Za Luciju, Sofiju i Vilima

Prion Protein Gene and Its Shadow

Marko Premzl

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University.

The John Curtin School of Medical Research The Australian National University Canberra Australia

September, 2004

Table of Contents

Table of Cont	ents	i
List of Figure	s	ix
List of Tables		xi
Abstract		xii
Statement of A	Autorship	XV
Publication Li	ist	xvi
Acknowledge	ments	xvii
Preface		xviii
Chapter 1: Pr	ions	1
	on Diseases	
	e Prion Concept	
	1.2.1 Unusual Nature of Prions	
	1.2.2 Pathogenic Transformation of Prion Protein	
	1.2.3 Species Barrier	
	1.2.4 Auxilliary Host Factor Required for Prion H	
	Molecular Chaperone Protein X	14
	1.2.5 Regions of Prion Protein Involved in	Pathogenic
	Transformation	18
	1.2.6 Features of Prion Strains are Enciphered in PrP ^{Sc}	
	Conformation	21
	1.2.7 Cell-Free <i>in vitro</i> PrP Conversion	24
	1.2.8 Role of Disulfide Bond in Prion Propagation	28
	1.2.9 Prions and Immune System	29
	1.2.10 Challenges to the Prion Concept	32
1.3 PrP	^C and PrP ^{Sc} : Conformational Promiscuity	33
	1.3.1 Structures of PrP ^C	34
	1.3.2 Models of PrP ^{Sc} Structure	
	nformational Transformation of Prion Protein	
1.4.1 Pr	rotein Folding and Misfolding	40

1.4.2 Models of Prion Protein Transformation	45
1.4.2.1 Template Assisted Polymerisation Model	45
1.4.2.2 Seeded Polymerisation Model	48
1.5 Prions in Other Systems	49
1.5.1 Yeast Prions	49
1.5.2 An Animal Protein Shows Prion-like Properties in Yeast	50
Chapter 2: <i>PRNP</i> and PrP	52
2.1 Vertebrate Prion Proteins	53
2.2 PRNP and Its Homologues	57
2.2.1 Mammalian PRNP	57
2.2.2 PRND: Mammalian Paralogue of PRNP gene	60
2.2.3 Fish PRNP Homologues	61
2.3 Expression of <i>PRNP</i> and PrP ^C	62
2.4. Cell Biological Features of PrP ^C	65
2.5 Normal Function of <i>PRNP</i>	69
2.5.1 Prnp Knock-Out Mice	69
2.5.2 Hypotheses about Function of <i>PRNP</i>	72
2.5.2.1 PrP ^C Transports Copper	72
2.5.2.2 PrP ^C Buffers Copper from Synapse	74
2.5.2.3 PrP ^C Contributes to Redox Signalling	75
2.5.2.4 PrP ^C has Neuroprotective Role	76
2.5.2.5 PrP ^C Mediates Intercellular Contacts	77
2.5.2.6 PrP ^C is Involved in Lymphocyte Activation	79
2.5.2.7 PrP ^C Participates in Nucleic Acid Metabolism	80
2.5.2.8 PrPs are Memory Molecules	80
2.5.2.9 PrP ^C is Signal Transduction Protein	81
2.6 Genomes: Digging Out the Gems	84
2.6.1 The Human Genome	84
2.6.1.1 Gene and Protein Content	85
2.6.1.2 GC Content and CpG Islands	86
2.6.1.3 Repeat Content	86

