minimisation of the objective function reflected the relative importance of the model’s potential uses, these being respectively: to simulate the impact of changing bore flows, to more generally inform water management plans and to provide an estimate of the water balance. It was found that the 1960 steady state assumption was not correct. Discluding anthropogenic discharge, the model is most sensitive to recharge and hydraulic conductivity. The model-predicted heads match field measurements with a Scaled RMS error of 2.7%, which is well within the guideline error of 5%, but the increased data requirements of the transient model highlighted deficiencies in the data available for the modelling. In particular, the uneven spread of the groundwater measurements over both time and space, the questionable accuracy of measurements from both high temperature and pressure bores, and corroded bores, and the type of discharge measured (for example, maximum yield or flow-as-found), became evident during the calibration of the model. Insights and the value of this work indicates for the first time that at the start of 2005 outflows were estimated to exceed inflows by 266 GL/year, or 62% of total inflows, and, assuming that inflows through the aquifer’s boundary will not be reduced due to climate change, it will be possible to recover some of the lost groundwater pressure if all stock and
domestic bores are rehabilitated and new extractions are limited. In this case the modelling estimates that inflows could exceed outflows by up to 40% of total outflows.
Table of contents

Acknowledgements .. iii

ABSTRACT ... iv

Table of contents .. vii

List of Figures ... xi

List of Tables ... xi

List of Acronyms ... xvi

Chapter 1: INTRODUCTION .. 1
 1.1 Outline of the problem ... 1
 1.2 Aim of the research .. 2
 1.3 Thesis outline ... 2

Chapter 2: BACKGROUND ... 4
 2.1 Introduction .. 4
 2.1.1 Models ... 4
 2.2 Research challenge ... 5
 2.3 Research scope .. 6
 2.4 Groundwater flow modelling ... 6
 2.4.1 Modelling practice .. 6
 2.4.2 Modelling methods .. 7
 2.4.3 Governing equation .. 8
 2.4.4 Darcy’s Law ... 9
 2.4.5 Boussinesq Equation ... 9
 2.4.6 MODFLOW ... 10
 2.5 Water balances ... 10
 2.6 Model selection .. 10
 2.7 Calibration .. 11
 2.8 Uncertainty and sensitivity .. 12
 2.9 Chapter summary .. 13

Chapter 3: GIS-BASED METHOD: BOWEN IRRIGATION AREA 15
 3.1 Study area description .. 15
 3.2 Data .. 17
 3.3 Hydrogeologic framework ... 21
 3.4 Modelling methodology ... 22
3.4.1 Discretisation

23

3.4.2 Water bore discharges

24

3.4.3 Coastal outflows

24

3.4.4 River interactions

26

3.4.5 Evapotranspiration

28

3.4.6 Lateral inflows

29

3.4.7 Storage

29

3.4.8 Rainfall and irrigation deep drainage

30

3.4.9 Calibration

30

3.5 Modelling results

30

3.6 Uncertainty

36

3.7 Sensitivity analysis

38

3.8 Discussion

40

3.5 Modelling results

30

3.6 Uncertainty

36

3.7 Sensitivity analysis

38

3.8 Discussion

40

Chapter 4: STEADY STATE MODEL: GREAT ARTESIAN BASIN

42

4.1 Study area description

42

4.1.1 Previous modelling

44

4.2 Data

47

4.2.1 GIS datasets

49

4.3 Hydrogeologic framework

53

4.3.1 Flow regime

56

4.4 Modelling methodology

57

4.4.1 Discretisation

59

4.4.2 Transmissivity

59

4.4.3 Water bore and spring discharge

61

4.4.4 Coastal outflow

61

4.4.5 Vertical leakage

61

4.4.6 Recharge

62

4.4.7 Matrix solver

62

4.4.8 Calibration

63

4.5 Modelling results

65

4.6 Uncertainty

67

4.7 Sensitivity analysis

72

4.8 Model applications

74

4.8.1 Scenario 1

74

4.8.2 Scenario 2

80

4.8.3 Scenario 3

83

4.8.4 Scenario 4

86

4.9 Discussion

88
Chapter 5: TRANSIENT MODEL: GREAT ARTESIAN BASIN

5.1 Data .. 91
 5.1.1 Stratigraphic data .. 91
 5.1.2 Recharge rates ... 92
 5.1.3 Petroleum wells .. 92
 5.1.4 Natural springs .. 92
 5.1.5 Water bore data .. 92
 5.1.6 Eulo-Nebine Ridge hydrogeology ... 97

