
Chapter 7

Single-Ion Channel

This chapter describes our BD simulations of a model catenary channel
based on the hour-glass shaped acetylcholine receptor channel [70].

7.1 Model

7.1.1 Shape of the Channel

A catenary channel was generated by rotating the closed curve shown in
Fig. 7.1 around the symmetry, z-axis. The vestibule of the channel, whose
shape is similar to that visible in the electron microscope picture of the
acetylcholine channel [70], was generated by a hyperbolic cosine function,
y = a cosh x/a, where a = 4.87 Å. The radius of the entrance of the vestibule
was fixed at 13 Å. Two identical vestibules were connected with a cylindri-
cal transmembrane region of length 10 Å and radius 4 Å. The total interior
volume of the model channel was 2.16×10−26 m3. We assumed, for simplic-
ity, that the two vestibules are identical in size, although the image of the
channel produced by Toyoshima and Unwin [70] shows that the extracellular
vestibule is larger than the intracellular vestibule.

7.1.2 Dipoles in the Protein Wall

To investigate how the permeation of ions across the channel is influenced
by the presence and absence of dipoles in the protein wall, we placed in
some simulations a set of 4 dipoles inside the protein boundary at z = 5 Å
and another set of 4 dipoles at z = −5 Å. Their orientations were per-
pendicular to the central axis of the lumen (z-axis). For each dipole, the
negative pole, placed 2 Å inside the water-protein boundary, was separated
from the positive pole by 5 Å. Thus, if 5/16 of an elementary charge was
placed on each pole, then the total moments of 4 such dipoles would be
100 ×10−30 Coulomb-meter. The same configuration of dipoles was used in
all the simulations, giving rise to an attractive potential for sodium ions and
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Figure 7.1: Idealized biological ion channel. A model channel with two catenary vestibules
was generated by rotating the closed curves along the symmetry z-axis by 180o. To
approximate the shape of the acetylcholine receptor channel, vestibules at each side of
the membrane were constructed using a hyperbolic cosine function, y = a cosh x/a where
a = 4.87 Å. The radius of the entrance of the vestibule was fixed at 13 Å and the cylindrical
transmembrane segment had a radius of 4 Å. Each cylindrical reservoir, 60 Å in diameter
and 22 Å in height, contained a fixed number of sodium and chloride ions. Unless stated
otherwise, the ionic concentration in the volume composed of the channel vestibules and
the reservoirs was 300 mM. The cylindrical reservoir had a glass boundary, in that an ion
moving out of the boundary was reflected back into the reservoir.
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a repulsive potential for chloride ions in the channel. These fixed charges
represent the charged side chains thought to form a ring around the entrance
of the constricted region [71], and their nearby counter charges. For conve-
nience, we adjust the amount of charge rather than the number or positions
of the charges, but in reality the side chains of charged amino acid residues
would have one electron charge each if they are fully ionized or unproto-
nated at neutral pH. Polar groups located in the transmembrane segment of
the channel that may rotate in and out to form temporary hydrogen bonds
with an ion navigating across it, as found in gramicidin A pores, are not
explicitly modeled in our single ion channel.

7.1.3 Energy Barrier in the Transmembrane Segment

An ion in the vestibule needs to surmount an energy barrier to traverse the
narrow, constricted segment of the channel. The presence of such an addi-
tional energy barrier in the gramicidin pore has been revealed by molecular
dynamics calculations. Intuitively, this barrier arises from the interactions
between the protein wall and the hydrated ion as the ion negotiates its way
into the narrow, cylindrical, transmembrane pore. To enter the narrow seg-
ment, the hydration shell of an ion needs to be re-arranged or some of the
water molecules in the primary or secondary hydration shell need to be sub-
stituted with polar groups on the protein wall. To re-arrange the ion-water
geometry requires an additional energy, and the ion can surmount such a
barrier only when it gains a sufficient kinetic energy. To mimic a barrier
present in the ion channel, we placed in some simulations a potential step
near the constricted segment of the channel. The energy must be paid to
enter the neck, and is returned when the ion exits. The method we used for
implementing such a potential barrier in the Brownian dynamics algorithm
is detailed below.

7.1.4 Applied Electric Field

A potential difference across a lipid membrane is produced by a surface
charge density on each side of the membrane. In microscopic terms, the
surface charge density is a cloud of unpaired ions on either side of the mem-
brane. Because these clouds are too diffuse to be explicitly included in our
simulation, we apply an external electric field E of a constant strength to
represent the average effect of the ionic clouds. In the absence of any dielec-
tric boundary, the potential difference across a channel with the length d is
E/d. The presence of a dielectric boundary, however, severely distorts the
field, enhancing it in the transmembrane segment and attenuating it in the
vestibule. Thus, the precise potential difference will depend on the selected
reference points at the two sides of the catenary channel. For simplicity, we
apply a field strength of 107 V m−1 and refer to it as an applied potential
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of 100 mV.

7.2 Theory

7.2.1 Pöschl-Teller Function

If the ionic concentrations on the two faces of the channel are the same, the
current-voltage relationship obtained from patch-clamp recordings is in gen-
eral ohmic. The current-voltage relationship deduced from our simulations
becomes nonlinear whenever there is a potential barrier for the ions to sur-
mount in order to cross the channel (Fig. 7.8). This deviation from Ohm’s
law is more pronounced when the potential barrier is large. Although the
precise shape of the curve cannot be deduced a priori, it is easy to see how
such a curvature in the current-voltage relationship would arise. The pres-
ence of a barrier is less of an impediment when the driving force is large.
This intuitive observation suggests a modification of Ohm’s law with the
Pöschl-Teller function

I =
γV

1 + β/ cosh(eV/VB)
, (7.1)

where γ is the conductance, VB is the barrier height, and β is a dimen-
sionless constant. When eV � VB, the denominator goes to 1, and one
recovers Ohm’s law. For eV � VB, Eq. (7.1) is again linear but with a
conductance reduced to γV/(1 + β). The nonlinearities in the I − V curves
become apparent only when eV > VB, which corresponds to the region
V ≈ 100 ∼ 200 mV for our model channel.