Table of Contents

2.6.1.4 Recombination Rate	87
2.6.1.5 Quality Assessment of the Human Genome Sequence	88
2.6.2 The Mouse Genome	88
2.6.3 The Rat Genome	90
2.6.4 The Fugu rubripes Genome	92
2.6.5 The Dog Genome	94
2.6.6 Annotation of Genomic Sequences	<u>95</u>
2.7 Comparative Genomic Analysis	<u>96</u>
2.8 Tammar Wallaby: an Alternative Mammalian	
Experimental Model and Kangaroo Genome Project	<u>98</u>
2.8.1 The Mammalian Testis-Determining Gene	101
2.8.2 Discovery of New Human Genes	101
2.8.3 Detection of Regulatory Elements	101
2.9 The Present Study	102
-	103
3.1 Computational Methods	
3.1.1 Public Databases	
3.1.2 Analysis of Nucleic Acids Sequences	
3.1.2.1 Basic Analysis and Handling of Sequences	
3.1.2.2 Design of PCR Primers	105
3.1.2.3 Analysis of Transposable Element Content	105
3.1.2.4 Prediction of CpG Islands	105
3.1.2.5 Analysis of Genomic Sequences	
using NIX Interactive Tool	105
3.1.3 Analysis of Protein Sequences	106
3.1.3.1 Translation of Protein Sequences <i>in silico</i>	106
3.1.3.2 Alignment of Protein Sequences	106
3.1.3.3 Prediction of Signal Peptides	
and GPI-anchor Addition Sites	106
3.1.3.4 Computational Prediction of Tammar	
Wallaby PrP Structure	106

3.1.3.5 Analysis of Evolutionary Distances	107
3.1.3.6 Protein Amino Acid Pattern Search	
3.1.4 Cross-Species Comparisons	
3.1.4.1 Global Alignments of Long Genomic sequences	107
3.1.4.1.1 Alignment of <i>PRNP</i> Genomic	
Context between Mammals and Fish	108
3.1.4.1.2 Alignment of SPRN Genomic	
Context between Mammals and Fish	108
3.1.4.1.3 Alignment of Tammar Wallaby, Human,	
Mouse, Bovine and Ovine <i>PRNPs</i>	109
3.1.4.2 Local Alignments of Long Genomic Sequences	109
3.1.5 Phylogenetic Footprinting	110
3.1.5.1 Phylogenetic Footprinting of SPRN	110
3.1.5.2 Phylogenetic Footprinting of <i>PRNP</i>	110
3.1.6 Prediction of Transcription Factor-Binding Sites	111
3.2. Experimental Methods	111
3.2.1 PCR, Cloning and Sequencing of PCR Products	111
3.2.1.1 Cloning of <i>Tetraodon SPRN</i> ORF	111
3.2.1.2 Cloning of Tammar Wallaby <i>PRNP</i> cDNA	112
3.2.1.3 Cloning of Monodelphis domestica PRNP cDNA	
3' end and Assembly of ORF	113
3.2.1.4 PCR using BAC DNA as Template	114
3.2.2 Expression of Tammar Wallaby <i>PRNP</i>	114
3.2.3 Screening of Tammar Wallaby Genomic DNA BAC Library_	
3.2.4 Restriction Analysis of BAC DNA	
3.2.5 Southern Blotting of BAC DNA	
3.2.6 Fluorescent <i>in situ</i> Hybridisation	116
Chapter 4: Discovery of Shadow of Prion Protein and Shadoo	117
4.1 Introduction	118
4.2 Discovery of SPRN Gene	119

4.2.1 Discovery of Mouse Sprn	119

4.2.2 Discovery of Human SPRN	119
4.2.3 Discovery of Rat Sprn	120
4.2.4 Discovery of Fugu SPRN	120
4.2.5 Discovery of <i>Tetraodon SPRN</i>	120
4.2.6 Discovery of Zebrafish <i>sprn</i> Gene and ESTs	121
4.2.7 Data from Other Species	121
4.3 Translation of Shos	121
4.4 Analysis of Shos	122
4.4.1 Sequence Alignment	122
4.4.2 Prediction of Signal Peptides	122
4.5 SPRN Gene Structure	123
4.6 Genomic Context of SPRN	124
4.7 Expression of <i>SPRN</i>	125
4.8 Discussion	126
4.8.1 Protein Structure	126
4.8.1.1 Major Features of Sho	126
4.8.1.2 Conservation of Sho Sequences	127
4.8.1.3 Comparison of Overall Sho, PrP,	
stPrP and PrP-like Sequence Features	127
4.8.2 Gene Structure and Expression	129
4.8.3 Relationship Between Sho, PrP and Dpl	129
4.9 Conclusion	130
Chapter 5: Evolution of <i>PRNP</i> and <i>SPRN</i>	121
5.1 Introduction	<u> </u>
5.2 Discovery of <i>SPRNB</i> in Zebrafish, <i>Fugu</i> , <i>Tetraodon</i> , and Carp	
5.3 Discovery of New Fish stPrP- and PrP-like-Coding Genes	
5.3.1 Discovery of <i>Tetraodon PrP-like</i> and <i>stPrP-2</i>	
5.3.2 Discovery of Zebrafish and <i>stPrP-3</i> and <i>stPrP-1</i>	
·	
5.4 Detection of Genomic Contexts5.4.1 Detection of <i>PRNP</i> Genomic Context	134
	104
in Human, Mouse and Rat	134