5.2 Modelling methodology ... 98
 5.2.1 Discretisation .. 98
 5.2.2 Hydraulic heads .. 99
 5.2.3 Transmissivity ... 99
 5.2.4 Storage coefficient ... 101
 5.2.5 Water bore, spring and petroleum discharge ... 101
 5.2.6 Coastal outflow .. 102
 5.2.7 Vertical leakage .. 102
 5.2.8 Recharge ... 103
 5.2.9 Matrix solver ... 103
 5.2.10 Calibration ... 103

5.3 Modelling results .. 111
 5.3.1 Discharge rates .. 111
 5.3.2 Aquifer thickness ... 112
 5.3.3 Horizontal hydraulic conductivity (K_h) .. 112
 5.3.4 Transmissivity .. 114
 5.3.5 Storage coefficient ... 115
 5.3.6 Recharge .. 116
 5.3.7 Vertical leakage .. 117
 5.3.8 Modelled water levels ... 118
 5.3.9 Water balance ... 118

5.4 Model validation and uncertainty ... 121
 5.4.1 Statistical measures .. 121
 5.4.2 Comparison with other GAB models .. 124
 5.4.3 Model verification ... 125

5.5 Sensitivity analysis.. 129

5.6 Model applications .. 130
 5.6.1 Scenario 1 ... 130
 5.6.2 Scenario 2 ... 133
 5.6.3 Scenario 3 ... 135
 5.6.4 Scenario sensitivities ... 136
5.7 Discussion .. 139

Chapter 6: CONCLUSIONS ... 142

6.1 Introduction .. 142
6.2 Bowen GIS model .. 142
6.3 GAB MODFLOW models .. 143
6.4 Has the research met its objectives? ... 146
 6.4.1 Calculating water balances with Darcy’s Law ... 147
 6.4.2 Estimating a water balance using MODFLOW .. 147
 6.4.3 Informing groundwater management on the groundwater basins 147
6.5 Further research ... 148
6.6 Summary of contributions ... 149

REFERENCES .. 151

APPENDIX A: Some statistical measures used in the quantitative assessment of model calibration ... 159

APPENDIX B: Bowen aquifer modelled water balance components 161

APPENDIX C: GAB conceptual hydrostratigraphic layers 167

APPENDIX D: GAB transient model water balance components 170

APPENDIX E: GAB transient model calibration hydrographs 173
List of Figures

Figure 3.1: Location of water bores within the study area and boundary conditions of the aquifer... 16

Figure 3.2: Estimated aquifer transmissivity for March 2000, assuming K_h = 20 m/day for the weathered granite. ... 18

Figure 3.3: Aquifer basement elevation... 19

Figure 3.4: Thickness of the alluvial sediments.. 20

Figure 3.5: Thickness of the weathered granite. .. 21

Figure 3.6: Plot estimating the hydraulic head correction at the coast. 22

Figure 3.7: Coastal discharge polygons and groundwater flow directions. 23

Figure 3.8: Average estimated proportion of groundwater discharging to the rivers from July 1989 to November 1999. .. 25

Figure 3.9: Average estimated proportion of river water recharging the aquifer from July 1989 to November 1999. .. 26

Figure 3.10: Estimated evapotranspiration losses from the groundwater for March 2000 calculated from 200m x 200m polygons. .. 27

Figure 3.11: Total bore water use and total rainfall in the study area for each 28-day period from July 1989 to May 1997. .. 29

Figure 3.12: Estimated volume of groundwater flowing to the coast per 28-day period........ 31

Figure 3.13: Estimated groundwater discharge into the rivers and recharge from the rivers for each 28-day period. ... 32

Figure 3.14: Estimated groundwater losses via evapotranspiration in the study area for each 28-day period from July 1989 to March 2000. .. 32

Figure 3.15: Estimated lateral groundwater inflows into the study area for each 28-day period from July 1989 to March 2000. .. 33

