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Abstract

This thesis studies the generalization ability of machine learning algorithms in a statisti-

cal setting. It focuses on the data-dependent analysis of the generalization performance

of learning algorithms in order to make full use of the potential of the actual training

sample from which these algorithms learn.

First, we propose an extension of the standard framework for the derivation of

generalization bounds for algorithms taking their hypotheses from random classes of

functions. This approach is motivated by the fact that the function produced by a

learning algorithm based on a random sample of data depends on this sample and is

therefore a random function. Such an approach avoids the detour of the worst-case

uniform bounds as done in the standard approach. We show that the mechanism

which allows one to obtain generalization bounds for random classes in our frame-

work is based on a “small complexity” of certain random coordinate projections. We

demonstrate how this notion of complexity relates to learnability and how one can

explore geometric properties of these projections in order to derive estimates of rates

of convergence and good confidence interval estimates for the expected risk. We then

demonstrate the generality of our new approach by presenting a range of examples,

among them the algorithm-dependent compression schemes and the data-dependent

luckiness frameworks, which fall into our random subclass framework.

Second, we study in more detail generalization bounds for a specific algorithm which

is of central importance in learning theory, namely the Empirical Risk Minimization

algorithm (ERM). Recent results show that one can significantly improve the high-

probability estimates for the convergence rates for empirical minimizers by a direct

analysis of the ERM algorithm. These results are based on a new localized notion

of complexity of subsets of hypothesis functions with identical expected errors and

are therefore dependent on the underlying unknown distribution. We investigate the

extent to which one can estimate these high-probability convergence rates in a data-

dependent manner. We provide an algorithm which computes a data-dependent upper

bound for the expected error of empirical minimizers in terms of the “complexity” of

data-dependent local subsets. These subsets are sets of functions of empirical errors

of a given range and can be determined based solely on empirical data. We then

show that recent direct estimates, which are essentially sharp estimates on the high-

probability convergence rate for the ERM algorithm, can not be recovered universally

from empirical data.
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Chapter 1

General Overview, Background,

and Notation

1.1 Introduction and Motivation

In this thesis we study the problem of bounding the generalization error of learning

algorithms. Learning algorithms are algorithms that learn functions based on a finite

sample of empirical data with the goal of finding the functions which reflect relation-

ships in data and thus best explain unseen data.

An example for a machine learning task can be to design an algorithm for a system

which automatically recognizes whether a medical image of a skin mole is indicating

skin cancer or not. The input of such a system is the multidimensional vector of pixel

values of an image. Each input is associated with an output label which is either

“yes” or “no”. A huge database of manually annotated images is available to train the

system. Some image examples contain skin spots which look like skin cancer although

they are harmless and vice versa. The accuracy of the system should be tuned to

correctly diagnose the pictures which contain a cancer image, since the health risk for

a false label “no” is much higher than for a false “yes”. The goal in designing the

algorithm is to “learn” a map from images to labels such that one can predict, given

any new image, with high accuracy its right label and with the least risk of damage on

average over all possible images.

Another example of a machine learning task is that of speech recognition, where

one aims to map an acoustic signal to a phonetic sequence. In this case, the output

labels are arbitrary phonetic sequences of arbitrary length, and not just binary values

“yes” and “no”, and the input space are sequences of acoustic features. Many more

examples of learning problems arise in bioinformatics, where one goal is to use available

genome sequences in order to detect regularities and to predict gene functionality, as

well as in data mining, for example for text categorization and topic detection.

1



2 General Overview, Background, and Notation

The starting point in this thesis is a probabilistic model for learning tasks. The

main assumption in this model is that the relationship between the input and the

output space (denoted here by X and Y) can be quantified through a joint probability

measure µ on X × Y. For example, such a measure quantifies how likely it is to have

each of the labels “yes” and “no” associated to a skin image. This measure is, however,

unknown, and the goal is to approximate this measure from the available training data.

For that, we assume that the available training data ((X1, Y1), . . . , (Xn, Yn)) consists of

n independent samples generated according to the unknown distribution µ. We define

a loss function l : Y × Y −→ R , where l(v, t) quantifies the damage or risk when the

true label, for a given input, is t whereas the system outputs the label v (for example,

the loss when labelling with “no” when the true label is “yes”). With this, the goal

of the learning task is to find, based on the training sample, a function f : X −→ Y
which has a small expected loss Eµl(f(X), Y ) with respect to the measure µ.

So far the only freedom we have in the model is the choice of the loss function.

Given a fixed loss, one can easily find a function f which has a small average loss on the

training data. However, this function might perform poorly on new unseen data. The

ability of a function to achieve a small error on unseen samples is called generalization.

Statistical learning theory is concerned with the analysis, within a statistical framework

of the performance of learning algorithms by studying the generalization ability of the

function they produce from an empirical sample.

In order to avoid functions which learn the training sample “by heart” and do not

generalize well on unseen samples, one usually imposes constraints on the function

f . The key ingredient in the design of a learning algorithm is thus to define these

constraints and calibrate them according to the amount and quality of existing training

data. One way to impose constraints is by restricting the possible choices of functions

to a fixed class of functions from which the learning algorithm chooses its hypothesis.

Much of the existing work in statistical learning theory assumes either implicitly or

explicitly that the only significant choice one has in the design of a learning algorithm

is the choice of this class of functions. This function class is called the hypothesis class.

Given a fixed hypothesis class H, the goal of a learning algorithm is thus to choose

the hypothesis function h∗ in H which has the smallest expected error on data drawn

according to the underlying probability measure,

h∗ = argmin
h∈H

Eµl(f(X), Y ) .

Unfortunately, since this probability measure is unknown, it is impossible to compute

the expected error and thus this best function. In the standard setting of statistical

learning theory, the only information available about the expected error is through the

error on the finite empirical sample. One can precisely characterize function classes in
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which empirical errors converge to expected errors uniformly – both with respect to the

measure and with respect to the functions. Such classes have been the object of study

in empirical process theory, where they are called uniform Glivenko-Cantelli classes.

Definition 1.1 (uniform Glivenko-Cantelli class) Let F be a class of real-valued

functions defined on a measurable space Ω. F is a uniform Glivenko-Cantelli class

(uGC) if, for every t > 0,

lim
n−→∞

sup
µ

PrX

{
sup
f∈F

∣∣Eµ f − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
= 0 ,

where µ is any measure µ on Ω and X = (X1, ..., Xn) and Xi are independent random

variables distributed according to µ.

Clearly, if for a given hypothesis class H and a fixed loss function l, the class of functions

Hl = {lh : (X × Y) −→ R : h ∈ H, lh(x, y) = l(h(x), y)}

is a Glivenko-Cantelli class, then any hypothesis ĥ with a small empirical error
1
n

∑n
i=1 lĥ(Xi, Yi) on the sample will have, for any distribution µ and in the limit of an

infinite sample size, also a small expected error and thus will be a good approximation

of h∗. In statistical learning theory, classes Hl in which the convergence of empirical

to expected errors is guaranteed are the learnable (simple) classes, as opposed to the

non-learnable (complex) ones. However, since the empirical training data is finite, this

characterization is not useful in a practical setting and one needs an analysis for the

case of finite samples.

It turns out that one can also provide conditions under which functions produced by

a learning algorithm from the finite sample of data are likely to have a small expected

error. Moreover, one can quantify the trade-off between generalization ability, error on

the sample and sample size through probabilistic bounds for the deviation of expected

and empirical error. The additional mathematical quantities which enter these bounds

characterize, from the point of view of the generalization performance, the complexity

of the learning problem. Since the ability of a function to achieve a small error on

unseen samples is called generalization, these bounds are called generalization bounds.

Such bounds are important for practice for the following reasons:

• Since they give an estimate on the number of samples needed for a good perfor-

mance and allow one to formulate estimates for the expected error of the solution,

they can assure us that a learning algorithm does something meaningful, and not

just produce random outputs.
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• They give an intuition about the quantities and structural properties which are

essential for a learning process and therefore about which problems are inherently

easier than others.

• They quantify the influence of parameters and indicate what prior knowledge is

relevant in a learning setting and therefore they guide the analysis, design, and

improvement of learning algorithms.

Thus, a measure of complexity in learning theory should reflect which learning

problems are inherently easier than others. It should ideally reflect which parameters

are relevant and how they influence the generalization ability of an algorithm. In

physics and mathematics, for example, simple models are often those which can be

described by only a few parameters. For instance, the class of all sinusoids is simple

since it can be fully parameterized by amplitude, frequency and phase only. However,

for a learning problem, it is intuitively clear that one can guess the right function from

its values on an empirical sample only when there are not too many functions in the

class which are similar on finite samples. The class of all sinusoids is therefore very

complex since different functions can be fitted to have the same values on a finite set.

A different notion of complexity from that of the number of parameters is necessary to

characterize learning problems which quantifies how empirical errors converge to the

expected ones.

The standard approach in statistical theory is to define the complexity of the learn-

ing problem through some notion of “richness”, “size”, “capacity” of the hypothesis

class. One arrives at these notions of complexity based on the analysis of uniform

deviations of the expectation from the empirical mean through probabilistic bounds of

the form

Pr

{
sup
f∈Hl

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
≤ δ . (1.1)

While ignoring the choice of hypotheses from within the class made by a specific learn-

ing algorithm, statements of the form (1.1) allow one to bound the difference between

the error on the sample and the expected error on unseen samples simultaneously for all

functions in the hypothesis class and are therefore called uniform bounds. The bounds

obtained hold thus for any function in the class, in particular for the one produced by a

learning algorithm that chooses functions from this class. The complexity of the func-

tion class H is the mathematical quantity through which the function t = γ(n, δ,H),

for a given δ, depends on H.

Since there is no universal measure of the “complexity” of a function class, much

effort has been put into finding an adequate measure of complexity for a learning

setting. Clearly, the complexity should distinguish between learnable and non-learnable

classes. More important than the mere characterization of learnability are, however, the
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rates of the convergence of the empirical to the expected errors, that is t = γ(n, δ,H)

as a function of the number of samples. They allow one to precisely compare the

complexity of different models and to formulate, in a sample-dependent way, for each

δ confidence intervals for the expected error of functions in Hl (and as we will see later

on, also of the hypothesis functions) in terms of the empirical error and the complexity

of the class. They also lead to estimates on the sample complexity which is the number

of samples needed to learn with a given accuracy t and confidence δ.

Learnable and non-learnable classes were already fully characterized, in the case

when they are binary-valued, by Vapnik and Chervonenkis (1971), and for real-valued

classes by Alon et al. (1993). The complexity measure proposed in Vapnik and Chervo-

nenkis (1971), the Vapnik-Chervonenkis (VC) dimension, as well as the scale-sensitive

pseudo-dimension in Pollard (1984) are combinatorial measures of the richness of

classes of functions when evaluated on samples. A more accurate scale-sensitive com-

binatorial measure for classes of real-valued functions, the fat-shattering dimension,

was presented by Pajor (1985), and shown to characterize learnability in Alon et al.

(1993). 1 VC-dimension, pseudo-dimension, and fat-shattering dimension are indepen-

dent of the underlying probability measure and of the particular sample, and hence are

worst-case estimates with regard to these quantities.

Subsequently, one could show that VC-dimension and fat-shattering dimension can

be employed to upper bound a complexity measure which depends on the distribution

according to which the data is drawn, called the metric entropy, and which character-

izes uniform Glivenko-Cantelli classes (e.g., Pajor 1985; Dudley 1987). Metric entropy

is defined in terms of scale-dependent capacity notions for metric spaces of functions,

the covering numbers . 2

However, it is only recently that it has been understood how to define distribution-

dependent complexity measures which lead not only to the tightest uniform confidence

intervals and best sample complexities so far, but, more importantly and unlike for

combinatorial and metric complexities, allow us to conceptually separate the influ-

ence of the complexity of the class, which guarantees learnability, from the influence

of parameters which determine the confidence intervals and the sample complexity.

These new complexity measures, called Rademacher averages, are obtained through

symmetrization techniques from empirical process theory.

Unfortunately, the distribution of the data on which the Rademacher averages

depend on is unknown. In order to make these estimates practically useful, one can

approximate the unknown distribution with the empirical distribution and compute

empirical versions of Rademacher complexities. Such empirical complexities are called

1Note that the fat-shattering dimension appears also – implicitly – in Talagrand (1987).
2Note that the first distribution-dependent complexity measure in learning theory, the VC-entropy,

was proposed already in Vapnik and Chervonenkis (1971).
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data-dependent because they can be computed, if the function class is known, from

the values of the functions on the training sample only. They continue a whole line of

research of empirical estimates of uniform complexity measures.

However, bounds in terms of uniform and empirical versions of uniform complexities

are too pessimistic as they do not take into account the way the algorithm explores

the function space and interacts with the actual sample. They allow one to bound

the deviation of the empirical error on the observed sample and the expected error

simultaneously for any function in the class, whereas one is actually only interested

in the deviation for the function which a particular learning algorithm produces from

actual data. Since this function depends on the actual sample it is itself data-dependent,

and thus one cannot use directly the uniform bound approach for a “small” hypothesis

class depending only on this single function. It turns out that it is often possible to

improve the uniform bounds by using additional knowledge about the specific algorithm

or the problem at hand. Especially, one can make use of prior knowledge to obtain

tighter confidence intervals for the expected error by conditioning on the data. This

is a fact known for a long time in the statistics community, where it is argued and

exemplified that universally valid confidence intervals can be very bad for particular

data sets. In such cases, prior knowledge about the distribution can be employed to

improve the estimates by conditioning on data (Casella 1988; Robinson 1979; Berger

1985; Kiefer 1977).

In statistical machine learning a range of non-uniform complexities which make

use of additional knowledge to quantify the complexity of the learning problem were

proposed. For example, knowledge about the way certain algorithms choose their hy-

pothesis was used to bound the generalization error directly for the function produced

by these learning algorithm. Notable are the bounds for compression schemes (Little-

stone and Warmuth 1986; Floyd and Warmuth 1995) and for stable algorithms (Kearns

and Ron 1997; Devroye and Wagner 1979; Bousquet and Elisseeff 2002). Instead of

the “size” of the function class, properties of the learning algorithms such as the com-

pression size and the stability constant were employed to bound their generalization

error. Other examples are Support Vector Machines (SVMs) and kernel methods,

which are machine learning algorithms designed to maximize the size of the margin on

the sample. It was observed that in certain settings the SVM tends to choose sparse

solutions dependent only on a few support vectors (see, among others, Boser et al.

1992; Schölkopf 1997; Steinwart 2003; Bartlett and Tewari 2004). It was also shown

that data-dependent complexities like the size of the margin or the number of support

vectors for linear classifiers (Shawe-Taylor et al. 1998), or the empirical margin distri-

bution for convex combinations of classifiers (Schapire et al. 1998) can be employed

to bound the generalization error. 3 Recently, new complexities for voting classifiers

3The latter became particularly popular since it is an easy-to-compute and intuitive quantity, and
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which measure the sparsity of the weights of convex combinations and clustering prop-

erties of the base functions were introduced in Koltchinskii et al. (2003); Koltchinskii

and Panchenko (2005). Generalization bounds based on a notion of diversity of the base

classifiers for boosting were derived in Long (2002); Dasgupta and Long (2003). Other

data-dependent complexities were given for micro-choice algorithms and self-bounding

algorithms (Freund 1998; Langford and Blum 1999), and for set covering machines

(Marchand and Shawe-Taylor 2002). A data-dependent complexity governing the per-

formance of online algorithms, the online statistic, was presented in Cesa-Bianchi et al.

(2004).

Although these non-uniform complexities are not necessary conditions for learnabil-

ity, their appeal is that they are easy to check and that they give an easy and intuitive

quantification of prior knowledge about the learning problem. The data-dependent

complexity notions like margin or clustering properties are very easy-to-compute and,

being dependent on the actual sample, can capture directly the performance of the

data-dependent hypothesis, seemingly without the assumption of a “small” hypothesis

class. Whereas the mechanism which allows one to derive uniform complexity mea-

sures are better understood, when looking at non-uniform complexities it is still open

which underlying mechanisms are involved in obtaining the non-uniform performance

guarantees and which assumptions are intrinsically different from each other.

One systematic framework was proposed to explain the mechanism for some of

these data-dependent results in form of a “luckiness theory” (see Section 4.3.4). The

luckiness framework subsumes results in terms of some empirical uniform complexity

measures, as well as margin, compression, and sparsity bounds. This framework was

originally introduced in Shawe-Taylor et al. (1998) and further extended in Herbrich

and Williamson (2003). It introduces a formal way to take advantage of prior knowledge

about the link between the function class or the function learned by the algorithm and

particular samples. It is based on metric entropy complexities and on a technically

intricate condition which allows one to condition on the data and take advantage of

the specific structure of the sample.

Another example for the way in which one can use additional knowledge about a

specific algorithm is to take into account that specific algorithms are more likely to

choose functions from “small” subclasses of the hypothesis class. An algorithm which

takes a special place in learning theory is the Empirical Risk Minimization algorithm

(ERM). ERM produces the function with the smallest error on the sample, and one

can show that this function is very likely to have a small variance. This idea has led

to tighter bounds on the generalization error of empirical risk minimizers in terms of

local complexity measures (Koltchinskii and Panchenko 2000; Massart 2000b; Bous-

especially since it allows one to explain the good performance of practically successful algorithms like
SVMs, kernel methods, neural networks, and voting algorithms like boosting and bagging.
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quet 2002b; Bousquet et al. 2002; Bartlett et al. 2004a; Koltchinskii 2003; Lugosi and

Wegkamp 2004; Bartlett and Mendelson 2005; Bartlett et al. 2004b). Local complexities

measure the capacity of subclasses of functions with a small expectation or variance,

as opposed to global complexities which measure the size of the entire function class.

The size of the small “local subset”, leading to optimal bounds, can be determined

theoretically and, recently, Bartlett and Mendelson (2005) proposed a new and tighter

notion of localization in terms of “belts” of functions of a given expectation. Since

these complexity notions are distribution-dependent, an open question is whether it is

possible to derive empirical estimates of these complexities.

Introductory Bibliography: There exist a number of textbooks covering topics

of statistical learning theory and machine learning, among them Vapnik (1982, 1995,

1998); Devroye et al. (1996); Vidyasagar (1997); Anthony and Bartlett (1999); Chris-

tianini and Shawe-Taylor (2001); Duda et al. (2000); Herbrich (2002); Schölkopf and

Smola (2002); Györfi et al. (2002). Notable surveys on learning theory are Kulka-

rni et al. (1998); Devroye and Lugosi (1995); Vapnik (1999); Herbrich and Williamson

(2002); Cucker and Smale (2002); Anthony (2002); Mendelson (2003, 2005); Boucheron

et al. (2004b); Bousquet et al. (2004); Massart (2003).

1.2 Contribution of the Thesis

This thesis contains two contributions on data-dependent generalization bounds.

First, we explore notions of complexities that allow one to derive non-uniform gen-

eralization bounds for random subclasses of hypothesis functions, that is, for function

classes which depend on the sample. This is motivated by the fact that the function

produced by a learning algorithm depends on the sample and is therefore a random

function. We will then show that this framework is general enough to capture many of

the previous frameworks which make use of additional knowledge about the learning

algorithm and the training data, like compression, sparsity, and luckiness frameworks,

and show the general underlying mechanisms which make these frameworks work.

Second, we continue existing investigations on data-dependent complexities for the

Empirical Risk Minimization algorithm in terms of local complexity measures. We show

how one can compute an empirical version of the complexities proposed in Bartlett and

Mendelson (2005) and we then investigate the optimality of these empirical estimates.

1.3 Overview of the Thesis

This thesis is organized as follows. In Chapter 2 we present the general theoretical set-

ting for the analysis of learning algorithms common in statistical learning theory. We

first present the probabilistic model for the learning problem (Section 2.1), show how
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one can analyze the performance of learning algorithms by bounding their generaliza-

tion error (Section 2.2), and present the main ideas in deriving generalization bounds

based on results for uniform deviations of expectations and empirical averages (Section

2.3). We also present some examples for learning algorithms (Section 2.5). In Chapter

3 we then present the techniques used in deriving generalization bounds, namely con-

centration inequalities and symmetrization techniques. The next two chapters contain

the contributions of this thesis. In Chapter 4 we develop the random subclass frame-

work and present the examples which fall into this framework. Chapter 5 studies the

data-dependent complexities for the Empirical Risk Minimization algorithm in terms

of local complexity measures. Finally, Chapter 6 contains the conclusion of this thesis.

1.4 Notation and General Definitions

We end this chapter with some notation which will be used throughout the thesis. A

glossary of symbols can be found at the end of the thesis.

Sets and Vectors

If S is a set, we denote its complement by Sc and its power set (that is, the set of all

subsets of S) by P(S) . The indicator function of the set S is defined as IS(x) = 1 ,

if x ∈ S and 0 otherwise. For two sets A,B ⊆ R
n we denote by A + B = {a + b : a ∈

A, b ∈ B}. The absolute convex hull of a set A is defined as

absconv(A) = {
n∑

i=1

ciai : n ∈ N, ai ∈ A,

n∑

i=1

|ci| ≤ 1}.

If X = (X1, ..., Xn) is a vector then for 1 ≤ j ≤ m ≤ n we denote by X|mi=j the

vector (Xj , ..., Xm) .

Probabilities and Expectations

Let Ω be a measurable space 4 and let µ be a probability measure on Ω. Ωn denotes

the product space Ω × · · · × Ω endowed with the product measure µn. Prµ and

Eµ will denote the probability and the expectation with respect to µ. We will use

capital letters X,Y,Z, . . . for random variables and lower-case letters x, y, z, . . . for their

observed values in a particular instance. For random vectors, we will use bold letters

X,Y,Z, . . ., and lower-case bold letters x,y, z, . . . will denote particular instances of

these random vectors.

4For an introduction to probability theory, see, for example, Shiryayev (1984).
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In general, for any random variable X, PrX and EX will denote the probability

and the expectation with respect to the distribution of X. Especially for conditional

expectations, the index will indicate that we are conditioning on all remaining random

variables, for example EXf(X,Y ) = E[f(X,Y )|Y ] . Sometimes, in order to keep

notation simple, and when the probability measure is clear from the context, we will

omit the subscripts. Pr {A} will then denote the probability of the event A, where the

probability is taken over all random variables in A. E (Z) will denote the expectation

of the random variable Z with respect to all random variables occurring in Z.

Let F be a class of real-valued functions defined on Ω which take values in [−b, b] .

For any vector x ∈ Ωn,

F/x = {(f(x1), . . . , f(xn)
)

: f ∈ F}

is called the coordinate projection of the set F onto the set of coordinates x.

Let X,X1, . . . , Xn be independent random variables distributed according to µ.

PrX and EX denote the probability and the expectation with respect to the random

vector X = (X1, . . . , Xn) (and therefore with respect to µn). Eµ (f) is the expectation

and Var (f) is the variance of the random variable f(X). µn(X) denotes the random

empirical probability measure supported on (X1, . . . , Xn), that is,

µn(X) := n−1
n∑

i=1

δXi ,

where δXi denote the Dirac measures at Xi in Ω, that is, δXiA = 1 if Xi ∈ A and 0

otherwise. Whenever X is clear from the context, we will denote the empirical measure

by µn.

We will denote the empirical expectation of f on (X1, . . . , Xn) by

En (f) = Eµn(f) := n−1
n∑

i=1

f(Xi).

Note that En (f) is a random variable, as it depends on the random variables X1, . . . , Xn.

Stochastic Processes

Let V be a subset of R
n, let ε = (ε1, . . . , εn) be a vector of independent Rademacher

variables (i.e. PrX {εi = −1} = PrX {εi = 1} = 1/2), and let g = (g1, . . . , gn) be a

vector of independent standard Gaussian random variables. The collection of random

variables {∑n
i=1 εivi : v ∈ V } and {∑n

i=1 givi : v ∈ V } is called the Rademacher

(Gaussian) process indexed by the set V . The random variables supv∈V

∣∣∑n
i=1 εivi

∣∣
and supv∈V

∣∣∑n
i=1 givi

∣∣ are called the supremum of the Rademacher (Gaussian) process
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indexed by the set V .

Metric Spaces

The Hamming distance on R
n is defined as

dH(x, y) = |{i : 1 ≤ i ≤ n, xi 6= yi}| .

Set `n
p to be R

n with the norm

‖x‖p :=
( n∑

i=1

|xi|p
)1/p

and put Bn
p to be the unit ball of `n

p . `n
∞ is R

n endowed with the norm

‖x‖∞ := sup
1≤i≤n

|xi| .

Let L∞(Ω) be the set of bounded functions on Ω with respect to the norm

‖f‖∞ := sup
ω∈Ω

|f(ω)|

and denote its unit ball by B
(
L∞(Ω)

)
. For a probability measure µ on a measurable

space Ω and 1 ≤ p < ∞, let Lp(µ) be the space of measurable functions on Ω with a

finite norm

‖f‖Lp(µ) := (

∫
|f |pdµ)1/p .

For an introduction to normed function spaces and functional analysis, see, for instance,

Reed and Simon (1980).

Let (Y, d) be a metric space. If F ⊂ Y then for every ε > 0, N(ε, F, d) is the

minimal number of open balls (with respect to the metric d) needed to cover F . A

corresponding set {y1, . . . , ym} ⊂ Y of minimal cardinality such that for every f ∈ F

there is some yi with d(f, yi) < ε is called an ε-cover of F . The ε-entropy of F is

denoted by H(ε, F, d) and is defined as

H(ε, F, d) := log N(ε, F, d) .

For 1 ≤ p < ∞, denote by N
(
ε, F, Lp(µn)

)
the covering number of F at scale ε with

respect to the Lp(µn) norm. Similarly, one can define the packing number at scale

ε, which is the maximal cardinality of a set {y1, . . . , yk} ⊂ F such that for every

i 6= j , d(yi, yj) ≥ ε . Denote the ε-packing numbers by M(ε, F, d) and note that,
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for every ε > 0,

N(ε, F, d) ≤ M(ε, F, d) ≤ N(ε/2, F, d) .

Measures of Complexity for Function Classes

If F is a binary-valued class of functions, the VC-dimension of the function class F will

be denoted by V C(F ) and the VC-entropy by HV C (F ). For general classes of functions,

fatε (F ) denotes the fat-shattering dimension at scale ε (their exact definitions are given

in Section 2.4.1).

Given a random vector X, F/X denotes the random set

F/X = {(f(X1), . . . , f(Xn)
)

: f ∈ F},

and is called the coordinate projection of the set F onto the random set of coordinates

X. The empirical VC-dimension will be denoted by V̂ C (F,X), the empirical fat-

shattering dimension by f̂atε (F,X), and the empirical VC-entropy by ĤV C (F,X).

For every f ∈ F , we denote by Rn (f,X, ε) the Rademacher sum for f , where

ε1, . . . , εn are independent Rademacher random variables, that is, symmetric, {−1, 1}-
valued random variables (see Definition 2.16). Rn (f,X) is therefore a random variable

that depends on the random variables X1, . . . , Xn and on the Rademacher random vari-

ables ε1, . . . , εn. For simplicity, we will sometimes write Rnf instead of Rn (f,X, ε).

The supremum supf∈F Rn (f,X, ε) is called the Rademacher penalty of F . The empir-

ical Rademacher average, the (global) Rademacher average, and the uniform Radema-

cher average of the class of functions F are denoted by R̂n (F,X), Rn (F ), and Rn (F )

respectively, and their exact definitions can be found in Section 2.4.1, page 26. Note

that the empirical Rademacher average R̂n (F ) is a random variable which depends on

X1, . . . , Xn.

Constants

Finally, throughout this thesis all absolute constants are denoted by c, C, or K. Their

values may change from line to line, or even within the same line.



Chapter 2

Preliminaries

2.1 The Learning Problem

We call a learning problem the task of finding a general rule which explains a given set

of data. Such learning tasks arise naturally in many fields of science like engineering,

physics, economics, biology, evolutionary science or cognitive science. In order to be

able to infer from empirical training data to future unseen data and to find a solution

for a learning problem, we have to assume that training data and unseen data represent

the same underlying phenomenon. In statistical learning theory, the relationship be-

tween training and unseen data is modelled through a common underlying probability

measure. This probabilistic model is presented in the next section.

The Probabilistic Model

In this thesis, we will consider the following probabilistic learning model (Vapnik and

Chervonenkis 1971; Valiant 1984; Haussler 1992). It relies on the fundamental as-

sumption that both seen and future data are generated by the same fixed underlying

probability measure, which, although unknown, allows us to infer from present data to

future data and therefore to generalize.

The probabilistic learning model: Let Ω = X ×Y be a measurable space, and

let µ be an unknown probability distribution on Ω. The set X is called the input space,

the set Y the output space. Let ((X1, Y1), . . . , (Xn, Yn)) ∈ Ωn be a finite training

sample, where each pair (Xi, Yi) is generated independently 1 according to µ. The

goal of a learning algorithm is to find, based on this sample, a function h : X −→ Y
which predicts the most likely value of Y ∈ Y given X ∈ X .

1Note that, besides assuming a probabilistic dependence between training and test data, we addi-
tionally make the assumption that each data sample is independent. This assumption is not always
fulfilled in real-world applications. For instance, for time-series predictions such as stock market pre-
dictions, each new data point depends on the values of previous data points. If the dependence can
be modelled by a Markov process, one can extend the classical probabilistic learning model to Markov
chains, as for example in Gamarnik (1999).

13
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When Y is finite the learning task is called classification, whereas when Y is a

subset of the real space R
n it is called regression.

The Learning Algorithm and the Hypothesis Class

Let YX denote the set of all functions from the input space X into the output space Y,

and let P(YX ) be the power set of YX . A learning algorithm A is defined as a mapping

from the set of all finite samples Z ∈ Ωn to YX . In order to infer from the training

data which function predicts best the relationship between input and output, we have

to make additional assumptions within our model (see, e.g., Duda et al. 2000, “No Free

Lunch”). Since machine learning algorithms usually restrict, implicitly or explicitly, the

set of functions which they explore, we will here additionally assume that the functions

produced by the learning algorithm belong to a fixed function class H ⊂ YX specified

in advance. This function class is called the hypothesis class. The selection of a specific

hypothesis class is a part of modelling the learning problem at hand. For example,

it is common to assume that the functions to be learned are linear or that they are

convex combinations of a given base class of functions. The choice of a hypothesis

class, through its “complexity”, turns out to be crucial for analyzing the generalization

properties of learning algorithms. To make the dependence of the learned function on

the hypothesis class explicit, we define formally a learning algorithm as a mapping

A :

∞⋃

n=1

Ωn ×P(YX ) −→ YX .

For a given sample z and a given hypothesis class H, the function produced by algo-

rithm A is therefore A(z,H) ∈ H. 2

Statistical learning theory addresses the question of how to design learning algo-

rithms which are, given a probabilistic model and a fixed hypothesis class, likely to

produce “good” functions. A possible quantification of “good” is the topic of the next

two sections.

The Loss Function and the Loss Function Class

In order to make the most accurate choice for a function from the hypothesis class,

we have to be able to assess its quality. In our learning model, we assume that the

quantitative measure of the discrepancy between the predicted value and the actual

value is given by a loss function l : Y × Y −→ R. The loss function is a choice of the

2Different from this model is the one used in the PAC-Bayesian framework, as the function produced
by the algorithm does not belong directly to the hypothesis class H. The output of the algorithm is
a distribution over the hypothesis class and the produced classifier is a weighted majority classifier
computed according to this distribution, and therefore A(z, H) /∈ H.
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modeller. For example, for classification, a common loss function is the 0-1 loss defined

by

l0−1(r, s) =





0 if r = s,

1 if r 6= s.

Another common example is the square-loss for regression tasks:

l2(r, s) = (r − s)2.

The selection of an appropriate loss function is crucial in the design of a learning

algorithm, and determines both the quality of the solution as well as the computational

tractability. Some recent results on the impact of the loss function on quality and

robustness in learning problems are presented in Christmann and Steinwart (2004);

Bartlett et al. (2003); Zhang (2004b). In this thesis, we will not address these issues.

In what follows, we will always make one more additional assumption on the loss

function, namely that the loss function is bounded, l : Y 2 −→ [−b, b] , for some b. This

is a technical assumption which is required to hold for all the results presented in this

thesis. 3 Strictly speaking, such an assumption is violated even for relatively simple

cases, as for example in linear regression with the square-loss in a case where the true

linear model is perturbed by additive Gaussian noise. In practical situations, however,

since the observed data lies only in a limited range, it is sufficient to define the loss

such that it is bounded in this range.

For every h ∈ H we can now define the associated loss function

lh : (X × Y) −→ [−b, b], lh(x, y) = l(h(x), y)

and denote by

Hl = {lh : (X × Y) −→ [−b, b] : h ∈ H}

the loss class associated with the learning problem. In the analysis of a learning

problem, as we will see, it is often easier to think in terms of the associated loss class

Hl instead of the original hypothesis class H.

Loss Minimization and Model Selection

The next step in modelling a learning problem is to choose a measure of the overall

quality of a function. In statistical learning theory, the risk of a function (also called

3It is worth noting that it is possible to obtain results without this assumption but only with weaker
probability estimates.
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expected error) is defined as the expected loss:

R (h) = Eµ lh(X,Y ) ,

where the expectation is taken with respect to the probability measure µ on the data.

The best estimate t∗ ∈ YX is therefore the one for which the expected loss is as

small as possible, that is,

t∗ = argmin
h∈YX

R (h) .

The function t∗ is called the target hypothesis. However, since our model restricts the

functions produced by the algorithms to the hypothesis class H, the best the algorithm

can do is to estimate the h∗ ∈ H,

h∗ = argmin
h∈H

R (h) .

We will assume in the following that such an h∗ exists.

The choice of a hypothesis class H, the model selection, determines the quality of the

solution and is governed by the approximation-estimation (or bias-variance) dilemma

(e.g., Duda et al. 2000, page 466). To see why we have a dilemma, we decompose

R (h) − R (t∗) = (R (h) − R (h∗)) + (R (h∗) − R (t∗)) .

The second term on the right-hand side, R (h∗)−R (t∗), is called approximation error.

It is independent of the function h, and depends solely on the class H. Clearly, the

larger the class H is, the better h∗ can approximate t∗ and the approximation error

is therefore smaller. The remaining term on the right-hand side, the estimation error

R (h)−R (h∗), depends on h. As will be shown in the sequel, the estimation error for

the function produced by an algorithm A will be likely to increase if the “complexity”

of the function class increases. A larger class will therefore imply a larger estimation

error. The optimal choice of H corresponding to a minimal R (A(z,H)) − R (t∗) is

therefore the result of a trade-off between approximation and estimation error.