7.2.2 Michaelis-Menten Equation

Experimentally it has been shown that the current first increases with an
increasing ionic concentration and then saturates [59, 31]. Such a relation-
ship is expected to be found when the transport of ions across the channel
is determined by two independent processes, one of which depends upon ion
concentration and one that does not. In our simulations, for example, the
time τ1 it takes for an ion to arrive near the constricted segment is inversely
proportional to the electric field E and ionic concentration [c], whereas the
time τ2 it takes for the ion to acquire a sufficient kinetic energy to surmount
the barrier placed near the transmembrane segment and traverse the second
half of the channel is relatively independent of the ionic concentration but
dependent only on the electric field. Thus, assuming a uniform electric field,
the transit times can be written as

τ1 =
k1

[c] E
, τ2 =

k2

E
, (7.2)
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where k1 and k2 are constants. The total time τ it takes an ion to traverse
the channel is τ = τ1 + τ2, and the current flowing across it will be I = nze,
where the number n of ions carrying charges ze is 1/τ . Thus, the current is
inversely proportional to the total transit time, that is,

I ∝ ze

(τ1 + τ2)
=

zeE

k1/[c] + k2
. (7.3)

For large concentrations, Eq. (7.3) approaches to a maximum value that we
denote by Imax = zeE/k2. Factoring out k2 and introducing Ks = k1/k2,
Eq. (7.3) can be written in the form

I =
Imax

1 + Ks/[c]
. (7.4)

The form of this equation is identical to that of the Michaelis-Menten equa-
tion, which is derived under an entirely different set of assumptions. The
curves calculated from Eq. (7.4) fit the current-concentration relationships
obtained from our simulations reasonably well (see Fig. 7.9).

7.3 Methods

7.3.1 Stochastic Boundaries

To ensure that the desired intracellular and extracellular ion concentrations
were maintained throughout the simulation, a stochastic boundary was ap-
plied. When an ion crossed the transmembrane segment, an ion of the same
species was transplanted so as to maintain the original concentrations on
both sides of the membrane. For example, if a sodium ion from the left-
hand side of the channel crossed the narrow transmembrane segment and
reached the imaginary plane at z = 10 Å, then a sodium ion located at
the furthermost right-hand reservoir was taken out and placed in the far
left-hand side of the left reservoir. When transplanting ions, we chose a
point no closer to another ion than the defined safe distance. The stochastic
boundary trigger points, located at z = ±10 Å, were checked at each time
step of the simulation.

7.3.2 Short Timestep Algorithm

The use of a long time step causes a problem in implementing potential
barriers and steps in Brownian dynamics as short range forces. In our sim-
ulations, the Brownian dynamics algorithm operates predominantly in the
diffusive regime. In other words, random forces are far more important than
the velocity on the previous step in determining an ion’s new velocity and
position. The algorithm devised by van Gunsteren and Berendsen [72] uses
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the factors [exp(−γ∆t)] and [1− exp(−γ∆t)] to switch between kinetic and
diffusive regions. With the long time step (∆t = 100 fs) that we use,

1 − exp(−γNa∆t) = 0.9997,

1 − exp(−γCl∆t) = 0.9666.

Thus, for chloride ions only 3% of the previous velocity remains after one
time step, while the motion of sodium ions is in effect purely diffusive, with
no velocity correlation between steps. Since an ion can move a large fraction
of the barrier width in a single time step (around 0.3 Å on average), the effect
of the barrier force on the ion’s motion will not be accurately integrated.
Also, in the diffusive regime, external forces cause only an average drift
velocity which does not move the ion far in a single time step. For example,
a repulsive force of 120 × 10−12 N (3 kTr over 1 Å) produces a drift velocity
of 39 ms−1 for sodium, and a displacement of 0.04 Å in one time step. This
is only 1/7 of the average random displacement in one time step—an ion can
diffuse right through a potential barrier before the barrier force has time to
act.

To obviate these problems, we used two different time steps: a short
time step of 1 fs when an ion was in the process of climbing or descending
the barrier and the long time step of 100 fs otherwise. A smooth potential
barrier of height VB was erected at z = ±10 Å (5 Å from the entrance of
the cylindrical segment), with the profiles at the ends as

U(s) = VB(10s3 − 15s4 + 6s5), (7.5)

where
s =

z − zb

∆z
+

1
2
. (7.6)

Here zb = ±10 Å is the location of the center of the profile and ∆z = 1 Å
is the width of the profile. The potential profile U(s) is chosen such that it
rises from zero at z = ±10.5 to VB at z = ±9.5, and the first and second
derivatives of U(s) vanish at z = ±9.5 and z = ±10.5. The force due to the
barrier is obtained by differentiating Eq. (7.5).

We included a safety distance of 0.5 Å in the potential profile. Thus,
whenever ions were in the band of z = 9 - 11 Å or z = −9 to −11 Å,
we switched from long time steps to an equivalent sequence of short time
steps for those ions. Trajectories of ions in these bands were determined
by a sequence of 100 short time steps for the subsequent 100 fs. In the
meantime, all the other ions were simulated for a single long time steps
in the normal way. The long range (electrostatic) forces on the ion were
calculated at the start of the sequence of 100 short steps, and held constant
thereafter. Similarly, reflection from the boundary walls was done once at
the end of the sequence of short steps. The force from the barrier, however,
was recalculated for each short step, thus ensuring that the effect of the
barrier on the ion’s motion would be accurately simulated.
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7.3.3 Procedure for Calculating Conductance

Simulations under various conditions, each lasting between 500,000 and
2,000,000 time steps, were repeated many times, from 5 to 9 trials. For
the first trial, the positions of ions in the reservoirs were assigned randomly
with the proviso that the minimum ion-ion distance should be 2.7 Å, or 1.5
times the radius of a chloride ion. For successive trials, the positions of the
ions in the last time step were used as the initial starting positions of the
following trial. The current given in pA was extrapolated from the total
number of ions traversing the channel over the simulation period.

On each side of the vestibule, a cylindrical reservoir with radius 30 Å
and an adjustable height was placed. A fixed number of sodium and chloride
ions were placed in each reservoir, and the height of the cylindrical reservoir
was adjusted to give a desired ionic concentration. As ions were forbidden
to approach the wall of the reservoir within 1 Å, the effective radius of the
cylindrical reservoir was 29 Å. For example, if 13 sodium and 13 chloride
ions were placed in each reservoir and the desired ionic concentration was
300 mM, the height of each of the two cylindrical reservoirs was adjusted to
22 Å.