5.4.2 Detection of Genomic Context of Fugu	
stPrP-1 and stPrP-2	134
5.4.3 Detection of Genomic Context of Zebrafish	
stPrP-1 and stPrP-3	134
5.4.4 Detection and Assembly of Genomic Context of Tetraodon	
PrP-like and stPrP-2	135
5.4.5 Detection of Genomic Context of SPRN and SPRNB	135
5.4.6 Detection and Assembly of Genomic Context	
of Tetraodon SPRN	135
5.5 Comparative Genomic Analysis	136
5.5.1 Genomic Sequences Containing PRNP	
in Mammals and Homologous Genes in Fish	136
5.5.2 Genomic Sequences Containing SPRN in Mammals and Fish_	137
5.5.3 Annotation of <i>Tetraodon</i> Genomic Sequences	
Containing stPrP-2 and SPRN	137
5.5.4 Annotation of <i>PRNP</i> and <i>SPRN</i>	138
5.5.4.1 Gene Structure, Gene Features, Gene Density	
and CpG Islands	138
5.5.4.2 Distribution of Transposable Elements	
in PRNP and SPRN	139
5.5.5 Cross-Species Comparisons	139
5.5.5.1 Comparisons of <i>PRNP</i> Genomic Region	140
5.5.5.2 Comparisons of SPRN Genomic Region	140
5.5.6 Phylogenetic Footprinting of SPRN	141
5.5.7 PrP and Sho Protein Families: from Fish to Mammals	142
5.5.8 Phylogenetic Analysis	143
5.6 Discussion	144
5.6.1 Genomic Sequences Containing PRNP and SPRN	
in Mammals and Related Genes in Fish	144
5.6.2 Annotation of <i>Tetraodon</i> Genomic Sequences	145
5.6.3 Annotation of <i>PRNP</i> and <i>SPRN</i> Genes	145
5.6.4 Cross-Species Comparisons	147

5.6.5 Phylogenetic Footprinting of SPRN	148
5.6.6 New Members of PrP and Sho Protein Families	150
5.6.7 Phylogenetic Analysis	151
5.6.8 Hypothetical Model for Evolution	
of PRNP- and SPRN-gene families	152
5.7 Conclusion: Evolvability of <i>PRNP</i> and <i>SPRN</i>	153
Chapter 6: Tammar Wallaby PRNP	155
6.1 Introduction	156
6.2 Isolation and Initial Characterization of Tammar Wallaby PRNP	157
6.2.1 Cloning of Tammar Wallaby PRNP cDNA	
and 3' End of Monodelphis domestica PRNP cDNA	158
6.2.2 Expression of Tammar Wallaby PRNP	158
6.2.3 Isolation of BAC Clone Containing Tammar Wallaby PRNP_	159
6.2.4 Location of Tammar Wallaby PRNP	159
6.3 Analysis of Tammar Wallaby Prion Protein	159
6.4 Annotation of Tammar Wallaby BAC Containing PRNP	162
6.4.1 Structure of <i>PRNP</i>	163
6.4.2 Cryptic Exon 2-like Sequence in Human PRNP	164
6.4.3 Repeat Content of the Tammar Wallaby <i>PRNP</i>	164
6.5 Cross-species Comparisons of Genomic Sequences Containing PRNP_	165
6.6 Phylogenetic Footprinting of <i>PRNP</i>	167
6.7 Discussion	168
6.7.1 Evolution of <i>PRNP</i> Gene Organization	168
6.7.2 Evolution of PrP Regions	169
6.7.3 Transposable Elements in <i>PRNP</i>	171
6.7.4 Cross-species Comparison of <i>PRNP</i>	171
6.7.5 Phylogenetic Footprinting and Regulatory Organization	
of PRNP	172
6.8 Conclusion: Utillity of Marsupial Sequence in Analysis of <i>PRNP</i>	174

