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Abstract 

 
 
Prion protein (PrP) is best known for its involvement in prion diseases. A normal, 

dynamic isoform of prion protein (PrPC) transforms into a pathogenic, compact isoform 

(PrPSc) during prion disease pathogenesis. The PrPSc, acting as a template upon which 

PrPC molecules are refolded into a likeness of itself, accumulates in the brain neurones 

and causes disease. It is the only known component of prions, proteinaceous infectious 

particles. Both prion protein isoforms have the same primary amino acid structure and 

are encoded by the same prion protein gene (PRNP). PRNP determines 

susceptibility/disposition to prion diseases and their phenotypes. 

 

The normal function of PRNP is elusive. The Prnp knock-out mice with disrupted ORF 

show only very subtle phenotype. A number of hypotheses were proposed on the 

function of mammalian PRNP. The extracellular, GPI-anchored, glycosylated 

mammalian PrPC expressed in a heterogenous set of cells could: transport copper from 

extracellular to intracellular milieu, buffer copper from synapse, contribute to redox 

signalling, act neuroprotectively, mediate cell-cell contacts, affect lymphocyte 

activation, participate in nucleic acid metabolism, be a memory molecule, and be a 

signal-transduction protein. 

 

Experimental evidence demonstrated a redundancy between the PRNP and another, 

unknown gene. The critical issue therefore is to discover new genes homologous with 

PRNP, candidates for this redundancy. Using unpublished data, a sequence of zebrafish 

cDNA sequenced by Prof. Tatjana Simonic’s group (University of Milan, Italy), I 

discovered a new paralogue of PRNP. By searching manually, and in a targeted fashion, 

data deposited in public biological databases, I compiled support for the new human 

gene Shadow of prion protein (SPRN) including the direct evidence, homology-based 

evidence  and ab initio gene prediction. The protein product called Shadoo (shadow in 

Japanese) is an extracellular, potentially glycosylated and GPI-anchored protein of a 

mature size of 100-odd amino acids. It is conserved from fish (zebrafish, Fugu, 

Tetraodon) to mammals (human, mouse, rat), and exhibits similarity of overall protein 
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features with PrP. Most remarkably, the Sho is the first human/mammalian protein apart 

from PrP that contains the middle hydrophobic region that is essential for both normal 

and pathogenic properties of PrP. As this region is critical for heterodimerization of 

PrP, Sho may have potential to interact with PrP and is a likely candidate for the Protein 

X. Mammalian SPRN could be predominantly expressed in brain (Tatjana Simonic Lab, 

University of Milan, Italy). 

 

Using the same approach to search public databases, I found, in addition, a fish 

duplicate of SPRN called SPRNB, and defined a new vertebrate SPRN gene family. 

Further, I also expanded a number of known fish genes from the PRNP gene family. 

The total number of the new genes that I discovered is 11. With the representatives of 

two vertebrate gene family datasets in hand, I conducted comparative genomic analysis 

in order to determine evolutionary trajectories of the SPRN and PRNP genes. This 

analysis, complemented with phylogenetic studies (Dr. Lars Jermiin, University of 

Sydney, Australia), demonstrated conservative evolution of the mammalian SPRN gene, 

and more relaxed evolutionary constraints acting on the mammalian PRNP gene. This 

evolutionary dialectic challenges widely adopted view on the “highly conserved 

vertebrate” PRNP and indicates that the SPRN gene may have more prominent function. 

More conserved Sprn could therefore substitute for the loss of less conserved, 

dispensable Prnp in the Prnp knock-out mice. Furthermore, the pathogenic potential of 

PRNP may be a consequence of relaxed evolutionary constraints. 

 

Depth of comparative genomic analysis, strategy to understand biological function, 

depends on the number of species in comparison and their relative evolutionary 

distance. To understand better evolution and function of mammalian PRNP, I isolated 

and characterized the PRNP gene from Australian model marsupial tammar wallaby 

(Macropus eugenii). Marsupials are mammals separated from their eutherian relatives 

by roughly 180 million years. Comparison of the tammar wallaby and Brazilian 

opossum PrP with other vertebrate PrPs indicated patterns of evolution of the PrP 

regions. Whereas the repeat region is conserved within lineages but differs between 

lineages, the hydrophobic region is invariably conserved in all the PrPs. Conservation of 

PrP between marsupials and eutherians suggests that marsupial PrP could have the same 
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pathogenic potential as eutherian PrPs. Using the marsupial PRNP gene in comparison 

with the PRNP genes from eutherian species in which prion diseases occur naturally 

(human, bovine, ovine) or experimentally (mouse), I defined gene regions that are 

conserved mammalian-wide and showed the utility of the marsupial genomic sequence 

for cross-species comparisons. These regions are potential regulatory elements that 

could govern gene expression and posttranscriptional control of mRNA activity. These 

findings shed new light on the normal function of mammalian PRNP supporting best 

the signal-transduction hypothesis. The normal function of PRNP may be triggering of 

signalling cascades which contribute to cell-cell interactions and may act anti-

apoptotically. Yet, in the heterogenous set of cells expressing PrPC these pathways will 

contribute to a number of cell-specific phenotypes, such as the synaptic plasticity and 

activation of lymphoid cells. 
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Preface 

 
 
“I, however, believe that there is at least one philosophical problem in which all 

thinking men are interested. It is the problem of cosmology: the problem of 

understanding the world–including ourselves, and our knowledge, as part of the world. 

All science is cosmology, I believe, and for me interest in philosophy, no less than that 

in science, lies solely in the contributions which it has made to it. For me, at any rate, 

both philosophy and science would lose all their attraction if they were to give up that 

pursuit.” 

 

K. Popper, The logic of scientific discovery, Preface to the first English edition, 1959. 

 

 

“[Socrates] And now, I said, let me show in a figure how far our nature is enlightened 

or unenlightened: --Behold! human beings living in a underground cave, which has a 

mouth open towards the light and reaching all along the cave; here they have been from 

their childhood, and have their legs and necks chained so that they cannot move, and 

can only see before them, being prevented by the chains from turning round their heads. 

Above and behind them a fire is blazing at a distance, and between the fire and the 

prisoners there is a raised way; and you will see, if you look, a low wall built along the 

way, like the screen which marionette players have in front of them, over which they 

show the puppets.  

[Glaucon] I see.  

[Socrates] And do you see, I said, men passing along the wall carrying all sorts of 

vessels, and statues and figures of animals made of wood and stone and various 

materials, which appear over the wall? Some of them are talking, others silent. 

[Glaucon] You have shown me a strange image, and they are strange prisoners.  

[Socrates] Like ourselves, I replied; and they see only their own shadows, or the 

shadows of one another, which the fire throws on the opposite wall of the cave?  

[Glaucon] True, he said; how could they see anything but the shadows if they were 

never allowed to move their heads?  
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[Socrates] And of the objects which are being carried in like manner they would only 

see the shadows?  

[Glaucon] Yes, he said.  

[Socrates] And if they were able to converse with one another, would they not suppose 

that they were naming what was actually before them?  

[Glaucon] Very true.  

[Socrates] And suppose further that the prison had an echo which came from the other 

side, would they not be sure to fancy when one of the passers-by spoke that the voice 

which they heard came from the passing shadow?  

[Glaucon] No question, he replied.  

[Socrates] To them, I said, the truth would be literally nothing but the shadows of the 

images.” 

 

Plato (427-347 B.C.), The Republic, The allegory of the cave.  
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