It is possible to perform model selection by automatically trading off the complexity

of the function class against the approximation error. In order to fully automatize the

process of model selection, data-dependent complexities are of advantage, as one can

compute the complexities entirely from the sample. Results in statistical learning

theory regarding model selection based on data-dependent complexities can be found,

for example, in Vapnik (1982); Kearns et al. (1997); Shawe-Taylor et al. (1998); Lugosi

and Nobel (1999); Massart (2000b); Koltchinskii (2001); Bartlett et al. (2002); Cucker

and Smale (2002); Massart (2003); Lugosi and Wegkamp (2004); Kääriäinen et al.

(2004); Fromont (2004); Vito et al. (2005). The model selection process itself will not be
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discussed in detail in this thesis. We will focus here on the complexity measures which

bound the estimation error and on ways to obtain these data-dependent complexities.

Our object of study is the estimation term R (h) − R (h∗) = Eµ (lh − lh∗) and

therefore it is convenient to define a shifted loss class, the excess loss class,

H∗
l = {l′h = lh − lh∗ : h ∈ H}.

Note that all functions in H∗
l have a nonnegative expectation, though they can take

negative values, and that 0 ∈ H∗
l . The minimizers h∗ correspond to the functions

l′h ∈ H∗
l with minimal expectation Eµ l′h = 0. Unfortunately, since the measure µ is

unknown, it is not possible to determine h∗ and H∗
l . Learning algorithms therefore try

to estimate the function h∗ on the basis of empirical data.

Remark: As a matter of fact, the function produced by a learning algorithm obviously

depends also on the loss function l, as h∗ will depend on l. To be precise, we should

therefore write A(z,H, l) instead of A(z,H). Because the influence of the loss function

on the solution is not a focus of this thesis, and in order to keep notation simple, we

will keep the notation A(z,H) and remind the reader whenever necessary about the

dependence of the hypothesis on the loss.

Analysis of Algorithms

With the above preliminaries, we can now assert that a good learning algorithm is one

which, when presented with a random training sample Z and restricted to hypotheses

from the class H, approximates h∗ well and thus produces a function with a small

risk, R (A(Z,H)) ≈ R (h∗). Recall that the expected errors of the functions in H

cannot be computed because the probability distribution µ is unknown. In the standard

learning model, the only information available about the expected errors is through the

errors lh(Xi, Yi) on the finite empirical sample. Learning algorithms approximate h∗

by looking only at the sample, and we would like to know how good this approximation

is. Statistical learning theory is concerned with guarantees on a good behaviour of the

risk R (A(Z,H)).

The first type of guarantee comes from analyzing the consistency of a learning

algorithm. A learning algorithm is consistent if the expected error of its solution

converges in probability, in the limit of an infinite sample, to the expected error of

the target hypothesis t∗ (for precise definitions of different variants of consistency, see,

e.g., Devroye et al. 1996, Chapter 6, page 92). Vapnik and Chervonenkis (1971) gave

a complete characterization for the consistency of the Empirical Risk Minimization

algorithm in case of binary-valued classes (see Section 2.5, page 31) in terms of the

“complexity” of the hypothesis class measured by the VC-dimension. Consistency for

other algorithms was shown, for example, for k-Nearest-Neighbour methods (Devroye
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et al. 1996), spectral clustering (von Luxburg et al. 2005), kernel methods (Steinwart

2002, 2005), boosting algorithms (Mannor et al. 2002; Lugosi and Vayatis 2004; Zhang

2004b; Jiang 2004), and for classifiers using a convex loss function (Bartlett et al.

2003). Consistency is a property one would like an algorithm to have – however, it is a

weak property as it does not say anything about the behaviour of the algorithm when

presented with finite samples.

Stronger guarantees for the behaviour of the risk R (A(Z,H)) and therefore for

the performance of a learning algorithm can be obtained through probabilistic finite

sample generalization bounds. Finite sample bounds depend on the sample size and can

give an a-priori estimate on the number of samples needed for a given performance and

thus allow one to estimate the value range for the expected error of the solution. From

finite sample generalization bounds one can often derive consistency results. These

bounds and the parameters which appear in them are the topic of this thesis. In the

next chapter, we will present how generalization bounds can be employed as a measure

of performance for learning machines. 4

2.2 Generalization Bounds as Performance Measure for

Algorithms

In statistical learning theory, one quantifies the behaviour of a learning algorithm

through the value of the expected loss R (A(Z,H)), where Z ∈ Ωn is a random sample

of n independently and identically distributed (i.i.d.) random variables. Because the

loss R (A(Z,H)) depends on random data, it is itself a random variable, and the

statements which can be made about R (A(Z,H)) are probabilistic. The performance

of learning algorithms can be evaluated through generalization bounds. Generalization

bounds are probabilistic statements of the following form:

PrZ
{

R (A(Z,H)) ≥ γ
}

≤ ρ . (2.1)

For a fixed probability of generalization error ρ, γ is a function (which has to be

determined) and the probability PrZ is taken with respect to the random vector Z ∈ Ωn

and therefore with respect to the measure µn. The quantities appearing in γ, apart

from n and ρ, are called the complexity measures for the generalization performance

of the algorithm A.

4It is worth mentioning that the model presented here is just one way to assess performance for
learning algorithms. Other theoretical models were proposed, which define the success of learning
algorithms differently. Mistake bounds (Littlestone and Warmuth 1986; Littlestone 1989) are one
notable example of a non-probabilistic performance measure in which the learner is evaluated by the
total number of mistakes it makes before it converges to the correct hypothesis. It is possible to design
algorithms for specific tasks which have a guaranteed performance in this sense (Littlestone 1989).
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In general, statistical learning theory studies the following aspects regarding γ:

• functional form of γ, in the sense that the “right” quantities which characterize

the difficulty of the learning problem appear in the bound;

• rates of convergence as a function of sample size n;

• sample complexity, that is, how many samples are necessary to learn with a given

accuracy γ and a given confidence ρ;

• relation between various complexity terms.

Statements of the form (2.1) allow us to build confidence intervals

(−∞; γ ] for the expected loss R (A(Z,H)). Confidence intervals for the expected

value of a function are studied in a branch of statistics called theory of interval estima-

tion (e.g., Stuart et al. 1999). A confidence interval gives an estimated range of values

which is likely to include an unknown parameter of a distribution, the estimated range

being calculated from a given set of data sampled from this distribution.

Definition 2.1 (confidence interval) Let X be a random variable depending on a

real-valued parameter θ. A confidence interval for θ for some confidence 0 < α < 1 is

the smallest interval C(X,α) which depends on the variable X and which satisfies

∀θ : PX [θ ∈ C(X,α)] ≥ 1 − α ,

(e.g., Stuart et al. 1999).

In learning theory, the estimated parameter θ is the conditional expectation of the

random variable lA(Z,H)(Z). For each algorithm and hypothesis class, a good bound

of the form (2.1) is one in which the function γ gives a tight confidence interval for θ.

In the following, we will sketch the standard way of deriving generalization bounds

in statistical learning theory. Recall that we would like to compute an expectation –

that of the loss of a function – from empirical data without knowing the distribution

of the data. The Law of Large Numbers suggests to approximate the expected loss

through the average loss on an empirical sample and to try to quantify how far away

from each other these two quantities are. If Z = ((X1, Y1), . . . , (Xn, Yn)) is a random

training sample, then the average error of a hypothesis function h on the given sample

Z is called the empirical error and will be denoted by

R̂ (h,Z) =
1

n

n∑

i=1

lh(Xi, Yi) .
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2.3 Uniform Bounds and Suprema of Empirical Processes

In a number of “classical” generalization bounds, γ will depend on the algorithm A

and the sample Z only via the empirical error R̂ (h,Z). Their derivation, as proposed

first in Vapnik and Chervonenkis (1971), follows the following “recipe”:

• R (A(Z,H)) is rewritten as a sum of the empirical error and the deviation between

expected error and empirical error,

R (A(Z,H)) = R̂ (A(Z,H),Z) +
[
R (A(Z,H)) − R̂ (A(Z,H),Z)

]
;

• the empirical error R̂ (A(Z,H),Z) can be computed from the specific sample at

hand; the object of study remains the quantity R (A(Z,H))− R̂ (A(Z,H),Z) (see

Figure 2.1);

• the quantity R (A(Z,H)) − R̂ (A(Z,H)) is replaced by its worst case estimate,

that is, by the uniform estimate over the whole set of hypothesis functions

suph∈H R (h) − R̂ (h,Z) ;

• a uniform bound of the following form is derived:

PrZ
{

sup
h∈H

∣∣R (h) − R̂ (h,Z)
∣∣ ≥ γ(n, ρ,H, l)

}
≤ ρ , (2.2)

where γ depends only on the confidence ρ, the sample size n, and on the loss class

Hl.

The bound obtained holds for any hypothesis function h ∈ H, in particular for A(Z,H).

How can we derive a uniform bound? Since ρ does not depend on the random

variable Z, we can rewrite the statement (2.2) to get an “inverse” form

PrZ
{

sup
h∈H

∣∣R (h) − R̂ (h,Z)
∣∣ ≥ t

}
≤ ρ(n, t,H, l) ,

where t > 0, and ρ is a function which has to be determined. Recalling the definition

of the expected and empirical error and of the loss class, this is equivalent to

PrZ
{

sup
f∈Hl

∣∣Ef − 1

n

n∑

i=1

f(Zi)
∣∣ ≥ t

}
≤ ρ(n, t,H, l) , (2.3)

where Z = (Z1, ..., Zn) . As we will see in Section 2.3, statements of the form (2.3)

are called tail probabilities of a random variable. Random variables of the specific

form as in (2.3) are called empirical processes, and it will be possible to tackle (2.3)

with tools from empirical process theory (namely symmetrization and concentration

inequalities). The quantities which will appear in ρ, as they only depend on the model
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H

Loss

PSfrag replacements

h∗A(Z,H)

R (A(Z,H))

R̂ (A(Z,H),Z)

AERM (Z,H)

R (h)

R̂ (h,Z)

Figure 2.1: Expected and empirical error for the function produced by an algorithm A for a

given sample Z from a given hypothesis class H (picture as in Bousquet et al. 2004). One way

to study the behaviour of the random variable R (A(Z, H)) is by comparison with its empirical

approximation R̂ (A(Z, H),Z). This is usually done by characterizing the behaviour of their

difference |R (A(Z, H)) − R̂ (A(Z, H),Z) |.

through the loss class Hl, are called the complexity measures (the “size” or “capacity”)

of Hl. The dependency on n will determine both the rate of convergence and the sample

complexity. If ρ(n, t,H, l) goes to 0 as n goes to infinity, this implies learnability.

A variation in the derivation of uniform bounds is to employ relative or reweighted

tail inequalities, which allow one to derive bounds of the form

PrZ
{

sup
h∈H

R (h) − R̂ (h,Z)

ω(h)
≥ t

}
≤ ρ(n, t,H, l) . (2.4)

For some of these, one can derive empirical versions of relative inequalities, in which

ω(h) is replaced by a sample-dependent ω̂(h,Z). In these inequalities, ω is usually a

function related to the variance Var (h) or the expectation E (h). Such bounds allow

one to get tighter confidence intervals for classes in which functions have small vari-

ances or small expectations, which supports the intuition that such functions have less

variation on samples and are therefore easier to learn (see also the results on localized

complexities for ERM from Section 4.3.5 and Section 5.3).

2.4 Uniform Complexity Measures

2.4.1 Uniform Complexity Measures – Definitions

Let F be a class of real-valued functions defined on a probability space (Ω, µ). In this

section, we will present the definition of a range of complexity measures from statistical

learning theory which reflect the “size” or “richness” of the class F . First, we define
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the coordinate projections of a class of functions onto a set.

Definition 2.2 (coordinate projections) The set of all patterns realized by the func-

tion class F on a set x = {x1, . . . , xn} are the coordinate projections,

F/x =
{
(f(x1), . . . , f(xn)

)
: f ∈ F

}
.

If x = (x1, . . . , xn) is a vector, we denote by F/x the coordinate projections of F onto

the set {x1, . . . , xn} .

Combinatorial Complexity Measures for Binary-Valued Classes of Functions

Let F be a set of binary-valued functions from Ω to {0, 1}. For binary-valued classes,

the cardinality of the coordinate projections is the shattering coefficient.

Definition 2.3 (shattering coefficient)

Sn(F,x) = |F/x|.

Vapnik and Chervonenkis (1971) introduced, for binary-valued classes, the first

combinatorial notion of dimension based on the “richness” of the coordinate projections

of F . A class is defined as “rich” when its projections on samples contain entire

combinatorial cubes {0, 1}n of large dimensions. A sample set x is said to be shattered

by F if the projection F/x is the entire combinatorial cube.

Definition 2.4 (shattered set) The set x ∈ Ωn is shattered by the binary-valued

class F if Sn(F,x) = 2n.

One can now define a combinatorial dimension for F by looking for the worst case, that

is, for the largest combinatorial cube contained in any of the coordinate projections of

F . The VC-dimension is the largest dimension of a coordinate projection which is the

entire combinatorial cube.

Definition 2.5 (Vapnik-Chervonenkis dimension (VC-dimension)) The VC-di-

mension is the size of the largest set shattered by F .

V C(F ) = max

{
n ∈ N : max

x∈Ωn
Sn(F,x) = 2n

}

= max {n ∈ N : ∃x ∈ Ωn such that x is shattered by F} .

The VC-dimension ignores the underlying measure on the data and is therefore distri-

bution-independent. 5

5A more detailed account on the VC-dimension and its value for specific classes are given, for
example, in Anthony and Bartlett (1999); Dudley (1999).
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Let X = (X1, ..., Xn) denote an i.i.d. sample distributed according to µn. For each

sample X, we can define an empirical counterpart of the VC-dimension, which has the

following two advantages. First, it is computable entirely from the sample at hand,

and it can therefore be estimated for many classes for which the VC-dimension is hard

to compute. Second, the empirical VC-dimension is smaller or equal to the worst-case

distribution-independent VC-dimension.

Definition 2.6 (empirical VC-dimension) The empirical VC-dimension is the VC-

dimension of F restricted to the domain X.

V̂ C (F,X) = max
{
|x| : x ⊆ X, |F/x| = 2|x|

}
.

The VC-entropy is the expectation of the logarithm of the shattering coefficient.

Definition 2.7 (VC-entropy)

HV C (F ) = EX (log Sn(F,X)) .

Although the VC-entropy is data-independent, it is distribution-dependent since it de-

pends on the underlying distribution generating X. The empirical version of the VC-

entropy is defined as

Definition 2.8 (empirical VC-entropy)

ĤV C (F,X) = log Sn(F,X) .

If X is a random variable, then the empirical VC-dimension and the empirical VC-

entropy are random variables. These random variable were shown in Boucheron et al.

(2000) to be concentrated around their mean (see also Theorem 3.13, page 46). Em-

pirical VC-entropy and VC-entropy are thus, with high probability, similar.

The shattering coefficient can be upper bounded through the VC-dimension, as

stated by the following theorem (e.g., Vapnik and Chervonenkis 1971):

Theorem 2.9 (Sauer-Shelah lemma)

Sn(F,X) ≤
dV C(F,X)∑

i=1

(
n

i

)
≤

V C(F )∑

i=1

(
n

i

)

Its significance is that it shows that a finite VC-dimension V C(F ) = d implies poly-

nomial growth of order O(nd), rather than the potential exponential growth O(2n), of

the size of projections, since
∑d

i=1

(
n
i

)
≤ (en/d)d ≤ (n + 1)d .
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A direct application of the Sauer-Shelah lemma and the definition of the empirical

VC-dimension allow us to obtain the following relation between shattering coefficient

and empirical VC-dimension:

Corollary 2.10 (Comparison shattering coefficient and empirical VC) For any

class F and any sample X ∈ Ωn,

2
dV C(F,X) ≤ Sn(F,X) ≤ (n + 1)

dV C(F,X).

Combinatorial Complexity Measures for General Classes of Functions

Let F be a set of functions from Ω to R. One can generalize the definition of a shattered

set to a scale-sensitive version for real-valued functions. Unlike in the binary-valued

case, where we look for combinatorial cubes in the projection, we now require that

the real-valued projections “contain” cubes of a given size ε. Sets in Ωn are called

ε-shattered, if there are some real numbers s1, s2, . . . , sn (defining the center of the

cube) such that the functions in F can realize all possible “above/below by at least ε”

combinations around the si.

Definition 2.11 (ε-shattered set) The set x ∈ Ωn is ε-shattered by F if there are

real numbers s1, s2, . . . , sn such that for each I ∈ {0, 1}n there is some fI ∈ F for which

fI(xi)




≥ si + ε if Ii = 1,

≤ si − ε if Ii = 0,

for i = 1, . . . , n.

One can then extend the combinatorial dimension to the real-valued case by defining

the complexity to be the largest dimension of a projection containing a real-valued cube

of a given size. The shattering coefficient quantifies the relationship between the size

of the cube and the dimension of the largest projections containing a full cube.

Definition 2.12 (fat-shattering dimension)

fatε (F ) = max {n ∈ N : ∃x ∈ Ωn such that x is ε-shattered by F } .

The empirical version is defined as

Definition 2.13 (empirical fat-shattering dimension)

f̂atε (F,X) = max {n ∈ N : ∃x ∈ X, |x| = n, such that x is ε-shattered by F} .
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Like VC-dimension and VC-entropy, it was shown in Boucheron et al. (2000) that

the fat-shattering dimension is highly concentrated around its expectation (see also

Theorem 3.13, page 46).

Metric Complexities

It is possible to define complexity measures of a class of functions F which are related

to the metric structure of the function class. Given a random sample X, recall that µn

denotes the random empirical probability measure supported on X and that Lp(µn) is

the metric which corresponds to the Lp norm of the coordinate projections F/X.

Definition 2.14 (metric entropy, covering numbers) The metric entropy of F is

defined as the logarithm of the covering numbers of F with respect to the Lp(µn) metric,

H(ε, F, Lp(µn)) = log N(ε, F, Lp(µn)) .

These complexities are random variables because µn is supported on random samples.

Uniform versions of covering numbers and metric entropies which are worst-case with

respect to samples are defined as

Definition 2.15 (uniform metric entropy, uniform covering numbers)

Np(ε, F, n) = sup
µn

N(ε, F, Lp(µn)); Hp(ε, F, n) = log Np(ε, F, n) .

Rademacher Averages

Definition 2.16 (Rademacher sums) Let ε1, . . . , εn denote independent Radema-

cher random variables (i.e. PrX

{
εi = −1

}
= PrX

{
εi = 1

}
= 1/2). The Rademacher

sum for f ∈ F and X = (X1, . . . , Xn) ∈ Ωn is the absolute value of the Rademacher

process indexed by (f(X1), . . . f(Xn)) defined as

Rn (f,X, ε) =

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ .

Definition 2.17 (Rademacher penalties) The supremum of the Rademacher pro-

cess indexed by the coordinate projections of F onto X,

sup
v∈F/X

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣ = sup
f∈F

Rn (f,X, ε)

is called the Rademacher penalty of F .
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Note that Rademacher sums and Rademacher penalties are random variables that

depend on both the random variables X1, . . . , Xn and on the Rademacher random

variables ε1, . . . , εn.

We define the empirical Rademacher averages as expectations over ε1, . . . , εn of

Rademacher penalties:

Definition 2.18 (empirical Rademacher averages)

R̂n (F,X) = Eε sup
f∈F

Rn (f,X, ε) = Eε

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)
.

R̂n (F,X) are therefore random variables which depend on X1, . . . , Xn.

Definition 2.19 (Rademacher averages) The Rademacher averages of the class F

are defined as

Rn (F ) = EX

(
R̂n (F,X)

)
= EX,ε

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)
.

In the last equality the expectation is taken with respect to all random variables Xi and

εi.

(Note that in the literature Rademacher averages are often defined to be normalized by

1/n or 1/
√

n.) Rademacher penalties, empirical Rademacher averages, and Radema-

cher averages are likely to be similar for large sample sizes n, as they are concentrated

around their means (e.g., Koltchinskii 2001; Mendelson 2003).

An analogous measure are the Gaussian averages, where εi are replaced by Gaussian

random variables. (Again, we define them here without normalizing by 1/n or 1/
√

n.)

Definition 2.20 (Gaussian averages) The Gaussian averages of the class F are de-

fined as

Gn(F ) = EX,g

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

gif(Xi)

∣∣∣∣∣

)
,

where gi are standard Gaussian random variables, and the expectation is taken with

respect to all random variables Xi and gi.

One can also define uniform versions of the Rademacher averages which are worst-

case instead of averaged with respect to the sample (e.g., Mendelson 2002b,c, 2005).

Definition 2.21 (uniform Rademacher averages)

Rn (F ) = sup
X∈Ωn

R̂n (F,X) .
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2.4.2 Bounds with Uniform Complexities

In the following we assume that F = Hl is a class of real-valued functions which arises

as the loss class associated with a hypothesis class H and a bounded loss function l.

Without loss of generality, we will assume in the following that the loss is bounded by

1. This implies that functions in F take only values in [−1, 1].

In this section we will present the standard results in terms of uniform complexities,

and show how they relate to each other. The exposition in this section follows closely

the one in Mendelson (2005).

Bounds with Metric and Combinatorial Complexities

The standard approach in learning theory for deriving bounds for uniform deviations

of expectations from empirical averages was developed in Vapnik and Chervonenkis

(1971) and is based on symmetrization techniques (see Section 3.2) and concentration

results for single functions (i.e. Hoeffding’s or Bernstein’s inequality, see Section 3.1).

The basic idea in this approach is to replace the possibly infinite set of functions

F = Hl with a finite set of functions which “approximates” F . One combines then

the concentration results for each of the functions in the finite set through the union

bound. Thus, the cardinality of this finite set will reflect the complexity of F . As

we will show later, such an approach is suboptimal, because the functions in the set

can behave similarly and by treating their deviation separately the union bound is

potentially loose.

The first result we present is a bound involving covering number estimates of the

class F with respect to the Lp(µn) metric. The classical VC-type bounds in terms

of the VC-dimension and fat-shattering shattering dimension follow from this bound,

since one can upper bound covering numbers through combinatorial dimensions.

If F has finite covering numbers with respect to any Lp(µn) metric, one can ap-

proximate F by a cover in Lp(µn) and obtain the following theorem. Its proof can be

found, for example, in Anthony and Bartlett (1999), page 143.

Theorem 2.22 (Covering bound) Let F be a class of real-valued functions defined

on a measurable space Ω and which take values in [−1, 1]. Then, for any probability

measure µ, any p > 1, every 0 < t < 1, and any n ≥ 8/t2,

PrX

{
sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣ ≥ t

}
≤ 8Eµ {N(t/8, F, Lp(µn))} e−

nt2

128 ,

where X = (X1, ..., Xn) is an i.i.d. sample distributed according to µn .

The following confidence interval and sample complexity estimates follow directly:
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Corollary 2.23 With F defined as above, for any probability measure µ, every 0 <

t < 1, and any n ≥ 8/t2, with probability at least 1 − δ,

sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣ <

√
128

n

(
Hp(t/8, F, n) + log

8

δ

)
.

Corollary 2.24 With F defined as above, for any probability measure µ, any 0 < t <

1, and any δ < 1, if

n ≥ 128

t2

(
Hp (t/8, F, n) + log

8

δ

)
,

then PrX

{
supf∈F

∣∣∑n
i=1 f(Xi) − Eµf

∣∣ ≥ t
}
≤ δ .

As shown in Mendelson (2005), one can often relate the uniform entropy of the loss

class F directly to that of the hypothesis class H. For example when H contains only

functions taking values in [0, 1] and l is the square-loss, then Np(t, F, n) ≤ Np(t/4,H, n).

For classes of binary-valued functions this result can be combined with the following

theorem due to Dudley which shows that one can control the uniform covering numbers

through the VC-dimension.

Theorem 2.25 (Uniform covering numbers and VC-dimension) For any 1 ≤
p < ∞, there are constants cp which satisfy that for any set of binary functions F with

V C(F ) = d, any 0 < ε < 1, and any n,

Np(ε, F, n) ≤
(

cp log
2

ε

)d

ε−pd .

Note that the estimate from Theorem 2.25 was further improved by Haussler (1995) to

an estimate where the log(1/ε) factor is removed. As a consequence, one recovers the

original results from Vapnik and Chervonenkis (1971) in terms of the VC-dimension.

Corollary 2.26 (VC bound) There exists a fixed constant c such that, for any set

of binary functions F with V C(F ) = d, and any probability measure µ, with probability

at least 1 − δ,

sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣ <

√
c

n

(
d + log

1

δ

)
.

One can also bound the uniform entropy numbers in terms of the fat-shattering

dimension (though the proofs are far more involved). Estimates on the L∞ covering

numbers were first given in Alon et al. (1997) and sharpened in Rudelson and Vershynin

(2005), and on Lp covering numbers in Pajor (1985); Talagrand (1992); Mendelson and

Vershynin (2003). For Lp covering numbers we can state the following theorem:
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Theorem 2.27 For any 1 ≤ p < ∞, there are constants cp and kp which satisfy that

for any set of real-valued functions F bounded by [−1, 1], any probability measure µ,

any 0 < ε < 1, and any n,

Np(ε, F, n) ≤
(

2

ε

)kpfatcpε(F )

.

These estimates recover the standard estimates in terms of the fat-shattering dimension,

as found for example in Anthony and Bartlett (1999).

Bounds with Rademacher Averages

A much sharper concentration result can be derived by combining symmetrization

with Talagrand’s concentration inequality (Theorem 3.12) directly for the suprema of

empirical processes. The following theorem shows the confidence interval and sample

complexity estimates in terms of Rademacher averages.

Theorem 2.28 (Rademacher bound) Let F be a class of real-valued functions de-

fined on a measurable space Ω and which take values in [−1, 1], and set µ to be a

probability measure on Ω. Let σ2 = supf∈F Var (f) . Then there is a constant C such

that, for any 0 < t and every δ < 1, with probability at least 1 − δ,

sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣ < 4Rn (F )

n
+ C

(
σ

√
log(1/δ)

n
+

log(1/δ)

n

)
.

In particular, if

n ≥ C

t2
max

{
(Rn (F ))2, log

1

δ

}
,

then PrX

{
supf∈F

∣∣∑n
i=1 f(Xi) − Eµf

∣∣ ≥ t
}
≤ δ .

Note that we obtain estimates in terms of the Rademacher averages of the loss class F .

Using Lipschitz properties of the loss function and the contraction principle (Theorem

A.2, page 120), these estimates can be replaced (up to constants) by the same estimates

in terms of Rademacher averages of the initial hypothesis class H.

We will now show that the Rademacher bound can be used to recover the results

in terms of combinatorial complexities since one can relate Rademacher averages and

metric entropy estimates. The following theorem reflects the relationship between the

Gaussian averages and the metric entropy of a class.

Theorem 2.29 There are positive constants c and C such that for every class F , any
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integer n, and any sample X ∈ Ωn,

√
n sup

u>0
u
√

log N(u, F, L2(µn)) ≤ Eg

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

gif(Xi)

∣∣∣∣∣

)

≤ C
√

n

∫ ∞

0

√
log N(u, F, L2(µn)) du .

It follows directly from Dudley’s entropy integral (Theorem A.3, page 120) and Su-

dakov’s minoration (Theorem A.5, page 121). The additional normalization factor
√

n

arises from the fact that the unit ball in L2(µn) is
√

nBn
2 .

Since the Rademacher averages are bounded by Gaussian averages (Theorem A.1,

page 120), it follows directly that

Rn (F ) ≤ C
√

n

∫ ∞

0

√
log N(u, F, L2(µn)) du . (2.5)

Using (2.5), we can relate Rademacher averages to combinatorial dimensions. This

enables us to estimate Rademacher averages for particular classes with small combina-

torial dimensions, namely classes with finite VC dimension and classes with polynomial

fat-shattering dimension.

Theorem 2.30 (Rademacher averages and VC-dimension) There is an absolute

constant c such that, if F is a binary-valued class of functions with finite VC dimension

V C(F ) = d then, for every n, Rn (F ) ≤ c
√

dn.

The proof follows from (2.5) and Dudley’s result (Theorem 2.25) which relates the

metric entropy and the VC-dimension.

For classes with polynomial fat-shattering dimension, where fatε (F ) ≤ γ/ε−p , one

can obtain estimates for Rademacher averages of the order O(
√

n) when 0 < p < 2 ,

O(
√

n log3 n) when p = 2, and O(n1−1/p log1/p n) when p > 2 (Mendelson 2003,

Theorem 3.16). In particular, for p = 1, we state the following theorem which will be

used later on.

Theorem 2.31 (Rademacher averages and fat-shattering dimension) If F is

a class of functions taking values in [−b, b], and if there is some γ > 1 such that for

any ε > 0, fatε (F ) ≤ γ/ε, then there is an absolute constant c such that, for every n,

Rn(F ) ≤ c
√

γn.

The proof, based also on Dudley’s entropy integral (Theorem A.3, page 120), can again

be found in Mendelson (2003).

It is easy to show that the sample complexity estimates obtained through the Ra-

demacher bound are better than the ones through the covering bound, by considering
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the example of a class with fatε (F ) ≤ γε−2 . For such a class, the sample com-

plexity estimates obtained through Corollary 2.24 and Theorem 2.27 are of the order

c/t4 log(1/t), whereas the Rademacher bound leads to a significantly better sample

complexity estimate of the order c/t2 (Mendelson 2003, Corollary 3.17).

2.4.3 Characterization of Uniform Glivenko-Cantelli Classes

Recall the definition of uGC classes (Definition 1.1, page 3). The following theorem

gives a characterization of uGC classes in terms of uniform complexity measures. Note

that, although the bounds in terms of the metric and combinatorial complexities are

loose in comparison to these in terms of Rademacher averages, metric entropy and

VC-dimension do both also characterize uGC classes.

Theorem 2.32 (Characterization of uGC classes) A binary-valued class of func-

tions F is a uGC class if and only if the VC-dimension V C(F ) is finite (Vapnik and

Chervonenkis 1971).

A uniformly bounded class of functions F is a uGC class if and only if any of the

following holds:

1. There is some p ≥ 1 such that for every t > 0,

lim
n−→∞

Np(ε, F, n)

n
= 0

(Dudley et al. 1991).

2. For every ε > 0, the fat-shattering dimension fatε (F ) is finite (Alon et al. 1997).

3.

lim
n−→∞

Rn (F )

n
= 0 ,

(Dudley et al. 1991).

2.5 Examples of Learning Algorithms

Empirical Risk Minimization

Recall that a good algorithm is one which produces a function with smallest ex-

pected error R (A(z,H)) ≈ R (h∗), but that the expected error can only be ap-

proximated from the empirical sample. As the Law of Large Numbers suggests to

approximate the expectation through the empirical mean, this leads to the first choice

for a learning algorithm, Empirical Risk Minimization (ERM). Instead of h∗, the al-

gorithm chooses the hypothesis function from H which has the smallest average error

on the sample. The minimizer function produced by the Empirical Risk Minimization
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H

Loss

PSfrag replacements

h∗ AERM(z)

|R (AERM(z,H)) − R̂ (AERM(z,H), z) |

R (h)

R̂ (h, z)

R (h∗)

R (AERM(z,H))

Figure 2.2: Expected and empirical error for a function class H and a given sample z. The

empirical minimizer AERM(z, H), unlike the minimizer h∗, depends on the sample. Of interest

is the difference R (AERM(z, H)) − R (h∗) (picture as in Bousquet et al. 2004).

algorithm AERM,

AERM(z,H) = argmin
h∈H

R̂ (h, z) , (2.6)

is called an empirical minimizer of the class H. Since AERM(z,H) depends on the

training sample, it will usually be a different function for each new training sample.

One question of statistical learning theory is to understand and quantify the guar-

antees which can be given on the expected error of the empirical minimizer. As we will

see in the sequel, it is possible to quantify conditions on the hypothesis class which

guarantee that AERM(z,H) has a small expected error. The first results of this type,

upper bounding R (AERM(z,H)) − R (h∗) , were presented in the pioneering paper

by Vapnik and Chervonenkis (1971), and were later elaborated on in the now classical

textbooks Vapnik (1982, 1995, 1998). These bounds involve the VC-dimension (see

definition 2.5, page 22), and a related quantity called the VC-entropy (see definition

2.7, page 23) and show that for the ERM algorithm, learnability is equivalent to con-

sistency. An illustration of the expected loss for a function class H, the minimizer

h∗, the empirical loss for a given sample z, and the corresponding empirical minimizer

AERM(z) are given in Figure 2.2.

Bounds for ERM in terms of Rademacher complexities (see definition 2.19, page 26)

were derived in Koltchinskii (2001); Bartlett et al. (2002); Mendelson (2002a). Lately,

tighter bounds in terms of Rademacher complexities of “local subsets” were proposed

in Koltchinskii and Panchenko (2000); Massart (2000b); Bousquet (2002b); Bousquet

et al. (2002); Bartlett et al. (2004a); Koltchinskii (2003); Lugosi and Wegkamp (2004);

Bartlett and Mendelson (2005); Bartlett et al. (2004b).

In practice, however, ERM is computationally infeasible because computing or even
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approximating the empirical minimizer is an NP-hard problem. For example, a strong

negative result was proved in Arora et al. (1997), showing that even for simple hypoth-

esis classes consisting of linear classifiers, the task of learning halfspaces achieving a

constant ratio of misclassifications in comparison to the best classifier is NP-hard. Sim-

ilar hardness results for other hypothesis classes are given in Ben-David et al. (2003).

Because of this computational aspect, other methods to efficiently choose a function

based on empirical data were developed, and a main question is to find among these

the ones which can guarantee a small expected error.

Boosting algorithms

Boosting algorithms, introduced by Freund and Schapire (1999) (see also Duda

et al. (2000); Schapire (2002); Meir and Rätsch (2003)), choose their hypothesis as a

linear combination of simpler functions from a fixed base class with the goal to form

a classifier with “boosted” performance. Boosting methods allow to combine “weak”

classifiers (that is, classifiers which are only slightly better than random guessing) into

“strong” combined classifiers with a very high accuracy. AdaBoost, for example, greed-

ily adds classifiers to the resulting combination. At each step, the newly added classifier

is chosen such that it improves performance on the samples misclassified in previous

combinations. Boosting methods have proved successful in practice and therefore much

work has been done in explaining their good performance. A first theoretical explana-

tion of the good performance of boosting algorithms through generalization bounds was

first given in Schapire et al. (1998) (see also Anthony and Bartlett (1999)). Schapire

et al. (1998) showed that a quantity called empirical margin distribution, besides the

VC-dimension of the base class, governs the generalization bound for weighted voting

algorithms like boosting, and that boosting algorithms tend to optimize these bounds

by maximizing the confidence of separation of classes (the “margin”). This result was

further developed in Koltchinskii and Panchenko (2002) in terms Rademacher averages

and extended in Koltchinskii et al. (2003); Koltchinskii and Panchenko (2005) in terms

of additional complexities which quantify sparsity of the weights or clustering proper-

ties of the base class. The diversity or independence of errors of the base classifiers was

shown to imply good generalization ability in Long (2002); Dasgupta and Long (2003).