7.4 Results

7.4.1 Dipoles in the Channel

In the absence of any dipoles in the protein wall, the potential barrier pre-
sented to an ion moving under the influence of an applied potential of 100 mV
is shown in Fig. 7.2 (top curve, labeled 0). The potential profile presented to
the ion as it moved from outside (left-hand side) to inside (right-hand side)
increased slowly, peaking at the center of the cylindrical transmembrane seg-
ment (labeled 0 Å), and then decreased steadily as it traversed the second
half of the channel. Without the membrane potential, one would have ob-
tained a symmetrical, bell-shaped barrier with a peak height of 14.5×1021 J.
The presence of the membrane potential had lowered the relative height of
the barrier to 3.5×1021 J and distorted the shape of the profile to an asym-
metrical curve.

Two rings of dipoles, together with an applied electric potential of 100 mV,
eliminated the repulsive dielectric force. The number accompanying each
curve in Fig. 7.2 represents the total strength of 4 dipoles (×10−30 Cm) in
each ring. Since there were two rings of dipoles, one at z = −5 Å and the
other at z = +5 Å, the strength of dipoles placed on the entire channel wall
was twice the value indicated in the figure. In the presence of dipoles, an
ion traversing from outside to inside would encounter an attractive potential
throughout its trajectory. With each stepwise increase in dipole strength,
what used to be a potential barrier became a potential well whose depth
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Figure 7.2: Changes in the potential profile with dipole strength. The potential barrier
presented to a cation is plotted against its position along its trajectory. A membrane
potential of 100 mV was applied such that inside (right-hand side) was negative with
respect to outside (left-hand side). The value at each position was computed from a
numerical method of solving Poisson’s equation. The uppermost curve, labeled 0, was
obtained in the absence of dipoles on the channel wall. The next four curves represent
the potential profiles encountered by a cation traversing the channel in the presence of
dipoles with strengths of, respectively, 50, 100, 200 and 300×10−30 Cm. The approximate
positions of four of the 8 dipoles in the channel are indicated in the inset. The remaining
four dipoles are on the orthogonal plane to those shown.
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increased with the strength of dipole moments.
In Fig. 7.3, the number of ions that traversed the channel under the

driving force of 100 mV during a simulation period of 0.45 µs (4.5 million
time steps) is converted to current in pA and plotted against the dipole
strength. On the right-hand ordinate of Fig. 7.3, current in pA are converted
to conductance in pS at the physiological concentration of 150 mM. Since
the current in these ranges of ionic concentrations increases almost linearly
with concentration (see later), such an extrapolation of conductance results
is justified. With no dipoles placed on the channel wall, the number of
sodium ions that traversed from outside to inside in 0.45 µs was 10, which
corresponds to a current of 3.6 pA. The net current increased rapidly with
the increasing dipole strength up to 100×10−30 Cm (filled circles in Fig. 7.3).
The number of ions crossing the channel increased further with a further
increase in the dipole strength, but many ions were also traversing in the
opposite direction, against the direction of the applied electric field. The
current flowing from inside to outside is indicated as open circles in Fig. 7.3.
As a result, the net current actually decreased as the dipole strength was
increased further from 300 to 600 × 10−30 Cm.

7.4.2 Ionic Concentrations in the Channel

In the volume of our model channel, which is 2.16×10−26 m3, there would be
720 water molecules. At a concentration of 300 mM, a similar bulk volume
would contain 4 sodium and 4 chloride ions. Here we examine the number
of sodium and chloride ions inside the channel under various conditions. To
compute the average number and concentration of sodium and chloride ions
inside the channel, we divided the model catenary channel, whose length
is 80 Å, into sixteen 5-Å-thin sections as shown in the inset of Fig. 7.4.
The volumes of the slices from the outermost layer to the smallest layer in
the transmembrane segment are 2.94, 2.18, 1.88, 1.54, 1.16, 0.71, 0.25 and
0.15 × 10−27 m3.

In the absence of a membrane potential and dipoles in the protein, ions
were virtually excluded from entering the vestibule neck owing to the repul-
sive dielectric force presented to them by the dielectric wall. In Fig. 7.4 A
and Fig. 7.4 B, the time averages of sodium and chloride concentrations in
the channel are illustrated. The number of ions present in each layer per
unit time was first tabulated (filled and open circles) and then the concen-
tration in each layer was derived by taking into account its volume. The
average ionic concentration in each of the two outermost layers was about
10% lower than that in the adjoining reservoir, which was 300 mM. The
ionic concentration in successive layers declined progressively, dropping to
less than 10% of the reservoir value in the neck region.

When a membrane potential of 100 mV was applied across the channel,
such that the right-hand side reservoir was made negative with respect to the
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Figure 7.3: Channel conductance as a function of dipole strength. The magnitudes of
sodium currents flowing across the channel in the presence of a membrane potential of
100 mV are plotted against strengths of dipoles. The ionic concentration of the reservoir
was 300 mV. The left-hand side of the ordinate indicates the current in pA at 300 mM,
whereas the right-hand side of the ordinate indicates the conductance in pS at 150 mM.
The filled circles show the net current, i.e., the sum of currents in both directions, which
flows from outside to inside. The open circles show the current flowing against the potential
gradient, namely, from inside to outside. Simulation time for each data point was 0.45
µs, except the value for 100 ×10−30 Cm, which was 2 µs. The points were fitted with a
polynomial function.
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Figure 7.4: Concentrations of sodium and chloride ions in the channel. The model channel
was divided into sixteen 5-Å-thick sections, as indicated in the inset, and the average
number of ions present over the simulation period of 0.45 µs in each section was tabulated
(filled and open circles). The ionic concentration in each section was then calculated by
dividing the average number of ions in each section by its volume (bars). The concentration
of sodium (and chloride) ions in the reservoirs was 300 mM in this and the following 3
figures. With no dipoles on the channel wall and no applied electric field, the probability
of sodium ions (A) and chloride ions (B) being in each section decreased steadily with its
distance from the reservoir.
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Figure 7.5: Concentrations of sodium and chloride ions in the channel in the presence of a
membrane potential E. When a membrane potential of 100 mV was applied, as shown in
the inset, there was a small increase in the concentration of sodium ions in the left-hand
side vestibule (A) and a similar but slightly larger increase in chloride ions in the right-
hand side vestibule (B). The difference is due to the larger diffusion coefficient of chloride
ions compared to that of sodium ions.
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left-hand side, there was a small but consistent increase in the concentration
of sodium ions in the left vestibule and in the concentration of chloride ions
in the right vestibule (Fig. 7.5). Other than this small asymmetry in the
concentrations and a slight increase in the probability of ions being present
in the constricted segment, the applied field had little effect on the average
concentrations in the channel. A drastic change in the pattern of charge
densities occurred when, instead of applying an electric potential across the
channel, two rings of dipoles were placed on the channel wall. As shown
Fig. 7.6, there was a marked increase in the concentration of sodium ions
in the constricted region of the channel. Sodium ions entering the channel
occasionally would become detained in the potential well created by the
dipoles on the wall. Some ions travelled from one well to the other and
drifted across to the other side, but because there was no potential gradient,
the number of ions drifting in one direction (11.7 ± 1.3 pA) was about the
same as that in the opposite direction (10.7 ± 1.3 pA).