Chapter 7: Perspective	175
7.1 Shadow of Prion Protein: Discovery of New Vertebrate Gene	176
7.2. Evolution of SPRN and PRNP	178
7.3 Utility of Tammar Wallaby Genomic Sequence	
in Comparative Genomic Analysis of PRNP	179
7.4 Biomedicine Tomorrow	181
References	182
Appendices I-III	209
Appendix I: Web Addresses	210
Appendix II: List of Primers	212
Appendix III: Sequence Accession Numbers	213

List of Figures

Figure 1.1: Isoforms and artificial constructs of prion protein	<u>8a</u>
Figure 1.2: Interactions between host PrP and infectious prion	12a
Figure 1.3: Structures of PrP ^C	<u>34a</u>
Figure 1.4: Models of PrP ^{Sc} structure and PrP transformation	<u>38a</u>
Figure 1.5: Energy landscape for protein folding	40a
Figure 1.6: The thermodynamics of protein folding	42a
Figure 1.7: Models of pathogenic transformation of PrP	46a
Figure 2.1: Overall structures of PrP, stPrP, PrP-like and Sho	53a
Figure 2.2: Structure of mammalian <i>PRNP</i> and fish <i>PrP-like</i>	59a
Figure 2.3: Comparison of backbone topology of recombinant	
mouse Dpl and PrP	60a
Figure 2.4: Model of PrP ^C -associated signalling pathways	<u>83a</u>
Figure 2.5: Evolutionary relationship among vertebrates	99a
Figure 2.6: Kangaroo genome project logo	<u>100a</u>
Figure 3.1: NIX output	106a
Figure 4.1: Alignment of Shos for fish and mammals	122a
Figure 4.2: Intron-exon structure for human, mouse and zebrafish SPRN	123a
Figure 4.3: Conserved contiguity for fish and mammalian SPRN	124a
Figure 4.4: Alignment of hydrophobic regions of PrPs and Shos	<u>127a</u>
Figure 5.1: Genomic contexts of PRNP, stPrP-1, stPrP-2, stPrP-3	
and <i>PrP-like</i>	<u>136a</u>
Figure 5.2: Genomic contexts of SPRN	<u>137a</u>
Figure 5.3: Pip and dot plots of stPrP-2, PrP-like and SPRN in Fugu	
and <i>Tetraodon</i>	<u>137b</u>
Figure 5.4: VISTA plot of genomic regions containing PRNP, PrP-like	
and <i>stPrP-2</i>	140a
Figure 5.5: Human-mouse conservation in genomic region of human <i>PRNT</i>	140c
Figure 5.6: VISTA plot of genomic regions containing SPRN	140d
Figure 5.7: Phylogenetic footprinting of SPRN	141b
Figure 5.8: Overall structures of PrPs, PrP-related proteins from fish and Shos_	143a

Figure 5.9: Phylogenetic analysis of PrP protein family	143b
Figure 5.10: Phylogenetic analysis of Sho protein family	143c
Figure 5.11: Hypothetical model for evolution of SPRN- and PRNP-gene families_	152a
Figure 6.1: Cloning of cDNA encoded by tammar wallaby PRNP	158a
Figure 6.2: Tammar wallaby PRNP expression	158b
Figure 6.3: Tammar wallaby <i>PRNP</i> BAC fingerprinting and Southern blotting	159a
Figure 6.4: Localization of <i>PRNP</i> gene on tammar wallaby chromosome 1	159b
Figure 6.5: Alignment of vertebrate PrPs	160a
Figure 6.6: Structure of tammar wallaby PrP	162a
Figure 6.7: Cross-species analysis of mammalian <i>PRNP</i>	165a
Figure 6.8: Phylogenetic footprinting of <i>PRNP</i>	167b