Figure 3.16: Estimated groundwater storage in the study area for each 28-day period from July 1989 to March 2000. .. 33

Figure 3.17: Recharge calculated from Equation 3.6 for the period from July 1989 to March 2000. .. 35

Figure 3.18: Time series of selected water balance components.......................... 35

Figure 3.19: Estimated annual average water balance components (GL) for the period July 1989 to May 1997 ... 37

Figure 3.20: Mean changes in total flows for the sensitivity analyses.................. 39

Figure 4.1: Great Artesian Basin extent and locations mentioned in the text 44

Figure 4.2: MODFLOW IBOUND array for the GAB steady state model and locations of water bores and natural springs included in the model. 45

Figure 4.3: Sub-basins and some structural features of the Great Artesian Basin, and location of cross-section A-B (Figure 4.5). ... 49
Figure 4.4: Hydrostratigraphic sequence of the GAB highlighting the alternating aquifers and aquitards (after Habermehl and Lau, 1997)..52

Figure 4.5: Cross-section through the GAB (after Radke et al., 2000). The modelled aquifer is shaded blue, other aquifers are shaded grey...54

Figure 4.6: Observed and modelled hydraulic heads for 1960 temperature-corrected to 25 °C. ..57

Figure 4.7: Conceptual model of the GAB (source: GAB Consultative Council, 1998b)........58

Figure 4.8: CADN layer model transmissivity. ...60

Figure 4.9: CADN layer model recharge...66

Figure 4.10: Net model vertical leakage into and out of the CADN layer, and the boundary separating dominantly inward leakage from dominantly outward leakage.68

Figure 4.11: Cumulative plot of the magnitude of the hydraulic head residual error........70

Figure 4.12: Hydraulic head residual error over the model area. ..71

Figure 4.13: A comparison of model output using the RMS error to evaluate sensitivity to changes in CADN layer horizontal hydraulic conductivity and recharge, and to vertical hydraulic conductivity of the ALLA and WEST layers.72

Figure 4.14: A comparison of model output using the mean modelled hydraulic head to evaluate sensitivity to changes in CADN layer horizontal hydraulic conductivity and recharge, and to vertical hydraulic conductivity of the ALLA and WEST layers. ...73

Figure 4.15: Great Artesian Basin groundwater management zones (personal communication, Linda Foster, GAB Technical Working Group, February 2000)..76

Figure 4.16: Modelled steady state water level recovery from Scenarios 1a to 1e. Water bore flows are restricted to a maximum of 4 L/s. ...77

Figure 4.17: Modelled steady state water level recoveries for Scenarios 2, 3 and 4.82

Figure 5.1: MODFLOW IBOUND array for the GAB transient model and locations of water bores, petroleum wells and natural springs included in the model...94

Figure 5.2: Measured and calculated temperature-corrected water levels of some bores with good measurement histories. Bore locations are shown on Figure 5.3.95

Figure 5.3: Observed temperature-corrected hydraulic heads at 1/1/1960 and the implied groundwater flow directions. (Includes locations of bores in Figure 5.2.)..............96

Figure 5.4: Observed temperature-corrected hydraulic heads in the Eulo-Nebine Ridge area (geologic structures from Radke et al., 2000). ..97

Figure 5.5: Computed heads for 1965 used as initial conditions in the transient model.100

Figure 5.6: CADN layer model transmissivity and locations of the pilot points used in the transient calibration. ..105

Figure 5.7: CADN layer model recharge and vertical leakage and locations of the pilot points used in the transient calibration...106
Figure 5.8: CADN layer model storage coefficients and locations of the pilot points used in the transient calibration. ... 107

Figure 5.9: Locations of the 254 calibration bores used in the development of the transient model. ... 110

Figure 5.10: Model layer horizontal hydraulic conductivity (Kh) used in the calculation of transmissivity ... 113

Figure 5.11: Modelled and observed (temperature-corrected to 25° C) hydraulic heads for 1/1/2000 .. 120

Figure 5.12: Histogram of measured minus modelled residuals for hydraulic head gradients. .. 121

Figure 5.13: Histogram of measured minus modelled residuals for hydraulic head values. .. 122

Figure 5.14: Modelled versus measured hydraulic head values from the transient calibration bores. .. 123