To mimic the concentration gradient in the channel during its open state,
we placed an energy barrier of 1.5 kTr at the constricted segment and ap-
plied a membrane potential of 100 mV. As shown in Fig. 7.7, the sodium
concentration in all layers of the channel was approximately constant under
these conditions and ions steadily moved from outside to inside, without
being detained by the dipoles on the channel wall. In contrast, chloride ions
were virtually excluded from entering the inside of the channel (Fig. 7.7 B).
The conductance of the channel under this condition was 78 ± 4 pS at
150 mM (or 15.5 ± 0.7 pA at 300 mM), and no sodium ions traversed
against the potential gradient.

7.4.3 Current-Voltage Relationships

The current-voltage relationships obtained from excised single channels are
in general ohmic, although some show pronounced inward or outward rectifi-
cation. The reversal potential observed in asymmetric ionic solutions closely
matches that predicted by the Nernst equation. Here we show how the pres-
ence of an energy barrier in the channel can distort the linear current-voltage
relation.

The current increased linearly with the applied voltage, as shown in
Fig. 7.8 A, when there was no additional potential barrier in the channel
presented to ions for penetrating the transmembrane segment. In this and
all subsequent current-voltage curves, we used the total strength of 4 dipoles
in each ring of 100 × 10−30 Cm. The core conductance of the channel,
deduced from the regression line of the form, I = γ V , fitted through the
data points, was 232 ± 4 pS (or 116 pS at 150 mM). When an energy
barrier of 3.0 kTr was erected at the entrance of the constricted segment,
the current was attenuated, but not by a constant proportion at all voltages.
For example, the currents in the absence and presence of this barrier at
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Figure 7.6: Concentrations of sodium and chloride ions in the channel in the presence of
two dipole rings. Each dipole ring, with the total moment of 100× 10−30 Cm, was placed
in the positions indicated in the inset. There was a large increase in the concentrations of
sodium ions in the innermost sections of the channel (A). In contrast, chloride ions were
excluded from the innermost sections (B).
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Figure 7.7: Concentrations of sodium and chloride ions in the presence of dipoles and
an applied electric field. Two potential barriers of 1.5 kTr were placed at the positions
indicated in the inset. With two rings of dipoles canceling the repulsive dielectric force
and a driving force provided by a membrane potential of 100 mV, sodium ions steadily
traversed the channel. The concentrations of sodium ions in all sections of the channel
remained approximately constant (A). In contrast, chloride ions were virtually excluded
from the transmembrane sections (B).
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Figure 7.8: Current-voltage relationships obtained with symmetrical solutions. (A) The
currents flowing across the channel that had no potential barrier near the entrance of
the transmembrane segment were measured at different applied potentials. Two rings of
dipoles, each ring with the strength of 100 × 1030 Cm, were placed on the channel wall.
The current-voltage relationship obtained under these conditions is ohmic. The slope of
the line drawn through the data points is 232± 4 pS. (B) When potential barriers 3.0 kTr

was erected, the current-voltage relationships became nonlinear. The data points were
fitted with a modified Ohm’s law which takes the barrier into account (see Eq. (7.1). The
values of γ and β used to fit the curve were, respectively, 142 ± 4, and 3.5 ± 0.4. The
simulation period used to obtain each data point was 1 µs.
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200 mV were, respectively, 46.0 pA and 18.2 pA (39.6%). With the applied
potential of 50 mV, however, the current was reduced from 14.0 pA to 2.2 pA
(15.7%), thus indicating that the barrier of the same height became less of
an impediment when the driving force was large. With a 3.0 kTr barrier,
the current-voltage relationship became nonlinear, deviating markedly from
Ohm’s law, as shown in Fig. 7.8 B. The solid line fitted through the data
points in Fig. 7.8 B was calculated from the Pöschl-Teller function of the
form, I = γ V/[1 + β sech x], where x = eV/VB and VB is the barrier
height. The justification for fitting the data with this function is given in
section 7.2.1. The values of γ and β used to generate the curves shown in
solid lines are given in the figure legend.

7.4.4 Conductance-Concentration Curve

Experimentally, current across a biological ion channel increases monotoni-
cally with an increasing ionic concentration initially and then saturates with
a further increase in concentration [31]. Saturation of channel currents oc-
curs when there is a rate-limiting permeation process that is independent of
ionic concentrations. For example, an ion arriving near the constricted mem-
brane segment will be detained there for a period of time if, before traversing
the narrow pore, it needs to gain sufficient kinetic energy to climb over an
energy barrier. The reason for the presence of such a barrier is explained in
the section 7.1.3.

In Fig. 7.9, the conductance of the channel is plotted against the concen-
trations of sodium ions in the reservoirs. The two reservoirs contained an
equal number of sodium-chloride pairs, and an applied membrane potential
of -100 mV provided the driving force for sodium ions to move inward. The
presence of 2 rings of dipoles, with their negative poles pointing to the lumen,
ensured that the channel was selectively permeable to sodium ions. When
the channel had no potential barrier, the ionic current carried by sodium
ions increased linearly with concentration, as shown in Fig. 7.9 A. Since the
magnitude of the current in this series of simulations was large, we used the
total simulation period of 0.225 µs for each point shown in Fig. 7.9 A. The
linear conductance-concentration relation became distorted when a barrier
was placed at 5 Å from each end of the cylindrical pore. Figure 12B illus-
trates the conductance-concentration curve obtained from the channel with
a step potential barrier of 3.0 kTr. The ordinate of Fig. 7.9 B is expanded,
since the currents were greatly attenuated by the presence of the barrier.
At a low ionic concentration, the conductance was nearly proportional to
the ionic concentration. As the ionic concentration was increased, however,
the conductance increased less with increasing concentrations. We fitted the
points with the curve calculated from the Michaelis-Menten equation of the
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Figure 7.9: Conductance-concentration curve. The ionic concentrations in the two reser-
voirs were systematically increased while keeping the strength of dipoles and an applied
membrane potential constant at 100 × 10−30 Cm and 100 mV, respectively. The number
of ion pairs in each reservoir, with the radius of 30 Å, ranged from 3 (for 75 mM) to 78
(for 1,800 mM). (A) With no barrier present, the current increased linearly with ionic con-
centrations. Each point represents the average of 9 trials, each trial lasting 250,000 time
steps or 0.225 µs. (B) When a step barrier, whose height was 3.0 kTr, was erected at 5 Å
from the entrance of the transmembrane segment, the conductance-concentration relation
became nonlinear. The current increased linearly with an increasing ionic concentrations
at first and then began to saturate. The data points of (B) were fitted with Eq. (7.7).
The simulation period for each point in (B) were 1 µs, except for those representing 1.2,
1.5 and 1.8 M, for which the simulation periods of 0.3 µs were used.
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form