The work by Andonova Jaeger (2004) generalizes these results to convex combinations

of random base classes. Consistency results for boosting algorithms were presented for

example in Mannor et al. (2002); Blanchard et al. (2003); Zhang (2004b,a); Lugosi and

Vayatis (2004); Jiang (2004).

Kernel methods

Kernel methods, such as Support Vector Machines (SVMs), originate in the work

of Vapnik and Chervonenkis (1971); Boser et al. (1992) and Wahba (1969); Craven and

Wahba (1979). They have been applied successfully, for example, in computational

biology (Noble 2004) and for document classification (Joachims 2002). The hypoth-
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esis class for the kernel algorithms are subsets of a reproducing kernel Hilbert space

(RKHS). They typically minimize a combination of the empirical error on the sample

and a regularization term involving the squared (Hilbert space) norm of the function,

ASVM(z,H) = argminh∈H R̂ (h, z) + C‖h‖2
RKHS .

Any RKHS is generated by the span of a symmetric positive definite kernel function

k : X × X −→ R. The Representer Theorem states that the hypotheses produced by

kernel algorithms are finite linear combinations of the base class H = {k(x, ·)|x ∈ R}
of the form

ASVM(z,H) =
n∑

i=1

αik(xi, ·) , (2.7)

for some real coefficients α1, α2, . . . , αn. For surveys on kernel methods see, for ex-

ample, Vapnik (1982); Christianini and Shawe-Taylor (2001); Schölkopf and Smola

(2002); Herbrich (2002). Note that equation (2.7) implies that the hypothesis function

ASVM(z,H) belongs to the data-dependent subclass of functions HSVM(z) ⊆ H,

HSVM(z) =

{
n∑

i=1

αik(xi, ·) : (α1, α2, . . . , αn) ∈ R
n

}
.

Generalization bounds for kernel methods in terms of margin (Vapnik 1982; Herbrich

2002), (empirical) eigenvalues of the kernel operator (Mendelson 2002a), and based

on stability properties (Bousquet and Elisseeff 2002) were derived. Consistency and

general properties of kernel classes are studied in Cucker and Smale (2002); Steinwart

(2002, 2003). The approximation-estimation trade-off for kernel methods is studied in

Cucker and Smale (2002); Smale and Zhou (2003); Vito et al. (2005).
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Tools

3.1 Deviation and Concentration Inequalities

Deviation and concentration inequalities are basic tools used to derive generalization

bounds in statistical learning theory. They quantify how a random variable deviates

from its mean value. Unlike in classical probability, where the Law of Large Numbers

and the Central Limit Theorem give asymptotic characterizations for the behaviour

of sums of independent random variables with identical distributions, deviation in-

equalities bound tail probabilities nonasymptotically. For example, Hoeffding’s and

Bernstein’s exponential inequalities (Theorems 3.3 and 3.6) give two nonasymptotic

characterizations for the tail probabilities of sums of bounded independent random

variables (one as a sub-Gaussian, whereas the other as a mixture of a sub-Gaussian

and a sub-exponential tail, see the remark after Theorem 3.6, page 38). They are

called exponential inequalities since they state that the probability of the deviation of

the average of independent random variables from their expectation is exponentially

small in the number of variables. Exponential inequalities of this type can be derived

to bound tail probabilities not only for sums of independent random variables but also

for general functions of independent random variables which satisfy, for instance, some

type of Lipschitz conditions, as well as for martingales (see, e.g. Ledoux 2001).

This phenomenon is called concentration of measure. “The concentration of mea-

sure phenomenon is an elementary, yet non-trivial observation. It is often a high

dimensional effect, or a property of a large number of variables, for which functions

with small local oscillations are almost constant” (Ledoux 2001) 1.

The basic probabilistic results in this section can be found in various textbooks on

probability 2. The exposition here follows closely the ones in Devroye et al. (1996); Lu-

gosi (2003) and Boucheron et al. (2004a). All results in this section hold for independent

1Books on the concentration of measure phenomenon are, for example, Ledoux and Talagrand (1991)
and Ledoux (2001). Recent surveys on concentration inequalities with a focus on their applications in
statistical learning theory are Massart (2000b); Lugosi (2003); Boucheron et al. (2004a, 2005).

2See, for example, Shiryayev (1984); Billingsley (1986); Dudley (1989); Durrett (1996); Feller (1971).

35
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random variables.

3.1.1 Nonexponential Inequalities

We will first state two simple nonexponential tail inequalities: Markov’s inequality for

nonnegative random variables and Chebyshev’s inequality for random variables with a

finite variance. Markov’s inequality is the basis for the proofs of many other inequalities,

especially of the powerful exponential inequalities which we will present in the sequel.

By comparing Markov’s and Chebyshev’s inequalities, we will illustrate an important

idea which recurs in this thesis: information on the variance can potentially improve

tail bounds.

Theorem 3.1 (Markov’s inequality) Let X be a nonnegative random variable. Then,

for every t > 0,

Pr {X ≥ t} ≤ EX

t
.

Markov’s inequality is the simplest inequality which relates tail probabilities to expec-

tations.

The next inequality, called Chebyshev’s inequality, follows directly from Markov’s

inequality for the random variable Y = (X −EX)2. It is a concentration inequality as

it shows how X is concentrated around its mean value.

Theorem 3.2 (Chebyshev’s inequality) Let X be a random variable with finite

variance. Then, for every t > 0,

Pr {|X − EX| ≥ t} ≤ Var (X)

t2
.

Unlike Markov’s bound, which uses only the value of the expectation of X, Chebyshev’s

inequality makes use of the “shape” of the distribution through the variance. Similar

bounds can be obtained by applying Markov’s inequality to φ(|X − EX|) , where φ

is any nonnegative convex function (see, e.g., Durrett 1996, page 15), which leads in

particular to concentration results in terms of any higher-order moments by setting

φ(x) = xq , for any integer q ≥ 3.

In learning theory, the variables whose tail we want to bound are the empirical

averages. We will show in the following that for these variables one can obtain bounds

which decay exponentially fast with the sample size n.

3.1.2 Exponential Inequalities for Sums of Independent Random Vari-

ables

A generalization of the procedure in the previous section is to make use of the moment

generating function (mgf) of X (which is the Laplace transform of the density of X),
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EesX , by applying Markov’s inequality to Y = esX . This idea is called Chernoff’s

bounding method. The method is particularly useful for bounding the tail of sums of

independent random variables, since the mgf of a sum of independent random variables

is the product of the individual mgf’s. This technique leads, for example, to Hoeffding’s

and Bernstein’s exponential inequalities.

Theorem 3.3 (Hoeffding’s inequality (Hoeffding 1963)) Let X1, . . . , Xn be in-

dependent bounded random variables such that Xi fall in the interval [ai, bi] with prob-

ability one and let Sn =
∑n

i=1 Xi. Then, for every t > 0,

Pr
{∣∣ESn − Sn

∣∣ ≥ t
}
≤ 2e

− 2t2
Pn

i=1
(bi−ai)

2
.

In particular, if the independent random variables X1, . . . , Xn fall in the same interval

[a, b] with probability one and have the same expectation EX, then, for every t > 0,

Pr
{∣∣EX − 1

n

n∑

i=1

Xi

∣∣ ≥ t
}
≤ 2e

− 2nt2

(b−a)2 .

The proof is standard, and can be found, for instance, in Hoeffding (1963) or in Devroye

et al. (1996), page 122. We will sketch briefly the proof for the second inequality to

show later on why one can not use this inequality directly to bound the tail probabilities

for functions produced by learning algorithms. We will also need the following lemma

upper bounding the mgf of X, which we will state without proof (Devroye et al. 1996,

Lemma 8.1, page 122):

Lemma 3.4 Let X be a bounded random variable with EX = 0, a ≤ X ≤ b. Then for

any s > 0,

EesX ≤ es2(b−a)2/8.

Proof of Theorem 3.3: Let X = n−1
∑n

i=1 Xi and let s > 0 be a fixed number.

Since the exponential function is monotone, Pr {X ≥ t} = Pr
{
esX ≥ est

}
and we can

apply Markov’s inequality to Y = es(X−EX). We obtain

Pr {X − EX ≥ t} = Pr
{
es(X−EX) ≥ est

}

≤ e−st
Ees(X−EX)

= e−snt
Ees

Pn
i=1(Xi−EXi).
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Since es(Xi−EXi) are independent,

Ees
Pn

i=1(Xi−EXi) =
n∏

i=1

Ees(Xi−EXi). (3.1)

From Lemma 3.4, observing that a − EXi ≤ Xi − EXi ≤ b − EXi , it follows that

n∏

i=1

Ees(Xi−EXi) ≤
n∏

i=1

es2(b−a)2/8 = es2n(b−a)2/8,

and hence, by setting s = 4t/(b − a)2 , we have

Pr {X − EX ≥ t} ≤ e
− 2nt2

(b−a)2 .

A similar proof shows that Pr {X − EX ≤ −t} ≤ e
− 2nt2

(b−a)2 , and the claim of the

theorem follows from the union bound.

Thus, Hoeffding’s inequality provides a sub-Gaussian tail bound for sums of bounded

i.i.d. variables with zero mean 3. Note that the fact that the variables are bounded

implies that their sum is Lipschitz with respect to the `n
∞ metric.

The next two inequalities, due to Bernstein and Bennett, do take into account

the variance of the sum of bounded variables (see, for instance, Devroye et al. 1996,

Theorem 8.2, page 124). Their proof is similar to that of Hoeffding’s inequality.

Theorem 3.5 (Bennett’s inequality (Bennett 1962)) Let X1, . . . , Xn be indepen-

dent real-valued random variables such that Xi fall in the interval [a, b] with probability

one and have the same expectation EX. Let

σ2 =
1

n

n∑

i=1

Var (Xi) .

Then, for every t > 0,

Pr
{∣∣EX − 1

n

n∑

i=1

Xi

∣∣ ≥ t
}
≤ 2e

−nσ2

(b−a)2
h
“

(b−a)t

nσ2

”

where h(u) = (1 + u) log(1 + u) − u , for u ≥ 0.

By observing that for u ≥ 0, h(u) ≥ u2/(2 + 2u/3) , one can derive the following

inequality due to Bernstein.

3A result of similar flavour is true for sub-Gaussian processes, and in particular for the Rademacher
process

Pn
i=1 εiXi (see, e.g., van der Vaart and Wellner 1996, page 100).
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Theorem 3.6 (Bernstein’s inequality (Bernstein 1946)) Let X1, . . . , Xn be in-

dependent real-valued random variables such that Xi fall in the interval [a, b] with prob-

ability one and have the same expectation EX. Let

σ2 =
1

n

n∑

i=1

Var (Xi) .

Then, for every t > 0,

Pr
{∣∣EX − 1

n

n∑

i=1

Xi

∣∣ ≥ t
}
≤ 2e

− nt2

2σ2+2t(b−a)/3 .

Remark: Observe that Bernstein’s inequality is an improvement in comparison to

Hoeffding’s inequality whenever the variance σ2 is much smaller than (b − a)2/4. For

t such that t ≥ σ2, Bernstein’s inequality provides a sub-exponential tail (e−nt) rather

than a sub-Gaussian tail (e−nt2) bound rate as given by Hoeffding’s inequality. For

t < 1 and large n (the range we are interested in learning theory) this is a substantial

improvement.

In general, for any fixed function f bounded by [a, b], Hoeffding’s inequality for the

random variable Z = f(X) implies that

Pr
{∣∣Ef − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
≤ 2e

− 2nt2

(b−a)2 ,

or in other words, with probability at least 1 − δ over the random draw of samples

(X1, . . . , Xn),
∣∣Ef − 1

n

n∑

i=1

f(Xi)
∣∣ ≤ (b − a)

√
log(2/δ)

2n
. (3.2)

Bernstein’s inequality for the same variable yields

Pr
{∣∣Ef − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
≤ 2e

− nt2

2Var(f)+2t(b−a)/3 , (3.3)

which implies that with probability at least 1 − δ over the random draw of samples

(X1, . . . , Xn),

∣∣Ef − 1

n

n∑

i=1

f(Xi)
∣∣ ≤

√
2Var (f) log(2/δ)

n
+

2(b − a) log(2/δ)

3n
(3.4)

(where in order to obtain the above form (3.4), we solve the quadratic equation in t,

t2 = 2Var (f) log(2/δ)/n + t 2(b − a) log(2/δ)/3n , and then use that
√

A +
√

B ≥√
A + B for any A,B ≥ 0). For a fixed n and a function whose variance satisfies that
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Var (f) � log(1/δ)/n , the first term in (3.4) is small and the deviation is thus of the

order of O(log(1/δ)/n) . The order of the deviation, for a given confidence δ, becomes

O(c log(1/δ)/n) rather than O(c log(1/δ)/
√

n) in (3.2), and the deviation tail bound in

(3.3) is exponential (e−nt) rather than Gaussian (e−nt2).

As discussed in Section 2.2, for the analysis of learning algorithms, we are interested

in bounding deviations of means from expectations for the functions produced by a

learning algorithm. For any fixed function, we can apply Hoeffding’s and Bernstein’s

bounds. In equation (2.3), however, the function A(Z,H) depends on the sample

and is therefore itself random. Because the variables Xi = A(Z,H)(Zi) are no longer

independent, the argumentation of line (3.1) in the proof of Hoeffding’s inequality does

not hold for this case.

In order to avoid the technical difficulties posed by the randomness of the function

A(Z,H), one method to attack the problem is to upper bound (see (2.2), page 20)

the deviation of the expected from the empirical loss of this random function with a

worst-case uniform deviation of the form supf∈F

∣∣R (f)−R̂ (f,Z)
∣∣ (where F is either

the loss or the excess loss class). For finite classes F , a crude approach to bound such a

deviation is to use a concentration inequality for a single function (e.g., Hoeffding’s or

Bernstein’s inequality) and a union bound argument to combine them (e.g., Anthony

and Bartlett 1999, page 21). However, the union bound can be potentially very loose,

especially if the events in the union are statistically dependent (and this is easily the

case, for example, if the functions in F are correlated). For infinite classes F , one can

make use of the metric structure of F — for example in the spaces Lp(µn) — and

approximate the class F with a finite cover at a scale which is of the same order of

magnitude as the deviation. The loss of replacing F with its cover can be quantified

and one can proceed as in the case of finite classes (e.g., Anthony and Bartlett 1999,

page 143); again, the union bound is potentially loose. With such a covering approach,

in order to be able to prove learnability, the degree of concentration has to “beat” the

metric complexity of the class (as measured by the covering numbers or equivalently

metric entropy). Fortunately, as we will see in the next section, it is possible to take a

different approach and to derive concentration inequalities directly for the supremum

of empirical processes. These more sophisticated results simplify the earlier versions

for the proof and avoid the union bound and thus its potential looseness. Furthermore,

as presented in Section 4.2, they also allow one to separate the influence of the two key

properties — the degree of concentration and the complexity of the hypothesis class

— which play a role in the analysis of the generalization ability.

In the next section we present concentration inequalities with exponential tails

which can be applied directly to random variables of the form Z = supf∈F |Ef − En f |.
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3.1.3 Concentration Inequalities for General Functions

In this section, we present several results which allow one to derive concentration results

for general functions (as opposed to sums) of independent random variables. They differ

in the assumptions on which they are based. All of these assumptions are different ways

of ensuring that the functions are Lipschitz with respect to various metrics. We will

also emphasize how the different assumptions lead to potentially different degrees of

concentration.

Bounded differences and Rademacher averages for bounded sets

The first result generalizes Hoeffding’s inequality for general functions of independent

random variables. It is due to McDiarmid (McDiarmid 1989) and therefore also referred

to as McDiarmid’s inequality. It follows as a special case of a more general result called

Azuma’s inequality (Azuma 1967) based on martingale methods (see, e.g., Ledoux

2001, Chapter 4.1).

Theorem 3.7 (The bounded differences inequality (McDiarmid 1989))

Let X1, . . . , Xn be independent random variables taking values in a set Ω and assume

that f : Ωn −→ R satisfies the bounded difference condition, that is, for every 1 ≤
i ≤ n ,

sup
x1,...,xn,x′

i∈Ω

∣∣f(x1, . . . , xn) − f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣ ≤ ci .

Then, for every t > 0,

Pr
{∣∣f(X1, . . . , Xn) − Ef(X1, . . . , Xn)

∣∣ ≥ t
}
≤ 2e

− 2t2
Pn

i=1
c2
i .

This theorem states that, whenever a function of n independent random variables

satisfies the condition that a change in each coordinate separately is bounded by a

constant, the function is highly concentrated. As a special case, for bounded i.i.d.

random variables and f being the sum, we obtain Hoeffding’s inequality. The bounded

difference condition is one way of ensuring a Lipschitz condition with respect to the

Hamming metric, namely,

|f(x) − f(y)| ≤ max
i

ci dH(x,y) ,

which leads to concentration of measure.

In order to compare Theorem 3.7 to Hoeffding’s inequality, we will apply it to the

supremum of an empirical process. The only assumption we require in this case is

boundedness of the functions. We obtain the following corollary:



42 Tools

Corollary 3.8 Let F be a class of functions which take values in [a, b], let X1, ..., Xn

be independent random variables distributed according to µ, and let Z = supf∈F

∣∣Ef −
1
n

∑n
i=1 f(Xi)

∣∣ . Then for every δ > 0, with probability at least 1 − δ over the random

choice of samples,

Z ≤ EZ + (b − a)

√
log(2/δ)

2n
.

By comparing this result to (3.2), we observe that we obtained a Hoeffding-type

bound which holds uniformly over the class F . The proof can be found for exam-

ple in Boucheron et al. (2004a) and relies on the fact that, because the functions in F

are bounded, the variable Z satisfies the bounded difference condition with constants

ci = (b − a)/n.

Another direct corollary of Theorem 3.7 is the following useful concentration result

for the suprema of Rademacher processes indexed by a subset of a ball in `n
∞. Recall

that the supremum of a Rademacher process indexed by a set V ⊂ R
n is defined as

supv∈V |∑n
i=1 εivi| , where ε = (ε1, . . . , εn) are independent Rademacher variables (see

Appendix A, page 119). The following result can be found, for example, in van der

Vaart and Wellner (1996), page 101.

Corollary 3.9 (Concentration of suprema of Rademacher processes) For ev-

ery set V ⊂ bBn
∞ , let Z = supv∈V

∣∣∑n
i=1 εivi

∣∣ . Then, for every t > 0,

Prε {|Z − Eε Z| ≥ t} ≤ e−
t2

2b2n ,

where the probability is taken with respect to the Rademacher random variables ε.

This corollary immediately applies to Rademacher sums of functions bounded by b,

and its proof is similar to the proof of the previous corollary.

Proof: Define h(ε1, . . . , εn) := supv∈V |∑n
i=1 εivi|. By the triangle inequality, for

every 1 ≤ i ≤ n,

sup
{ε1,...,εn,ε̃i}

|h(ε1, . . . , εn) − h(ε1, . . . , εi−1, ε̃i, εi+1, . . . , εn)| ≤ 2b,

and the claim follows directly from McDiarmid’s bounded differences inequality for

h.

Thus, the fact that V is bounded with respect to the supremum norm `n
∞ is already

sufficient to ensure concentration of the suprema of Rademacher averages.

Convexity and Rademacher averages

The last corollary we presented, showing that suprema of Rademacher processes are

concentrated, is based on the boundedness of the set V and follows from concentration
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results using martingale methods. However, Talagrand has shown that the convexity

of a function of a random variable, together with a Lipschitz condition, can lead to

potentially tighter concentration results. This result follows from the famous convex

distance inequality (Talagrand 1995) (see also Ledoux (2001), Chapter 4.2).

For convex Lipschitz functions, we will present here one concentration result based

on Talagrand’s convex distance inequality which can be found in Ledoux (2001), Corol-

lary 4.10, page 77:

Theorem 3.10 (Corollary of Talagrand’s convex distance inequality for con-

vex functions) For every probability measure µ on [0, 1]n, and every convex function

F on R
n which is Lipschitz with respect to the `n

2 metric with Lipschitz constant L, let

X be distributed according to µ and denote by MµF (X) the median of F . Then, for

every t ≥ 0,

Pr {|F (X) − MµF (X)| ≥ t} ≤ 4e−t2/4L2
.

Talagrand’s convex distance inequality refers to concentration around the median

rather than the expectation of Z. Since concentration implies that median and ex-

pectation are close (within a constant), one can derive a result for the tail deviation of

F from its expectation and replace the median by the mean up to universal constants.

Observe that, if V ⊂ `n
2 , one can define a norm on R

n given by |||x||| :=

supv∈V |〈v,x〉| , where 〈·, ·〉 is the inner product in `n
2 . Hence, the function x 7→ |||x|||

is convex. In particular, the function ε 7→ supv∈V

∣∣∑n
i=1 εivi

∣∣ is convex, as it is a

norm because supv∈V

∣∣∑n
i=1 εivi

∣∣ = |||∑n
i=1 εiei||| , where {e1, . . . , en} is the standard

orthonormal basis in `n
2 . It is easy to see that, if V is bounded in `n

2 , then the function

x 7→ |||x||| is also Lipschitz with Lipschitz constant supv∈V ‖v‖2 . Indeed, by the triangle

inequality and Cauchy-Schwartz inequality, it follows that

∣∣|||x||| − |||x′|||
∣∣ ≤ sup

v∈V

∣∣〈v,x − x′〉
∣∣ ≤ sup

v∈V
‖v‖2‖x − x′‖2 .

Thus, one can apply the corollary of Talagrand’s convex distance inequality to

suprema of Rademacher processes. The resulting corollary can be also found, for

example, in Ledoux (2001), page 76 (see also Ledoux (2001), Chapter 7).

Theorem 3.11 (Corollary of Talagrand’s convex distance inequality for su-

prema of Rademacher processes) For every set V ⊂ vBn
2 , let Z = supv∈V

∣∣∑n
i=1 εivi

∣∣
and denote by MεZ the median of Z. Then, for every t > 0,

Prε {|Z − MεZ| ≥ t} ≤ 4e−
t2

4v2 .

Furthermore,

|EεZ − MεZ| ≤ 4πv and Var (Z) ≤ 16v2 .
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Note that if V is bounded with respect to the `n
∞ metric, one can recover the bound

from Corollary 3.9, by observing that for any v ∈ V ⊆ R
n , ‖v‖2 ≤ √

n‖v‖∞ . However,

if more information on the set V is available which ensures that V has a much smaller

diameter in `n
2 than

√
n b (where b is the diameter of V in `n

∞), then the corollary of

Talagrand’s convex distance inequality gives an improvement on the bound in Corollary

3.9.

Control of the variance

A difficult and long-open question has been the derivation of a Bernstein-type counter-

part which holds uniformly over a function class and which allows one to take advantage

of functions with small variances.

Note that the fact that a bound on the maximal variance of a function class is

connected to stronger concentration is already exhibited in Theorem 3.11. Indeed, if

F is a bounded function class, then by symmetrization techniques (see Section 3.2,

Corollary 3.19), the tail probabilities of supf∈F |Ef − Enf | are controlled by those

of supf∈F |∑n
i=1 εif(Xi)| , and therefore, following Theorem 3.11, by the maximal `n

2

norm of the coordinate projections of F on the random sample. For large n, Ef 2 ∼∑n
i=1 f2(Xi)/n , and thus Var (f) ∼ ‖(f(X1), . . . , f(Xn))‖2

2/n . Hence , control of the

`n
2 norm of the projections can be connected to control of the variances of the functions

in the class.

Historically, a range of results existed for limit theorems (n going to ∞) for the su-

prema of weighted empirical processes (see Giné et al. (2004) and references therein).

For the finite sample case, Vapnik and Chervonenkis (1971) were the first to prove, for

binary-valued classes of functions (a case in which the variance is the same as the expec-

tation), uniform bounds for the weighted empirical process

Z = supf∈F

(
|Ef − En f | /√Ef

)
. Their proof is based on a union bound argument

combined with Hoeffding’s inequality, a proof very similar to early proofs for the un-

weighted case. In the statistical learning theory context, variations, generalizations to

real-valued functions, and improvements were given for example by Haussler (1992);

Anthony and Shawe-Taylor (1993); Lee et al. (1996); Bartlett and Lugosi (1999); An-

thony and Bartlett (1999) (see also Bousquet (2002b) and references therein).

A breakthrough occurred with Talagrand’s inequality, based on concentration in

product spaces (Talagrand 1995). Talagrand’s general result allows one to get directly

a Bernstein’s (Bennett’s) type inequality for suprema of empirical processes 4. It was

originally proved in Talagrand (1994, 1996b). A convenient version is due to Massart:

4See Talagrand’s induction method, Talagrand (1995, 1996b,c); Ledoux (2001); Panchenko (2001,
2002, 2003) and also Massart (2000b); Boucheron et al. (2000); Bousquet (2002b); Boucheron et al.
(2003); Bousquet (2002a); Massart (2003); Boucheron et al. (2004a).
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Theorem 3.12 (Talagrand’s concentration inequality) Let F be a class of func-

tions defined on a measurable space (Ω, µ), such that for every f ∈ F , ‖f‖∞ ≤ b , and

such that Ef = 0. Let X1, ..., Xn be independent random variables distributed according

to µ and set σ2 = n supf∈F Var (f) . Let

Z = sup
f∈F

n∑

i=1

f(Xi),

Z̄ = sup
f∈F

∣∣
n∑

i=1

f(Xi)
∣∣.

Then there is an absolute constant c > 0 such that, for every t > 0 and every ρ > 0,

the following holds:

Pr
{

Z ≥ (1 + ρ)EZ + σ
√

ct + c(1 + ρ−1)bt
}
≤ e−t,

P r
{

Z ≤ (1 − ρ)EZ − σ
√

ct − c(1 + ρ−1)bt
}
≤ e−t,

and the same inequalities hold for Z̄.

The inequality for Z̄ is due to Massart (2000a). The one sided versions were shown by

Rio (2001) and Klein (2002). For b = 1, the best estimates on the constants in all cases

are due to Bousquet (2002b). As we can see, the concentration inequalities depend on

a combination of the maximal variance of the functions in the class and the maximal

`n
∞ norm, allowing us to take advantage in cases in which one can ensure a priori that

the variances of all functions are small.

Very recently, Bernstein-like inequalities for general functions (as opposed to su-

prema of empirical processes) satisfying a specific Lipschitz condition were derived in

Boucheron et al. (2000, 2003); Bousquet (2002a); Boucheron et al. (2005). They are

based on the idea (similar to the one in the Efron-Stein inequality, (see, e.g., Lugosi

2003) to bound the variance in terms of “partial variances”. The Lipschitz condition

is different from that used in McDiarmid’s bounded differences inequality: whereas in

McDiarmid’s inequality, functions have to be only within a constant when replacing

any one variable from the sample, the self-bounding condition restricts the values of

the function when compared to another function which depends on less variables. The

proof for the results uses the entropy method based on logarithmic Sobolev inequalities

(see, e.g., Ledoux 2001, Chapter 5). Such Bernstein-type inequalities can be applied to

prove the concentration of empirical complexities as shown in Boucheron et al. (2000,

2003) (see the following Lemma 3.15).

Here we state one result for functions satisfying the self-bounding property (condi-

tions 1 and 2 in Theorem 3.13), a generalization of the bounded differences property.

One can show that the self-bounding property implies that Var (f) ≤ Ef (e.g., Lugosi
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2003), and thus is a property which allows one to control the variance.

Theorem 3.13 (Concentration of self-bounding functions) Let X1, . . . , Xn be in-

dependent random variables taking values in a set Ω, and set Z = f(X1, . . . , Xn) to

be a random variable. Assume that there is a function g : Ωn−1 −→ R satisfying the

following for all {x1, . . . , xn} ⊂ Ω :

1. 0 ≤ f(x1, . . . , xn) − g(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1 for every 1 ≤ i ≤ n ,

2.
∑n

i=1 (f(x1, . . . , xn) − g(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ f(x1, . . . , xn) .

Then, for every t > 0,

Pr {Z ≥ EZ + t} ≤ e
− t2

EZ+2t/3 ,

P r {Z ≤ EZ − t} ≤ e−
t2

2EZ .

Observe that the expectation appears in the exponent of the bound, and thus the degree

of concentration is dependent on the value of the expectation. Indeed, whenever the

expectation of a self-bounding function is of the order of the deviation t or smaller,

EZ ≤ ct, Theorem 3.13 gives a tail bound of the order e−c′t (as opposed to e−c′t2 in

the bounded differences inequality, Theorem 3.7).

In the following, we will state two lemmata with regard to self-bounding functions

which will be useful later on. The first one states that self-bounding symmetric func-

tions evaluated on a double sample do not grow too fast in comparison to their value

on a single sample.

Lemma 3.14 Let (fn)n∈N be a series of functions such that, for any n, the following

three conditions hold:

1. fn : Ωn −→ R,

2. fn satisfies the self-bounding property (conditions 1 and 2 in Theorem 3.13) with

respect to g = fn−1,

3. fn is symmetric (that is, it is invariant with respect to permutations of its

variables).

Let µ be a probability measure on Ω. Then, for any n and X1, . . . , X2n distributed

i.i.d. according to µ,

Eµ2n f2n(X1, . . . , X2n) ≤ 2Eµn fn(X1, . . . , Xn) . (3.5)

Furthermore, there exist absolute constants c, c′ > 0 such that, for any t′ > 0, if

Eµn fn(X1, . . . , Xn) = d then with probability at least 1 − e−cd − e−c′t′2/d,

f2n(X1, . . . , X2n) ≤ 4fn(X1, . . . , Xn) + t′ .
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Proof: For any n, by the symmetry of fn, and taking the expectation in condition 2

implies that

n(Eµn fn(x1, . . . , xn) − Eµn−1 fn−1(x1, . . . , xn−1)) ≤ Eµn f(x1, . . . , xn) , (3.6)

and thus

Eµn fn(x1, . . . , xn) ≤ n

n − 1
Eµn−1 fn−1(x1, . . . , xn−1) .

Applying the last inequality to n + 1, . . . , 2n proves thus claim (3.5).

In order to obtain (3.6) we apply Theorem 3.13 to both

Z1 = fn(X1, . . . , Xn) and Z2 = f2n(X1, . . . , X2n) .

Let d = EZ1. From (3.5), EZ2 ≤ 2d . By Theorem 3.13, for any t, t′ > 0,

Pr
{
4Z1 ≤ 4d − 4(t + t′)

}
= Pr

{
Z1 ≤ d − (t + t′)

}
≤ e−(t+t′)2/2d ≤ e−t′2/2d

and

Pr {Z2 ≥ 2d + t} ≤ Pr {Z2 ≥ EZ2 + t} ≤ e−t2/(EZ2+2t/3) ≤ e−t2/(2d+2t/3) .

Observe that for t = 2d/5, 4d − 4t = 2d + t, and therefore 4Z1 + 4t′ ≥ 4d − 4t and

Z2 ≤ 2d + t implies 4Z1 + 4t′ ≥ Z2. Thus,by the union bound,

Pr
{
4Z1 + 4t′ ≥ Z2

}
≥ Pr

{
4Z1 + 4t′ ≥ 4d − 4t and Z2 ≤ 2d + t

}

≥ 1 − Pr
{
4Z1 + 4t′ < 4d − 4t

}
− Pr {Z2 > 2d + t}

≥ 1 − e−t′2/2d − e−t2/(2d+4d/15) ≥ 1 − 2e−4d/75 − e−t′2/2d .

Thus, the self-bounding property for symmetric functions implies, besides a strong

concentration for any n, that these functions do not grow “too much” as a function of

n, since Ef2n/Efn ≤ 2. For large values of d, with very high probability, f2n ≤ cfn.

In particular, this applies to empirical complexities of a function class F , since the

empirical VC-dimension, empirical VC-entropy, empirical fat-shattering dimension, and

empirical Rademacher averages of F are self-bounding, symmetric functions, as shown

in the following corollary.

Lemma 3.15 Let F be a class of binary-valued functions. Then the empirical VC-

dimension and the empirical VC-entropy are self-bounding, symmetric functions, which

satisfy, for each n, conditions 1,2, and 3 in Lemma 3.14. If F is a class of functions

bounded by [−1, 1], the same holds for the empirical fat-shattering dimension and the
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empirical Rademacher averages of F .

In order to prove the self-bounding property, define

gdV C
(x1, . . . , xn−1) = V̂ C (F, (x1, . . . , xn−1)) ,

g bHV C
(x1, . . . , xn−1) = ĤV C (F, (x1, . . . , xn−1)) ,

g bRn
(x1, . . . , xn−1) = R̂n (F, (x1, . . . , xn−1)) ,

and, for any fixed ε, let

gcfatε
(x1, . . . , xn−1) = f̂atε (F, (x1, . . . , xn−1)) ,

and check that conditions 1 and 2 are satisfied in each case. Detailed proofs can be

found in Boucheron et al. (2004a). The symmetry is clear from the definition.

Since the empirical complexities in Lemma 3.15 are self-bounding functions, it

follows from Theorem 3.13 that they are highly concentrated around their expectation.

Additionally, as a function of the sample size n, they do not grow “too much”, since

with high probability f2n/fn ≤ c. This is a strong constraint if we consider that

the cardinality of the coordinate projections of F onto random samples of size 2n

compared to that onto random samples of size n could grow exponentially with n, that

is f2n/fn ∼ 2n.

We will state explicitly the concentration result for the empirical Rademacher aver-

ages following from Theorem 3.13 in a form which will be convenient for later results in

this thesis. This corollary shows how the Rademacher averages of a class can be upper

bounded by the empirical Rademacher averages of this class. The following formulation

can be found in Bartlett et al. (2004a). Note that, for general bounded functions, in

order to apply Lemma 3.15 one has to first scale the functions such that they only take

values in [−1, 1].

Corollary 3.16 Let F be a class of bounded functions defined on Ω taking values in

[a, b], and let µ be a probability measure on Ω. Then, for any 0 ≤ α ≤ 1 and any

t > 0, with probability at least 1 − e−t,

Rn (F ) ≤ 1

1 − α
R̂n (F ) +

(b − a)t

4α(1 − α)
.

We conclude this section by noting that, although we apply the inequalities pre-

sented in this section only in our specific machine learning setting, their usefulness is

far reaching beyond machine learning applications 5.

5They were used for results in analysis of algorithms, discrete and combinatorial mathematics
(graph theory), geometry, functional analysis and infinite-dimensional integration, complexity theory,
and probability theory (McDiarmid 1998; Molloy 1998; Steele 1997; Boucheron et al. 2004a).
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3.2 Symmetrization

The symmetrization technique was first considered by Kahane (1968), and further

developed by Hoffmann-Jørgensen (1977). The following variants of symmetrization

results for probabilities and expectations can be found, together with their proofs, in

van der Vaart and Wellner (1996), Chapter 2.3.