List of Tables

Table 1.1: Prion diseases	2a
Table 1.2: Evidence for the identity of prions	7a
Table 2.1: Sequenced genomes	84a
Table 2.2: Vertebrate genomes in numbers	88a
Table 4.1: Summary of database information for SPRN and Sho	118a
Table 5.1: Features of PRNP, PRND, SPRN and PRNT in human and mouse	138a
Table 5.2: CpG islands in human and mouse PRNP, PRND, PRNT, and SPRN_	139a
Table 5.3: Transposable elements in human and mouse	
PRNP, PRND, PRNT, and SPRN	139b
Table 5.4: Conserved motifs in human, mouse, and Fugu SPRN gene	141a
Table 6.1: Regulatory signals in PRNP genes	156a
Table 6.2: Evolutionary distances between tammar wallaby PrP	
and vertebrate PrPs	160c
Table 6.3: PRNP gene structure and base composition	163a
Table 6.4: Transposable elements in mammalian PRNPs	164a
Table 6.5: Conserved potential transcription factor-binding sites	
in mammalian <i>PRNP</i> s	167a

Abstract

Prion protein (PrP) is best known for its involvement in prion diseases. A normal, dynamic isoform of prion protein (PrP^C) transforms into a pathogenic, compact isoform (PrP^{Sc}) during prion disease pathogenesis. The PrP^{Sc}, acting as a template upon which PrP^{C} molecules are refolded into a likeness of itself, accumulates in the brain neurones and causes disease. It is the only known component of prions, proteinaceous infectious particles. Both prion protein isoforms have the same primary amino acid structure and are encoded by the same prion protein gene (*PRNP*). *PRNP* determines susceptibility/disposition to prion diseases and their phenotypes.

The normal function of *PRNP* is elusive. The *Prnp* knock-out mice with disrupted ORF show only very subtle phenotype. A number of hypotheses were proposed on the function of mammalian *PRNP*. The extracellular, GPI-anchored, glycosylated mammalian PrP^{C} expressed in a heterogenous set of cells could: transport copper from extracellular to intracellular milieu, buffer copper from synapse, contribute to redox signalling, act neuroprotectively, mediate cell-cell contacts, affect lymphocyte activation, participate in nucleic acid metabolism, be a memory molecule, and be a signal-transduction protein.

Experimental evidence demonstrated a redundancy between the *PRNP* and another, unknown gene. The critical issue therefore is to discover new genes homologous with *PRNP*, candidates for this redundancy. Using unpublished data, a sequence of zebrafish cDNA sequenced by Prof. Tatjana Simonic's group (University of Milan, Italy), I discovered a new paralogue of *PRNP*. By searching manually, and in a targeted fashion, data deposited in public biological databases, I compiled support for the new human gene Shadow of prion protein (*SPRN*) including the direct evidence, homology-based evidence and *ab initio* gene prediction. The protein product called Shadoo (shadow in Japanese) is an extracellular, potentially glycosylated and GPI-anchored protein of a mature size of 100-odd amino acids. It is conserved from fish (zebrafish, *Fugu*, *Tetraodon*) to mammals (human, mouse, rat), and exhibits similarity of overall protein

features with PrP. Most remarkably, the Sho is the first human/mammalian protein apart from PrP that contains the middle hydrophobic region that is essential for both normal and pathogenic properties of PrP. As this region is critical for heterodimerization of PrP, Sho may have potential to interact with PrP and is a likely candidate for the Protein X. Mammalian *SPRN* could be predominantly expressed in brain (Tatjana Simonic Lab, University of Milan, Italy).