I =
Imax

1 + Ks/[c]
(7.7)

where Imax and Ks are the fit parameters. For the solid line drawn through
the data points of Fig. 7.9 B, the numerical values of these two parameters
are Imax = 25 ± 5 pA and Ks = 996 ± 351 mM. In section 7.2.2, we give
a possible physical interpretation of Eq. (7.7).

7.5 Discussion

The idea that dipoles are needed to allow free permeation through the
model channel is confirmed by the results in this chapter, with the pro-
viso that some current flows even without dipoles. In the absence of dipoles
permeation through the channel is severely retarded: the conductance is
around 20 pS as compared to a maximum of around 175 pS with dipole
rings (Fig. 7.3). This reduction in conductance can be attributed to the
electrostatic energy barrier created by the dielectric boundary in the ab-
sence of dipoles (Fig. 7.2). This barrier reduces the concentration of ions in
the neck region to around 40 mM, compared to 300 mM in the reservoirs
(Fig. 7.5). However, when dipole rings are added the energy barrier is re-
placed by an energy well (Fig. 7.2), the concentration in the neck region
increases to around 750 mM (Fig. 7.6), and a substantial current can flow
(Fig. 7.3). The results of the long simulations confirm the picture hinted at
by the ion trajectories of the previous chapter, but add detail and provide
quantitative predictions.

These results also give support to another explanation for the presence of
ions in the neck region of channels: that they serve to increase the concentra-
tion of ions in the neck, increasing conductance in the narrowest part of the
channel, so overcoming a bottle-neck and producing a channel with a large
conductance [31]. Even the small energy well created by 100 × 10−30 Cm
dipole rings increases the concentration of cations in the neck region to 2.5×
the bulk concentration. Dipole rings of 200 × 10−30 Cm strength produce
a much bigger well and increase conductance from 115 pS to 175 pS. How-
ever, increasing dipoles beyond this strength does not increase conductance,
and actually reduces it slightly for strengths of 400 × 10−30 Cm or more
(Fig 7.2). The two explanations for the dipoles need not be mutually exclu-
sive: it is quite possible that dipoles in the neck region of a channel serve
firstly to overcome the membrane energy barrier and allow conductance, and
secondly to increase ion concentration in the narrowest part of the channel
and increase conductance through this bottle-neck. Indeed if permeation
through the channel is considered to be one-dimensional, and entropy is in-
cluded, then the narrow neck region becomes an entropic barrier in addition
to the electrostatic membrane barrier, and dipoles are needed to overcome
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the combined barrier. This may explain why increasing the strength of the
dipoles beyond a certain point does not increase conductance. Note that the
simulations are three-dimensional, so that the entropic effects of a narrowing
channel emerge implicitly from the motion of the ions, and do not need to
be included explicitly.

Shielding by counter-ions seems to be having some effect, but does not
completely remove the electrostatic barrier. This can be seen by compar-
ing concentrations in the neck region with the electrostatic energy profiles.
Without dipoles the height of the barrier is around 4 kT which, by applying
the Boltzmann factor, would suggest a dilution to 1/50 bulk concentration
or around 6 mM for both cations and anions. In Fig. 7.4, however, the con-
centrations are around 20 mM, suggesting that shielding has reduced the
barrier by about 30%. Dipoles of 100 × 10−30 Cm create a well of around
2.5 kT, which should increase their concentration by a factor of 12, but
Fig. 7.6 shows that the increase is only by a factor of 2.5, suggesting that
interactions with other ions have reduced the depth of the well to about
1 kT. Fig. 7.5 is interesting, in that the applied field reduces the height of
the barrier to 2 kT (Fig. 7.2), which by the Boltzmann factor suggests a
concentration of around 40 mM, which is what is seen in the figure. This
might indicate that shielding has a much smaller effect when current is flow-
ing and ions are moving through the channel, but it is difficult to be sure,
as the use of the Boltzmann factor is inappropriate in this non-equilibrium
situation.

Without an additional energy barrier both current-voltage (Fig 7.8) and
conductance-concentration (Fig 7.9) curves are linear, indicating that ions
navigate the channel independently, without multi-ion interactions playing
an important role. When an sharp energy barrier is added in the neck region
both curves become non-linear. The conductance-concentration curve shows
saturation with increasing concentration, and can be fitted to the Michaelis-
Menten equation. The current-voltage curve shows a particular pattern of
non-linearity, with a switch from a region of lower conductance to one of
higher conductance at around 100 mV of applied potential. This curve can
be fitted to a Pöschl-Teller function, as described in section 7.2.1. Thus,
without an energy barrier the model is of a high-conductance single ion
channel with linear conductance characteristics, while with energy barriers
the model predicts a lower conductance and specific types of non-linearity.



Chapter 8

Multi-Ion Channel

In this chapter we describe the construction of an approximate model of
a potassium channel and its use to perform BD simulations. The model
is based on the structure of the KcsA channel as described by Doyle et.
al. [21]. This is done with the primary aim of seeing if it is possible to build
a working model of a multi-ion channel using only a diffusive mechanism. A
secondary aim is to test the plausibility of some of the conductance mech-
anisms proposed by Doyle et. al., but since these mechanisms are deduced
in a quite straightforward way from the experimental structure, this might
equally be regarded as a test of the plausibility of our model and techniques.