Let F be a class of real-valued functions defined on a measurable space Ω and

which take values in [−1, 1], and set µ to be a probability measure on Ω. Let X1, ..., Xn

be independent random variables distributed according to µ. The main idea of sym-

metrization is to introduce an additional i.i.d. sample (X ′
1, . . . , X

′
n) (the “ghost sam-

ple”) which is independent of (X1, . . . , Xn). The symmetrization technique makes it

possible to relate the deviation of a mean from the expectation to the deviation of

the empirical means evaluated on two different samples. This is a key procedure for

obtaining data-dependent generalization error bounds.

Theorem 3.17 (Symmetrization by a ghost sample) Let F be defined as above.

Then, for any probability measure µ and every t > 0,

(
1 − 4

nt2
sup
f∈F

Var (f)

)
PrX

{
sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣ ≥ t

}

≤ PrX,X′

{
sup
f∈F

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

2

}
,

where X = (X1, ..., Xn) is an i.i.d. sample distributed according to µn , and X′ =

(X ′
1, ..., X

′
n) is an independent copy of X.

Also,

EX

{
sup
f∈F

∣∣
n∑

i=1

f(Xi) − Eµf
∣∣
}

≤ EX,X′

{
sup
f∈F

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣
}

.

The proof is standard and can be found for example in van der Vaart and Wellner

(1996), pages 108 and 112. The first inequality is based on estimating the probability

that, for any given function f , both independent events
∣∣∑n

i=1 f(Xi) − Eµf
∣∣ ≥ t

and
∣∣∑n

i=1 (f(X ′
i) − Eµf)

∣∣ ≤ t/2 hold simultaneously. The probability of the second

event can be lower bounded with Chebyshev’s inequality for the complementary event

(Theorem 3.2, page 36), which leads to the factor
(
1 − 4

nt2
supf∈F Var (f)

)
on the left-

hand side. The second inequality follows directly from the triangle inequality.

Theorem 3.18 (Symmetrization by random signs) Let F be defined as above.
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For every t > 0,

PrX,X′

{
sup
f∈F

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

2

}
≤ 2PrX,X′,ε

{
sup
f∈F

∣∣
n∑

i=1

εif(Xi)
∣∣ ≥ t

4

}
,

where X = (X1, ..., Xn) is an i.i.d. sample distributed according to µn, X′ = (X ′
1, ..., X

′
n)

is an independent copy of X, , and ε = (ε1, . . . , εn) are independent Rademacher vari-

ables.

Also,

EX,X′

{
sup
f∈F

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣
}

≤ 2EX,ε

{
sup
f∈F

∣∣
n∑

i=1

εif(Xi)
∣∣
}

.

A proof can be found in van der Vaart and Wellner (1996), pages 109 and 112, and

follows directly from the triangle inequality, the convexity of the supremum, and the

fact that X and X′ have the same distribution.

The following two corollaries follow directly by combining the results for the prob-

abilities and expectations in Theorems 3.17 and 3.18. They relate the tail probability

and the expectation of supf∈F |Ef−Enf | to the Rademacher penalties and Rademacher

averages of F .

Corollary 3.19 (Symmetrization for probabilities) Let F be a class of bounded

functions defined on a probability space (Ω, µ), let X1, ..., Xn be independent random

variables distributed according to µ, and denote by Enf the empirical average of f ∈ F

on X1, ..., Xn. Then, for any t > 0 and for any n ≥ 8 supf∈F Var (f) /t2 ,

Pr

{
sup
f∈F

|Ef − Enf | ≥ t

}
≤ 2Pr

{
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ ≥
t

4

}
.

Corollary 3.20 (Symmetrization for expectations) Let F be a class of functions

defined on a probability space (Ω, µ), and let X1, ..., Xn be independent random variables

distributed according to µ. Then,

E sup
f∈F

|Ef − Enf | ≤ 2
Rn (F )

n
,

where Rn (F ) are the Rademacher averages of F .



Chapter 4

A General Framework for

Data-Dependent Generalization

Bounds

4.1 Motivation and Overview

In this chapter, we present a new framework to derive generalization bounds for learn-

ing algorithms which extends the standard approach from a fixed hypothesis class to

random classes of hypothesis functions, that is, to function classes which depend on

the sample. Recall that the standard approach is based on the analysis of uniform

deviations of empirical averages from their expectations by deriving estimates for the

probability

PrX

{
sup
f∈F

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
, (4.1)

where F is the entire loss or excess loss class and X = (X1, ..., Xn) is an i.i.d. sample

of size n distributed according to a probability measure µn. The results obtained

hold therefore for any hypothesis function in the hypothesis class, and are usually

pessimistic when applied to the specific function produced by a specific algorithm.

Thus, it is desirable to get an estimate for the tail probability of the deviation of

empirical averages from their expectations only for the hypothesis function produced

by the specific learning algorithm when presented with the actual training sample.

However — and this is the motivation to explore bounds for random classes of

functions — the function produced by the algorithm based on a random sample depends

on this sample and is therefore a random function. For example, for support vector

machines this function is the hyperplane having a maximum margin on the actual

sample. The difficulty which arises in analyzing its generalization ability with the usual

concentration tools is that the loss of this function is also random and could change

51
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with the sample. As presented in Section 3.1, Hoeffding’s or Bernstein’s exponential

inequalities rely on the fact that all the summands of the sum
∑n

i=1(Xi − EXi) are

independent (see equation (3.1) in the proof of Hoeffding’s inequality). Applied to the

random variables f(Xi), if f is a random function, this independence does not hold.

Hence, it is not possible to use the classical generalization bounds which are based on

Hoeffding’s or Bernstein’s inequalities (Theorem 3.3 and 3.6) in order to directly bound

the tail of the deviation of the empirical average from the expectation for this single

function.

Furthermore, it can be useful to derive generalization bounds not only for the loss

of the one function produced by an algorithm, but for the losses of a larger random

subset of the function class in which the output function will be contained (however,

this random subset could still be significantly “smaller” than the whole hypothesis

class). For example, in case of noisy data, it is useful to relax the support vector

optimization constraint and allow the algorithm to produce a hyperplane having a

margin which differs by at most ε from the margin of the maximum margin hyper-

plane. In this case, one is interested in a bound which holds uniformly for all losses

corresponding to the hyperplanes ε away from the maximum margin solution. An-

other random subset of functions which is interesting for kernel algorithms is the data-

dependent class K = {∑n
i=1 αik(xi, ·) : (α1, α2, . . . , αn) ∈ R

n} (see page 34), as this

class is potentially much smaller than the set of all linear combinations of kernel func-

tions span ({k(x, ·) : x ∈ Ω}) which form the hypothesis class.

In the following, we will show that it is possible to modify the classical proof for

deriving uniform tail bounds for (4.1) in order to obtain generalization bounds for ran-

dom classes of functions. The tools we use are modified symmetrization techniques

and concentration results (Section 4.2). We will particularly show that the mecha-

nism which allows one to obtain generalization bounds for random subclasses is based

on the following two principles: The first, which guarantees learnability, is a “small

complexity” of random classes measured by Rademacher averages of certain random

coordinate projections. The second, which determines the confidence intervals and the

sample complexity, is the degree of concentration of suprema of Rademacher processes

indexed by these same random coordinate projections.

In order to demonstrate the generality of the proposed framework for random sub-

class bounds, we will then give different examples of results which follow as special

cases from the random subclass framework (Section 4.3). We will first show that the

classical Glivenko-Cantelli results fall easily within our framework (Section 4.3.1), as

well as some previously proposed bounds for random classes of functions derived in

Gat (1999) and Cannon et al. (2002) (Section 4.3.2).

Furthermore, a range of seemingly different frameworks like compression schemes

(Littlestone and Warmuth 1986; Floyd and Warmuth 1995), sparsity (Herbrich and
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Williamson 2002), and the luckiness bounds (Shawe-Taylor et al. 1998; Herbrich and

Williamson 2002) also fall into our framework. These frameworks were derived based

on a different philosophy, as their starting point is to use, besides the standard assump-

tions of a probabilistic model, prior knowledge about properties of the specific algorithm

or about the distribution. The complexity notions defined in these frameworks reflect

these different assumptions and are thus different from the uniform complexity notions

in statistical learning theory. Nevertheless, as we will show in Sections 4.3.3 and 4.3.4,

the assumption made in the compression, sparsity, and luckiness frameworks are intrin-

sically the same as in our random subclass framework (and thus also the same as in the

classical framework), namely, they are just different ways of ensuring small coordinate

projections paired with a sufficient condition for concentration.

Finally, we will demonstrate that the reason why one can derive sharper bounds on

the sample complexity for ERM is also a combination of small coordinate projections

and a strong concentration result. In Section 4.3.5, we will show that the crucial

property allowing us to derive these sharper bounds on the sample complexity for

ERM is the fact that one can control the variance of the functions in the class by

the expectation and that this control of the variance allows us to obtain this stronger

degree of concentration.

The results presented in this chapter were published (in a slightly different form)

in Mendelson and Philips (2003, 2004).

4.2 Random Subclass Bounds

Let F be a class of bounded real-valued functions defined on a measurable space Ω with

underlying measure µ and taking values in [−b, b]. Recall that, in the learning setting,

such a class arises as a loss or excess loss class associated with a fixed hypothesis class

and a bounded loss function. For every integer n, let Fn denote a set-valued map which

assigns to each x ∈ Ωn a subset of F . The quantity we want to bound in the sequel is

the probability

PrX

{
sup

f∈Fn(X)

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
, (4.2)

where X = (X1, ..., Xn) is a random sample drawn according to µn.

Many results of statistical learning theory are for non-random classes of functions,

Fn(X) = F , where one obtains a “worst-case” bound on the generalization error which

holds uniformly over the entire loss class associated with the hypothesis class. The

other extreme is to provide a bound only for the singleton containing the loss of the

function produced by a specific learning algorithm from X.

In this section, we will derive generalization bounds for random classes of functions.

As we will show, the complexity notion which determines the generalization bound for



54 A General Framework for Data-Dependent Generalization Bounds

random classes are random coordinate projections of certain symmetric sets, similar to

the coordinate projections in the non-random case.

The derivation is analogous to the non-random case (see Section 3.2). It is based

on two symmetrization steps followed by application of a concentration inequality.

4.2.1 Symmetrization

The main result we present in this section, Theorem 4.5, is a random symmetriza-

tion theorem which will enable us to bound the quantity in equation (4.2) in terms

of suprema of Rademacher processes associated with sets of coordinate projections.

Following the original proof of the Glivenko-Cantelli case, we employ a symmetrization

procedure in two steps: first, a symmetrization by a ghost sample which relates the

deviation of the expectation from the empirical average of functions in a random class

to the deviation of the empirical averages evaluated on two different samples; second, a

symmetrization by signs which relates the latter deviation to the probability of having

“large” Rademacher sums.

The first symmetrization step is a variation of the standard symmetrization step

for probabilities (Theorem 3.17). The proof follows closely the proof for non-random

function classes given in van der Vaart and Wellner (1996) (Lemma 2.3.7, page 112).

Lemma 4.1 (Symmetrization by a ghost sample) Let Fn be defined as above. For

any probability measure µ, and every t > 0,

(
1 − 4n

t2
sup
f∈F

Var (f)
)
PrX

{
∃f ∈ Fn(X),

∣∣
n∑

i=1

(
f(Xi) − Eµf

)∣∣ ≥ t
}

≤PrX,X′

{
∃f ∈ Fn(X),

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

2

}
,

where X = (X1, ..., Xn) is an i.i.d. sample distributed according to µn and X′ =

(X ′
1, ..., X

′
n) is an independent copy of X.

Proof: Fix t > 0. Let

β := inf
f∈F

PrX

{∣∣
n∑

i=1

(f(Xi) − Eµf)
∣∣ ≤ t/2

}

and define the subset A ⊆ Ωn as

A :=
{
x ∈ Ωn : ∃f ∈ Fn(x),

∣∣
n∑

i=1

(f(xi) − Eµf)
∣∣ ≥ t

}
.

By the definition of A, for every element x ∈ A there is some fx ∈ Fn(x) such
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that |∑n
i=1 (fx(xi) − Eµfx) | ≥ t . Fix this function f and observe that by the triangle

inequality,

if
∣∣

n∑

i=1

(
fx(X ′

i) − Eµfx

) ∣∣ ≤ t/2 then
∣∣

n∑

i=1

(
fx(xi) − fx(X ′

i)
) ∣∣ ≥ t/2 . (4.3)

Since X′ is an independent copy of X,

β ≤ PrX′

{∣∣
n∑

i=1

(
fx(X ′

i) − Eµfx

) ∣∣ ≤ t

2

}
(definition of β)

≤ PrX′

{∣∣
n∑

i=1

(
fx(xi) − fx(X ′

i)
) ∣∣ ≥ t

2

}
(by (4.3))

≤ PrX′

{
∃f ∈ Fn(x),

∣∣
n∑

i=1

(
f(xi) − f(X ′

i)
) ∣∣ ≥ t

2

}
=: α(x) . (4.4)

Note that β is independent of the specific selection of f ∈ F , and the extreme right

side of this inequality is independent of the specific selection of f ∈ Fn(x). Inequality

(4.4) holds on the whole set A, and therefore we can integrate both extreme sides of the

inequality with respect to x on A. First, recall the basic fact that for any set A ⊆ Ωn ,∫
A dµn(X) =

∫
Ωn IA(X) dµn(X) = PrX{A}. Therefore, by integrating inequality (4.4)

we obtain βPrX{A} ≤
∫
A α(x) dµn(X). We can write α(x) in terms of the indicator

function of the set A′(X) as α(x) =
∫
Ωn IA′(X)(X

′) dµn(X′), where

A′(x) :=
{
x′ ∈ Ωn : ∃f ∈ Fn(x),

∣∣
n∑

i=1

(
f(xi) − f(x′

i)
) ∣∣ ≥ t

2

}
.

Since this quantity is always positive, the integral over the set A is upper bounded by

the integral over the whole set Ωn, and therefore
∫
A α(x) dµn(X) is upper bounded by

∫

Ωn

(∫

Ωn

IA′(X)(X
′) dµn(X′)

)
dµn(X) =

∫

Ω2n

IA′(X)(X
′) dµ2n(X,X′) .

It follows that

βPrX

{
∃f ∈ Fn(X),

∣∣
n∑

i=1

(f(xi) − Eµf)
∣∣ ≥ t

}

≤ PrX,X′

{
∃f ∈ Fn(X),

∣∣
n∑

i=1

(
f(Xi) − f(X ′

i)
) ∣∣ ≥ t

2

}
.
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Finally, to estimate β, note that by Chebyshev’s inequality (Theorem 3.2, page 36),

PrX

{∣∣
n∑

i=1

(f(Xi) − Eµf)
∣∣ ≥ t

2

}
≤ 4n

t2
Var (f)

for every f ∈ F , and thus, β ≥ 1 − (4n/t2) supf∈F Var (f).

The second symmetrization step relates the tail behaviour of deviations of empirical

averages evaluated on two samples to the behaviour of the supremum of a Rademacher

process. Its importance lies in the fact that we can study the behaviour of suprema

of Rademacher processes by studying their expectation, since suprema of Rademacher

processes are concentrated around their expectation (cf. Corollary 3.9 and Theorem

3.11). This symmetrization step requires an additional property of the random subclass,

namely, that it is invariant under permutations of the sample.

Definition 4.2 (symmetric function) Let Φn be a set-valued map from Ωn to sub-

sets of F . We say that the function Φn is symmetric, if for every x ∈ Ωn and every

permutation π(x) of x, Φn(x) = Φn (π(x)) .

Lemma 4.3 (Symmetrization by random signs) Let F sym
2n be a symmetric map

from subsets of Ω2n to subsets of F . Then, for any probability measure µ on Ω and

every t > 0,

PrX,X′

{
∃f ∈ F sym

2n ((X,X′)),
∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

}

≤ 2PrX,X′,ε

{
∃f ∈ F sym

2n ((X,X′)),
∣∣

n∑

i=1

εif(Xi)
∣∣ ≥ nt

2

}
,

where X = (X1, ..., Xn) is an i.i.d. sample distributed according to µn, X′ = (X ′
1, ..., X

′
n)

is an independent copy of X, , and ε = (ε1, . . . , εn) are independent Rademacher vari-

ables.

Proof: By the symmetry of F sym
2n it follows that for every (ε1, ..., εn) ∈ {−1, 1}n,

PrX,X′

{
∃f ∈ F sym

2n ((X,X′)),
∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

}

= PrX,X′

{
∃f ∈ F sym

2n ((X,X′)),
∣∣ 1
n

n∑

i=1

εi

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

}
.

Taking the expectation with respect to the random signs (that is, with respect to the

Rademacher random variables ε), the proof follows from the triangle inequality and

the fact that (X1, ..., Xn) has the same distribution as (X ′
1, ..., X

′
n).
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In order to make use of the two symmetrization results, we need to find an appro-

priate symmetric set-valued map F sym
2n . The following definition relating the set-valued

maps Fn and F sym
2n will be needed later:

Definition 4.4 (δ-symmetric condition) Let Fn and F sym
2n be set-valued maps. We

say that Fn and F sym
2n satisfy the δ-symmetric condition, if there exists a constant δ > 0

such that, for every t > 0,

PrX,X′

{
∃f ∈ Fn(X),

∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

}
≤

PrX,X′

{
∃f ∈ F sym

2n ((X,X′)),
∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣ ≥ t

}
+ δ , (4.5)

where X = (X1, ..., Xn) and X′ = (X ′
1, ..., X

′
n).

The δ-symmetric condition quantifies that by replacing the original random subset of

hypotheses with another symmetric random subset dependent on the double-sample

— and which is therefore invariant under permutations of this double-sample — the

probability of having large deviations of empirical means evaluated on the sample and

ghost sample increases by at most δ. Thus, by giving up only a constant probability,

we can proceed with the symmetrization by random signs which reduces the estimation

of a bound on the generalization ability for random classes of functions to the study of

Rademacher processes indexed by random sets.

Note that (4.5) holds trivially with a constant δ = 0 if for every double-sample

(X,X′), Fn(X) ⊆ F sym
2n ((X,X′)) . An extreme case occurs when both set-valued maps

are the constant set-valued map, Fn(X) = F sym
2n ((X,X′)) = F .

Given Fn, one can always define a symmetric mapping F sym
2n to satisfy (4.5) with

δ = 0 as the symmetric extension of Fn. The symmetric extension Sym(x1,...,x2n)(Fn)

is defined to be the union of all subsets corresponding to the first half of permutations

of the double-sample (x1, . . . , x2n),

Sym(x1,...,x2n)(Fn) :=
⋃

π∈S2n

Fn

(
π(x1, . . . , x2n)|ni=1

)
, (4.6)

where S2n is the set of all permutations of the numbers 1, . . . , 2n, and π(x1, . . . , x2n) =

(xπ(1), . . . , xπ(2n)) . If for every double-sample (X,X′), F sym
2n (X,X′) := SymX,X′(Fn) ,

then F sym
2n and Fn satisfy a 0-symmetric condition, since Fn(X) ⊆ F sym

2n ((X,X′)) .

Although we can always find a symmetric mapping F sym
2n by a symmetric extension

of Fn, Definition 4.4 allows us to replace the original subset Fn(X) with a symmetric

subset F sym
2n ((X,X′)) potentially smaller than SymX,X′(Fn) as long as the change in

probabilities can be controlled (as done in the luckiness frameworks). The best (“small-
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est”) symmetric set would thus be one with the smallest corresponding Rademacher

process. Unfortunately, there is no general way of finding such a “better” symmet-

ric map (in the same sense in which there is no general way to find good luckiness

functions, see Section 4.3.4).

The main result of this section is the following symmetrization theorem obtained

by combining Lemma 4.1, the δ-symmetric condition (4.5), and Lemma 4.3.

Theorem 4.5 (Symmetrization theorem) Let F be a class of real-valued functions

defined on a measurable space (Ω, µ). Let X = (X1, ..., Xn) be an i.i.d. sample dis-

tributed according to µn, and let X′ = (X ′
1, ..., X

′
n) be an independent copy of X. Let

0 ≤ δ ≤ 1 and let Fn and F sym
2n denote set-valued maps which satisfy the δ-symmetric

condition and such that F sym
2n is symmetric. Then, for every t > 0,

(
1 − 4

nt2
sup
f∈F

Var (f)
)
· PrX

{
∃f ∈ Fn(X),

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}

≤ 2PrX,X′,ε

{
∃f ∈ F sym

2n ((X,X′)),
∣∣

n∑

i=1

εif(Xi)
∣∣ ≥ nt

4

}
+ 2δ ,

where ε = (ε1, . . . , εn) are independent Rademacher variables.

Theorem 4.5 reduces the analysis of the uniform deviation of expectation and empirical

averages of functions in Fn to the analysis of the supremum of the empirical process

sup
f∈F sym

2n ((X,X′))

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ ,

which is, conditioned on (X,X′), a Rademacher process, and we can thus use analy-

sis techniques and employ concentration results for empirical processes to study this

quantity.

To sum up, the quantity which determines the generalization bounds for random

subclasses of functions is the supremum of the Rademacher process

sup
v∈V (X,X′)

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣ (4.7)

indexed by the coordinate projection V (X,X′) ⊆ R
n of the random class F sym

2n ((X,X′))

onto X = (X1, ..., Xn) , where

V (X,X′) := F sym
2n ((X,X′))/X =

{(
f(X1), ..., f(Xn)

)
: f ∈ F sym

2n ((X,X′))
}

.

We will see in the following how control of the geometry of the set V (X,X ′) allows one
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to obtain sharp tail bounds for the probability of the deviation

PrX

{
sup

f∈Fn(X)

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
. (4.8)

We define

ZX,X′(ε) := sup
v∈V (X,X′)

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣ , (4.9)

and recall that by Corollary 3.9 the variable ZX,X′ is concentrated around its expec-

tation whenever V (X,X′) are bounded in `n
∞. Recall also that, by the definition of

empirical Rademacher averages (Definition 2.18, page 26),

Eε ZX,X′(ε) = R̂n

(
F sym

2n ((X,X′)),X
)

.

With this, we are ready to state the concentration results in the next section.

4.2.2 Concentration

Corollary 4.6 (Concentration I) With the notation above, for every t > 0, for all

n > 0,

(
1 − 4

nt2
sup
f∈F

Var (f)
)
· PrX

{
∃f ∈ Fn(X),

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}

≤ 2
(
PrX,X′

{
EεZX,X′(ε) > nt/8

}

+ PrX,X′,ε

{∣∣ZX,X′(ε) − EεZX,X′(ε)
∣∣ ≥ nt

8

})
+ 2δ . (4.10)

In particular, for bounded functions taking values only in [−b, b], for any t and

n ≥ 8 supf∈F Var (f) /t2,

PrX

{
∃f ∈ Fn(X),

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}

≤ 4PrX,X′

{
EεZX,X′(ε) > nt/8

}
+ ce−

c′nt2

b2 + 4δ , (4.11)

where c, c′ > 0 are absolute constants.

Proof: By Theorem 4.5, for each t, the left-hand side of (4.10) is bounded from

above by the probability of the random event

Bt :=
{

(X,X′, ε) : ZX,X′(ε) ≥ nt

4

}
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plus 2δ. Let

At :=
{

(X,X′) : EεZX,X′(ε) ≤ nt/8
}

. (4.12)

By the union bound, if Ac
t denotes the complement of the set At, since Bt ∩ Ac

t ⊆ Ac
t

and Ac
t is independent of ε,

PrX,X′,ε {Bt} = PrX,X′,ε {Bt ∩ Ac
t} + PrX,X′,ε {Bt ∩ At}

≤ PrX,X′,ε {Ac
t} + PrX,X′,ε

{
ZX,X′(ε) ≥ nt

4
and EεZX,X′(ε) ≤ nt

8

}

≤ PrX,X′ {Ac
t} + PrX,X′,ε

{∣∣ZX,X′(ε) − EεZX,X′(ε)
∣∣ ≥ nt

8

}
,

which proves the first claim. For bounded functions, we can apply Corollary 3.9 to

ZX,X′ to obtain (4.11).

Thus, in order to obtain, for given t > 0 and n > 0, a bound for (4.8) under

the δ-symmetric condition (4.5), it is sufficient to ensure that the following additional

conditions are satisfied:

1. Small coordinate projection: With high probability over random samples,

Eε ZX,X′(ε) ≤ nt/8 ; (4.13)

2. Concentration: With high probability ZX,X′(ε) is concentrated around its

mean, ∣∣ZX,X′(ε) − EεZX,X′(ε)
∣∣ ≤ nt/8 . (4.14)

The first condition is a “complexity condition” on the random class F sym
2n ((X,X′)),

which quantifies that the coordinate projections F sym
2n ((X,X′))/X are “small”. In order

to ensure learnability, one would have to show that for each t > 0, and for n ≥ n0,

this condition is satisfied, which is equivalent to the expectation of the Rademacher

process indexed by F sym
2n ((X,X′))/X being o(n). Such a condition can be ensured

by restrictions on the geometry of the random coordinate projections V (X,X ′) =

F sym
2n ((X,X′))/X . One extreme (and bad) example is when V (X,X′) is close to the

unit cube (unit ball in `n
∞) for “many” (X,X′), in which case Eε ZX,X′(ε) = n ; 1 a

strong restriction on the geometry occurs when V (X,X′) is a subset of the unit ball in

`n
2 , which implies that Eε ZX,X′(ε) = O(

√
n) and that equation (4.13) is satisfied.

The second condition controls the degree of concentration. Clearly, in order to

just ensure that PrX,X′,ε

{∣∣ZX,X′(ε) − EεZX,X′(ε)
∣∣ ≥ nt/8

}
goes to 0 as n tends to

1This is the reason why cubic structures in VC theory are bad. A finite VC-dimension ensures
precisely that, for large n, the projections of the whole non-random class F/X are much smaller than
the full combinatorial cube {−1, 1}n. Here, we have the real-valued analogue of this fact.
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infinity, a finite variance of the random variable ZX,X′ , together with Chebysheff’s

inequality would be sufficient. However, already for bounded functions, one obtains

easily a stronger degree of concentration as given in equation (4.11). For δ = 0, and

since ce−
c′nt2

b2 −→ 0 for any fixed t, one has thus to study only the average behaviour

F sym
2n ((X,X′))/X in order to determine, for a given confidence ρ, exponential bounds

on the rate of convergence t = γ(n, ρ) as a function of the sample size n (see Section 2.2,

especially equation (2.1), page 18). Hence, for every fixed ρ, condition 1 determines

the rate of convergence and ensures learnability.

In order to obtain a better degree of confidence and to ensure that the confidence

intervals for the expected risk of the function produced by an algorithm tend to 0 with

growing sample size, we require a stronger degree of concentration for the variable

ZX,X′(ε). One way to obtain a stronger concentration result, as was presented in

Section 3.1, is through control of the diameter of V (X,X′) in `n
2 . Indeed, recall that,

for any fixed (X,X′), the function ZX,X′(ε) is convex in ε (since ZX,X′(ε) conditioned

on (X,X′) is the norm of ε =
∑n

i=1 εiei in the dual space of the space defined by the

absolute convex hull of V (X,X′); see Appendix A). By the convex distance inequality,

such a function is concentrated around its expectation Eε ZX,X′(ε), as long as the

diameter of V (X,X′) in `n
2 is finite (cf. Theorem 3.11, page 43), and the degree of

concentration is determined by the diameter of V (X,X′) in `n
2 . Thus, we can study

the behaviour of the random variable ZX,X′(ε) by studying its expectation and the

diameter of V (X,X′) in `n
2 . Theorem 4.7 states this formally. Furthermore, as we

will see, different assumptions allow one to get different bounds on the diameter of

V (X,X′) and thus different levels of concentration.

For example, the fact that the functions in F are bounded, a standard assumption

in the statistical learning setting, implies that the set V (X,X′) is contained in a ball

of finite radius in `n
∞ and thus of radius O(

√
n) in `n

2 . Therefore, the centered random

variable ZX,X′(ε) exhibits a sub-Gaussian tail e−cnt2 , which can lead to a sample com-

plexity as good as c/t2 (up to logarithmic terms in ρ), or equivalently to convergence

rates of O(1/
√

n), as stated already in Corollary 4.6. As we will see in the following

Section 4.3, most of the standard results from learning theory ensure precisely that

this condition is satisfied. Moreover, these conditions are also already sufficient to

show that the data-dependent frameworks based on sparsity, compression schemes, and

luckiness conditions work to the extent they do.

In order to recover sub-exponential concentration bounds for ZX,X′(ε), a stronger

control of the diameter in `n
2 is necessary. We will give an example of such a case, and

show in Section 4.3.5 that such a condition can be imposed by control of the variance

of all functions in the class F , as is done in a Bernstein class of functions, where the

variance for every function is bounded by a power of its expectation uniformly over

the class (see also Definition 5.1, page 88). We will show that the Bernstein condition
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restricts the `n
2 diameter of projections onto the sample. Such a condition, since it

leads to sharper concentration, recovers the tighter results for the generalization per-

formance of the ERM algorithm for Bernstein classes of functions proved in Mendelson

(2002b, 2003), which can lead to an improved sample complexity as good as c/t (up to

logarithmic factors), and to rates of convergence of O(1/n).

Let us state our main and most general concentration result for the random

variable ZX,X′(ε) defined in equation (4.9), which follows directly from the corollary of

Talagrand’s convex distance inequality for suprema of Rademacher processes (Theorem

3.11) and is based on the fact that Rademacher processes are convex functions in ε.

Theorem 4.7 (Concentration II) Let F be a class of functions defined on a mea-

surable space (Ω, µ). Let X = (X1, ..., Xn) be an i.i.d. sample distributed according to

µn, let X′ = (X ′
1, ..., X

′
n) be an independent copy of X, and let Fn and F sym

2n be de-

fined as above and satisfying the δ-symmetric condition (4.5). Then there exist absolute

constants c, c′ > 0, such that for every t, v > 0 and n ≥ 36πv/t,

(
1 − 4

nt2
sup
f∈F

Var (f)
)
· PrX

{
∃f ∈ Fn(X),

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}

≤ 2

(
PrX,X′

{
EεZX,X′(ε) > nt/8

}
+ ce−

c′n2t2

v2

+ PrX,X′{v2(X,X′) > v}
)

+ 2δ ,

with

V (X,X′) := F sym
2n (X,X′)/X , v2(X,X′) := sup

v∈V (X,X′)

‖v‖2 ,

and

ZX,X′(ε) := sup
v∈V (X,X′)

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣ .

Proof: By Theorem 3.11, if v2(X,X′) < v then for every t,

Prε

{∣∣ZX,X′(ε) − EεZX,X′(ε)
∣∣ ≥ nt/8

}

≤ Prε

{∣∣ZX,X′(ε) − MεZX,X′(ε)
∣∣ ≥ nt/8 − 4πv

}
≤ ce−

c′n2t2

v2 ,

and thus, by the union bound and from Corollary 4.6, equation (4.11), it follows directly

that

PrX,X′,ε

{
∃f ∈ F sym

2n ((X,X′)),
∣∣

n∑

i=1

εif(Xi)
∣∣ >

nt

4

}

≤ PrX,X′

{
EεZX,X′(ε) > nt/8

}
+ ce−

c′n2t2

v2 + PrX,X′{v2(X,X′) ≥ v} .
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The parameter v trades off the `n
2 radius of a ball centered at the origin in which

the projections are contained with high probability against the degree of concentration.

For bounded functions, the result from Corollary 4.6 can be recovered directly, by

observing that in this case, ‖v‖2 ≤ c
√

n with probability 1. Thus, for bounded

functions, condition (4.14) is trivially satisfied with a degree of concentration given

by a sub-Gaussian tail of the form e−cnt2 . As we see from this Theorem, if F is a

bounded class of functions, the δ-symmetric condition (4.5) is sufficient to guarantee a

high probability bound for the generalization error of a learning algorithm drawing its

hypotheses from the random set Fn(X) of the order e−cnt2 , whenever condition (4.13)

is satisfied. Hence, it suffices to guarantee that the empirical Rademacher averages

associated with the projection of F sym
2n ((X,X′)) onto X are “small” (of size o(n)) with

high probability.

4.3 Examples

We are now ready to show that Glivenko-Cantelli conditions, as well as compression

schemes, sparsity, and luckiness conditions are just different ways to ensure that the

random coordinate projections of F sym
2n ((X,X′)) are small, that is, that

Eε ZX,X′(ε) = R̂n

(
F sym

2n ((X,X′)),X
)

= o(n) , (4.15)

and hence the condition (4.13) is satisfied. As we will show, the sample complexities

obtained in these frameworks can be recovered within the random subclass framework.

4.3.1 Uniform Glivenko-Cantelli Classes

If F is a uniform GC class, one can recover the optimal deviation estimates by selecting

the constant set-valued maps

Fn(X) = F sym
n (X) := F .

The δ-symmetric condition (4.5) is therefore satisfied with δ = 0 and

V (X,X′) := F sym
2n ((X,X′))/X = {(f(X1), ..., f(Xn)) : f ∈ F}

for every double-sample (X,X′). Then

ZX,X′(ε) = sup
v∈V (X,X′)

∣∣
n∑

i=1

εivi

∣∣ = sup
f∈F

∣∣
n∑

i=1

εif(Xi)
∣∣ ,
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Eε ZX,X′(ε) = Eε sup
f∈F

∣∣
n∑

i=1

εif(Xi)
∣∣ = R̂n (F,X) .

The fact that the coordinate projections are small and that condition (4.13) is satisfied

follows from the characterization of uniform Glivenko-Cantelli classes (Theorem 2.32).

Assuming that the functions in the class are uniformly bounded, it remains only to

show that the empirical Rademacher averages are “small”.

Recall that a class of uniformly bounded functions is a uniform Glivenko-Cantelli

class if and only if

lim
n−→∞

Rn (F )

n
= 0 ,

where Rn (F ) denotes the uniform Rademacher averages of F (Theorem 2.32, page 31).

Since the uniform Rademacher averages are defines as worst-case with respect to any

sample, this implies that R̂n (F,X) = o(n) and thus that the probability of the set

{(X,X′) : R̂n (F,X) > nt/8} tends to 0 as n goes to infinity. To see that, let F be

a class of functions bounded by [−b, b] . For every t > 0 let n0 be such that for every

n ≥ n0 , Rn (F ) ≤ nt/8 which implies R̂n (F,X) ≤ nt/8. Since supf∈F Var (f) ≤ b2 , for

any n ≥ 8b2/t2 it holds that 1 − 4 supf∈F var(f)/nt2 ≥ 1/2 . Therefore, by Corollary

4.6, it follows that for every integer n > max{8b2/t2, n0} and for any probability

measure µ,

PrX

{
sup
f∈F

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
≤ ce−

c′nt2

b2 ,

which are the optimal (up to constants) deviation bounds for uniform Glivenko-Cantelli

classes obtainable without any further assumptions besides boundedness of the loss

class.