Using the same approach to search public databases, I found, in addition, a fish duplicate of *SPRN* called *SPRNB*, and defined a new vertebrate *SPRN* gene family. Further, I also expanded a number of known fish genes from the *PRNP* gene family. The total number of the new genes that I discovered is 11. With the representatives of two vertebrate gene family datasets in hand, I conducted comparative genomic analysis in order to determine evolutionary trajectories of the *SPRN* and *PRNP* genes. This analysis, complemented with phylogenetic studies (Dr. Lars Jermiin, University of Sydney, Australia), demonstrated conservative evolution of the mammalian *SPRN* gene, and more relaxed evolutionary constraints acting on the mammalian *PRNP* gene. This evolutionary dialectic challenges widely adopted view on the "highly conserved vertebrate" *PRNP* and indicates that the *SPRN* gene may have more prominent function. More conserved *Sprn* could therefore substitute for the loss of less conserved, dispensable *Prnp* in the *Prnp* knock-out mice. Furthermore, the pathogenic potential of *PRNP* may be a consequence of relaxed evolutionary constraints.

Depth of comparative genomic analysis, strategy to understand biological function, depends on the number of species in comparison and their relative evolutionary distance. To understand better evolution and function of mammalian *PRNP*, I isolated and characterized the *PRNP* gene from Australian model marsupial tammar wallaby (*Macropus eugenii*). Marsupials are mammals separated from their eutherian relatives by roughly 180 million years. Comparison of the tammar wallaby and Brazilian opossum PrP with other vertebrate PrPs indicated patterns of evolution of the PrP regions. Whereas the repeat region is conserved within lineages but differs between lineages, the hydrophobic region is invariably conserved in all the PrPs. Conservation of PrP between marsupials and eutherians suggests that marsupial PrP could have the same

pathogenic potential as eutherian PrPs. Using the marsupial *PRNP* gene in comparison with the *PRNP* genes from eutherian species in which prion diseases occur naturally (human, bovine, ovine) or experimentally (mouse), I defined gene regions that are conserved mammalian-wide and showed the utility of the marsupial genomic sequence for cross-species comparisons. These regions are potential regulatory elements that could govern gene expression and posttranscriptional control of mRNA activity. These findings shed new light on the normal function of mammalian *PRNP* supporting best the signal-transduction hypothesis. The normal function of *PRNP* may be triggering of signalling cascades which contribute to cell-cell interactions and may act antiapoptotically. Yet, in the heterogenous set of cells expressing PrP^C these pathways will contribute to a number of cell-specific phenotypes, such as the synaptic plasticity and activation of lymphoid cells.

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere. No other person's work has been used without due acknowledgement in the main text of the thesis.

Computational work was performed in the Computational Proteomics and Drug Design Group (The John Curtin School of Medical Research). Laboratory equipment, materials and resources for experimental work were provided in the Comparative Genomics Group (Research School of Biological Sciences).

Prof. Tatjana Simonic and her collaborators Dr. Lorenzo Sangiorgio and Dr. Bice Strumbo (University of Milan, Italy) made available unpublished cDNA sequence from zebrafish as part of exchange of results. Prof. Simonic's Group also performed the RT-PCR analysis of mammalian *SPRN* expression.

Dr. Lars Jermiin (University of Sydney, Australia) conducted phylogenetic analysis of the PrP- and Sho-protein families.

Dr. Jill Gready and Prof. Jenny Graves constructed a model to rationalize evolution of vertebrate *PRNP*- and *SPRN*-gene families.

Products of cycle sequencing reactions were run on DNA sequencers in Biomolecular Resource Facility (The John Curtin School of Medical Research).

The 67 kb tammar wallaby BAC harbouring *PRNP* was sequenced at The Australian Genome Research Facility (Brisbane, Australia).

This thesis has not been submitted for award of any other degree or diploma at any other tertiary institution.

Marko Premzl,

14 September 2004

Typographical errors on pages 55, 66 and 153 and figure captions on pages 143b and 143c were corrected upon a reviewer's request.