Although their gating characteristics differ, most potassium channels
show similarities in amino acid sequence, conductance characteristics, selec-
tivity, and blocking agents. These common characteristics identify them as
a group and strongly suggest a common pore structure. Thus, even though
KcsA is a bacterial channel, its structure can be taken as representative of
the pore structure of all the potassium channels with similar characteristics.
The conductance characteristics of potassium channels, specifically ionic flux
coupling and saturation at high concentrations, are strong evidence that
potassium channels contain between 2 and 3 ions when conducting. They
are also taken as evidence that potassium channels contain binding sites,
and that conductance is by hopping between these sites, with any diffusion
that occurs being irrelevant or incidental (see chapter 14 of Hille [31]). This
is because the theories that best describe these characteristics (RRT and the
Michaelis-Menten mechanism) are theories about chemical reactions which,
as applied to enzymes, involve the binding of a substrate to an enzyme. The
explanation in terms of binding sites is reasonable, given that no diffusion
based theory has been able to adequately explain conductance in multi-ion
channels, but it does not take into account the theoretical problems with
RRT as applied to channels (see section 2.1), and does not explain the far
greater turnover rate of channels compared to enzymes and carriers (see
section 1.2 and chapter 11 of Hille [31]). By attempting to build a diffusion
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based model of a multi-ion channel we hope to shed some light on this issue.
The structure of the KcsA channel contains several clues to its conduc-

tance mechanisms [21]. At the top (extracellular) end of the channel is a
very narrow, 12 Å long section of pore lined by hydrophilic protein backbone
much like a gramicidin pore, although the protein chains are straight, not
arranged in a helix. This is recognizably a selectivity filter and must hold
the key to explaining the extreme selectivity of potassium channels. Doyle
et. al. suggest a possible mechanism, but this cannot be investigated by the
techniques described here, as macroscopic electrostatics completely ignores
the subtle close-range interactions essential for selectivity between ions of
the same valence (see section 1.2). The x-ray crystallography used to find
the structure of the channel also shows the preferred positions of ions in
the pore. There are two such positions in the selectivity filter, located near
each end, 7.5 Å apart. These could be interpreted as binding sites, specific
locations with a high affinity for potassium ions, but this does not readily
explain the high conductance of the channel, as a hop of 7.5 Å (carrying the
intervening water with it) seems unlikely, and the selectivity filter is too nar-
row for diffusion to be considered irrelevant. The interpretation of Doyle et.
al. is different: they suggest that the whole selectivity filter has a high affin-
ity for potassium ions, and would trap a single ion, preventing conductance.
However, the two ions in the filter destabilize each other by electrostatic
repulsion (hence their locations near the ends of the filter), and this allows
ions to escape and conductance to occur. We test the plausibility of this
mechanism in our BD simulations by placing small dipoles representing car-
bonyl groups around the model selectivity filter. This creates the necessary
high affinity for cations, and transport is provided by the simulated diffusion
of the BD motion algorithm.

This model of the selectivity filter may be quite unrealistic. The real car-
bonyl groups have some freedom to move, a hydrogen bond is not completely
representable as a dipole interaction, and calculations by macroscopic elec-
trostatics in such a confined space can be no more than an estimate. The
selectivity filter may be more like a series of 4-6 connected binding sites than
a continuous attractive region, transport might be through a series of short
hops rather than by diffusion, and the single file nature of the filter means
that ions and water should move in a coordinated manner, whatever the
transport mechanism. All of these issues need to be studied using MD or
similar microscopic simulation techniques. However, despite these reserva-
tions, and crude as it is, the BD model captures the essential features of the
proposed mechanism: a selectivity filter with a high affinity for ions, and
mutual destabilization by long-range electrostatic repulsion.

Below the selectivity filter lies a central cavity, and below that an inner
pore leading to the cytoplasmic mouth of the channel. The central cavity
is an elongated spheroid, about 10 Å across and 12 Å long. The inner
pore is around 18 Å long and wide enough for a potassium ion to move
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through ‘and still remain mostly hydrated’ [21]. The linings of both of these
regions are predominantly hydrophobic, which raises the question of how
the electrostatic barrier created by the membrane is overcome. Doyle et. al.
propose mechanisms to reduce the barrier. They suggest that the central
cavity and inner pore provide water to surround the ion and thus reduce
the barrier, while the hydrophobic walls do not interact greatly with the
ion, allowing it to diffuse without impediment. The wider cavity is in the
centre of the pore, providing the most hydrating water where the barrier is
greatest. They also observe that the pore helices (four short alpha helices
that support the selectivity filter) point directly towards the central cavity
and (as do all alpha helices) posses significant dipole moments. The negative
ends of these large dipoles are closest to the central cavity, and thus they
are expected to attract cations. Another preferred ion position is located
at the centre of the cavity, although it is more diffuse than the ones in the
selectivity filter: this supports the idea that the water filled cavity and helix
dipoles overcome the membrane barrier and create instead an energy well
which attracts ions. Doyle et. al. point out that this preferred ion position
in the cavity does not represent a binding site in the conventional sense, but
rather ‘a hydrated cation cloud’.

Three-dimensional BD seems well suited to the task of investigating con-
ductance in the inner pore and central cavity. The mechanism that Doyle
et. al. propose for transport in this region is diffusion, with the electrostatic
barrier overcome by a combination of shielding by water molecules and long
range electrostatic interactions with the channel structure. These are ex-
actly the physical phenomena that the methods described in this thesis are
designed to reproduce (although the accuracy of this reproduction may be
far from perfect due to the use of macroscopic electrostatics and other sim-
plifications). This region of the channel represents around 70 percent of its
length, and if Doyle et. al. are right about the purpose of the central cavity
and helix dipoles, is relevant to the channel’s conductance. Of course the
conductance of a channel depends on its entirety, not just particular regions,
so the selectivity filter must be included in any simulation expected to repro-
duce conductance. Although our model of the selectivity filter is necessarily
crude, and other techniques are better suited to investigating this region of
the channel, the conductance mechanism proposed by Doyle et. al. is not
incompatible with a BD simulation or macroscopic electrostatics.

8.1 Model

This model was derived from the structural descriptions and figures in the
paper by Doyle et. al. [21], not the molecular coordinates: at the time it
was built we did not have the ability to analyze such coordinates to produce
a model.
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Figure 8.1: Idealized potassium channel. The channel shape is generated by rotating the
curves outlined along the symmetry z-axis by 180o. The positions of the negative ends
of the dipoles in the channel wall are indicated: filled circles show 8 of the 16 carbonyl
oxygen atoms; open circles the helix dipoles, and filled diamonds, the mouth dipoles.