In cases where one has a priori estimates on the size of the class (e.g., the shattering

dimension or the uniform entropy), one can recover from these better uniform deviation

results. In particular, if V C(F ) = d, then by Theorem 2.30 Rn (F ) ≤ C
√

dn where

C is an absolute constant, and thus again R̂n (F,X) = o(n) . For classes with a

polynomial shattering dimension, by applying the bounds on Rn (f) from Mendelson

(2003) (see also Theorem 2.31 for a special case), one gets estimates for Rn (F ) which

are either logarithmic in n or of the order o(
√

n). It follows again that Rn (F ) = o(n) ,

and thus with high probability R̂n (F,X) = o(n) .

Hence, in Glivenko-Cantelli classes,

Eε ZX,X′(ε) = R̂n (F,X) = o(n) ,

and condition (4.13) is satisfied.

Clearly, if one knows specific rates on how Rn (F ) /n −→ 0, then one can also

recover better estimates for the probability of deviation (4.8) through Theorem 4.7.
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4.3.2 Data-Dependent Class Bounds of Gat (1999) and Cannon et al.

(2002)

Gat (1999) and Cannon et al. (2002) formulated data-dependent class bounds for

sample-dependent hypothesis classes and binary losses using a similar symmetriza-

tion argument to that presented in Section 4.2.1. The subset F sym
2n ((X,X′)) is defined

to be the symmetric extension of Fn (see (4.6)),

F sym
2n ((X,X′)) := SymX,X′(Fn) .

Thus, by construction, F sym
2n ((X,X′)) is symmetric and Fn(X) ⊆ F sym

2n ((X,X′)) ,

satisfying a 0-symmetric condition (4.5).

Gat (1999) assumed that the cardinality of F sym
2n ((X,X′)) is bounded by a function

which is sample-independent and only depends on the sample size n,

|F sym
2n ((X,X′))| ≤ d(n) .

With that, he proposed the following generalization bound based on concentration for

single functions and a union bound argument:

Pr

{
sup

f∈Fn(X)

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣ ≥ t

}
≤ 2d(n)e−nt2−2t.

Thus, his result ensures learnability, whenever d(n) = o(2n), and exhibits a rate of

convergence of O(
√

log d(n)/n).

One can easily show that a small d(n) is just a way of guaranteeing a small com-

plexity of F sym
2n ((X,X′))/X in the sense of equation (4.15) and therefore, by Corollary

4.6, learnability conditions and generalization bounds in terms of d(n). Indeed, since

the class F consists of functions bounded by 1,

V (X,X′) := F sym
2n ((X,X′))/X ⊂ Bn

∞ ⊂ √
nBn

2 .

Thus, by a comparison argument (Theorem A.1 and Corollary A.4, page 120), there is

an absolute constant C such that

Eε sup
v∈V

∣∣
n∑

i=1

εivi

∣∣ ≤ C
√

n
√

log |V | .

Hence, for any n and for any sample (X,X′) of length 2n,

Eε sup
v∈V (X,X′)

∣∣
n∑

i=1

εivi

∣∣ ≤ C
√

log
∣∣F sym

2n ((X,X′))/X
∣∣√n ≤ C

√
log d(n)

√
n .
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Thus, whenever d(n) = o(2n), Corollary 4.6 ensures learnability. Also, there is an

absolute positive constant c′′ , such that for any t ≥ c′′ max{1/√n,
√

log d(n)/n} ,

it holds that R̂n (F sym
2n ((X,X′)),X) ≤ nt/8. Note that the rates of convergence are

the same as in Gat (1999). This is due to the fact that the upper bound through the

comparison Corollary A.4 (which only uses finiteness of the set V ) is effectively like a

union bound.

The result in Cannon et al. (2002) is similar; their bounds are in terms of the fat-

shattering dimension rather than the cardinality of the set F sym
2n ((X,X′)), and one can

recover them analogously to the proof presented above.

4.3.3 Compression Schemes

Littlestone and Warmuth (1986) and Floyd and Warmuth (1995) formulated general-

ization bounds for a particular class of binary classification learning algorithms called

compression schemes. These algorithms have the property that they can reconstruct

the hypothesis produced from a given training sample by using only a small “com-

pressed” subset of the training sample. We denote by C(X) the size of the smallest

compressed sample by which the compression scheme algorithm A, when presented

with the training sample X, can reconstruct the hypothesis that generated the labels.

A sample compression scheme of compression size K is one for which C(X) ≤ K for ev-

ery sample X. The sample complexity bounds due to Littlestone and Warmuth (1986);

Floyd and Warmuth (1995) are for the case in which the target function has empirical

error equal to 0. Without any additional assumption like the one of a small empirical

error, the same arguments can only lead to the following statement (see, e.g., Herbrich

2002, page 181): Let A(X) denote the function produced by a compression scheme

algorithm with constant compression size K from a training sample X. Then, for each

0 ≤ δ ≤ 1, there is an n0 such that for any n ≥ n0, with probability at least 1 − δ,

|R (A(X)) − R̂ (A(X),X) | ≤ c

√
ln
(n
K

)
+ ln

(
n
δ

)

n −K , (4.16)

where R and R̂ denote the expected and empirical risk, that is the expected and

empirical average of the 0-1 loss function associated with the hypothesis A(X). (The

original results in Littlestone and Warmuth (1986); Floyd and Warmuth (1995), for

the case in which the target function has empirical error equal to 0, exhibit a rate of

convergence of O(ln
(

n
K

)
+ ln (n/δ) /(n −K)).)

We set

F̃n(X) := {A(X)} and Fn(X) := {lA(X)} ,

where lh is the 0-1 loss associated with h, and let F̃ sym
2n ((X,X′)) be the symmetric
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extension of F̃n(X), and F sym
2n ((X,X′)) is the loss class associated with F̃ sym

2n ((X,X′)),

F̃ sym
2n ((X,X′)) := SymX,X′(F̃n) and F sym

2n ((X,X′)) := {lf : f ∈ F̃ sym
2n ((X,X′))} .

As before, the δ-symmetric condition (4.5) is satisfied with δ = 0, since Fn(X) ⊆
F sym

2n ((X,X′)) .

We will show that a fixed small compression coefficient K guarantees small Radema-

cher averages with respect to F sym
2n ((X,X′))/X and thus, by Corollary 4.6, learnability,

as proved by Littlestone and Warmuth (1986); Floyd and Warmuth (1995), is guar-

anteed. The number of loss functions in F sym
2n ((X,X′)), being at most the number of

hypotheses in F̃ sym
2n ((X,X′)), is upper bounded by the maximal number of functions

which can be reproduced from a training sample of size at most K. For binary classi-

fication functions taking values only in {−1, 1}, the number of functions which can be

reproduced from a sample of size i is less than 2i, and so, for every X,X′,

|F sym
2n ((X,X′))| ≤ |F̃ sym

2n ((X,X′))| ≤
K∑

i=0

(
2n

i

)
2i ≤ 2K

(
2en

K

)K

=
(cn

K
)K

,

where we used the fact that
∑d

i=0

(
n
i

)
≤
(

en
d

)d
(see, e.g., Anthony and Bartlett 1999,

page 40). From the comparison theorem for finite sets (Corollary A.4, page 121) it

follows immediately that

Eε sup
v∈F sym

2n ((X,X′))/X

∣∣
n∑

i=1

εivi

∣∣ ≤ C
√
Kn(log n − logK) ,

where C is an absolute constant. Again, this implies that for any n and any t ≥
8C
√
K log n/n , the complexity associated with the coordinate projections of the set

F sym
2n ((X,X′)) onto X, as defined in equation (4.13), are small, that is

PrX,X′{R̂n (F sym
2n ((X,X′)),X) > nt/8} = 0 . One can apply Corollary 4.6 for t =√

ln
(

n
K

)
+ ln (n/δ) /(n −K) to recover the rates of convergence from equation (4.16).2

Then, for each 0 ≤ δ ≤ 1 by Corollary 4.6,

Pr





∣∣∣∣∣EµlA(X) −
1

n

n∑

i=1

lA(X)(Xi)

∣∣∣∣∣ ≥

√
ln
(n
K

)
+ ln

(
n
δ

)

n −K



 ≤ ce

−c′n

 
ln(n

K)+ln(n
δ )

n−K

!

,

and since the right-hand side of this equation goes to 0 as n goes to infinity, there is

2A data-dependent bound in terms of C(X) instead of K can be recovered analogously, see “Sparsity
luckiness” in Mendelson and Philips (2003).
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an n0 such that for all n ≥ n0,

Pr





∣∣∣∣∣EµlA(X) −
1

n

n∑

i=1

lA(X)(Xi)

∣∣∣∣∣ ≤

√
ln
(n
K

)
+ ln

(
n
δ

)

n −K



 ≥ 1 − δ .

4.3.4 Luckiness

Classical Luckiness

In the classical luckiness framework introduced in Shawe-Taylor et al. (1998), bounds on

the generalization error of functions are formulated a-priori but evaluated a-posteriori,

after having seen a sample X. The bounds are given in terms of an upper bound on

some empirical, computable quantity dependent on the sample. The main idea driving

the luckiness proof is that one wants to exploit additional knowledge regarding the

actual sample and the function class. This knowledge is quantified through a luckiness

function which allows one to decompose the function class in data-dependent sets.

The luckiness framework shows that a certain property of the luckiness function, ω-

smallness (with respect to an appropriately defined function ω), allows one to obtain

generalization bounds conditioned on the sample.

In the following, we will introduce the luckiness framework following the presenta-

tion in Herbrich and Williamson (2003). Let H be an hypothesis function class and l a

loss function bounded by 1. The luckiness function is a function L : H× ∪k Ωk −→ R

which is invariant under permutations of the sample, that is, it depends only on the set

{x1, ..., xk}. Using the luckiness function one can construct sample dependent subsets

of H, called lucky sets in the following manner: for every sample X and f ∈ H, the

lucky set consists of all the functions luckier on this sample than the given function,

that is,

H(f,X) :=
{
g ∈ H : L(g,X) ≥ L(f,X)

}
.

Denote by Hl(f,X) the loss class associated with H(f,X),

Hl(f,X) := {lf : f ∈ H(f,X)} .

Observe that the luckiness function imposes a structure of increasing subsets of H,

because H(g,X) ⊆ H(f,X) if and only if L(g,X) ≥ L(f,X) .

The second ingredient in the luckiness framework is the ω-function, ω : R × N ×
(0, 1] → N.

The third ingredient is the ω-smallness condition, which is a joint property of the

luckiness and ω functions. It states that for every n ∈ N, every δ ∈ (0, 1] and every
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probability measure µ, for (X,X′) distributed according to µ2n,

PrX,X′

{
∃f ∈ H : M

(
1
2n ,Hl(f, (X,X′)), L1(µ2n)

)
> ω

(
L(f,X), n, δ

)}
< δ . (4.17)

Intuitively, this condition states that the “size” of the loss functions corresponding to

the lucky set H(f, (X,X′)) of any hypothesis function f with respect to the double-

sample (X,X′) — measured by packing numbers — is bounded by a function of the

luckiness of the same function f on the sample. The original definition in Herbrich

and Williamson (2003) uses covering numbers instead of packing numbers. Since cov-

ering numbers and packing numbers are closely related, N(ε,H, d) ≤ M(ε,H, d) ≤
N(ε/2,H, d), we will use here this modified version employing packing numbers which

is more convenient for our proofs. In fact, in the original luckiness framework in Shawe-

Taylor et al. (1998) which was formulated only for binary-valued classes of functions,

the notion of size used for the ω-smallness condition is the shattering coefficient. The

fact that the “size” in Herbrich and Williamson (2003) is measured by packing (cov-

ering) numbers has also historical reasons because covering numbers were the tightest

notion of size known at the time when it was formulated.

As an example, because H(f, (X,X′)) ⊆ H, any empirical complexity notion from

Section 2.4.1 which upper bounds the covering numbers of H is a suitable luckiness

function, and one can formulate an ω-function by considering how this complexity

grows with the sample size (see discussion at the end of this section).

The following is the main result of the luckiness framework:

Theorem 4.8 (Luckiness bound) Let H be a hypothesis function class and l a loss

function bounded by 1. Let L and ω be functions satisfying the ω-smallness condition

(4.17). Then, for every probability measure µ, every d ∈ N and every δ ∈ (0, 1], there

is a set of probability larger than 1 − 12δ such that if ω
(
L(f,X), n, δ

)
≤ 2d , then

∣∣∣Eµlf − 1

n

n∑

i=1

lf (Xi)
∣∣∣ ≤ C

√
d

n
log

1

δ
,

where C is an absolute constant.

Its original proof can be found in Shawe-Taylor et al. (1998), and we will prove it here

subsequently using the general result of Corollary 4.6.

Examples of truly data-dependent luckiness functions given in Shawe-Taylor et al.

(1998); Herbrich (2002); Herbrich and Williamson (2003) are the empirical VC-dimen-

sion of a binary function class with respect to a sample — in this case the luckiness

function is independent on the particular hypothesis function and all lucky sets are

equal to the whole set H — and the margin of linear classifiers. Their corresponding ω-

functions can be found in Shawe-Taylor et al. (1998). Although the luckiness framework
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gives a unified proof for existing generalization bounds, finding pairs of luckiness and

ω-functions seems in general to be difficult because of the quite technical ω-smallness

condition.

In the following, we will show that the luckiness framework is a special case of

the random subclass framework and that the ω-smallness condition is just a way of

ensuring that a random coordinate projection of the random set is “small” in the sense

of Corollary 4.6. In particular, we will show that both the δ-symmetric condition (4.5)

and condition (4.13) follow from the ω-smallness condition. Since the functions in the

loss class of H are bounded, we will show that the ω-smallness condition in fact allows

one to control the “size” of the coordinate projections of a random symmetric set onto

random samples, in the sense of (4.13). This will link the luckiness framework directly

to approaches using Rademacher averages as a notion of size.

In order to define Fn(X), we use the luckiness and associated ω-function satisfying

(4.17) in the following way: for any luckiness function L and any ω-function, for any

fixed integer d and δ ∈ (0, 1], define

Fn,d(X) :=
{
lf : f ∈ H, ω

(
L(f,X), n, δ

)
≤ 2d

}
. (4.18)

Let n be a fixed sample size, d be a given fixed integer, and set δ ∈ (0, 1]. We

first need the following lemma which states that for each sample there is a unique set

containing all functions with lucky sets of “size” 2d. This unique set will allow us

to define F sym
2n,d . Let X be a sample of size n and let An,d(X) ⊆ H be the set of all

functions with lucky sets of size smaller than or equal to 2d,

An,d(X) := {f ∈ H : M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d} ,

and define

Hn,d(X) :=
⋃

f∈An,d(X)

Hl(f,X) .

Lemma 4.9 For every integer d and sample X of size n, if µn is the empirical mea-

sure supported on X, then Hn,d(X) defined above is the unique set with the following

properties:

1. M
(

1
n ,Hn,d(X), L1(µn)

)
≤ 2d.

2. If f ∈ F satisfies M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d , then lf ∈ Hn,d(X) .

The proof can be found in Appendix B.1.

For every double-sample (X,X′), set

F sym
2n,d ((X,X′)) := H2n,d((X,X′)) , (4.19)
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and observe that this random class is permutation invariant because the luckiness

function is, by definition, invariant under permutations of the sample, implying that

F sym
2n,d is symmetric as required.

The following result shows that the ω-smallness of L ensures that the δ-symmetric

condition (4.5) holds.

Lemma 4.10 For any positive integers n and d, and δ ∈ (0, 1], let Fn,d and F sym
2n,d be

defined as in (4.18) and (4.19). If a luckiness function L and an ω-function satisfy the

ω-smallness condition (4.17), then for every t > 0,

PrX,X′

{
∃f ∈ Fn,d(X),

∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}

≤ PrX,X′

{
∃f ∈ F sym

2n,d ((X,X′)),
∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}
+ δ .

The proof can be found in Appendix B.1.

We have shown so far how to define, for each d, Fn,d and F sym
2n,d for the luckiness

framework. Now, we are ready to show that with high probability, F sym
2n,d ((X,X′))/X

is sufficiently small and that the generalization bound for the luckiness framework in

Theorem 4.8 follows from the random subclass Corollary 4.6. The main part of the

proof is to show that the definition of F sym
2n,d ((X,X′)) ensures that the covering numbers

and therefore the Rademacher averages of F sym
2n,d ((X,X′)) are small. Therefore, the

ω-smallness condition is just a way of requiring that F sym
2n,d ((X,X′)) has, with high

probability, small random coordinate projections, implying thus that condition (4.13)

holds.

Proof (of Theorem 4.8 via Corollary 4.6): Let n, d be arbitrary but fixed

integers, and let Fn,d and F sym
2n,d be defined as above, and observe that

M
(

1
2n , F sym

2n,d ((X,X′)), L1(µ2n)
)
≤ 2d (4.20)

for every (X,X′). By Corollary 4.6 we have to estimate

PrX,X′

{
Eε sup

f∈F sym
2n,d ((X,X′))

∣∣∣
n∑

i=1

εif(Xi)
∣∣∣ >

nt

8

}
,

where X = (X1, ..., Xn) and X′ = (X ′
1, ..., X

′
n). Let Vd ⊂ `n

2 be the coordinate projec-

tions

Vd = F sym
2n,d ((X,X′))/X =

{(
f(X1), ..., f(Xn)

)
: f ∈ F sym

2n,d ((X,X′))
}

,
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put µ2n to be the empirical measure supported on (X,X′) and set νn to be the empirical

measure supported on X. Note that for every f, g, Eµ2n |f − g| ≥ Eνn |f − g|/2 . Thus,

every 1/2n-cover of F sym
2n,d ((X,X′)) in L1(µ2n) is a 1/n-cover of the same set in L1(νn).

In particular, if A is a maximal 1/2n-packing of F sym
2n,d ((X,X′)) in L1(µ2n) , it is a 1/n

cover of that set in L1(νn). It is easy to verify that B
(
L1(νn)

)
is isomorphic to nBn

1 ,

and in particular, up to isomorphism,

Vd ⊂ A +
1

n
· nBn

1 = A + Bn
1 ,

where

A + B = {a + b : a ∈ A, b ∈ B} .

By the triangle inequality,

Eε sup
f∈F sym

2n,d ((X,X′))

∣∣∣
n∑

i=1

εif(xi)
∣∣∣ = Eε sup

v∈Vd

∣∣∣
n∑

i=1

εivi

∣∣∣ = Eε sup
a∈A,b∈Bn

1

∣∣∣
n∑

i=1

εi(ai + bi)
∣∣∣

(4.21)

≤ Eε sup
a∈A

∣∣∣
n∑

i=1

εiai

∣∣∣+ Eε sup
b∈Bn

1

∣∣∣
n∑

i=1

εibi

∣∣∣ . (4.22)

The first term of (4.22) can be bounded by the comparison theorem (Corollary A.4,

page 121). Since our class consists of functions bounded by b, then Vd ⊂ Bn
∞ ⊂ √

nBn
2

and since the Rademacher averages are upper bounded (up to an absolute constant)

by the Gaussian ones (cf. Theorem A.1), then

Eε sup
a∈A

∣∣∣
n∑

i=1

εiai

∣∣∣ ≤ CEg sup
a∈A

∣∣∣
n∑

i=1

giai

∣∣∣ ≤ C
√

log |A|√n ≤ C
√

nd ,

where the final inequality holds because |A| ≤ 2d by (4.20).

In order to estimate the second term in equation (4.22), one can apply the triangle

inequality to show that

Eε sup
b∈Bn

1

∣∣∣
n∑

i=1

εibi

∣∣∣ ≤ 1 .

In conclusion,

Eε sup
f∈F sym

2n,d ((X,X′))

∣∣∣
n∑

i=1

εif(xi)
∣∣∣ ≤ C

√
nd . (4.23)

In order to complete the proof, apply Corollary 4.6 for t = C
√

d
n log(1/δ).

Note that in obtaining this result we only used boundedness of the loss function and

therefore of the functions in the loss class. Any additional constraint on the variance of
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functions in the loss class which would restrict the `n
2 radius of the projections further

could conceivably lead to tighter error bounds.

Discussion: A direct consequence of the reasoning given above is a generalization

of the luckiness framework which replaces the metric complexity with Rademacher

averages. Such a “Rademacher-luckiness” avoids the potential looseness of the union

bound used in approaches using the metric complexities. Indeed, for each d > 0 and

each n, let An,d(X) ⊆ H be the set of all functions with lucky sets of size smaller than

or equal to γn(d), (where γn(d) ≤ C
√

nd with the constant C from equation (4.23)),

An,d(X) := {f ∈ H : R2n

(
Hl(f, (X,X′))

)
≤ γn(d)} ,

and let Hn,d(X,X′) be

Hn,d(X,X′) :=
⋃

f∈An,d(X)

Hl(f, (X,X′)) .

Assume that there is an f ′ ∈ H such that f ′ = argminfk∈An,d(X)L(fk, (X,X′)). 3 In this

case, Hn,d(X,X′) = Hl(f
′, (X,X′)) and thus Hn,d(X,X′) is the unique set satisfying

that R2n (Hn,d(X,X′)) ≤ γn(d) and such that R2n (Hl(f, (X,X′)),X) ≤ γn(d) implies

that f ∈ Hn,d(X,X′). Setting

Fn,d(X) :=
{
lf : f ∈ H, ω

(
L(f,X), n, δ

)
≤ γn(d)

}

and

F sym
2n,d ((X,X′)) := Hn,d(X,X′) ,

the following ω-smallness condition in terms of Rademacher averages ensures, analo-

gously to the proofs for the “classical” luckiness, that condition (4.13) holds:

PrX,X′

{
∃f ∈ H : R2n

(
Hl(f, (X,X′))

)
> ω

(
L(f,X), n, δ

)}
< δ . (4.24)

Note that uniqueness of the set F sym
2n,d ((X,X′)) is required, analogously to Lemma 4.9,

in order to ensure that whenever we measure a small enough ω
(
L(f,X), n, δ

)
for a

given function f and a given sample X, the deviation for this function f is controlled

by the deviation of functions in F sym
2n,d ((X,X′)).

Thus, the ω
(
L(f,X), n, δ

)
function is any (hopefully data-dependent) upper bound

on the complexity of the lucky sets corresponding to double-samples. Let us consider

3This assumption is restrictive but it is sufficient in order to illustrate the point we want to make in
the following. Note that it is possible to prove the same results without this assumption with a more
sophisticated proof (Bousquet, personal communication), by replacing the definition of Rademacher
averages as being the supremum of Rademacher averages of all finite subsets of F (see, e.g., Ledoux
(1994), page 69), and by using limit arguments.
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the case when one defines a luckiness function which is independent of the hypothesis

function and only depends on the sample (and thus all lucky sets are equal to H).

In such a case, a way to interpret the ω-smallness condition is that it replaces the

concentration condition for complexities with a condition which ensures that coordinate

projections of the loss class on double-samples do not grow “too much” (as a function

of the sample size n) compared to these on the single sample. For example, in the proof

presented by Herbrich (2002), page 293, showing that the empirical VC-dimension is a

special case of luckiness, the crucial step is the one which shows that, for any binary-

valued class F , with high probability, the empirical VC-dimension on samples of size 2n

is not much larger than a constant times the empirical VC-dimension on the sample of

size n. Such a result follows also from Corollary 3.14 based on the fact that the empirical

VC-dimension has the self-bounding property. The self-bounding property is also the

property which allows one to derive the concentration result for the empirical VC-

dimension around its expectation (Boucheron et al. 2000). Similarly, one can define the

(data-dependent but hypothesis-independent) luckiness function as being any empirical

complexity notion from Section 2.4.1 which upper bounds the empirical Rademacher

averages or upper bounds the Rademacher averages and has the self-bounding property

(as proved in Bartlett et al. (2002)). Indeed, by concentration, with high probability

the Rademacher averages are similar to the empirical Rademacher averages, R2n (Hl) ∼
R̂2n (Hl, (X,X′)), and by Lemma 3.14, since the empirical Rademacher averages satisfy

the self-bounding property, with high probability R̂2n (Hl, (X,X′)) ≤ cR̂2n (Hl,X).

Clearly, the ω-smallness condition is more general: it allows, in principle, to encode

additional prior knowledge about the sample and the hypothesis if one finds data-and-

hypothesis-dependent complexities (like the margin) which upper bound the complexity

of the lucky sets. However, there is no general recipe to find new pairs of luckiness

and ω-functions; it is up to the intuition of the designer of a machine learning algo-

rithm to find new data-dependent complexities like the luckiness function to bound the

Rademacher complexity of the lucky sets.

Algorithmic Luckiness

In the algorithmic luckiness framework (Herbrich and Williamson 2002), an extension

of the luckiness framework, the generalization error bound is also evaluated a-posteriori,

after having seen a sample. It differs from the luckiness framework because it gives

bounds on the generalization error of the function learned by the learning algorithm

from the sample at hand. Again, the bound is in terms of a computable quantity

dependent on the sample and the algorithm.

In a similar fashion to the luckiness framework, an algorithmic luckiness function

and an ω-function are introduced in order to define the random subsets Fn and F sym
2n
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for the given sample. The two functions satisfy a joint smallness condition which

ensures that the random symmetrization condition is satisfied and that the size of the

symmetric subset F sym
2n is small enough to result in tight generalization error bounds.

As we did before, let n be a fixed sample size, d is a given fixed integer, and set

δ ∈ (0, 1]. Recall that H is a hypothesis class and l is a loss function bounded by 1.

Denote by A a fixed permutation invariant learning algorithm, by A(x) the function

produced by the algorithm from the sample x, and set A(H) = {f = A(x) : x ∈ Ωn}.
Three concepts are used in the algorithmic luckiness framework: The first is the al-

gorithmic luckiness function which is a function L : A(H) −→ R. Using the algorithmic

luckiness function one can construct sample dependent subsets of H, called lucky sets

in the following manner: For every sample X of size 2n, the lucky set G(X) is defined

as the subset of functions learned by the algorithm on the first half of the sample, when

permuting the whole sample, as long as the function the algorithm produced on the

first half of the permuted sample is “luckier” than on the original one. Define the lucky

set as

G(X) :=
{
A
(
π(X)|ni=1

)
: L
(
A(π(X)|ni=1)

)
≥ L

(
A(X|ni=1)

)
, π ∈ S2n

}
. (4.25)

If GA(X) is the subset of hypothesis functions corresponding to functions learned by

A on the first half of all the permutations of the double-sample X, then G(X) ⊂ GA(X),

and clearly, |GA(X)| ≤ (2n)! < ∞. Therefore, we can order the functions in GA(X) in

decreasing order according to their luckiness. Define the ordered set

GA(X) :=
[
f1, f2, f3, . . . , fk−1, fk︸ ︷︷ ︸

G(X)

, fk+1, . . . , fm

]
, (4.26)

and for the sake of simplicity, assume that for every i < j, L(fi) > L(fj). Only a small

modification is required in the general case, where some functions might have the same

luckiness.

Set fk = A(X|ni=1) and let G`
A(X) be the subset consisting of the first ` functions

in GA(X), i.e. G`
A(X) = {f1, f2, f3, . . . , f`}. Let F `

A(X) be the loss class associated

with G`
A(X),

F `
A(X) = {lf : f ∈ G`

A(X)} .

For any integer d put k∗
d to be the largest integer such that

M
(

1
n , F

k∗
d

A ((X,X′)), L1(µ2n)
)
≤ 2d and M

(
1
n , F

k∗
d+1

A ((X,X′)), L1(µ2n)
)

> 2d. (4.27)

Then, for the double-sample (X,X′), by setting

F sym
2n,d ((X,X′)) := F

k∗
d

A ((X,X′)) (4.28)
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it follows that F sym
2n,d ((X,X′)) is symmetric, since the learning algorithm is permutation

invariant.

The second ingredient, the ω-function, ω : R × N × (0, 1] −→ N is used to define

Fn,d(X) for each d. Let

Fn,d(X) :=




{lA(X)} if ω

(
L(A(X)), n, δ

)
≤ 2d

∅ otherwise,
(4.29)

and note that |Fn,d(X)| ≤ 1.

The third ingredient is the ω-smallness condition, which is a joint property of the

algorithmic luckiness and ω functions. It states that for every integer n, every δ ∈ (0, 1],

and every probability measure µ,

PX,X′

{
M
(

1
n , Gl((X,X′)), L1(µ2n)

)
≥ ω

(
L(A(X)), n, δ

)}
< δ , (4.30)

where Gl((X,X′)) is the loss class associated with G((X,X′)).

The following results show that the ω-smallness of L ensures that Assumption

4.4 holds, and that, with high probability, F sym
2n,d ((X,X′))/X and thus the random

coordinate projections are sufficiently small and the condition 4.13 is satisfied. Their

proofs can be found in Appendix B.1 and are very similar to the proofs in the classical

luckiness case.

Lemma 4.11 Let A be a permutation-invariant learning algorithm, fix an integer d

and some δ ∈ (0, 1], and let Fn,d and F sym
2n,d be as in (4.29) and (4.28). If an algorithmic

luckiness function L and an ω-function satisfy the ω-smallness condition (4.30), then

for every t > 0

PrX,X′

{
∃f ∈ Fn,d(X) :

∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}

≤ PrX,X′

{
∃f ∈ F sym

2n,d ((X,X′)) :
∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}
+ δ.

Now, we are ready to formulate the generalization bound for the algorithmic luck-

iness framework which recovers the main result of Herbrich and Williamson (2002).

Theorem 4.12 Let A be a permutation-invariant learning algorithm, denote by A(X)

the function produced by the algorithm from the sample X, and assume that the loss

function takes values in [−1, 1]. Let L and ω be functions satisfying the ω-smallness

condition (4.30). Then, for every probability measure µ, every d ∈ N and every δ ∈
(0, 1], there is a set of probability at least 1 − 12δ such that if ω

(
L(A(X)), n, δ

)
≤ 2d,
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then ∣∣∣EµlA(X) −
1

n

n∑

i=1

lA(X)(Xi)
∣∣∣ ≤ C

√
d

n
log

1

δ
,

where C is an absolute constant.

Thus, again, boundedness of the loss functions leads to a convergence rate of O(1/
√

n),

and it is conceivable to obtain faster rates up to O(1/n) by imposing additional con-

straints on the variance of the functions (or that the empirical error of A(X) is 0).

Similarly to the classical luckiness case, an algorithmic luckiness framework which

uses Rademacher complexities in order to avoid the looseness of the union bound can be

easily derived. Such a formulation in terms of Rademacher complexities exhibits more

clearly that the ω-smallness condition is a way of restricting coordinate projections of

lucky sets by using prior knowledge encoded in a pair of luckiness and ω functions.

4.3.5 Sharper Bounds through Control on the Variance

In this section, we will give an example of a specific result which proves rates of con-

vergence potentially as good as O(1/n) and which can be explained by using the full

potential of Theorem 4.7 and explicit control on the variance. Our example is the

derivation of error bounds for the function produced by the Empirical Risk Minimiza-

tion algorithm based on results in Mendelson (2002b, 2003); Bartlett et al. (2004a).

Mendelson (2002b, 2003) and Bartlett et al. (2004a) proved that one can obtain gen-

eralization bounds for star-shaped sets of functions satisfying an additional constraint

on the variance. For these function sets, it was shown that the dominating bounding

term is the “size” of subsets of the function class containing functions with a variance

of the same order of magnitude as the deviation of the mean from the expected mean.

Let F be an excess squared-loss class. Mendelson (2003) proved tighter bounds for

the “almost empirical minimizer” by bounding the following probability:

PrX

{
∃f ∈ F,

1

n

n∑

i=1

f(Xi) ≤ t, Eµf ≥ 2t
}

.

This is the probability that an empirical minimizer of the loss functional (or more

generally, an “almost empirical minimizer”) will have a relatively large expectation.

These bounds were proved under two additional assumptions on the class F , namely,

first, that F is star-shaped around 0 (i.e, for every f ∈ F and 0 ≤ t ≤ 1, tf ∈ F ); the

second is that there is some B > 0 such that for every f ∈ F , Eµf2 ≤ BEµf (see

Section 5.2 for details on these assumptions). Under these two assumptions, it was
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shown that for every t > 0,

PrX

{
∃f ∈ F,

1

n

n∑

i=1

f(Xi) ≤ t, Eµf ≥ 2t
}

≤ 2PrX

{
sup

f∈F, Eµf2≤Bt

∣∣Eµf − 1

n

n∑

i=1

f(Xi)
∣∣∣ ≥ t

}
. (4.31)

Thus, the complexity of the problem is governed by the complexity of the function

class F intersected with a ball of variance of the order of the deviation t.

A generalization of this result was formulated by Bartlett et al. (2004a). They

showed that the fixed point of any function which upper bounds the Rademacher

averages of a subclass of small variance (or an upper bound thereof) governs the gener-

alization ability and allows the derivation of error bounds of the order as good as e−cnt.

Since, in the learning setting, we are interested in deviations t < 1, and for large sam-

ple sizes n, these exponential bounds are a strong improvement on the sub-Gaussian

bounds of the order of e−cnt2 .

We will show in this section how one can recover the results from Mendelson (2003)

and Bartlett et al. (2004a) in terms of the “local” subsets of small variance through

Theorem 4.7. For this, let Fn and F sym
2n be constant set-valued maps, defined as

Fn(X) = F sym
2n ((X,X′)) := {f ∈ F, Eµf2 ≤ Bt} .

These sets, like in the Glivenko-Cantelli example (Section 4.3.1) are not data-dependent,

and the purpose in this section is to illustrate how control of the variance leads to tighter

concentration and better rates of convergence through Theorem 4.7.

For the sake of simplicity we present our proof for functions bounded by 1 (b = 1)

and with B = 1, which is the case if F consists of nonnegative functions taking values

in [0, 1]. The general case follows an identical path. Denote by

F̄t := {f ∈ F : Eµf2 ≤ t} .

Thus,

ZX,X′(ε) = sup
f∈F̄t

∣∣
n∑

i=1

εif(Xi)
∣∣ ,

Eε ZX,X′(ε) = Eε sup
f∈F̄t

∣∣
n∑

i=1

εif(Xi)
∣∣ = R̂n

(
F̄t,X

)
.

We will show in the following that what is hidden in the proofs for these localized

results is the fact that the Bernstein condition, together with an a priori control of the

complexity of the class F̄t (that is, that Rn

(
F̄t

)
= o(n) ), implies that the coordinate
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projections F̄t/X are contained in a small ball in `n
2 of radius O(

√
nt) (as opposed

to a radius of O(
√

n) given by simple boundedness of functions). Thus, the control

of the variance in Bernstein classes allows one to obtain through Talagrand’s convex

distance inequality (as in Theorem 4.7) — if the function class is not too “complex”

— a stronger degree of concentration of the order of e−cnt for ZX,X′(ε) around its

expectation Eε ZX,X′(ε) . The same condition on the complexity of the projections

F̄t/X , namely that Rn

(
F̄t

)
= o(n) , controls the expectation Eε ZX,X′(ε) . Specifically,

if Rn

(
F̄t

)
∼ nt, then the concentration result for self-bounding functions Theorem 3.13

implies that PrX,X′

{
R̂n

(
F̄t,X

)
> nt/8

}
≤ e−cnt . Thus, both terms in the right side

of Theorem 4.7 are of the order of e−cnt. Since Fn = F sym
2n := F̄t, the δ-symmetric

condition (4.5) holds trivially with δ = 0 and by applying Theorem 4.7 we recover the

desired tail bounds.