Figure 5.15: Modelled versus measured hydraulic head gradients from the transient calibration bores. .. 124

Figure 5.16: Modelled and observed hydrographs for Olympic Dam monitoring bores, SA. (Red symbols indicate model validation period.) .. 126

Figure 5.17: Modelled and observed hydrographs for Olympic Dam monitoring bores, SA. 127

Figure 5.18: Olympic Dam monitoring bores used in the transient model validation. 128

Figure 5.19: Scenario 1 modelled water level recoveries. .. 131

Figure 5.20: Transient modelled recovery for scenarios 2 and 3 at January 2050 134

Figure D.1: Changes in GAB transient model water balance components over the 1965 to 1999 calibration period. .. 172

Figure E.1: Locations of bores with hydrographs included in Appendix E. 174

Figure E.2: NSW transient calibration hydrographs. ... 175

Figure E.3: NSW transient calibration hydrographs. ... 176

Figure E.4: All Queensland transient calibration hydrographs with at least 6 water level measurements since 1960. ... 177

Figure E.5: Queensland transient calibration hydrographs. .. 178

Figure E.6: Queensland transient calibration hydrographs. .. 179

Figure E.7: SA transient calibration hydrographs near or in the Olympic Dam wellfields. . 180

Figure E.8: SA transient calibration hydrographs. .. 181

Figure E.9: SA transient calibration hydrographs. .. 182
List of Tables

Table 3.1: Estimated maximum root extinction depths... 28
Table 3.2: Estimated water balance for selected periods of 28 days each. (Volumes are ML per 28-days)... 36
Table 3.3: Comparison of some water balance components from the Bowen and Lower Burdekin numerical models expressed as a percentage of average annual rainfall. ... 37
Table 4.1: Number of bores stored in the database. .. 47
Table 4.2: Summary of point data used to generate the hydraulic head surfaces. 51
Table 4.3: Modelled 30 June 1960 water balance for the GAB. .. 69
Table 4.4: Summary of Scenario 1 water savings and maximum water level recoveries. 75
Table 4.5: Scenario 1 steady state water balance results compared with the 1960 model. 75
Table 4.6: Calibration RMS errors for the model datasets used in the sensitivity analysis. 78
Table 4.7: Maximum water level recovery for Scenarios 1a to 1e, and changes in the maximum recovery in the sensitivity scenarios... 78
Table 4.8: Changes in the water balance due to the parameter value perturbations: averages for Scenarios 1a to 1e. .. 79
Table 4.9: Bore flows by management zone for the Scenario 2 model run. 81
Table 4.10: Comparison of Scenario 2 and 3 water balance results with the 1960 model........ 83
Table 4.11: Change in the water balance due to the parameter value perturbations, for Scenario 2. .. 84
Table 4.12: Bore flows by management zone for the Scenario 3 model run. 85
Table 4.13: Change in the water balance due to the parameter value perturbations, for Scenarios 3. .. 86
Table 4.14: Estimates of actual and predicted flow savings and water level recovery under GABSI. ... 87
Table 5.1: Water bore statistics for the period 1/1/1960 to about 2002. 95
Table 5.2: Tally of water bores, springs and petroleum wells/fields included in the transient model. ... 101
Table 5.3: Algebraic multigrid solver parameter values used in the transient model. 103
Table 5.4: Tally of pilot points used in the model calibration. ... 108
Table 5.5: Comparison of the transient model discharge rates with published discharge rates. ... 112
Table 5.6: GAB transient model water balance for 1/1/1965 to 31/12/1999. 119
Table 5.7: Statistical performance measures for the transient calibration. 122
Table 5.8: Calibration statistics for the Olympic Dam GAB95 model. 125
Table 5.9: GAB transient model sensitivity analysis results... 129
Table 5.10: Water balances from Scenario 1 for the transient GAB model............................. 133
Table 5.11: Water balances from Scenarios 2 and 3 for the transient GAB model. 135
Table 5.12: Median discharge rates of bores rehabilitated under GABSI............................... 136
Table 5.13: Calibration SRMS errors for the model datasets used in the sensitivity analysis.137