8.1.1 Shape of the Channel

The shape of our model channel is a simple, geometric representation of the
pore structure (see Fig. 8.1). The three-dimensional shape of the channel is
generated by rotating the curves shown around the symmetry axis (z axis)
by 180o. The total length of the model channel is 50 Å, compared to 45 Å
for the real channel. The model channel is slightly longer due to the need
to add curved sections at each mouth of the channel (the iterative method
of solution does not deal well with sharp corners). These curves are quarter
circles with a radius of 5 Å.

The selectivity filter is represented by a cylindrical section 1.5 Å in ra-
dius and 10 Å long. The real selectivity filter is around 12 Å long, but in
our model the inner 2 Å of the curved extracellular mouth is very narrow
(maximum radius 1.9 Å), and can be regarded as part of the filter. The ra-
dius of the selectivity filter is deduced from the ions that can pass through
it (see chapter 13 of Hille [31]). Potassium ions (radius 1.33 Å) can pass
through easily, as can rubidium ions (radius 1.48 Å). Caesium ions (radius
1.69 Å) can enter the filter but tend to get stuck: presumably some areas of
the filter are wider than others, and the filter has some flexibility. For our
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very simplified model for use with BD, 1.5 Å seems a reasonable average
radius.

The central cavity and inner pore are represented in our model by a
hemisphere and a truncated cone. The hemisphere has a radius of 5 Å,
corresponding to the 10 Å width of the central cavity. The truncated cone
is 25 Å long and has a radius of 5 Å where it meets the hemisphere reducing
to 3 Å where it meets the cytoplasmic mouth. The cytoplasmic mouth of
the channel admits tetraethylammonium (TEA) ions to the inner pore when
the channel is open [21]. This suggests a width of at least 5-6 Å, since a
TEA ion (chemical formula (CH3)4N+) consists of four carbon atoms in a
tetrahedron bonded to the central nitrogen atom, and carbon atoms have
a hard-sphere radius of 1.4 Å. The total length of hemisphere and cone is
30 Å, corresponding to the total length of central cavity (12 Å) and inner
pore (18 Å) in the real channel.

Small curved sections join the selectivity filter, hemisphere, truncated
cone, and cytoplasmic mouth without sharp corners. In our coordinate
system the model channel runs from z = −25 Å on the cytoplasmic side to
z = 25 Å on the extracellular side. The narrowest point in the inner pore
is at z = −20 Å, the centre of the cavity is at z = 5 Å, and the selectivity
filter runs from z = 10 Å to z = 22 Å.

8.1.2 Dipoles

The positions of fixed charges and dipoles in our model are based, where pos-
sible, on the structure described by Doyle et. al. We regard their strengths
as adjustable parameters, however. This is done in order to give the model
flexibility to cope with the possible inaccuracies in the calculation of energy
barriers and wells which might arise due to the use of macroscopic elec-
trostatics. We place four sets of dipoles in the model protein wall, each
with four-fold symmetry around the z axis. Two of these sets are mouth
dipoles, representing the negative charges at each entrance of the channel
reported by Doyle et. al. [21]. The negative ends of these dipoles are placed
at z = 22.83 Å and z = −20 Å, just inside the protein wall (filled diamonds
in Fig. 8.1). For each mouth dipole we place a counter-charges 5 Å further
in, but this is a guess, as it is not clear from the descriptions or diagrams in
the paper whether there are counter-charges for the negative charges near
the channel entrances, or if so where they are. The third set are the helix
dipoles, representing the dipole moments of the pore helices. The position
and orientation of these dipoles is known from the structure: their negative
ends are 8 Å from the centre of the cavity (open circles in Fig. 8.1), they are
aligned at 45o from the channel axis, and they point directly towards the
centre of the cavity [21]. Their length can be deduced to be 16 Å based on
number of residues in each helix. The fourth set are the carbonyl dipoles,
representing the carbonyl groups that line the selectivity filter. As explained
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above, these are only a rough approximation of the hydrophilic lining of the
filter. Four carbonyl dipoles are placed along the selectivity filter, spaced
evenly along a distance of 10 Å and oriented perpendicularly to the z axis.
With the four-fold symmetry around the z axis this gives a total of 16 small
dipoles. The dipoles are located at z = 10, 13.33, 16.67 and 20 Å with
the negative pole of each placed 1 Å from the boundary (filled circles in
Fig. 8.1), and the positive pole 1.2 Å further away. The dipole length of
1.2 Å is chosen to correspond to that typically used for carbonyl groups in
MD simulations [11].

8.1.3 Brownian Dynamics

We use our multiple time step algorithm (see section 7.3.2) to simulate the
motion of ions more accurately and allow non-reflective repulsion from the
walls in the narrowest regions of the pore. A short time step of 2 fs is used
in the mouth regions of the channel and the selectivity filter. A long time
step of 100 fs is used elsewhere. Specifically, there are two short time step
bands, −25 < z < −15 and 7.5 < z < 25, comprising both entrances and
the selectivity filter. If an ion is in one of these bands at the beginning of
a 100 fs period, it is simulated by 50 short steps instead of one long step;
so synchronization between the ions is maintained. Long-range forces are
calculated normally at the start of the 100 fs period, and are assumed to be
constant throughout. Short range forces are calculated every 2 fs. Coulomb
interactions between ions are calculated at the start of each long time step
except where both ions are in the same band, when they are recalculated
for each 2 fs step. Forces due to the Born energy barriers described in the
next section are also calculated every short time step.

The short range forces represent the repulsion that occurs when electron
clouds overlap. They are approximations, primarily intended to prevent ions
from interpenetrating each other or the protein walls, but they do provide
more accurate motion than the reflection algorithm which serves this purpose
in the long time step regions. We do not expect that short range forces
have a large role in conductance in the inner pore and central cavity, as
these regions have a hydrophobic pore lining. Short range forces obviously
are important in the selectivity filter, but our techniques cannot reproduce
them accurately, so we must be content with a crude model of this region.
As explained above, even such a simplified model may well be useful.