Theorem 4.13 There are absolute constants K, c and c1 for which the following holds.

Let F ⊂ B
(
L∞(Ω)

)
be star-shaped around 0 such that for every f ∈ F , Eµf2 ≤ Eµf .

If t ≥ c1/n satisfies that

Rn

(
F̄t

)
= E sup

f∈F̄t

∣∣
n∑

i=1

εif(Xi)
∣∣ ≤ nt

16
, (4.32)

then

PrX,X′,ε

{
∃f ∈ F̄t,

∣∣∣
n∑

i=1

εif(Xi)
∣∣∣ ≥ nt

4

}
≤ Ke−cnt.

Proof: The proof contains two parts, each based on a concentration result which

uses the fact that Rn

(
F̄t

)
≤ cnt.

Part 1: Control of the expectation Eε ZX,X′(ε) :

We show first, that PrX,X′

{
R̂n

(
F̄t,X

)
> nt/8

}
≤ e−cnt by proving a concentration

of empirical averages of F̄t around their expectation Rn

(
F̄t

)
.

Recall that the concentration result for self-bounding functions (Theorem 3.13,

page 46), implies, together with a small expectation of the order of the deviation,

a rate e−t rather than e−t2 . Since the variables R̂n

(
F̄t,X

)
satisfy the self-bounding

property, by applying Theorem 3.13, if t is such that ER̂n

(
F̄t,X

)
= Rn

(
F̄t

)
≤ nt/16

then indeed

PrX

{
Eε sup

f∈F̄t

∣∣
n∑

i=1

εif(Xi)
∣∣ >

nt

8

}
≤ e−cnt, (4.33)

where c is an absolute constant, which proves the first claim.

2. Control of the `n
2 radius of the coordinate projections F̄t/X:

In order to apply the corollary of Talagrand’s convex distance inequality (Theorem

3.11, page 43), we have to show that the coordinate projections F̄t/X are contained

in a small ball in `n
2 of diameter

√
nt. The following theorem due to Bartlett et al.
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(2004a) allows us to estimate, with high probability, the `n
2 diameter of projections of

functions with bounded variances if the Rademacher averages of these sets are small.

Theorem 4.14 (Bartlett et al. 2004a, Corollary 2.2) Let F be a class of functions

which map Ω into [−b, b]. For every x, t > 0 which satisfy that

E sup
f∈F̄t

∣∣
n∑

i=1

εif(Xi)
∣∣ ≤ nt

10b
− 11bx

10
,

it holds that with probability at least 1 − e−x,

{
f ∈ F : Eµf2 ≤ t

}
⊆
{
f ∈ F :

n∑

i=1

f2(Xi) ≤ 2tn
}

.

In particular, for the case b = 1 and by setting x such that nt/10 − 11x/10 = nt/16,

with probability at least 1−e−x = 1−e−cnt (for an appropriate constant c), the radius

of F̄t/X in `n
2 is smaller than

√
2nt, and thus claim 2 follows.

Combining the two results 1. and 2., we can state the following Corollary:

Corollary 4.15 There are absolute constants c and c1 for which the following holds.

For every t ≥ c1/n such that Rn

(
F̄t

)
≤ nt/16, there is a set A′

t of samples (X,X′)

which has probability larger than 1− 2e−cnt, on which the set V = V (X,X′) = F̄t/X ⊂
`n
2 is such that

Eε sup
v∈V

|
n∑

i=1

εivi| ≤ nt/8

and

sup
v∈V

‖v‖`n
2
≤

√
2nt .

From Theorem 3.11, for every such set V , there is a constant c > 0 such that

Prε

{
sup
v∈V

∣∣∣
n∑

i=1

εivi

∣∣∣ ≥ nt

4

}
≤ Prε

{
sup
v∈V

∣∣∣
n∑

i=1

εivi

∣∣∣ ≥ Eε sup
v∈V

∣∣
n∑

i=1

εivi

∣∣+ nt

8

}
≤ ce−c′nt .

Hence, there are absolute constants c and K such that

PrX,X′,ε

{
∃f ∈ F̄t,

∣∣∣
n∑

i=1

εif(Xi)
∣∣∣ ≥ nt

4

}
≤ Ke−cnt (4.34)

which proves the theorem.

Thus, we have shown that a small complexity condition together with a strong

control of the variance (leading to a stronger degree of concentration) are the reason

why one could obtain in Mendelson (2003) asymptotically better error probability

bounds for ERM.
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4.4 Conclusion

We have presented a new and very general framework for deriving generalization bounds

for random subclasses of functions. Based on a symmetrization technique, we showed

that the analysis of deviations of empirical averages from expectations of random func-

tions can be reduced to the analysis of the behaviour of the supremum of a Rademacher

process indexed by certain random coordinate projections. This allowed us to state

the following two principles as sufficient to guarantee and quantify the generalization

ability of algorithms producing functions based on a random sample:

1. For generalization error of the order of t, small coordinate projections, in the sense

that the Rademacher averages indexed by these random coordinate projections

are smaller than nt/8;

2. For “high confidence”, that is, a small probability of error, concentration of the

suprema of Rademacher processes indexed by these random coordinate projec-

tions.

We showed that the first condition is already sufficient to ensure learnability,

whereas the degree of concentration in the second determines the confidence. We

then presented conditions which lead to different degrees of concentration and thus to

different probabilities of error and confidence intervals.

We demonstrated the generality of our approach by presenting a range of exam-

ples of frameworks which fall into our random subclass framework. Since we showed

that the Glivenko-Cantelli conditions, and the compression, sparsity, and luckiness as-

sumptions are different ways of ensuring small coordinate projections, we proved that

their underlying mechanism is the same, and we were able to relate a number of data-

dependent complexities to a priori complexities. However, the derivation of the new

and more general framework has not led to structurally new learning results or new

insights into the design of learning algorithms.

Andonova Jaeger (2004) has recently derived a relative deviation inequality for

random classes of binary functions using similar techniques. The symmetrization step

is carried out similarly to the one presented here. It uses a symmetric extension of

the random set, and the proof follows closely the proof for uniform relative deviations

from Anthony and Shawe-Taylor (1993). The final result uses Hoeffding’s inequality

combined with a union bound argument, and provides a bound in terms of the expected

shattering coefficient of the symmetric extension. It states that, for any binary-valued
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class of functions, any t > 0 and any n ≥ 2/t2,

PrX

{
sup

f∈Fn(X)

Eµf − 1
n

∑n
i=1 f(Xi)√

Eµf
≥ t

}
≤ 4EX,X′ |F sym

2n ((X,X′))/(X,X′)| e−nt2

4 .

(4.35)

Such a result reflects better convergence rates for functions with a small expectation

taken from a random subclass of functions. An interesting further step would be to

investigate, through the viewpoint presented in this chapter, the potential to obtain

these fast rates for data-dependent classes without using the union bound and by

making use of an explicit control of the variance, possibly in a data-dependent way.



Chapter 5

Direct Data-Dependent Bounds

for Empirical Risk Minimization

5.1 Introduction and Overview

In this chapter we present results on data-dependent generalization bounds for a specific

algorithm, namely the Empirical Risk Minimization algorithm (ERM) (see Section

2.5). We have shown in the previous chapter (Section 4.3.5) that one can obtain faster

convergence rates for the function produced by the ERM algorithm in terms of the

complexity of a local subset of hypothesis functions with small variance. These localized

bounds, which can be recovered within our random subclass framework, are based

on the analysis of uniform relative deviations of expectations and empirical averages

of functions. However, recent results of Bartlett and Mendelson (2005) show that

one can give performance guarantees for the ERM algorithm by directly bounding the

expectation of an empirical minimizer, without taking the detour of the analysis of

these uniform deviations. The new results are based on a notion of complexity of local

subsets of hypothesis functions with fixed expectations. They were demonstrated to

yield significantly better convergence rate estimates compared to previous localized

approaches. It is not clear how to recover them in the random subclass framework,

which is based on uniform deviation analysis. Here, we analyze the extent to which

one can derive empirical estimates for the generalization performance for the ERM

algorithm based on the new results in Bartlett and Mendelson (2005).

Bartlett and Mendelson (2005) showed the improvement of their new results by

comparing them to a performance bound for empirical risk minimizers based on uniform

relative deviations. This “comparison” result 1 is also in terms of the same complexity

notion of local subsets of hypothesis functions with a fixed expectation, and is itself

1Bartlett and Mendelson (2005) call it a “comparison” result due to the fact that it is based on
the comparison of expectations and empirical averages as given by the uniform relative deviations over
subclasses.

83
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new and an improvement of previous localized results. Both the “optimal” direct result

and the improved result based on uniform relative deviations presented in Bartlett and

Mendelson (2005) depend on the unknown underlying probability measure and can

therefore not be computed directly.

In order to investigate empirical estimates of the new localized results we follow

the path presented in Bartlett and Mendelson (2005). We first present an empirical

estimate for the “comparison” result, which leads to a new and improved localized data-

dependent notion of complexity which determines the generalization ability of empirical

risk minimizers. We then analyze the optimality of this data-dependent estimate. We

show that, although the convergence rates obtained through the “comparison” result

can be significantly outperformed by these obtained through the “optimal” result, it

is in general impossible to derive a better empirical estimate than one based on the

“comparison” result.

Recall that, given a bounded loss function, the empirical minimization algorithm

produces the function AERM(Z) = argminh∈H R̂ (h,Z) which has the smallest empir-

ical error among all hypotheses in a given hypothesis class H (see Section 2.5). We

assume here that such a minimizer exists. Set F to be the corresponding loss or excess

loss class, and denote the loss function corresponding to the empirical minimizer by f̂ ,

that is,

Enf̂ = min {Enf : f ∈ F} .

The question we wish to address is how to get a high probability bound on the condi-

tional expectation — the generalization ability — of this empirical minimizer

Ef̂ = E(f̂(X)|X1, . . . , Xn) ,

which is solely based on and therefore computable from empirical data. Our goal is

to derive, based on this bound, the fastest possible convergence rates for the ERM

algorithm.

Formally, let F be a class of real-valued functions defined on the probability space

(Ω, µ). We will assume in the following that F is a class of functions bounded by

b, which contains the constant function 0, and all elements of F have nonnegative

expectations. These assumptions are justified given that we are looking at the loss or

excess loss class of a function class containing a minimizer (see also Section 2.1).

Recall that uniform generalization bounds which hold for any algorithm which picks

its hypothesis from H and thus can have as associated loss function any function in F

are based on the analysis of the supremum of the empirical process supf∈F (Ef − Enf) .

This quantity is related, via concentration results (Section 3.1), to its expectation

E supf∈F (Ef − Enf), and via symmetrization techniques (Section 3.2) to the global

complexity of the class F as measured by the Rademacher averages of F , Rn (F ).
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Specifically for the ERM algorithm, one can show that the convergence rates ob-

tained through these bounds can be improved significantly by considering only devia-

tions of expectations and empirical averages of functions contained in small subsets of

F . The complexities of these small subsets are called local complexities. The deriva-

tion of improved error bounds for the ERM algorithm based on localization goes back

to Massart (2000b), Koltchinskii and Panchenko (2000), and Mendelson (2002b). The

bounds in Massart (2000b), Koltchinskii and Panchenko (2000), and Mendelson (2002b)

were further generalized and improved in Bousquet (2002b); Bousquet et al. (2002);

Koltchinskii (2003); Lugosi and Wegkamp (2004); Bartlett et al. (2004a). The driving

idea for localized results is that the risk of the empirical minimizer depends on the Ra-

demacher complexity of local subsets of F centered around the true minimizer (which is

0 if F is the excess loss class) rather than the whole class F . If the function class is not

“too complex” around 0 these bounds can lead to significantly faster convergence rates.

The key property on which this type of derivation is based is that one has control of

the variance of functions in F in terms of a polynomial function of their expectation.

Classes satisfying this property, called Bernstein classes of functions, occur naturally

in machine learning settings, for example in classification problems with 0-1 loss or

regression with squared-loss.

In empirical processes theory it is common to study local subsets of functions which

are balls of a given radius with respect to a chosen metric. The complexity of these local

subsets as a function of the radius of the balls is called the modulus of continuity. It is

known that the fixed point of the modulus of continuity with respect to the L2(µ) metric

can be used to bound the generalization error of functions (see, e.g., Birgé and Massart

1997; van de Geer 2000). This idea has led to the results involving the generalization er-

ror of empirical minimizers in terms of Rademacher complexities of functions with small

variances (balls in L2(µ) centered around 0) or small expectations when the loss class

is Bernstein with β = 1 (Koltchinskii and Panchenko 2000; Bousquet 2002b; Bousquet

et al. 2002; Koltchinskii 2003; Bartlett et al. 2004a). One arrives at complexity terms

which control the suprema of the empirical processes sup
{
Ef − Enf : f ∈ F, Ef 2 ≤ r

}
,

where the radius r is given by a fixed-point equation and can thus be determined, or,

for classes of functions with Var (f) ≤ cEf , at complexity terms which control the su-

prema of the empirical processes sup {Ef − Enf : f ∈ F, Ef ≤ r} . Such complexities

reflect the fact that, in order to estimate the expectation of the empirical minimizer Ef̂ ,

one can ignore functions with large variance or expectation since the ERM algorithm

is unlikely to select them. Since the local subsets are always smaller than the whole

class F , bounds in terms of local complexities are formally sharper than the uniform

bounds.

The derivation of error bounds using localized Rademacher complexities is based

(besides concentration and symmetrization) on reweighting techniques which emphasize
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the functions with small variance or expectation combined with a technique called

peeling (see, e.g., van de Geer 2000, page 69), which consists of splitting the original

class according to the variance of the functions. Reweighting the functions is equivalent

to the derivation of relative tail inequalities, which allow one to compare the deviation

of empirical averages and expectations of functions by taking into account the value

of their variance (or their expectation, if one can relate it to the variance). Such

relative inequalities were previously employed in statistical learning theory by Vapnik

and Chervonenkis (1971); Haussler (1992); Anthony and Shawe-Taylor (1993); Lee et al.

(1996); Bartlett and Lugosi (1999); Anthony and Bartlett (1999) for error bounds in

terms of combinatorial or metric complexities. However, since these results involve a

union bound argument, the obtained probability bounds are potentially looser than

the ones obtained through the localized results.

Unfortunately, local Rademacher complexities in terms of balls of small variances

or expectations depend on the underlying probability distribution and are not practi-

cally useful because this distribution is unknown. Koltchinskii and Panchenko (2000);

Koltchinskii (2003); Lugosi and Wegkamp (2004); Bartlett et al. (2004a) present ways

to empirically approximate the unknown distribution with the empirical distribution

and provide bounds in terms of data-dependent local complexities, which are entirely

computable from data. The local subsets in these approaches are balls of functions

centered around the empirical minimizers.

Recent results due to Bartlett and Mendelson (2005) improve such localized esti-

mates. They show that one can derive upper and lower bounds on the expectation

of the empirical minimizer Ef̂ in terms of localized subsets which are “shells” of a

given expectation. The complexity notion which governs the generalization ability of

functions with small empirical error was shown to be essentially determined by the

behaviour of the function E sup {Ef − Enf : f ∈ F, Ef = r} . This function measures

the complexity of the local subsets of F with a fixed expectation r, denoted here by

Fr = {f ∈ F : Ef = r} .

Clearly, the shells Fr are smaller than balls {f ∈ F : Ef ≤ r}. The Bernstein condition

implies directly that the balls of expectation smaller than r are (if r ≤ 1) contained in

L2(µ) balls. Thus, the complexity in terms of expectations are, up to constants, better

than these in terms of L2(µ) balls, and these results improve the previous localized

notions of complexity. Hence, the derived bounds for the generalization ability of the

ERM algorithm are (up to constants) as good or better than previous bounds. In this

chapter, we will investigate the possibility and limitations when approximating these

results entirely from empirical data.

In order to present our results, following Bartlett and Mendelson (2005) we define,
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Figure 5.1: Graphical illustration of the local subsets Fr = {f ∈ F : Ef = r} ⊆ F for

functions with nonnegative expectations (for example excess loss classes).

for every n and µ, the following two functions which are measures for the complexity

of the sets Fr:

ξn,F,µ(r) = E sup {|Ef − Enf | : f ∈ Fr} ,

ξ′n,F,µ(r) = E sup {Ef − Enf : f ∈ Fr} .

These two functions control the generalization ability of all the functions in Fr whenever

one has a strong degree of concentration for the empirical processes supf∈Fr
|Ef−Enf |

and supf∈Fr
(Ef − Enf) around their expectation. It is easy to see that for all r,

ξ′n,F,µ(r) ≤ ξn,F,µ(r) , and note that, in order to solely determine the generalization

ability, one would need only ξ ′n,F,µ(r). However, for the data-dependent estimation we

require the stronger control of the similarity of expectations and empirical averages

through the “two-sided” complexity function ξn,F,µ(r). In the following, in cases where

the underlying probability measure and the class F are clear, we will refer to these

functions by ξn and ξ′n.

As we will see, the behaviour of the functions ξn and ξ′n as functions of r determines

the performance bounds obtained in Bartlett and Mendelson (2005). For classes of

functions whose variances are bounded by their expectations, the “comparison” result

shows that Ef̂ is essentially upper bounded by the largest fixed points of ξn or ξ′n.

More precisely, the error bounds are in terms of the quantities

r∗n = inf {r : ξn(r) < r/4} ,

and

r′n
∗ = inf

{
r : ξ′n(r) < r/4

}
,

which are upper bounds on the largest fixed points of the functions 4ξn(r) and 4ξ′n(r).

Since ξ′n(r) ≤ ξn(r), it follows immediately that r′n
∗ ≤ r∗n. The “optimal” result in
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Bartlett and Mendelson (2005) improves these bounds through a direct analysis of

the empirical minimizer. The analysis is based on the full strength of the very sharp

concentration in Talagrand’s concentration inequality (Theorem 3.12, page 44) for em-

pirical processes indexed by each of the local subsets Fr. The “optimal” result shows

that the expectation of the empirical minimizer is essentially determined by the largest

maximizer of ξ′n(r)−r. One can show that one can even derive upper and lower bounds

for Ef̂ in terms of upper and lower approximations of the quantity

s∗n = sup
{
r : argmax

{
ξ′n(r) − r

}}
.

If ξ′n(r)− r is peaked around s∗n and the class F is not too complex around 0, then one

can derive matching upper and lower bounds for Ef̂ which will be of the order of s∗n.

One can also show that s∗n ≤ r′n
∗ (see Section 5.5).

The structure of this chapter is as follows: In Section 5.2 we will first present the

structural assumptions which we require in order to derive the results. In Section 5.3 we

then present the “comparison” estimates from Bartlett and Mendelson (2005) on which

we base our data-dependent estimates for the expectation of empirical minimizers. We

present our data-dependent estimate for r∗n in Section 5.4. In order to investigate

the optimality of this estimate (Section 5.5), we first present the improved “optimal”

result from Bartlett and Mendelson (2005) in terms of r∗n (or approximations thereof)

in Section 5.5.1. This will be followed by examples showing that an estimate based

on s∗n is potentially asymptotically tighter than an estimate based on r∗n. However, in

Section 5.5.2 we show through a counter-example that, in general, it is impossible to

compute a data-dependent estimate of s∗n which is better than the empirical estimate

on r∗n, and thus, based solely on empirical data, our empirical estimate is optimal.

5.2 Structural Assumptions

In order to derive estimates for Ef̂ we have to make two additional mild structural

assumptions on the class F , namely, that F is star-shaped around 0 and satisfies a

Bernstein condition. Whereas the first condition imposes some “regularity” on ξn and

ξ′n, the Bernstein condition allows one to control the variance of the functions in the

class. Recall that Talagrand’s concentration inequality ensures a degree of concentra-

tion for the supremum of the deviations of expectations and empirical averages which

depends on the maximal variance of the functions in the indexing class. As we will see,

the specific control of the variance in terms of expectations leads to a control of the

degree of concentration in the subsets Fr which depends on r.

Definition 5.1 We say that F is a (β,B)-Bernstein class with respect to the probability
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measure µ (where 0 < β ≤ 1 and B ≥ 1), if every f ∈ F satisfies

Ef2 ≤ B(Ef)β .

We say that F has Bernstein type β with respect to µ if there is some constant B

for which F is a (β,B)-Bernstein class.

Thus, for Bernstein classes of functions, the variance for every function is bounded by a

power of its expectation uniformly over the class. This condition is crucial for relating

a strong degree of concentration of suprema of empirical processes indexed by Fr to

the expectation r.

Note that the Bernstein condition implies, for excess loss classes, uniqueness of

the minimizer. If f ∗ is any minimizer, assume that there exists a different minimizer

f ′∗ 6= f∗. Then, for f = f ′∗ − f∗ (which is a function from the excess loss class

associated to f ∗), Ef = 0 whereas Ef 2 > 0, which contradicts the Bernstein condition.

Although this might seem as a strong assumption, the Bernstein condition is indeed

satisfied for a range of loss classes arising naturally in the learning setting. For example,

it is satisfied for all distributions for classes of nonnegative bounded functions with β =

1, and therefore for all loss classes induced by nonnegative bounded loss functions, as for

example the 0-1 loss and the square-loss. As was shown in Lee et al. (1996); Mendelson

(2002b), it is also satisfied for all distributions for excess loss classes associated with

learning problems where the hypothesis class is a convex class of functions bounded by

1, and the loss function is a power-type function. In particular, for the regression with

square-loss, β = 1, and one can take B = 16 (Lee et al. 1996; Mendelson 2002b).

The Bernstein property is also satisfied for classification problems in which the

data is labelled consistently, that is, in cases in which the decision for a class is not

random. Such a condition was quantified in Massart and Nédélec (2004); Mammen and

Tsybakov (1999) and Tsybakov (2004), by imposing that the conditional expectation

p(x) = E[Y |X = x] is, with high probability, not “too close” to 1/2 (where X denotes

the input and Y the label). It was shown in Mammen and Tsybakov (1999); Tsybakov

(2004); Massart and Nédélec (2004) that when these “low noise” conditions are satisfied

one can get faster rates of convergence to the Bayes classifier. It is easy to see that these

“low noise conditions” imply that the variance is bounded by a polynomial function

of the expectation (see, e.g., Boucheron et al. 2004b) and therefore that the function

class is Bernstein. Thus, low noise conditions in classification are in fact Bernstein

conditions, and the better results obtained are due to a stronger concentration of

suprema of empirical processes.

Definition 5.2 F is called star-shaped around 0 if for every f ∈ F and 0 ≤ α ≤ 1,

αf ∈ F .
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Figure 5.2: Enlarging the function class F (its elements are depicted as dots) to star(F, 0).

Observe that if F is an excess loss class, then any empirical minimizer over F is

also an empirical minimizer over its star-shaped hull

star(F, 0) := {αf : f ∈ F, 0 ≤ α ≤ 1} .

Therefore, one can replace F with the larger class star(F, 0) (see Figure 5.2). If F is a

Bernstein class, note that star(F, 0) is also Bernstein with the same constants.

Although F ⊆ star(F, 0), since E and En are linear, the “complexity” of star(F, 0)

is not much larger than that of F . One can show that the functions ξn and ξ′n do not

increase too much and thus r∗n and r′n
∗ essentially remain unchanged. For example, if

F is star-shaped and the original function class contains only functions with a given

expectation r0, than ξn(r) for its star-shaped hull is a linear function of r for r ≤ r0 and

0 for r > r0. Another example illustrating the behaviour of ξn(r) is given in Figure 5.3

for the star-shaped hull of a class which contains solely functions whose expectations

can only take on values of r1 or r2.

In general, the advantage one gains by replacing F with its star-shaped hull is that

it imposes some regularity on the complexity functions ξn and ξ′n which allows one to

analyze the complexity of the set of functions with a “large” expectation through their

rescaled versions with a smaller fixed expectation. For each expectation level r, Fr

contains, rescaled, all functions from F≥r := {f ∈ F : Ef ≥ r} . New functions which

can lead to a considerable increase of complexity can thus only be encountered at a

smaller expectation level r′ < r (see Figure 5.4).

Lemma 5.3 If F is star-shaped around 0, then for any 0 < r1 < r2,

ξn(r1)

r1
≥ ξn(r2)

r2
.
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Figure 5.4: At each level r, Fr (black dots) “sees” rescaled versions of all functions from F≥r

(gray dots). New atoms can appear only at smaller levels r′ < r (white dots).

In particular, if for some α, ξn(r) ≥ αr then for all 0 < r′ ≤ r, ξn(r′) ≥ αr′. The

same holds for ξ′n.

A proof for ξn can be found in Bartlett and Mendelson (2005). It holds analogously

for ξ′n.

We call ξn and ξ′n in this case “sub-linear” because, in each interval [r, b], the graph

of ξ′n is below the ray connecting (0, 0) with (r, ξn(r)) , and thus ξ′n grows slower than

linearly in r. This is due to the easy to see fact that the functions ξn(r)/r and ξ′n(r)/r

are non-increasing, which is exactly the property which will allow us to estimate r∗
n

and r′n
∗ . Figure 5.5 illustrates the graph of a typical function with this “sub-linear”

property.



92 Data-Dependent Bounds for ERM

PSfrag replacements

ξn(r)

r

α1r

α2r

α3r

Figure 5.5: The graph of a function ξn which is “sub-linear” (cf. Lemma 5.3). Observe that

this implies that in the interval [0, r], the graph of ξn(r) is above or on the line connecting (0, 0)

with (r, ξn(r)), whereas in each interval [r, b], the graph of ξ′n is below or on the line connecting

(0, 0) with (r, ξn(r)) .

5.3 Localization for ERM

In this section we present the localized “comparison” result from Bartlett and Mendel-

son (2005) on which we will base our empirical estimate. In order to obtain the estimate

for the empirical minimizer in terms of the complexity functions ξn and ξ′n we will con-

sider uniform relative deviations over Fr for the random variables |Ef −Enf |/Ef and

(Ef−Enf)/Ef . Because the class F is star-shaped, one can show that the projection of

the function class Fr and that of the class F≥r onto any sample behave similarly in the

following sense: for a given sample, uniform control of the deviation of |Ef −Enf |/Ef

over Fr is equivalent to a uniform control for the same deviation over the larger set

F≥r. We can state thus the following lemma:

Lemma 5.4 Let F be star-shaped around 0 and let X ∈ Ωn be a sample distributed

according to µn. Then, for any r, t > 0, it holds that Ef−En f ≤ t Ef for every f ∈ Fr

if and only if Ef − En f ≤ t Ef for every f ∈ F≥r .

The proof can be found in Bartlett and Mendelson (2005).

Figure 5.6 shows graphically the statement of this Theorem: for star-shaped classes,

the complexity of f ∈ F≥r is “transferred” to the set Fr if we are interested in analyzing

relative deviations of the form |Ef − Enf |/Ef uniformly on these sets.

Since all functions in Fr have the same expectation (equal to r), the quantities we

need to control are supf∈Fr
|Ef − Enf | . Already for bounded functions, for each Fr,

the suprema supf∈Fr
|Ef − Enf | are highly concentrated around their mean ξn(r) =

E supf∈Fr
|Ef − Enf | (see Section 3.1, for example Corollary 3.8, page 42). Hence,

ξn(r) is a measure for the deviation supf∈Fr
|Ef −Enf | for most of the samples, and

thus we can relate the control of |Ef −Enf |/Ef in Fr to that of ξn(r) . If the variance
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Figure 5.6: For star-shaped classes, uniform control of (Ef − En f)/Ef in Fr is equivalent to

uniform control of the the same relative deviation in F≥r, since each element in F≥r is “seen”

rescaled in Fr.

of this process is “small”, an even stronger concentration result can be obtained from

Talagrand’s concentration inequality and thus, a higher degree of confidence in the

error bound. Here, the fact that the class F is Bernstein is crucial; for Bernstein

classes, where the variance can be bounded in terms of expectations, the empirical

process indexed by Fr can be controlled in terms of the expectation r with same

high degree of concentration, allowing thus localization using Ef instead of Ef 2. By

analyzing the degree of concentration which one can obtain for the processes indexed

by Fr dependent on r, one observes an interesting phenomenon which is displayed by

the following theorem. It states that, for Bernstein classes, there is a phase transition

around the point where ξn(r) ∼ r . Above this point, the local subsets Fr are small

and the expectation and most empirical means are close. Below this point, the sets Fr

are too rich to allow uniform statistical control.

Theorem 5.5 There is an absolute constant c > 0 for which the following holds. Let

F be a class of functions defined on a probability space (Ω, µ), such that for every

f ∈ F , ‖f‖∞ ≤ b. Assume that F is a (β,B)-Bernstein class. Suppose r ≥ 0, and

0 < α, λ < 1 satisfy

r ≥ cmax

{
bx

nα2λ
,

(
Bx

nα2λ2

)1/(2−β)
}

. (5.1)

1. If ξn(r) ≥ (1 + α)rλ , then with probability at least 1 − e−x,

sup
f∈Fr

|Ef − Enf | ≥ λEf .
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2. If ξn(r) ≤ (1 − α)rλ , then with probability at least 1 − e−x,

sup
f∈Fr

|Ef − Enf | ≤ λEf .

The proof of this theorem can be found in Bartlett and Mendelson (2005) and is based

on Talagrand’s concentration inequality in Massart’s version (Theorem 3.12, page 44)

for the empirical process Z = n supf∈Fr
|Ef − Enf | .

The conditions on r arise from the additional terms in Talagrand’s concentration

inequality. Massart’s version of this inequality (Theorem 3.12, page 44) resembles the

form one gets for Bernstein’s inequality for one function. Besides the term involving

the expectation of the supremum of the empirical process, in Bernstein’s inequality

the degree of concentration depends on the variance term and on a bound on the L∞

norm of the function. In Massart’s formulation for the concentration of suprema of

empirical processes one refinds these additional terms as the maximal variance and the

L∞ bound of the indexing class. The first term on the right-hand side of equation (5.1),

essentially bx/n, arises from the L∞ term, whereas the second term, (Bx/n)1/(2−β),

arises from a bound on the variance through the expectation given by the Bernstein

condition.

By employing Talagrand’s concentration inequality for the one-sided empirical pro-

cess Z = n supf∈Fr
(Ef − Enf) (Theorem 3.12, page 44), an analogous proof leads to

the following theorem involving ξ ′n.

Theorem 5.6 There is an absolute constant c > 0 for which the following holds. Let F

be a class of functions defined on a probability space (Ω, µ), such that for every f ∈ F ,

‖f‖∞ ≤ b. Assume that F is a (β,B)-Bernstein class. Suppose r ≥ 0 and 0 < α, λ < 1

satisfy

r ≥ cmax

{
bx

nα2λ
,

(
Bx

nα2λ2

)1/(2−β)
}

.

1. If ξ′n(r) ≥ (1 + α)rλ , then with probability at least 1 − e−x,

sup
f∈Fr

(Ef − Enf) ≥ λEf.

2. If ξ′n(r) ≤ (1 − α)rλ , then with probability at least 1 − e−x,

sup
f∈Fr

(Ef − Enf) ≤ λEf.

Set, for example, λ = α = 1/2. Then Theorem 5.5 implies that, if r ≥ cmax
{
bx/n,

(Bx/n)1/(2−β)} , and ξn(r) ≤ r/4 , then with probability at least 1 − e−x, for every
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f ∈ Fr, |Ef − Enf | ≤ Ef/2. Recall that

r∗n = inf {r : ξn(r) ≤ r/4} .

Thus, if F is star-shaped, by Lemma 5.3, it follows that for every r ≥ r∗
n, if f ∈ F≥r

then Ef ≤ 2Enf . The same holds for

r′n
∗ = inf

{
r : ξ′n(r) ≤ r/4

}
,

by Theorem 5.6. Since for any r, ξ ′n(r) ≤ ξn(r), always r′n
∗ ≤ r∗n.

Thus, for any function f with expectation of the order Ω(1/n1/(2−β)) , with high

probability either Ef ≤ r′n
∗ or Ef ≤ 2Enf . In particular, for the empirical minimizer,

we obtain the following estimates:

Theorem 5.7 Let F be a class of functions defined on a probability space (Ω, µ) which

is (β,B)-Bernstein, bounded by b, and star-shaped around 0. Then there is an absolute

constant c > 0 such that if r∗n is defined as above and

r̃n := max

{
r∗n,

cbx

n
, c

(
Bx

n

)1/(2−β)
}

,

then with probability at least 1 − e−x, any empirical minimizer f̂ ∈ F satisfies

Ef̂ ≤ r̃n .

Also, if r′n
∗ is defined as above and

r̃′n := max

{
r′n

∗,
cbx

n
, c

(
Bx

n

)1/(2−β)
}

,

then with probability at least 1 − e−x, any empirical minimizer f̂ ∈ F satisfies

Ef̂ ≤ r̃′n .

Thus, with high probability, r∗n and r′n
∗ respectively are upper bounds for Ef̂ , as long

as r∗n and r′n
∗ are larger than c/n1/(2−β) . Figure 5.7 shows graphically r∗n and r′n

∗. Note

that r′n
∗ can be much smaller than r∗n, and so the convergence rates obtained through

r′n
∗ are potentially better.

For β = 1, the estimates based on r′n
∗ and r∗n are at best 1/n, and in general at

best 1/n1/(2−β). Thus, the degree of control of the variance through the expectation,

as measured by the Bernstein condition, is the parameter which influences the rate of

convergence which can be obtained through the bound in terms of r ′n
∗ and r∗n whenever
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Figure 5.7: The graph of the functions ξn and ξ′n , and the corresponding values for r∗n and

r′n
∗. For any r, ξ′n(r) ≤ ξn(r) , and thus always r′n

∗ ≤ r∗n.

one requires a confidence which is arbitrarily close to 1. In particular, this approach

recovers the better learning rates for convex function classes from Lee et al. (1996, 1998)

and for low noise classification from Tsybakov (2004); Massart and Nédélec (2004), as

both convexity of F for squared-loss and low noise conditions imply a better control of

the variance of functions in the class.

