Heavy-Ion-Irradiation-Induced Disorder
in Indium Phosphide and Selected
Compounds

Ali Saied Khalil

A thesis submitted for the Degree of

Doctor of Philosophy

of the

Australian National University

February 2007
This thesis does not incorporate any material previously submitted for a degree or a diploma at any university and to the best of my knowledge and belief, does not contain any material previously published or written by another person except where due reference is made in the text.

Ali Khalil
February 2007
In the name of God, the most Gracious, the most Merciful

Dedicated to
My parents, my son Saied
and
the loved ones no longer in our world whose
presence is constantly felt

Believe those who are seeking the truth; doubt those who find it

André Gide (1869-1951)
ACKNOWLEDGMENTS

I am indebted to the many people, who have directly or indirectly contributed to the production and successful completion of this thesis. It is my great pleasure to acknowledge their contributions and the support they have extended to me through all the course of work. I want to thank my supervisor Dr. Mark Ridgway for his continuous advice, fruitful discussions, inspiring guidance, ceaseless encouragements, significant support, judicious instructions and suggestions throughout this project and for thoughtful remarks and comments during thesis draft preparations. And I wish to thank my supervisor and mentor Prof. Lewis Chadderton for his wise and inspiring guidance and supervision as well as his friendship. I have learned a great deal from him both at the human and professional level and for all his continuous encouragement, incentive energy and optimism. And his significant support when needed during particular critical and tumultuous moments in my life, he always was there! Also my thanks go to my mentor Dr. Andrew Stewart who introduced me to the field of Atomic Force Microscopy and all his continuous encouragement, concern, stimulating discussions, wise guidance, substantial help, advice and for his proof reading of the papers and thesis which was always appreciated. My thanks also go to Mr. David Llewellyn who taught me through his high professionalism how to operate and treat a transmission electron microscope and introduced me into the technicalities and subtleties of its operation, and for all his help and assistance and for his pleasant company on our trips to Australian Nuclear Science and Technology Organization (ANSTO). My deep gratitude also goes to the academic staff at Research School for Physical Sciences and Engineering (RSPSE) at ANU especially Prof. Aidan Byrne, Prof. Rob Elliman, Prof. Stephen Buckman, Prof. Chennupati Jagadish, Prof. Jim Williams and Prof. Neil Manson. Many thanks also go to Prof. Werner Wesch (Friedrich-Schiller University, Jena, Germany), Prof. Naryana Rao (University of São Paulo, Brazil), and Prof. Alexander Didyk (JINR,
Dubna, Russia) for all the help and support received. I would also like to thank the Materials Science group in the Advanced Materials Division at ANSTO; especially Dr. Katherine Smith and Mr. Mark Blackford and also to the members of the Electronic Microscopy Unit at ANU for all the help and assistance. I am also indebted Dr. Raymond Jonckheere and colleagues at the Technische Universität, Freiberg, for fruitful discussions on fission fragments and SHI irradiations of natural compound crystals. Thanks also go to Dr. John Fitzgerald (RSES, ANU) for providing the electron beam dosimetry. Many thanks are due to all my Electronic Materials Engineering (EME) colleagues and graduate students, past and present members of Mark’s group especially Dr. David Brett, Zohair Hussein, Brent Johannessen and Dr. Gustavo Azvedo. Thanks also go to all EME support staff in particular for Mr. Bernie King and Mr. Tom Halstead for their help with fabrication of irradiation holders, to Mr. Fred Johnson and to Ms. Renee Vercoe and all other stuff for offering all the needed technical or administrative assistance and providing the rich, stimulating working environment.

Last but foremost I am expressing my gratitude to my beloved parents Saied and Svetlana Khalil and my beloved uncle Salama Khalil and despite the vast separating geographical distance, they were always there, they provided me with their true unbound and unconditional love, their enormous care, bestowed support and patience and certainly without whom this thesis would have never been possible. I am grateful to my beloved son Saied for his continuous petite gifts of the most precious and joyful moments in my life. Thanks are also due to Dr. Amal Khalifa, Mrs. Nadezhda Alexandrovna, Dr. Tuk Meng Soo, Mrs. Suzanne Love, Mrs. June Chadderton and her family, Mr. Ross Lloyd, Ms. Helen Mackenzie and her family, and Mr. James and Mrs. Jena Chenug for all the support and care. They all have been the beacon to me which was much needed to help me navigate through turbulent times. I thank them from the depth of my heart just for being there!
ABSTRACT

Indium phosphide (InP) is an important III-V compound, with a variety of applications, for example, in light emitting diodes (LED), InP based photonic crystals and in semiconductor lasers, heterojunction bipolar transistors in integrated circuit applications and in transistors for microwave and millimeter-wave systems. The optical and electrical properties of this compound can be further tailored by ion implantation or prospectively by swift heavy ion beams.