Marko Premzl

25 January 2005

Publication List

Premzl, M., Delbridge, M., Gready, J.E., Wilson, P., Johnson, M., Kuczek, E., Graves, J.A.M. (2004) The prion protein gene: identifying regulatory signals using marsupial sequence. Gene (submitted).

Premzl, M., Gready, J.E., Jermiin, L., Simonic, T., Graves, J.A.M. (2004) Evolution of vertebrate genes related to Prion and Shadoo proteins using comparative genomic analysis. Molecular Biology and Evolution (in press).

Premzl, M., Sangiorgio, L., Strumbo, B., Graves, J.A.M., Simonic, T., Gready, J.E. (2003) Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314: 89-102.

Acknowledgements

To my supervisors Dr. Jill Gready (The John Curtin School of Medical Research) and Prof. Jenny Graves (Research School of Biological Sciences) I thank for giving me a chance to study in the prion field. I thank all members of their labs for their supervision, both on campus and outside ANU.

I am indebted to Prof. Tatjana Simonic (University of Milan, Italy) for her kind gift, unpublished sequence that was critical for success of my study.

Valuable discussions of Prof. Miroslav Radman (Faculté de Médecine Necker-Enfants Malades, Université Paris V, Paris, France) and Dr. Frances Shannon (The John Curtin School of Medical Research) enabled me to properly interpret results of my work.

I am very grateful to Prof. Judith Whitworth (The John Curtin School of Medical Research) for her kind understanding and support.

To Profs. Frank Fenner, Gordon Ada (The John Curtin School of Medical Research) and Peter Doherty (University of Melbourne) I thank for inspiration and their support.

I thank my referees Dr. Vera Gamulin (Rudjer Boskovic Institute, Zagreb, Croatia), Prof. Ivo Karadjole (Veterinary Faculty, University of Zagreb, Croatia) and Prof. Nikola Ljubesic (Rudjer Boskovic Institute, Zagreb, Croatia) for supporting my application to study at the ANU.

Finally, I am grateful to many other nice people who have helped me to find Australia that I was looking for.

Preface

"I, however, believe that there is at least one philosophical problem in which all thinking men are interested. It is the problem of cosmology: the problem of understanding the world–including ourselves, and our knowledge, as part of the world. All science is cosmology, I believe, and for me interest in philosophy, no less than that in science, lies solely in the contributions which it has made to it. For me, at any rate, both philosophy and science would lose all their attraction if they were to give up that pursuit."

K. Popper, The logic of scientific discovery, Preface to the first English edition, 1959.

"[Socrates] And now, I said, let me show in a figure how far our nature is enlightened or unenlightened: --Behold! human beings living in a underground cave, which has a mouth open towards the light and reaching all along the cave; here they have been from their childhood, and have their legs and necks chained so that they cannot move, and can only see before them, being prevented by the chains from turning round their heads. Above and behind them a fire is blazing at a distance, and between the fire and the prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the screen which marionette players have in front of them, over which they show the puppets.

[Glaucon] I see.

[Socrates] And do you see, I said, men passing along the wall carrying all sorts of vessels, and statues and figures of animals made of wood and stone and various materials, which appear over the wall? Some of them are talking, others silent.

[Glaucon] You have shown me a strange image, and they are strange prisoners.

[Socrates] Like ourselves, I replied; and they see only their own shadows, or the shadows of one another, which the fire throws on the opposite wall of the cave?

[Glaucon] True, he said; how could they see anything but the shadows if they were never allowed to move their heads?

[Socrates] And of the objects which are being carried in like manner they would only see the shadows?

[Glaucon] Yes, he said.

[Socrates] And if they were able to converse with one another, would they not suppose that they were naming what was actually before them?

[Glaucon] Very true.

[Socrates] And suppose further that the prison had an echo which came from the other side, would they not be sure to fancy when one of the passers-by spoke that the voice which they heard came from the passing shadow?

[Glaucon] No question, he replied.

[Socrates] To them, I said, the truth would be literally nothing but the shadows of the images."

Plato (427-347 B.C.), The Republic, The allegory of the cave.