Thus, the quantities which upper bound the relative difference of expectations and

empirical averages in the class F and the error rate of the empirical minimizer are (up to

constants) the fixed points of the functions ξn(r) and ξ′n(r) respectively. Observe that

these functions measure the expectation of the empirical processes supf∈Fr
|Ef −Enf |

respectively supf∈Fr
(Ef − Enf) indexed by the “local” subset Fr. Recall that in the

classical results, involving a global complexity measure, the resulting bounds are given

in terms of the Rademacher averages of the class, which correspond to the processes

supf∈F |Ef − Enf | indexed by the whole set F . This set is larger and much more

complex than Fr. This is the reason why one only gets rates of convergence of at best

O(1/
√

n) through global estimates, since functions with “large” expectations contribute

to supf∈F |Ef − Enf | , whereas with the localized approaches the rates can be as

good as O(1/n1/(2−β)). Also, in the previous bounds in terms of local complexity

measures established in Koltchinskii and Panchenko (2000); Massart (2000b); Lugosi

and Wegkamp (2004); Bartlett et al. (2004a); Koltchinskii (2003), the fixed point of

the supremum of this process is indexed by the subsets {f ∈ F : Ef ≤ r} , which are

all larger sets than Fr, or by subsets {f ∈ F : Ef 2 ≤ r} , which are also larger due

to the Bernstein condition. If the class is very “complex” around 0, the difference can

lead to asymptotically different estimates for the convergence rates.
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5.4 Data-Dependent Estimation

So far, we have presented how the localization functions ξn(r) and ξ′n(r) give an upper

bound, via r∗n and r′n
∗, for the expectation of the empirical minimizer, and that these re-

sults improve previous results using local complexity measures. However, the functions

ξn(r) and ξ′n(r) depend on the unknown distribution µ, and are thus unknown.

In the following, we will show that it is possible to empirically estimate r∗
n. We

will present an algorithm, previously presented in Bartlett et al. (2004b), which en-

ables us to estimate r∗n completely from empirical data. The estimation is similar in

spirit to data-dependent estimates for localized measures proposed in Koltchinskii and

Panchenko (2000); Lugosi and Wegkamp (2004); Bartlett et al. (2004a). It is based

on the idea of approximating the function shells Fr with “empirical error shells”, an

idea which was pursued in many different machine learning contexts (see, e.g., Haussler

et al. 1994; Kowalczyk et al. 1995).

Although always ξ′n(r) ≤ ξn(r), and thus r′n
∗ ≤ r∗n, the best data-dependent esti-

mate which we can present is one of the order of r∗n. The reason for doing so is that

the one-sided control of uniform deviations (as given by ξ ′n(r) and r′n
∗), although suffi-

cient for deriving upper bounds on the generalization error, only allows one to relate

the shells Fr (for large values of r) to empirical sets {f ∈ F : Enf ≤ (1 − λ)r} .

By using the two-sided localization function ξn(r), however, we will see that one can

approximate the shells Fr with empirical shells

F̂r1,r2 := {f ∈ F : r1 ≤ En f ≤ r2}

in such a way that, for n going to infinity, F̂r1,r2 −→ Fr .

In the next sections we will discuss the optimality of this data-dependent estimate,

and we will show that, in general, a data-dependent estimate for the expectation of

the empirical minimizer which can be computed solely from empirical data is not

distinguishable from an estimate for r∗n (up to constants). However, in order to show

that, we will also make use of the function ξ ′n(r) and the estimate r′n
∗.

The overall idea we pursue is to estimate r∗n from an empirically computable func-

tion ξ̂n(r) which is, with high probability, an upper bound for the function ξn(r) and

therefore, its fixed point r̂∗n = inf
{
r : ξ̂n(r) ≤ r

4

}
is an upper bound for r∗n. We will

construct the function ξ̂n(r) such that ξ̂n(r)/r is non-increasing, and this will enable

us to determine r̂∗n using a binary search algorithm.

We will make use of the following direct lemma of Theorem 5.5 applied to the case

α = 1/2, λ = 1/2.
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Figure 5.8: An empirical sub-linear function ξn which is, for most samples, an upper bound

on ξn. In this case, the empirical quantity r̂∗n = inf
{
r : ξ̂n(r) ≤ r/4

}
is, with high probability

over a random draw of samples, an upper bound for r∗n.

Lemma 5.8 If F is (β,B)-Bernstein, and r ≥ 0 such that

r ≥ cmax

{
bx

n
,

(
Bx

n

)1/(2−β)
}

and ξn(r) ≤ r
4 , then with probability larger than 1 − e−x , every f ∈ Fr satisfies that

r/2 ≤ En f ≤ 3r/2 .

Hence, with high probability, Fr is contained in an “empirical shell”

Fr ⊆ {f ∈ F : r/2 ≤ En f ≤ 3r/2} = F̂ r
2
, 3r

2
.

Since F is star-shaped, then by Lemma 5.3, ξn(r) ≤ r
4 if and only if r ≥ r∗n .

Therefore, if r ≥ max
{

r∗n, cbx
n , c

(
Bx
n

)1/(2−β)
}

, then with probability larger than 1−e−x,

Fr ⊆ F̂ r
2
, 3r

2
. We will additionally assume that r ≥ 1/n. Thus, ξn(r) is upper bounded

by the “complexity” of (the expectation of deviations indexed by) the set F̂ r
2
, 3r

2
, a

set of functions which we can determine entirely by looking at the projections of F on

empirical data. This complexity can be approximated (by applying symmetrization and

concentration techniques) through the empirical Rademacher averages of the function

class F̂ r
2
, 3r

2
.

The empirical Rademacher averages evaluated on a sample X of size n satisfy

R̂n (Fr, X) ≤ R̂n

(
F̂ r

2
, 3r

2
, X
)

.

By symmetrization (Corollary 3.20, page 50) and concentration of Rademacher averages

around their mean (Theorem 3.16, page 48), it follows thus that with probability at
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least 1 − 2e−x over the random draw of samples,

ξn(r) ≤ 2Rn (Fr) ≤ 4R̂n (Fr, X) +
bx

n
≤ 4R̂n

(
F̂ r

2
, 3r

2
, X
)

+
r

c
,

where we used the fact that r ≥ cbx
n (and clearly we can assume that c > 8, a fact

which will be used later).

We have thus obtained for every such r an upper bound for ξn(r) which holds with

high probability and is computable from the sample. To make the upper bound hold

uniformly for all r, we will divide the range of r into intervals of length 1/n. In each

such interval, since F is star-shaped, ξn(r) cannot grow faster than linear and thus can

be bounded. A union bound over the O(n) intervals leads to an upper bound which

holds for the whole range of r. More formally, set

r′ = max

{
r∗n,

1

n
,
cbx

n
, c

(
Bx

n

)1/(2−β)
}

and

R =

{
1

n
,
2

n
, . . . ,

dbne
n

}
∩
[br′nc

n
,
dbne
n

]
.

By the union bound, and since |R| ≤ bn+1, with probability at least 1−2(bn+1)e−x ,

ξn(r) ≤ 4R̂n

(
F̂ r

2
, 3r

2
, X
)

+ r
c for every r ∈ R. By Lemma 5.3, if r ∈

[
k
n , k+1

n

]
, then

ξn(r) ≤ ξn

(
k
n

)
nr
k . Thus, with probability at least 1 − 2(bn + 1)e−x , every r ∈ [r′, b]

satisfies

ξn(r) ≤ ξn

(
k

n

)
nr

k
≤
(

4R̂n

(
F̂ k

2n
, 3k
2n

, X
)

+
k

cn

)
nr

k
≤ 8R̂n

(
F̂c1r,c2r , X

)
+

r

c
,

where c1, c2 are positive absolute constants. Hence we can define

ξ̂n(r) = 8R̂n

(
F̂c1r,c2r , X

)
+

r

c
,

and with probability at least 1 − 2(bn + 1)e−x , for every r ∈ [r′, b] , it holds that

ξ(r) ≤ ξ̂n(r) . It is easy to check that ξ̂n(r)/r is non-increasing and thus ξ̂n is also

sub-linear.

Let

r̂∗n = inf
{

r : ξ̂n(r) ≤ r

4

}
.

Then, with probability at least 1 − 2(bn + 1)e−x , it is true that r̂∗n ≥ r∗n . Moreover,

since ξ̂n(r) is sub-linear, it follows that r ≥ r̂∗n if and only if ξ̂n(r) ≤ r
4 (see Figure

5.8).

With this, the algorithm from Figure 5.9, performing a binary search for the fixed

point of 4ξ̂n(r), computes in O(log n) steps an upper bound on r̂∗n based on the data.
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Algorithm RSTAR(F , X1, . . . , Xn)

rL := 1/n, rR := b.

if ξ̂n(rR) ≤ rR/4 then

for l = 0 to dlog2 bne
r := rR−rL

2 ;

if ξ̂n(r) > r/4 then rL := r,

else rR := r.

Output r̄ := rR.

Figure 5.9: Binary search algorithm computing r̂∗n and thus an upper bound for r∗n in O(log n)

steps.

By the construction, r̄ − 1
n ≤ r̂∗n ≤ r̄ . Since r∗n and thus r̂∗n are always at least

cbx/n = O(1/n) , and r̄ ∈ [r̂∗n, r̂∗n + 1/n] , it follows that r̄ and r̂∗n are of the same

order and thus will lead to the same rates of convergence. Therefore, for every n, with

probability larger than 1 − 2(bn + 1)e−x over the random draw of samples, it holds

that r∗n ≤ max{r̄, cbx/n} . We are thus ready to state the following theorem:

Theorem 5.9 Let F be a class of functions defined on a probability space (Ω, µ) which

is (β,B)-Bernstein, bounded by b, and star-shaped around 0. For any x > 0 and any n,

with probability at least 1− (2bn+3)e−x , a ρ-approximate empirical minimizer f̂ ∈ F

satisfies

Ef̂ ≤ max{2ρ, r′′} ,

where

r′′ = max

{
r̄,

cbx

n
, c

(
Bx

n

)1/(2−β)
}

,

and r̄ = RSTAR(F,X).

The value RSTAR(F,X) is essentially the fixed point of the empirical averages

R̂n

(
F̂c1r,c2r , X

)
as a function of r. Thus, the quantity which matters is the (empirical)

complexity of the function class F̂c1r,c2r . Since this class can be determined empirically

by looking at “empirical shells” of F containing functions whose empirical averages fall

in an interval of length proportional to r, we are thus able to determine the complexity

entirely from data.

We can tighten the localization further by narrowing the size of the “shells” and

replacing the empirical set F̂ r
2
, 3r

2
with F̂r− r

log n
, r+ r

log n
. These empirical shells have

the advantage that, with growing sample size, they become closer to Fr. The price we
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pay for this advantage is an extra log n factor in the final estimate, since in this case

Talagrand’s inequality will allow us to estimate the expectation only down to the order

of O(log n/n).

With the same reasoning as before, by Theorem 5.5 for α = 1/2, λ = 1/ log n ,

and since F is star-shaped, then, if r ≥ max

{
r∗n, cbx log n

n , c
(

Bx log2 n
n

)1/(2−β)
}

, with

probability larger than 1 − e−x , Fr ⊂ F̂r− r
log n

, r+ r
log n

. We define

ξ̂n(r) =

(
4EεRn

(
F̂ k

n
− k

n log n
, k

n
+ k

n log n

)
+

k

cn log n

)
nr

k
, if r ∈

[
k

n
,
k + 1

n

]
.

Again, with probability at least 1 − 2(bn + 1)e−x , for every r ∈ [r′, b] , it holds that

ξn(r) ≤ ξ̂n(r) , where

r′ = max

{
r∗n,

cbx log n

n
, c

(
Bx log2 n

n

)1/(2−β)
}

.

Since ξ̂n(r)/r is non-increasing, it is possible to compute

r̂∗n = inf

{
r : ξ̂n(r) ≤ r

2 log n

}

with a slight modification of RSTAR (by replacing the test in the if-clause, ξ̂n(r) > r/4,

with ξ̂n(r) > r/2 log n ). Thus, for every n, with probability larger than 1 − 2bne−x

over samples of size n, it holds that r∗n ≤ r̄ .

5.5 Optimality

In this section, we will analyze the optimality of the data-dependent estimate r̂∗
n. Since

our empirical estimate is based on the quantity r∗n, we will first present a result from

Bartlett and Mendelson (2005) which proves that one can obtain an estimate for the

expectation of the empirical minimizer which is always better than the one based on r∗
n.

We will also present an example (based on an example from Bartlett and Mendelson

(2005)) showing that this better estimate can lead to significantly better rates for the

convergence of the empirical minimizer.

However, as we will show, this improved rate of convergence cannot, in general, be

recovered in a data-dependent fashion since it is in general impossible to distinguish

(up to constants) between r∗n and s∗n based solely on empirical data. These results are

work in progress contained in an unpublished manuscript Bartlett et al. (2005).
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5.5.1 Optimal Data-Independent Result

By looking at the localized sets Fr, is is easy to see that, for any empirical minimizer,

the quantity

sup
f∈Fr

(Ef − Enf) − r = − inf
f∈Fr

En f

is maximized for the value r = Ef̂ . Assume that one would have a very strong

concentration of empirical processes indexed by Fr, that is, it holds that with high

probability over the random draw of samples,

sup
f∈Fr

(Ef − Enf) ≈ E sup
f∈Fr

(Ef − Enf) = ξ′n(r) .

In this case, it makes sense to expect that, with high probability, Ef̂ ≈ s∗n , where

s∗n = argmax{ξ′n(r) − r} .

A result formalizing this idea was proved in Bartlett and Mendelson (2005). It

is based on Talagrand’s concentration inequality together with the assumption of a

Bernstein class, which leads to a very strong concentration of supf∈Fr
(Ef−Enf) around

its expectation. From Talagrand’s inequality (Theorem 3.12, page 44), supf∈Fr
(Ef −

Enf) ∼ E supf∈Fr
(Ef − Enf) , where ∼ represents equivalence up to a multiplicative

constant (1 + ρ). Of course, Talagrand’s inequality contains additional terms besides

the one involving ξ′n(r), which blow up as the multiplicative constant (1+ρ) represented

by ∼ tends to one. Hence, the claim is not so simple and one has to consider an interval

containing s∗n rather than s∗n itself. Thus, for ε > 0, define

rn,ε,+ = sup

{
0 ≤ r ≤ b : ξ′n(r) − r ≥ sup

s

(
ξ′n(s) − s

)
− ε

}
,

rn,ε,− = inf

{
0 ≤ r ≤ b : ξ′n(r) − r ≥ sup

s

(
ξ′n(s) − s

)
− ε

}
.

The values rn,ε,+ and rn,ε,− are upper respectively lower approximates for s∗n . They

are close to s∗n if the function ξ′n(r) − r is peaked around its maximum.

Now we are ready to state the theorem from Bartlett and Mendelson (2005) which

shows that one can directly bound Ef̂ for the empirical minimizer. It shows that

Ef̂ is concentrated around s∗n and therefore, with high probability, for ε of the order

max
{

sups

(
ξ′n,F,µ(s) − s

)
, r′β

}√
log n/n (and thus in the most conservative case ε ∼

√
log n/n ), the expectation Ef̂ ≤ rn,ε,+ . In addition, if the class is not too “rich”

around 0, then with high probability, Ef̂ ≥ rn,ε,− .

Theorem 5.10 For any c1 > 0, there is a constant c > 0 (depending only on c1) such
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that the following holds: Let F be a class of functions defined on a probability space

(Ω, µ) which is (β,B)-Bernstein, bounded by b, and star-shaped around 0. For any

x > 0 and any n, define rn,ε,+, and rn,ε,− as above, and set

r′ = max

{
r′n

∗,
cb(x + log n)

n
, c

(
B(x + log n)

n

)1/(2−β)
}

.

Let f̂ denote an empirical risk minimizer. If

ε ≥ c

(
max

{
sup

s

(
ξ′n,F,µ(s) − s

)
, r′

β
}

(B + b)(x + log n)

n

)1/2

,

then

1. With probability at least 1 − e−x,

Ef̂ ≤ max

{
1

n
, rn,ε,+

}
.

2. If

E sup {Ef − Enf : f ∈ F, Ef ≤ c1/n} < sup
s

(
ξ′n,F,µ(s) − s

)
− ε,

then with probability at least 1 − e−x,

Ef̂ ≥ rn,ε,−.

The proof is based on a peeling technique (one peels out functions with given expecta-

tions) and uses the fact that, in small intervals, ξ ′n(r) does not grow too much since F

is star-shaped.

Note that the upper bound rn,ε,+ is an improvement in comparison to the bound

resulting from Theorem 5.7, as long as the function ξ ′n(r) − r is not “flat” around its

maximizer. (A “flat” ξ′n(r) − r corresponds to no “significant atoms” appearing at a

scale below some r0, and thus, for r < r0, Fr is essentially a scaled down version of

Fr0 ; in this case, the two bounds will be of the same order of magnitude.) Figure 5.10

illustrates graphically such a case.

By Lemma 5.3, since ξ′n(r)/r is non-increasing,

inf
{
r : ξ′n(r) ≤ r

}
≤ inf

{
r : ξ′n(r) ≤ r

4

}
.

Clearly, ξ′n(r) ≥ 0 , since ξ′n(r) ≥ E(Ef −Enf) = 0 for any fixed function f , and thus

0 ≤ s∗n ≤ inf {r : ξ′n(r) ≤ r} ≤ r′n
∗ ≤ r∗n . Now, for β = 1 , ε ∼

√
s∗n/n � s∗n and if

ξ′n(r) is sufficiently “peaked” around s∗n, then the upper and lower bounds of s∗n, rn,ε,+
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Figure 5.10: The graph of a function ξ′n , and the corresponding values for r′n
∗ , s∗n , rn,ε,+ ,

and rn,ε,− . If s∗n � r′n
∗ and ξ′n(r)− r is peaked around s∗n , then rn,ε,+ is smaller than r′n

∗ .

and rn,ε,− , will be of the order of s∗n.

As we will see in the following, the bound obtained in terms of s∗n can be a significant

improvement over the estimate in terms of r∗n: we will present an example where s∗n is

asymptotically smaller than r∗n.

Comparison

In this section we construct a class of functions for which there is a clear gap between

the result of Theorem 5.6 and the expectation of the empirical minimizer, and thus

between r′n
∗ and s∗n. The idea behind the construction is that one can have a complete

freedom to choose the expectation of a function, while forcing it to have certain values

on a given sample. We can therefore construct a class for which r ′n
∗ is of the order of

a constant (and thus r∗n is of the order of a constant), but which becomes very rich in

subsets which have expectations close to 0 (we choose expectations close to 1/n, since

Talagrand’s concentration inequality does not allow an estimate below 1/n).

The construction is based on the idea developed in Bartlett and Mendelson (2005) of

two Bernstein classes of functions satisfying the following for any fixed n: The first class

contains all functions which vanish on a set of cardinality n, but have expectations equal

to a given constant. The second class consists of functions which each take its minimal

value on a set of cardinality n but have expectations equal to 1/n. By appropriately

choosing the values of the function, one can show that the star-shaped hull of the union
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of these two classes has r′n
∗ ∼ c, whereas s∗n ∼ rn,ε,+ ∼ 1/n. Thus, the estimate given

by Theorem 5.10 is considerably better than the one resulting from Theorem 5.7. Here,

we will show that one can construct a class which satisfies the same property uniformly

for all large sample sizes, showing that, for any large sample size n, an estimate for the

empirical minimizer based on r′n
∗ is asymptotically not optimal.

We will first present an almost identical construction to the one in Bartlett and

Mendelson (2005) of function classes dependent on n. The slight modification we make

is to define the classes on the interval (0, 1] rather than on finite sets, and such that

they are constant on intervals of equal length. This modification is necessary in order

to take the union over n of all these classes for the final construction.

The following lemma states that, for any given sample size n, and for 1/n ≤ λ ≤ 1/2,

we can construct function classes Gn
λ and Hn

λ defined on (0, 1] which are both bounded

and Bernstein with respect to µ, and for which ξ ′n,Hn
λ ,µ(λ) = λ , ξ′n,Gn

λ,µ(λ) = λ + 1 .

Lemma 5.11 Let µ be the uniform probability measure on (0, 1]. Then for every n

and 1/n ≤ λ ≤ 1/2 , there exists a function class Gn
λ such that

1. For every g ∈ Gn
λ , −1 ≤ g(x) ≤ 1 , Eg = λ , and Eg2 ≤ 2Eg .

2. For every set τ ⊂ (0, 1] with |τ | ≤ n , there is some g ∈ Gn
λ such that for every

s ∈ τ , g(s) = −1.

Also, there exists a function class Hn
λ such that

1. For every h ∈ Hn
λ , 0 ≤ h(x) ≤ 1 , Eh = λ , and Eh2 ≤ Eh .

2. For every set τ ⊂ (0, 1] with |τ | ≤ n , there is some h ∈ Hn
λ such that for every

s ∈ τ , h(s) = 0.

The proof of this lemma is almost identical to the proof in Bartlett and Mendelson

(2005), and can be found in Appendix B.2.

Using the classes defined in Lemma 5.11, set

H =
∞⋃

k=5

Hk
1/4 , Fk = Gk

1/k , G =
∞⋃

k=5

Fk ,

and

F = star(G ∪ H, 0) . (5.2)

For all h ∈ H, h : (0, 1] −→ [0, 1], Eh = 1/4, and H is a (1,1)-Bernstein class

w.r.t. µ, since all functions are positive and bounded by 1. G is a (1,2)-Bernstein class

w.r.t. µ, since all functions satisfy the Bernstein condition. Thus, F is star-shaped and

(1, 2)-Bernstein with respect to µ and therefore satisfies the assumptions of Theorems
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Figure 5.11: ξ′n,star(Fn∪Hn
1/4

),µ (as in the proof of Theorem 5.12).

5.7 and 5.10. We are now ready to show that, for F , the estimate given by Theorem

5.10 is asymptotically better than the one resulting from Theorem 5.7 uniformly for

every n ≥ n0.

First observe that, for every n ≥ 5 and any sample (X1, . . . , Xn) drawn i.i.d. ac-

cording to µ, there is a function f ∈ F with Ef = 1/4 and Enf = 0, and a function

g ∈ F with Eg = 1/n and Eng = −1. Indeed, one can choose the function f from Hn
1/4

and the function g from Fn = Gn
1/n. Thus, for any sample of size n ≥ 5, the localized

complexity function ξ ′n for the class star(Fn ∪ Hn
1/4) has its graph as in Figure 5.11,

with r′n
∗ = 1/4 and s∗n = rn,ε,+ = 1/n .

This also implies that ξ ′n,Fn,µ(1/n) = 1 + 1/n , since this is the maximal possible.

We now show that ξ′n,Fk,µ(1/k) decays rapidly in k, ensuring that for any n ≥ n0 ,

and every k ≤ cn , it holds that ξ ′n,Fn,µ(1/n) − 1/n � ξ′n,Fk,µ(1/k) − 1/k . Thus,

the empirical minimizer in star(∪k Fk) is likely to be around 1/n. Therefore, for the

class F , ξ′n,F,µ(r)− r will still achieve its maximum at 1/n and will decay rapidly for

r > 1/n, ensuring that rεn,+ � r′n
∗ . Figure 5.12 illustrates the qualitative behaviour

of ξ′n,F,µ .

Theorem 5.12 For F defined as above, the following holds:

1. For every n ≥ 5, the function ξ ′n,F,µ satisfies

ξ′n,F,µ(r) =





r + rk if r ∈ (1/(k + 1), 1/k] , where k ≤ n

r if r ∈ (1/5, 1/4]

0 if r > 1/4 .
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Figure 5.12: Qualitative behaviour of ξ′n,F,µ, where F is defined by equation (5.2).

In particular, r′n
∗ = 1/4.

2. There exists an absolute constant c > 1, such that the following holds: for every

x > 0, there exists an N(x) such that for every n ≥ N(x), for every k ≤ n/c, if

εn =
√

3(x+log n)
n , then

ξ′n,F,µ(1/k) − 1/k ≤ ξ′n,F,µ(1/n) − 1/n − εn .

In particular, rn,εn,+ ≤ c/n.

Claim 1 follows directly from the linearity of the expectation and the construction of

F . The proof of claim 2, namely that ξ ′n,F,µ(r) − r decays fast around 1/n at larger

values than r ∼ c/n, can be found in Appendix B.2.

The following direct corollary of this theorem states that, for the class F , for any

sample size n, r′n
∗ = 1/4, while the empirical minimizer is likely to be smaller than c/n.

Corollary 5.13 For F defined as above, there is an absolute constant c > 0 for which

the following holds: For any x > 0 there is an integer N(x) such that for any n ≥ N(x),

1. With probability at least 1 − e−x, Ef̂ ≤ c/n ∼ s∗n .

2. r′n
∗ = r∗n = 1/4 .

Hence, we have constructed a class F which is star-shaped and Bernstein, and for

which the estimate from Theorem 5.10 is asymptotically better than the one implied

by Theorem 5.7. This shows that r′n
∗ (and even more r∗n) is not an optimal estimate for

Ef̂ , since we constructed an example of a function class for which it does not capture

the correct estimate for most empirical minimizers.
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However, as we will show in the next section, any data-dependent estimate for Ef̂

based entirely on empirical data cannot be in general better than r∗n.

5.5.2 Optimality of Data-Dependent Estimation

In this section, we will show that, in general, it is impossible to establish a data-

dependent estimate of s∗n which is better than r′n
∗. The general idea is to construct two

Bernstein classes of functions, such that the classes have asymptotically different r∗
n

but look identical when projected on any sample of finite size. We start by constructing

two classes of functions which have identical coordinate projections on any sample of

fixed size n. We construct them in such a way that all functions in the first class have

expectations equal to some absolute constant, whereas all functions in the second class

have an expectation equal to c/n for an absolute constant c.

In the following, for a given function class F and a sample x = (x1, . . . , xn), recall

that we denote the set of all coordinate projections of F on x by

F/x = {(f(x1), ..., f(xn)) : f ∈ F} .

In order to illustrate the idea of the construction, we start with the following theo-

rem, which shows that we can construct, for each sample size n, two classes of functions

as follows:

Theorem 5.14 There exists an integer n0 and an absolute constant c > 0 such that,

for any n ≥ n0, there exist two function classes Gn
1 and Gn

2 defined on a probability

space (Ω, µn) satisfying the following properties:

1. for every f ∈ Gn
1 , Ef ≥ 1/4 and Ef 2 ≤ 2Ef ,

2. for every f ∈ Gn
2 , Ef ≤ c/n and Ef 2 ≤ 2Ef ,

3. for any sample x ⊂ Ωn with |{x1, . . . , xn}| = n , Gn
1/x = Gn

2/x .

Proof: Let n be a fixed integer. Consider the following two function classes Gn
1 and

Gn
2 consisting of functions defined on {1, ..., 4n2} taking values in {−1, 1, 1/n} . Any

function in Gn
1 takes the value −1 on exactly n points, the value 1 on exactly n2 points,

and the value 1/n on 3n2 − n points. Any function in Gn
2 takes the value −1 also on

exactly n points; however it takes the value 1 on only exactly 2n points, and thus the

value 1/n on 4n2 − 3n points. Hence, for any two disjoint subsets J, I ⊂ {1, ..., 4n2},
|J | = n, |I| = n2 let f = fI,J ∈ Gn

1 be such that

f(i) =





−1, if i ∈ J,

1, if i ∈ I,

1/n, otherwise,



5.5 Optimality 109

and for any two disjoint subsets J, I ⊂ {1, ..., 4n2} , |J | = n, |I| = 2n let f = fI,J ∈ Gn
2

be such that

f(i) =





−1, if i ∈ J,

1, if i ∈ I,

1/n, otherwise.

Let µn be the uniform distribution on {1, ..., 4n2}. Clearly, with respect to µn, if n ≥ 3,

then for every f ∈ Gn
1 ,

Ef =
−n + n2 + (3n2 − n)/n

4n2
=

n2 + 2n − 1

4n2
>

1

4
,

Ef2 =
n + n2 + (3n2 − n)/n2

4n2
=

n3 + n2 + 3n − 1

4n3
≤ 1

2
.

Thus Ef 2 ≤ 2Ef , which proves claim 1. On the other hand, for every f ∈ Gn
2 , if

n ≥ 20,

Ef =
−n + 2n + (4n2 − 3n)/n

4n2
=

5n − 3

4n2
<

5

4n
,

Ef2 =
n + 2n + (4n2 − 3n)/n2

4n2
=

3n2 + 4n − 3

4n3
≤ 4

5n
.

It is easy to check that Gn
2 is a (1, 2)-Bernstein class of functions, since there is an n0

such that if n ≥ n0 , then for any f ∈ Gn
2 , Ef ≥ 2/5n and hence Ef 2 ≤ 2Ef . Claim

2 of the theorem is thus true for c = 5/4.

By construction, for any sample x = (x1, x2, . . . , xn) of size n the projections

Gn
1/x = Gn

2/x =

{
−1, 1,

1

n

}n

and claim 3 of the theorem follows.

By using the same idea with a more complicated construction, we will define two

classes which have asymptotically different expectations, but have identical projections

uniformly on samples of any size. We will take two unions of classes constructed simi-

larly to the ones constructed in Theorem 5.14. For each sample size n, we will construct

two function classes such that functions in the first class will have expectations of the

order of a constant, while the ones in the second class will only have expectations of

the order c/n. Since we will take the union over all such functions, we will construct

the classes in a way that, for each sample size n, the union of classes with small ex-

pectations (the ones in the second class) is only “rich” at values Ef ≤ c/n, implying

that rn,ε,+ ≤ c/n similarly to Theorem 5.12. This can be done by ensuring that the

complexity (i.e. the fat-shattering dimension) of these classes is “small”. Since the two

constructed union of classes look identical on any sample, this proves that it is not pos-
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sible in general to distinguish empirically between rn,ε,+ and r′n
∗ if all the information

one has are the coordinate projections.

Lemma 5.15 Let µ be the uniform measure on (0, 1]. Then, there exists an integer

n0 and absolute constants c, c1, c2, c
′ > 0 such that, for any n ≥ n0, there exist two

function classes F n
1 and F n

2 defined on (0, 1] satisfying the following properties:

1. for every f ∈ F n
1 , Ef ≥ 1/4 and Ef 2 ≤ c1Ef ,

2. for every f ∈ F n
2 , Ef ≤ c/n and Ef 2 ≤ c2Ef ,

3. for any set x ⊂ Ωn with |{x1, . . . , xn}| = n , F n
1 /x = F n

2 /x ,

4. For any ε > 0 and n ≥ 2, fatε (F n
2 ) ≤ c′n/ε .

Proof: Fix an integer n. We construct two function classes F n
1 and F n

2 on (0, 1] and

taking values in the set

Vn =

{
−1,

1

n2
,

2

n2
, . . . ,

1

n
, 1

}
. (5.3)

In both F n
1 and F n

2 , each function is defined to be constant on each of the intervals

(j/m, (j + 1)/m], where m = 2n2 + 3n, 0 ≤ j ≤ m − 1. Any function in F n
1 takes the

value −1 on n intervals, the value 1 on n2 + 2n intervals, and, for every 1 ≤ i ≤ n

the value i/n2 on n intervals. Any function in F n
2 takes the value −1 on n intervals,

the value 1 on 2n intervals, and, for every 1 ≤ i ≤ n, the value i/n2 on 2n intervals.

Therefore, for any function f ∈ F n
1 ,

Ef =
−n + n2 + 2n + n

∑n
i=1

i
n2

2n2 + 3n
=

2n2 + 3n + 1

4n2 + 6n
≥ 1

4
,

Ef2 =
n + n2 + 2n + n

∑n
i=1

i2

n4

2n2 + 3n
=

6n4 + 18n3 + 2n2 + 3n + 1

6n2(2n2 + 3n)
≤ 1 ,

and hence

Ef2 ≤ 4Ef.

While F n
1 , contains functions with expectation of the order of a constant, in F n

2 all the

functions have expectation sn ∼ 1/n. Indeed, for any function f ∈ F n
2 ,

Ef =
−n + 2n + 2n

∑n
i=1

i
n2

2n2 + 3n
=

2n + 1

2n2 + 3n
≤ 1

n
,

Ef2 =
n + 2n + 2n

∑n
i=1

i2

n4

2n2 + 3n
=

9n3 + 2n2 + 3n + 1

3n2(2n2 + 3n)
≤ 3

2n
.

Moreover, since Ef ≥ 2/5n, Ef 2 ≤ 5Ef.

As before, it is easy to see that for any sample x = (x1, x2, . . . , xn),

F n
1 /x = F n

2 /x =

{
−1,

1

n2
,

2

n2
, . . . ,

1

n
, 1

}n

.
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We will now show that, indeed, the fat-shattering dimension of F n
2 is “small”.

Clearly, for 1/n ≤ ε ≤ 1, fatε (F n
2 ) ≤ n. Fix 0 < ε < 1/n. If a set {x1, . . . , xk} is

ε-shattered by F n
2 (recall Definition 2.11, page 24), then there exists some s ∈ [−1, 1]k

and f ∈ F n
2 such that

⌊
k

2

⌋
= min

{
|{ i : f(xi) ∈ [−1, si − ε] }|, |{ i : f(xi) ∈ [si + ε, 1] }|

}

(we choose I such that half of the points are “above” and half “below” s). Since the

fat-shattering dimension of F n
2 is the maximal k for which there is a set {x1, . . . , xk}

which is ε-shattered by F n
2 , it follows that

⌊
fatε (F n

2 )

2

⌋
≤ max

k
max

s∈[−1,1]k
min

{
|{i : f(xi) ∈ [−1, si−ε]}|, |{i : f(xi) ∈ [si+ε, 1]}|

}
.

The maximum is achieved by taking the fixed level values si = (n + 1)/2n2, and since

each interval of length ε above or below this level contains at least εn2 − 1 points from

Vn (defined in (5.3)),

⌊
fatε (F n

2 )

2

⌋
≤
(
(n + 1)/2 + 1 − (εn2 − 1)

)
n ≤ (n + 3 − εn2)n .

To show that n + 3− εn2 ≤ 1/ε, which is equivalent to −ε2n2 + ε(n + 3) − 1 ≤ 0, note

that for any n ≥ 2, the quadratic function h(ε) = −ε2n2 + ε(n + 3) − 1 ≤ 0. This

directly implies that fatε (F n
2 ) ≤ c′n/ε and the theorem is proved.

We are now ready to construct the desired classes. First, consider the set of integers

M = {k : ∃`, k2 = 2`} . Note that if k1, k2 ∈ M and k1 < k2, then Vk1 ⊂ Vk2 , where

the sets Vki
are defined in (5.3) by setting n = ki.

Set

F1 = star

( ⋃

k∈M

F k
1 , 0

)
, F2 = star

( ⋃

k∈M

F k
2 , 0

)
. (5.4)

For every sample x = (x1, x2, . . . , xn) , if k ∈ M such that k ≥ n , then F k
1 /x =

F k
2 /x = Vk × . . . × Vk ⊂ R

n . Now the choice of M becomes clear, as it ensures that

for each k′ ∈ M , k′ < n , Vk′ ⊂
⋃

k∈M,k≥n

Vk , and thus

F1/x = F2/x =


 ⋃

k∈M,k≥n

Vk




n

.