Table 5.14: Average change in water level recovery for each parameter perturbation as a
percentage of the unperturbed scenario.. 137
Table 5.15: Average change in the water balance due to the parameter value perturbations from
the model runs for Scenarios 1, 2 and 3 with the transient GAB model. 138
Table 6.1: Water balances from the steady state and transient GAB models. 145
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADOR</td>
<td>Conceptual GAB aquifer containing the Adori Sandstone and its co-relatives</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>ALLA</td>
<td>Conceptual GAB aquitard directly overlying the modelled aquifer and containing the Allaru Mudstone, and Toolebuc and Wallumbilla Formations and their co-relatives</td>
</tr>
<tr>
<td>AMG</td>
<td>Australian Map Grid</td>
</tr>
<tr>
<td>BIRK</td>
<td>Conceptual GAB aquitard three layers beneath the modelled aquifer and containing the Birkhead Formation and its co-relatives</td>
</tr>
<tr>
<td>BCF</td>
<td>Block-Centered Flow MODFLOW package</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CADN</td>
<td>Conceptual GAB aquifer that is explicitly modelled and contains the Cadnawowie Formation, Hooray Sandstone and their co-relatives</td>
</tr>
<tr>
<td>CLEM</td>
<td>Conceptual GAB aquifer six layers beneath the modelled aquifer and containing the Clematis Sandstone and its co-relatives</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>DNR</td>
<td>NSW Department of Natural Resources</td>
</tr>
<tr>
<td>DNRW</td>
<td>Queensland Department of Natural Resources and Water</td>
</tr>
<tr>
<td>DWLBC</td>
<td>SA Department of Water, Land and Biodiversity Conservation</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GAB</td>
<td>Great Artesian Basin</td>
</tr>
<tr>
<td>GABCC</td>
<td>Great Artesian Basin Consultative Council</td>
</tr>
<tr>
<td>GABSI</td>
<td>Great Artesian Basin Sustainability Initiative</td>
</tr>
<tr>
<td>GAMS</td>
<td>General Algebraic Modeling System (software)</td>
</tr>
<tr>
<td>GHB</td>
<td>General Head Boundary MODFLOW package</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GL</td>
<td>gigalitre</td>
</tr>
<tr>
<td>HUTT</td>
<td>Conceptual GAB aquifer four layers beneath the modelled aquifer and containing the Hutton and Precipice Sandstones and their co-relatives</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>Ł</td>
<td>generic length unit</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>MDBC</td>
<td>Murray-Darling Basin Commission</td>
</tr>
<tr>
<td>ML</td>
<td>megalitre</td>
</tr>
<tr>
<td>MOOL</td>
<td>Conceptual GAB aquitard five layers beneath the modelled aquifer and containing the Moolayember Formation and its co-relatives</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>MSR</td>
<td>Mean Sum of Residuals</td>
</tr>
<tr>
<td>MSSQ</td>
<td>Mean Sum of Squares</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>No.</td>
<td>number</td>
</tr>
<tr>
<td>NRETA</td>
<td>NT Department of Natural Resources, Environment and the Arts</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>PEST</td>
<td>Model-Independent Parameter Estimation (software)</td>
</tr>
<tr>
<td>PIRSA</td>
<td>Department of Primary Industries and Resources of SA</td>
</tr>
<tr>
<td>Qld</td>
<td>Queensland</td>
</tr>
<tr>
<td>R</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>RMFS</td>
<td>Root Mean Fraction Square</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SMSR</td>
<td>Scaled Mean Sum of Residuals</td>
</tr>
<tr>
<td>SR</td>
<td>Sum of Residuals</td>
</tr>
<tr>
<td>SRMFS</td>
<td>Scaled Root Mean Fraction Square</td>
</tr>
<tr>
<td>SRMS</td>
<td>Scaled Root Mean Square</td>
</tr>
<tr>
<td>SSQ</td>
<td>Sum of Squares</td>
</tr>
<tr>
<td>T</td>
<td>generic time unit</td>
</tr>
<tr>
<td>WEST</td>
<td>Conceptual GAB aquitard directly underlying the modelled aquifer and containing the Westbourne Formation and its co-relatives</td>
</tr>
<tr>
<td>WINT</td>
<td>Conceptual GAB aquifer two layers above the modelled aquifer and containing the Winton and Mackunda Formations and their co-relatives</td>
</tr>
</tbody>
</table>