Thus knowledge of ion-induced disorder in this material is of important fundamental and practical interest. However, the disorder produced during heavy ion irradiation and the subsequent damage accumulation and recovery in InP is far from being completely understood. In terms of the damage accumulation mechanisms, the conclusions drawn in the numerous studies performed have often been in conflict with one another. A factor contributing to the uncertainties associated with these conflicting results is a lack of information and direct observation of the “building blocks” leading to the ultimate damage created at high ion fluences as an amorphous layer. These building blocks formed at lower fluence regimes by single ion impacts can be directly observed as isolated disordered zones and ion tracks for low energy and swift heavy ion irradiation, respectively.

The primary aim of this work has thus been to obtain a better understanding of the disorder in this material through direct observations and investigation of disorder produced by individual heavy ions in both energy regimes (i.e. elastic and inelastic energy deposition regimes) especially with low ion fluence irradiations. In this thesis the heavy ion induced disorder introduced by low energy Au ions (100 keV Au⁺) and

high energy Au (200 MeV Au^{+16}) ion irradiation in InP were investigated using Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS/C) and Atomic Force Microscopy (AFM).

The accumulation of damage due to disordered zones and ion tracks is described and discussed for both low energy and swift ion irradiation respectively.

The in-situ TEM annealing of disordered zones created by 100 keV Au^{+} ion irradiation shows that these zones are sensitive to electron beam irradiation and anneal under electron energies not sufficient to elastically displace lattice atoms, i.e. subthreshold energies for both constituent atoms In and P.

Ion tracks due to swift heavy ion irradiation were observed in this material and the interesting track morphology was described and discussed. The surface nanotopographical changes due to increasing fluence of swift heavy ions were observed by AFM where the onset of large increase in surface roughness for fluences sufficient to cause complete surface amorphization was observed.

In addition to InP, the principle material of this project, a limited amount of TEM observation work has been performed on several other important compounds (apatite and monazite) irradiated by 200 MeV Au^{+} ions for comparative purposes. Again the observed segmental morphology of ion tracks were shown and possible track formation scenario and structure were discussed and similarities were drawn to the previously observed C_{60} cluster ion tracks in CaF_{2} as more knowledge and data base exist about defect dynamics and formation in that material.
PART II: Swift heavy ion irradiation of InP... 67

CHAPTER 5: General Overview... 69
5.1. SHI damage and ion tracks: Description of track formation.................... 69
5.2. Ion tracks in SHI irradiated elemental and compound semiconductors:
 Direct TEM observations.. 76

CHAPTER 6. Experimental techniques... 80
6.1. Sample preparation... 80
6.2. SHI Irradiation for track formation.. 82
6.3. Transmission Electron Microscopy (TEM).. 84
6.4. Atomic Force Microscopy (AFM)... 84

CHAPTER 7. Ion track registration in InP.. 87
7.1. Ion tracks in InP.. 87
7.2. On the track morphology in InP.. 93
7.3. HRTEM of ion tracks cores in InP... 104
7.4. Inelastic collision-induced amorphization in SHI irradiated InP............ 109
7.5. Thermal and electron beam-induced annealing of tracks in InP............ 113
7.5.1. Thermal annealing of tracks.. 113
7.5.2. Electron-beam induced annealing of tracks..................................... 115
7.6. Observations of track peculiarities: Do close tracks interact?................. 118
7.7. Summary.. 119

CHAPTER 8. Surface modifications due to high inelastic energy loss in InP.... 120
8.1. SHI induced modifications of semiconductor surfaces........................ 120
8.2. SHI induced modification of the InP (001) surface............................... 124
8.3. Summary.. 136
PART III: Swift heavy ion irradiation of further selected compound crystals... 137

CHAPTER 9. TEM observation of SHI tracs in further selected compound crystals: apatite and monazite………………………………………………………… 139
9.1. Some general remarks…………………………………………………………… 139
9.2. SHI irradiated apatite…………………………………………………………… 144
9.3. SHI irradiated monazite………………………………………………………… 149
9.4. Track formation in apatite and monazite……………………………………….. 159
9.5. Summary………………………………………………………………………… 166

CHAPTER 10. Conclusions and Future work…………………………………… 167
10.1. Conclusions……………………………………………………………………. 167
10.2. Future work……………………………………………………………………. 171

APPENDIX I. Image formation in the Transmission Electron Microscope……… 173
A.I.1. The multi-slice model and the phase grating approximation………………. 173
A.I.2. Two-beam dynamical diffraction and the column approximation…………… 175

APPENDIX II. SRIM simulations………………………………………………… 179

APPENDIX III. Analogues to hydrodynamics in several solid state phenomena… 181

REFERENCES……………………………………………………………………… 185