Hence, F1 and F2 are star-shaped, Bernstein classes of functions which have identical

coordinate projections on any finite set. Hence, it is impossible to distinguish between
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these two classes based solely on empirical data. However, the expectation of the

empirical minimizer is very different for these two classes, as stated in the following

theorem, whose proof can be found in Appendix B.2.

Theorem 5.16 For F1 and F2 defined as in (5.4), there is an absolute constant c > 0

for which the following holds: For any x > 0 there is an integer N(x) such that for any

n ≥ N(x),

1. for F1, with probability at least 1 − e−x, Ef̂ ≥ 1/4 ∼ r∗n(F1) ;

2. for F2, with probability at least 1 − e−x, Ef̂ ≤ c/n ∼ s∗n(F2) .

Thus, the estimates for the convergence rate of the ERM algorithm based on s∗n are

significantly better for the class F2 than for F1. However, the classes have identical

coordinate projections on any sample, and hence are indistiguishable empirically. Thus,

one can not get a better empirical estimate for the convergence rate for F2 than by an

empirical estimate for r∗n.

5.6 Conclusion

In this section we investigated results regarding the extent to which one can derive em-

pirical estimates for the generalization performance for the ERM algorithm. Our inves-

tigations are based on two recent results for the convergence rate of the ERM algorithm

from Bartlett and Mendelson (2005). These two results use localization with shells Fr of

the excess loss function class of fixed expectations and localized complexity functions

ξn,F,µ(r) = E sup {|Ef − Enf | : f ∈ Fr} and ξ′n,F,µ(r) = E sup {Ef − Enf : f ∈ Fr} .

The “optimal” result in Bartlett and Mendelson (2005) provides upper and lower

bounds on the expectation of empirical minimizers in terms of the largest maximizer

s∗n of ξ′n(r)− r. Since this result is based on a direct analysis of the expectation of the

empirical minimizer and does not take the detour of analyzing uniform deviations of

expectations and empirical averages, it is not known if it can be recovered within the

random subclass framework which we presented in Section 4. Bartlett and Mendelson

(2005) also prove a “comparison” result which is based on uniform relative deviations

which provides upper bounds on the expectation of empirical minimizers in terms of

the fixed points r∗n and r′n
∗ of the functions ξn,F,µ(r) and ξ′n,F,µ(r). For “well-behaved”

classes, s∗n ≤ r′n
∗ ≤ r∗n .

We first presented a data-dependent upper bound on the expectation of the em-

pirical minimizer produced by the ERM algorithm. This estimate, which is entirely

computable from empirical data, is the tightest data-dependent estimate based on

localized complexity notions which we are aware of. It is based on the distribution-

dependent r∗n “comparison” result in Bartlett and Mendelson (2005) for which it is an

upper bound.
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We extended an example from Bartlett and Mendelson (2005) to show that there

exist classes for which the estimates based on s∗n can lead to significantly better rates

of convergence than the ones based on r ′n
∗ and thus on r∗n.

Finally, we presented an example showing that, in general, this potentially better

estimate based on s∗n cannot be recovered solely based on empirical data. We pre-

sented an example of two function classes for which the s∗n estimate would lead to

asymptotically different convergence rates but which look identical projected on any

sample of empirical data. For these classes, one cannot get better empirical estimates

than estimates of r∗n or r′n
∗.
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Chapter 6

Conclusion

This thesis studied the problem of bounding the performance of machine learning

algorithms in a statistical setting. It presented two contributions concerned with the

data-dependent analysis of the generalization error of learning algorithms.

We developed first a general framework for deriving generalization bounds for data-

dependent random subclasses of functions based on the comparison of empirical aver-

ages and expectations of functions in these random classes. Our approach was moti-

vated by the fact that one is interested in bounds for the function which a particular

learning algorithm produces from the actual data, whereas the standard worst-case uni-

form bounds in learning theory hold simultaneously for any function in the hypothesis

class. Such a function produced from the actual random data is a random function.

We showed, based on symmetrization techniques, that the analysis of deviations of

empirical averages from expectations of random functions can be reduced to the analysis

of the behaviour of the supremum of a Rademacher process indexed by certain random

coordinate projections. We identified two separate principles which are sufficient to

guarantee and quantify the generalization ability of algorithms producing functions

based on a random sample:

1. Learnability and the convergence rate are ensured by small Rademacher averages

of certain symmetric subsets.

2. High-probability convergence rates and thus small confidence intervals for the

generalization error are ensured by the degree of concentration of the suprema of

Rademacher processes indexed by these symmetric subsets.

We showed that geometric properties of the random coordinate projections of these

random subsets directly influence the degree of concentration and thus the confidence

estimates for the generalization error.

We then demonstrated the generality of our approach by showing that the stan-

dard uniform approaches based on complexities which characterize Glivenko-Cantelli

115



116 Conclusion

classes, and the compression, sparsity, and luckiness frameworks all fall into our ran-

dom subclass framework. It was known before that some of the uniform complexity

measures and the assumptions in the above data-dependent and algorithm-dependent

frameworks are intrinsically similar though the nature of this similarity was not clear.

We showed here that the underlying mechanism which makes them work is the fact

that these assumptions are all different ways of ensuring that a “typical” coordinate

projection is small. We were able to improve the bounds given in the above mentioned

frameworks by avoiding the potentially loose union bound. Our approach related the

complexity notions in these frameworks directly to the Rademacher complexity mea-

sures.

In addition, we showed that the faster convergence rates for the Empirical Risk Min-

imization algorithm (ERM) in the learning sample complexity results due to Mendelson

(2003) and in results based on local (non-random) subclasses of functions with small

variance can be recovered from our framework by using the full power of concentration

results established via a strong control on the variance. Although we did not present

here any new bounds for the generalization error, the potential of our random subclass

framework is that it opens the avenue to exploit information on the variance of func-

tions in order to derive, in a similar fashion, faster high-probability convergence rates

for random classes of functions.

We conclude that, in order to determine the convergence rates for the error of learn-

ing algorithms based on comparisons of empirical and expected errors, a key quantity is

the Rademacher complexity of random coordinate projections, whereas a key property

for determining confidence interval estimates for this error is the `n
2 geometry of these

coordinate projections. However, given the aim to determine the real convergence rate

for learning algorithms, more refined methods of analysis might be needed which are

not necessarily based on comparisons of empirical and expected errors.

We gave one example of such a more refined analysis for the estimation of the

generalization performance of the ERM, which is a central algorithm in statistical

learning theory. We investigated new results on the generalization performance of

the ERM algorithm due to Bartlett and Mendelson (2005) which are not based on

the comparison of empirical averages and expectations of functions since they directly

bound the expectation of the empirical minimizer. These direct estimates based on

a new localized notion of complexity of subsets of hypothesis functions with identical

expected errors give, under certain circumstances, matching upper and lower bounds

and thus essentially optimal estimates for the convergence rates of empirical minimizers.

We studied the extent to which one can obtain empirical versions of these direct

estimates with the same “optimal” convergence rates. We first presented an algorithm

which computes a data-dependent upper bound for the expected error of empirical

minimizers in terms of the complexity of data-dependent local subsets. Although the
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computation of these complexities can be potentially very expensive, they can be deter-

mined based solely on empirical data. This approach improves previous data-dependent

results based on localized estimates. We then constructed a counter-example which

shows that the direct estimate in Bartlett and Mendelson (2005) can not be recovered

universally from empirical data.

These results deepen our understanding of the possibilities and limitations in esti-

mating the generalization performance of the ERM. Although, for well-behaved classes,

it is now understood which parameters and structural properties completely charac-

terize the high-probability convergence rates for the expected error of empirical min-

imizers, we conclude that there are inherent limits in quantifying these convergence

rates from observed empirical data universally, without further assumptions. Some

questions that are left unanswered are whether our counter-example is “typical” and

thus relevant in practical situations, whether it is possible to characterize problems for

which one has such a “gap” between the true and the empirical estimates, and whether

similar results can be derived for other algorithms than ERM.

Like most results in statistical learning theory, although our results hold true for

training samples of finite size and thus are non-asymptotic in this sense, they are useful

only for sufficiently large sample sizes since they are based on concentration of measure

which is a high-dimensional phenomenon. From the practical point of view, as long as

the sample size is sufficiently large, our results are a step towards understanding some

mechanisms and parameters which are essential for obtaining probabilistic error bounds

for learning algorithms. However, for sample sizes which are significantly smaller than

the ones required for our results, the parameters and insights can be misleading and

our conclusions are thus not valid in such cases.
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Appendix A

Empirical Processes

Let V be a subset of R
n. We consider in the following stochastic processes which are

collections of centered random variables {Xv : v ∈ V } indexed by V . In particular, let

ε = (ε1, . . . , εn) be a vector of independent Rademacher variables (i.e. Pr {εi = −1} =

Pr {εi = 1} = 1/2 ), and let g = (g1, . . . , gn) be a vector of independent standard

Gaussian random variables. Both these vectors can be seen as models for a random

noise sequence of length n. The stochastic processes which quantify the correlations of

vectors in V with the random noise sequences ε and g,

{
Yv =

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣ : v ∈ V

}
and

{
Zv =

∣∣∣∣∣
n∑

i=1

givi

∣∣∣∣∣ : v ∈ V

}

are the Rademacher (Gaussian) process indexed by the set V . One of the central

questions of empirical process theory is to find upper and lower bounds for the quantity

E supv∈V Xv , where the random variable supv∈V Xv is the supremum of the stochastic

process indexed by V . We call Rn(V ) = E ε supv∈V Yv the Rademacher averages and

Gn(V ) = E g supv∈V Zv the Gaussian averages associated with V .

It turns out that for Gaussian processes one can study the quantity E supv∈V Zv

by looking at the metric space (V, `n
2 ) and vice-versa. The crucial property of Gaussian

processes which allows one to take advantage of the structure of (V, `n
2 ) is the fact that

Pr {|Zv − Zu| > t} ≤ 2e
−t2

2‖v−u‖2
2 .

A stochastic process is called sub-Gaussian with respect to a pseudo-metric d on

V , if for any v,u ∈ V , and every x > 0

Pr {|Xv − Xu| > t} ≤ 2e
−t2

2d2(v,u) .

Gaussian processes are therefore sub-Gaussian with respect to `n
2 on V . By Hoeffding’s

inequality (Theorem 3.3, page 37), it follows immediately that Rademacher processes
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are also sub-Gaussian with respect to the Euclidean metric. One can extend many

results which hold for Gaussian processes to the sub-Gaussian case and therefore to

Rademacher processes. In particular, majorizing measures, developed by Fernique and

Talagrand, which are a more general form of the chaining method due to Kolmogorov,

can be employed to provide optimal upper and lower bounds for the expectation of

suprema of sub-Gaussian stochastic processes (Fernique 1975; Talagrand 1996a, 2005).

In the following we will state some basic theorems from empirical process theory

regarding Rademacher and Gaussian processes which will be used in this thesis. 1

The following theorem due to Maurey and Pisier (1976) shows that Rademacher

and Gaussian averages are similar. A proof can be also found, for example, in Ledoux

and Talagrand (1991), on page 97.

Theorem A.1 (Comparison of Rademacher and Gaussian averages) There are

absolute constants c and C such that for every set V ⊂ R
n, n ≥ 2,

c Eε

(
sup
v∈V

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣

)
≤ Eg

(
sup
v∈V

∣∣∣∣∣
n∑

i=1

givi

∣∣∣∣∣

)
≤ C Eε

(
sup
v∈V

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣

)
log n .

A useful property of Gaussian and Rademacher averages is that a contraction ap-

plied to each coordinate of V does not change the averages by much.

Theorem A.2 (Contraction principle (Ledoux and Talagrand 1991, page

95)) Let φ : R −→ R be a Lipschitz function with Lipschitz constant Lφ, such

that φ(0) = 0 . Then,

Eg sup
v∈V

∣∣∣
n∑

i=1

giφ(vi)
∣∣∣ ≤ 2LφEg sup

v∈V

∣∣∣
n∑

i=1

givi

∣∣∣ ,

and the same holds for the Rademacher averages of V .

The following theorem reflects a relationship between Rademacher averages and

the metric `n
2 -entropy and was originally proved in Dudley (1967) for Gaussian pro-

cesses. The most general version is due to Pisier (1989). The following version is from

van der Vaart and Wellner (1996) (Corollary 2.2.8, page 101), it holds for sub-Gaussian

processes and thus applies to Rademacher processes.

Theorem A.3 (Dudley’s entropy integral) Let V be a bounded subset of `n
2 . Then

there exists a constant C such that

Eε

(
sup
v∈V

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣

)
≤ C

∫ ∞

0

√
log N(u, V, `n

2 ) du .

1For more details on suprema of empirical processes, see, for example, Dudley (1984); Ledoux and
Talagrand (1991); van der Vaart and Wellner (1996); Fernique (1997); Dudley (1999); van de Geer
(2000); Ledoux (2001); Bousquet (2002b); Massart (2003); Wellner (2004).
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Clearly, the upper limit of integration can be taken to be the `n
2 radius of a ball centered

at the origin which contains the set.

For finite subsets V ⊆ Bn
2 , since N(u, V, `n

2 ) ≤ |V | for any u > 0, one can derive

the following corollary. It states that for every finite set V ⊂ `n
2 , the Gaussian averages

(and therefore the Rademacher averages) can be upper bounded by a quantity which

depends on the cardinality of V and the `n
2 -diameter of V .

Corollary A.4 (Comparison theorem for finite sets) There is an absolute con-

stant C such that for every finite set V ⊂ `n
2 ,

Eg sup
v∈V

∣∣∣
n∑

i=1

givi

∣∣∣ ≤ C
√

log |V | sup
v∈V

‖v‖2,

where (gi)
n
i=1 are independent standard Gaussian random variables.

The “converse” of Dudley’s entropy integral was originally proved by Sudakov, and

provides a lower bound for Gaussian averages in terms of the metric `n
2 -entropy. It

was also extended to Rademacher processes, a case in which the `n
2 is replaced by an

“intermediate” between the `n
2 and `n

1 norms (see, e.g., Ledoux and Talagrand 1991,

Proposition 4.15, page 117). Here we only state the result for Gaussian processes.

Theorem A.5 (Sudakov’s minoration (Ledoux and Talagrand 1991, Theo-

rem 3.18, page 80)) There exists a constant c > 0 such that, for every bounded set

V of `n
2 ,

sup
u>0

u
√

log N(u, V, `n
2 ) ≤ c Eg

(
sup
v∈V

∣∣∣∣∣
n∑

i=1

givi

∣∣∣∣∣

)
.

Let F be a class of measurable functions defined on a space Ω with underlying

probability measure µ. Then

{
1√
n

n∑

i=1

gif(Xi) : f ∈ F

}

is a Gaussian process with respect to L2(µn), and by Hoeffding’s inequality, the process

{
1√
n

n∑

i=1

εif(Xi) : f ∈ F

}

is sub-Gaussian with respect to L2(µn) (recall that ‖f‖2
L2(µn) = 1/n

∑n
i=1 f2(Xi) )

(see, e.g. Mendelson 2002c; Wellner 2004). This will enable us to use the theorems of

this chapter for Rademacher averages of classes of functions.

Another useful fact is that the suprema of Rademacher and Gaussian processes are

norms on the dual space of `n
2 . Recall that a norm in the dual space (that is, the vector
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space of linear functionals from `n
2 into R) is ‖ξ‖ = sup‖v‖n

2 =1 |ξ(v)| . One can define a

norm whose unit ball is the absolute convex hull of F . With that, one can show that,

1√
n

n∑

i=1

gif(Xi) =

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
F 0

and
1√
n

n∑

i=1

εif(Xi) =

∥∥∥∥∥
n∑

i=1

εiei

∥∥∥∥∥
F 0

,

where e1, e2, . . . en is an orthonormal basis of the dual space of `n
2 , and ‖ · ‖F 0 de-

notes the dual norm of the norm whose unit ball is the absolute convex hull of F ,

that is, the convex hull of F ∪ −F (see, e.g., Mendelson 2002c). The function

x 7→ ‖∑n
i=1 xiei‖F 0 , being a norm, is convex. One can easily show by the triangle in-

equality and the Cauchy-Schwartz inequality that it is also Lipschitz, and its Lipschitz

constant depends on the geometry of F . Thus, the functions G(g) = ‖∑n
i=1 giei‖F 0

and R(ε) = ‖∑n
i=1 εiei‖F 0 are convex Lipschitz functions with Lipschitz constants

supf∈F ‖(f(x1), . . . , f(xn))‖2/
√

n. Thus, we can employ concentration results for con-

vex Lipschitz functions (like Talagrand’s convex distance inequality, see for example

Ledoux (2001), page 78 and 136) to show that Rademacher and Gaussian averages are

concentrated around their expectation (see Theorem 3.11).



Appendix B

Proofs

B.1 Proofs for Chapter 4

Proof of Lemma 4.9

Recall that An,d(X) ⊆ H is the set of all functions with loss classes associated to lucky

sets of size smaller than or equal to 2d,

An,d(X) = {f ∈ H : M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d}

and that

Hn,d(X) :=
⋃

f∈An,d(X)

Hl(f,X) .

1. M
(

1
n ,Hn,d(X), L1(µn)

)
≤ 2d.

To prove the first property, assume that M
(

1
n ,Hn,d(X), L1(µn)

)
> 2d. Then, by the

definition of packing numbers, there exists a 1
n separated set K ⊆ Hn,d(X) with respect

to L1(µn) of cardinality |K| = 2d +1. For all k ∈ K, by the definition of Hn,d(X), there

exists an fk ∈ An,d(X) such that k ∈ Hl(fk,X). Let f ′ = argminfk∈An,d(X)L(fk,X).

Then K ⊆ Hl(f
′,X). This means that K is a 1

n separated set in Hl(f
′,X) of cardinality

larger than 2d, which contradicts f ′ ∈ An,d(X).

2. If f ∈ F satisfies M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d , then lf ∈ Hn,d(X).

The fact that Property 2 is satisfied follows directly from the definition of Hn,d(X):

if f ∈ H such that M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d, then f ∈ An,d(X), and because

lf ∈ Hl(f,X) it follows that lf ∈ Hn,d(X).

3. Uniqueness.

To prove uniqueness, assume that there is another set H ′
n,d(X) satisfying the prop-

erties 1 and 2. By property 2, Hn,d(X) ⊆ H ′
n,d(X) . We show that if f is such

that lf ∈ H ′
n,d(X) then M

(
1
n ,Hl(f,X), L1(µn)

)
≤ 2d . Indeed, for every f such

that lf ∈ H ′
n,d(X) there exists a g ∈ An,d(X) such that lf ∈ Hl(g,X), which implies

123
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H(f,X) ⊆ H(g,X). Therefore, since g ∈ An,d(X), M
(

1
n ,Hl(f,X), L1(µn)

)
≤ 2d , and

thus also H ′
n,d(X) ⊆ Hn,d(X) .

Proof of Lemma 4.10

For a fixed double sample (X,X′) let µ2n be the empirical measure supported on

(X,X′). Put

A(X,X′) =
{

lf : f ∈ H, M
(

1
2n ,Hl(f, (X,X′)), L1(µ2n)

)
≤ ω

(
L(f,X), n, δ

)}

and

Bd(X,X′) =
{

lf : f ∈ H, M
(

1
2n ,Hl(f, (X,X′)), L1(µ2n)

)
≤ 2d

}
.

Note that

Fn,d(X) ∩ A(X,X′) ⊆ Bd(X,X′) ⊆ F sym
2n,d ((X,X′)).

By the ω-smallness condition (4.17),

PrX,X′

{
∃f ∈ H : lf ∈

(
A(X,X′)

)c} ≤ δ,

and by the union bound for disjoint sets,

PrX,X′

{
∃f ∈ Fn,d(X),

∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}

= PrX,X′

{
∃f ∈ Fn,d(X) ∩ A(X,X′),

∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}

+ PrX,X′

{
∃f ∈ Fn,d(X) ∩ (A(X,X′))c,

∣∣∣ 1
n

n∑

i=1

(
f(Xi) − f(X ′

i)
)∣∣∣ ≥ t

}
,

and our claim follows.

Proof of Lemma 4.11

For every double sample (X,X′), let µ2n be the empirical measure supported on (X,X′)

and define two random sets in the following manner. Let

A(X,X′) =




{lA(X)}, if M

(
1
n , Gl((X,X′)), L1(µ2n)

)
< ω

(
L(A(X)), n, δ

)

∅, otherwise ,
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and put

B(X,X′) =




{lA(X)}, if M

(
1
n , Gl((X,X′)), L1(µ2n)

)
≤ 2d

∅, otherwise .

Note that for every (X,X′),

Fn,d(X) ∩ A(X,X′) ⊂ B(X,X′) ⊂ F sym
2n,d ((X,X′)).

Moreover, if Fn,d(X) ∩
(
A(X,X′)

)c 6= ∅ , then Fn,d(X) = {lA(X)} and A(X,X′) = ∅ .

Thus, by the ω-smallness condition,

PrX,X′

{
Fn,d(X) ∩

(
A(X,X′)

)c 6= ∅
}
≤ PrX,X′

{
A(X,X′) = ∅

}
< δ.

The claim of the lemma follows now directly from the union bound for the disjoint sets

Fn,d(X) ∩ A(X,X′) and Fn,d(X) ∩
(
A(X,X′)

)c
.

Proof of Theorem 4.12

Let Fn,d and F sym
2n,d be defined as above, and recall that (equation (4.27))

M
(

1
n , F sym

2n,d ((X,X′)), L1(µ2n)
)
≤ 2d

for every (X,X′). Let V := F sym
2n,d ((X,X′))/X ⊂ `n

2 , put µ2n to be the empirical

measure supported on X = (X,X′), and set νn to be the empirical measure supported

on X. Note that for every f, g, Eµ2n |f − g| ≥ Eνn |f − g|/2. Thus, every 1/n-cover

of F sym
2n,d ((X,X′)) in L1(µ2n) is a 2/n-cover of the same set in L1(νn). In particular,

if A is a maximal 1/n-packing of F sym
2n,d ((X,X′)) in L1(µ2n), it is a 2/n cover of that

set in L1(νn). It is easy to verify that, up to isomorphism, B
(
L1(νn)

)
= nBn

1 , and in

particular,

V ⊆ A +
2

n
· nBn

1 = A + 2Bn
1 ,

and by the triangle inequality,

Eε sup
v∈V

∣∣∣
n∑

i=1

εivi

∣∣∣ ≤ Eε sup
a∈A

∣∣∣
n∑

i=1

εiai

∣∣∣+ 2Eε sup
b∈Bn

1

∣∣∣
n∑

i=1

εibi

∣∣∣.

By equation (4.3.2) and because |A| ≤ 2d by (4.20), the first term can be bounded

by Eε supa∈A

∣∣∣
∑n

i=1 εiai

∣∣∣ ≤ C
√

log |A|√n ≤ C
√

nd. For the second term, one can
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apply the triangle inequality to show that Eε supb∈Bn
1

∣∣∣
∑n

i=1 εibi

∣∣∣ ≤ 1. In conclusion,

Eε sup
f∈F sym

2n,d ((X,X′))

∣∣∣
n∑

i=1

εif(xi)
∣∣∣ ≤ C

√
nd.

To complete the proof, apply Corollary 4.6 for t = C
√

d
n log(1/δ).

B.2 Proofs for Chapter 5

Proof of Lemma 5.11

Let m = 2(n2 + n). We will define functions which are constant on the intervals(
j
m , j+1

m

]
, 0 ≤ j ≤ m− 1 . Define Gn

λ to be the function class containing all functions

taking the value −1 on exactly n such intervals, that is, constructed as follows: Let

J ⊂ {1, ...,m} , |J | = n, and define gJ ∈ Gn
λ as:

gJ(x) =




−1, if x ∈ ( j−1

m , j
m ] and j ∈ J,

tλ, otherwise,

where

tλ =
λm + n

m − n
=

λ(2n2 + 2n) + n

2n2 + n
.

Since 0 ≤ λ ≤ 1/2, then 0 < t < 1.

By construction, all functions g ∈ Gn
λ have expectation λ with respect to the uniform

measure on (0,1], and they are (1,2)-Bernstein, since

Eg2 =
1

m

(
n + t2λ(m − n)

)
≤ Eg + 2

n

m
< Eg +

1

n
≤ 2Eg

and λ ≥ 1/n.

The construction of Hn
λ is similar, and one can enforce the desired behaviour by

defining functions in Hn
λ to take the values {0, t′λ}, for an appropriately chosen t′λ.

Proof of Theorem 5.12

Claim 1 follows directly from the linearity of the expectation and the construction of

H.

Claim 2: Fix n. In order to estimate the value ξ ′n,F,µ(1/k) for k < n, we will first

estimate the quantity supf∈Fk
(Ef − Enf) for a given sample X = (X1, . . . , Xn) drawn

i.i.d. according to µ. Fix k and denote by m = 2(k2 + k). By the construction of Fk,

every function g ∈ Fk is of the form gJ for some J ⊂ {1, ...,m}, |J | = k.
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PSfrag replacements

ξ′n(r)

r

r

r + 1

s∗ = 1/n r′n
∗ = 1/4

r + 1/4

1/k

Figure B.1: The graph of ξ′n for the class star(Fn ∪ Hn
1/4 ∪ Fk) in the case in which

E supf∈Fk
(Ef − Enf) − 1/k = 1/4 .

Next, we show that supf∈Fk
(Ef − Enf) is with high probability significantly

smaller than 1/n + 1. Indeed, we will show that, with high probability,

supf∈Fk
(Ef − Enf) ≤ 1/k + 1/4. To illustrate the idea, assume that this would hap-

pen with probability 1, and thus the expectation of this quantity would be at most

1/k + 1/4. Then, ξ′n for star(Fn ∪ Hn
1/4 ∪ Fk) would behave like in Figure B.1, and

not, say as in Figure B.2.

To show that indeed, for most samples, supf∈Fk
(Ef − Enf) ≤ 1/k +1/4 , set Φk to

be the class of indicator functions:

Φk = {1J : (0, 1] −→ {0, 1}| J ⊂ {1, ...,m}, |J | = k} ,

where 1J(x) = 1 if there exists j ∈ J such that x ∈ ( j−1
m , j

m ] and 0 otherwise. For

every φ ∈ Φk, Eφ = k/m. Note that VC(Φk) = k, since no set of k + 1 distinct

points in (0, 1] can be shattered by Φk, but there is a set of cardinality k, namely

{1/k, 1/(k − 1), . . . , 1}, which is shattered by Φk.

For each J , set

`J(X) =
n∑

i=1

1J(Xi) .

The random variable `J(X) counts the number of points Xi which fall in the intervals

( j−1
m , j

m ] , where j ∈ J , which is precisely the number of points from the sample on

which gJ takes the value −1. Hence, by the definition of gJ ,

EngJ =
−2`J(X)(k + 1)2 + 3kn + 2n

kn(2k + 1)
,
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PSfrag replacements

ξ′n(r)

r

r

r + 1

s∗ = 1/n r′n
∗ = 1/4

r + 1/4
1/k

Figure B.2: The graph of ξ′n for the class star(Fn ∪ Hn
1/4 ∪ Fk) in the case in which

E supf∈Fk
(Ef − Enf) − 1/k = 1 .

and

sup
f∈Fk

(Ef − Enf) =
1

k
+

2(k + 1)2 supJ `J(X) − 3kn − 2n

kn(2k + 1)
,

where the supremum for `J(X) is taken over all sets J ⊂ {1, ...,m}, such that |J | = k.

Next, we show that with high probability supJ `J(X) ≤ n/4, which then implies

that for k ≥ 5,

sup
f∈Fk

(Ef − Enf) ≤ 1

k
+

(k + 1)2/2 − 3k − 2

k(2k + 1)
≤ 1

k
+

1

4
. (B.1)

Indeed,

sup
J

`J(X) = sup
f∈Φk

n∑

i=1

f(Xi) ,

and the latter quantity can be controlled through the complexity of Φk. From Tala-

grand’s concentration inequality (Theorem 3.12, page 44), for the random variable

Z = supf∈Φk
(1/n

∑n
i=1 f(Xi)−Ef) , for the case ρ = 1, b = 1 (which implies σ ≤ √

n),

it follows that there exist absolute constants c1, c2 > 0 and an integer n0 such that for

n ≥ n0, with probability larger than 1 − e−c1nt2 ,

sup
f∈Φk

n∑

i=1

f(Xi) ≤
kn

m
+ 2nRn(Φk) + nmax{t, t2}t ≤ kn

m
+ 2c2

√
kn + nt ,

where we have used the fact that for any f ∈ Φk , Ef = k/m , and t < 1. The last

inequality holds since VC(Φk) = k , and therefore, by Theorem 2.30, the Rademacher
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averages can be bounded by Rn(Φk) ≤ c2

√
VC(Φk)/n for some absolute constant c2.

Setting t=1/10, and since kn/m ≤ n/10 for any k ≥ 5, it follows that there exists an

absolute constant c > 0 such that for any k ≤ n/c , with probability at least 1− e−c′n ,

sup
J

`J(X) ≤ n

5
+ 2c2

√
kn ≤ n

4
,

and thus equation (B.1) is true.

Now, we are ready to show that equation (B.1) is sufficient to ensure that the

function ξ′n,star(∪∞
k=5Fk),µ(r)−r attains its maximum at r < c/n, and decays sharply for

larger values of r. In particular, for ε ∼
√

log n/n it holds that rn,ε,+ ∼ c/n. For this,

let Ak be the set of all functions in star(∪∞
k=5Fk) of expectation 1/k (i.e., containing

both functions from Fk and the rescaled versions of functions from F ′
k, where k′ < k).

Hence,

Ak =

k⋃

k′=5

k′

k
Fk′ .

By the union bound, with probability at least 1 − ke−c′n ≥ 1 − ne−c′n ,

sup
f∈Ak

(Ef − Enf) ≤ 1

k
+

1

4
,

and therefore (as the rescaled functions from H do not contribute to the supremum of

supf∈F,Ef=1/k (Ef − Enf) )

ξ′n,F,µ(1/k) = E sup
f∈Ak

(Ef − Enf) ≤ 1

k
+ (1 − ne−c′n)

1

4
+ (1 − (1 − ne−c′n))

≤ 1

k
+

1

4
+ c′′ne−c′n .

Hence ξ′n,F,µ(1/k) − 1/k ≤ 1/4 + c′′ne−c′n , and there exists an n0 such that if n ≥ n0

and k ≤ n/c , then ξ′n,F,µ(1/k)−1/k ≤ 1/2. However, ξ ′n,F,µ(1/n)−1/n− εn = 1− εn ,

and setting εn =
√

3(x + log n)/n, it follows that there is a n(x) such that for all

n ≥ n(x) , 1 − εn ≥ 1/2. Thus, setting N(x) = max{n0, n(x)} , then for all n ≥ N(x)

and k ≤ n/c , ξ′n,F,µ(1/k) − 1/k ≤ ξ′n,F,µ(1/n) − 1/n − εn , which completes the proof.

Proof of Theorem 5.16

Fix n ≥ N(x), where N(x) will be specified later.

It is easy to see that for F1 it holds that r∗n ≥ r′n
∗ ≥ 1/4, and thus Ef̂ ≥ 1/4 and

claim 1 follows.

We will now show that for F2, for any sample of size n, the empirical minimizer is

likely to have expectation smaller than c/n which is thus asymptotically smaller than
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that of any minimizer in F1. The idea and the main steps of the proof are similar to

the proof of Theorem 5.12.

First, set εn =
√

3(x + log n)/n.

Let kn be the smallest element in M , such that n ≤ kn. Thus, there exists an `

such that kn = 22l. Hence, kn/4 = 22l−2 ∈ M and kn/4 < n ≤ kn . Note that since

n ≤ kn, inf
f∈F kn

2
Enf = −1 , and therefore ξ′n,F2,µ(skn) − skn = 1 , where skn ∼ 1/kn

is the expectation of functions in F kn
2 (cf. proof of Lemma 5.15). This means that a

maximal value of ξ′n,F2,µ(r) − r is attained at skn ∼ 1/kn , and since kn/4 < n ≤ kn ,

skn ∼ c/n for an absolute constant c.

The main part of the proof is to show that ξ ′n,F2,µ(r) is peaked enough around

skn ∼ c/n, such that rn,εn,+ ≤ c/n. For this, we will show that there exists an

absolute constant c > 0, such that for large enough values of n, and for r ≥ c/n,

ξ′n,F2,µ(r)−r ≤ 1/2 and thus ξ′n,F2,µ(r)−r is significantly smaller than ξ ′n,F,µ(skn)−skn .

This follows from the fact that for k ≤ n/c , with k ∈ M , the functions F k
2 , are not

“complex” enough when projected onto samples of size n.

The fat-shattering dimension of F k
2 at any scale ε > 0 is smaller than c′k/ε (cf.

Lemma 5.15), and therefore, by Theorem 2.31, there is a constant c2 > 0 such that

ERn(F k
2 ) ≤ c2

√
k/n . By Talagrand’s concentration inequality (Theorem 3.12, page

44) for the empirical process Z = supf∈F k
2

(Ef − Enf), since all functions are bounded

by 1, it follows that for any 1 > t > 0, with probability at least 1 − e−c1nt2 ,

sup
f∈F k

2

(Ef − Enf) ≤ 2Rn

(
F k

2

)
+ t ≤ 2c2

√
k

n
+ t.

By setting t = 1/4, it follows that there exists a constant c > 0, such that with

probability at least 1 − e−c′1n , for any k ≤ n/c ,

sup
f∈F k

2

(Ef − Enf) ≤ 1/2.

Let Ak be the set of all functions of expectation sk, containing both functions from

F k
2 and the rescaled versions of functions from F k′

2 , where k′ ∈ M , k′ < k, that is,

Ak =
⋃

k′∈M,k′≤k

sk

sk′
F k′

2 .

Therefore, for any k ≤ n/c, by the union bound, it follows that with probability at

least 1− log ne−c′1n (in fact, the union bound is taken over log k sets, but log k ≤ log n)

sup
f∈Ak

(Ef − Enf) ≤ 1

2
.
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Estimating the expectation,

ξ′n,F2,µ(sk) ≤ (1 − log n e−c′1n)
1

2
+ log n e−c′1n(sk + 1)

≤ (1 − log n e−c′1n)
1

2
+ 2 log n e−c′1n

≤ 1

2
+ c′ log n e−c′1n .

Thus, since ξ′n,F,µ(skn)− skn − εn = 1− εn −→ 1 as n tends to ∞, there exists n0 such

that for all n ≥ n0 , and for k ≤ n/c, it holds that ξ ′n,F,µ(sk)−sk ≤ ξ′n,F,µ(skn)−skn−εn .

Thus, rn,εn,+ ≤ c/n .
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