The ion-ion interaction is given by the potential function

UII(r12) =
F0

9
(R1 + R2)10

r9
12

, (8.1)

where r12 is the ion-ion distance, Ri, i = 1, 2, are the Pauling radii of the
ions and F0 is the magnitude of the short range force at contact. For the
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ion-protein wall potential UIW , a similar form is used

UIW (r) =
F0

9
(Ri + RW )10

(ρ(z) + RW )9
, (8.2)

where RW is the radius of the atoms making up the wall and ρ(z) = RC(z)−r
is an estimate of the distance from the ion to the channel wall, r being the
radial coordinate of the ion and RC(z) being the radius of the pore at the
ion’s z coordinate. We use RW = 1.4 Å (the Pauling radius of a carbon
atom) and F0 = 2 × 10−10 N (estimated from the ST2 water model used in
molecular dynamics [69]).

8.1.4 Dielectric Constant

Conditions in the pore may be quite different from those in a bulk electrolyte
solution (see section 3.1.4) so we regard the dielectric constant in the pore
as an adjustable parameter. Unfortunately, due to the limitations of our
iterative method, the dielectric constant for the model water must be the
same throughout the simulation: the dielectric constant can only change
at dielectric boundaries, and the iterative method does not give meaningful
results if an ion crosses such boundaries. This means that when we reduce
the dielectric constant in the pore, the dielectric constant in the reservoirs
is also reduced, whereas in reality it should probably be close to the bulk
value. One consequence is that the energy barrier due to the ion moving
from a high dielectric strength region (the reservoir) to a lower one (the
pore) is not reproduced by our electrostatic calculations.

In an attempt to compensate for this omission, we add an extra energy
barrier in the form of a step at each entrance of the channel. The height of
this energy barrier is given by the Born energy (see section 3.1.2)

EB =
q2

8πε0RB

(
1
ε
− 1

80

)
. (8.3)

We use RB = 1.93 Å which is derived from the estimated enthalpy of hy-
dration for K+ ions [10]. The shape of the potential step is given by the
smooth switching function

UB(s) = (EB/16)(3s5 − 10s3 + 15s) + (EB/2), s =
z − zc

∆z
, (8.4)

which has continuous first and second derivatives and rises gradually from
0 to EB as s changes from −1 to 1. Here, zc = ±22.5 Å is the location
of the center of the profile and ∆z = ∓1.5 Å is its half-width. To give an
indication of the barrier heights involved, we note that for ε = 20, 40 and
60, EB = 5.4 kT, 1.8 and 0.6 kT, respectively.
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8.2 Methods

8.2.1 Energy Profiles

In the results section we calculate both single-ion and multi-ion energy pro-
files. The potential profile of an ion is constructed by solving Poisson’s
equation with the ion fixed at a series positions spaced at 1 Å intervals
along the z-axis. This is done using the lookup tables in the same way as in
the BD simulations. This is a simple process for a single-ion profile, but the
channel contains more than one ion while it is conducting, and so we need
to be able to calculate energy profiles in the presence of additional ions.

To visualize the shape of the energy barrier an ion encounters as it at-
tempts to enter a channel that is occupied by one or more ions, we have
constructed multi-ion energy profiles. We move one of the ions from the
intracellular space into the channel in 1 Å steps, holding it fixed at each
step. We then allow the other ions in the selectivity filter to adjust their
positions so that the force on them will be zero, thus minimizing the total
energy of the system. The minimization is performed at each step and the
positions of the ions and the total energy are recorded. The total energy
corresponds to the total electrostatic energy required to bring in the charge
on the ions from an infinite distance in infinitesimal amounts, and it is given
by

Utotal =
∑

i

qi

2


2VX,i + VS,i +

∑
j �=i

(VI,ij + VC,ij)


 + UB,i, (8.5)

where the indices i and j range over all the ions. The potential terms in
Eq. (8.5) are described in section 6.1 and section 8.1.4. The factors of 1/2 in
the middle three terms arise from the integration of charge during build up.
Using a modified version of the steepest descent algorithm (see [58]), the
total energy of a multiply-occupied channel given in Eq. (8.5) is successively
minimized until the forces on the free ions vanish.

8.3 Results

8.3.1 Dipoles and Energy Profiles

As an ion approaches the boundary between an aqueous solution and the
protein wall, it experiences an electrostatic repulsion due to induced charges
at the boundary. In computing the potential energy of an ion as it moves
along the central axis, we assume initially that the dielectric constant ε in
the reservoirs and the pore is 60. The energy of transition from bulk water,
estimated from the Born energy, is incorporated as a potential barrier at the
channel entrance as explained in the section 8.1.4.

In the absence of any charge moieties on the protein wall, an ion at-
tempting to traverse the channel encounters a significant energy barrier.
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Figure 8.2: Electrostatic energy profile of a potassium ion traversing the channel. (A)
The potential energy of an ion along the central axis. The profile a is the potential
energy seen by the ion, in the absence of any charge moieties on the channel wall, profile
b is obtained with 4 sets of 4 carbonyl groups (filled circles in the inset), profile c is
obtained with 4 helix macrodipoles (open circles in the inset), and profile d is obtained
with the carbonyl groups, helix dipoles and 2 rings of mouth dipoles (filled diamonds in
the inset). (B) Potential profiles seen by individual ions while the other is fixed at the
equilibrium position (indicated by arrows). The applied field corresponds to a potential
difference of about 150 mV between the channel entrances. The first ion is placed at the
equilibrium position z = 10 Å and the profile seen by the second ion is computed (solid
line). The second ion is now placed at z = 19.75 Å and the profile seen by the first ion
is computed. (C) The potential profile encountered by a third ion, as it moves from left
to right. At each fixed position of the third ion, the stable configuration of the first two
ions is determined iteratively and then the total energy of the assembly is computed. The
strengths of each carbonyl group, mouth dipole and helix dipole are, respectively, 7.2, 30
and 96.3 ×10−30 Cm.
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The potential energy at a fixed position of an ion is computed numerically
and the calculation is repeated at 1 Å intervals. The profile presented to
the ion as it moves from inside (left) to outside (right) increases slowly at
first and then rises steeply in the narrow selectivity filter, reaching a peak of
20 kT, as shown in Fig. 8.2 A (curve labeled a). Four rings of dipoles, with 4
carbonyl groups in each ring, placed along the selectivity filter, transform a
section of the barrier into a well (b) as do 4 helix dipoles placed just below
the selectivity filter (c). As it will be shown later, two sets of additional
mouth dipoles are needed to render the channel permeable to ions. When
all three sets of dipoles – 16 carbonyl groups, 4 helix macrodipoles and 8
mouth dipoles – are placed along the channel wall, the profile an ion en-
counters while traversing the central axis of the channel is a deep potential
well (d).

The potential well created by the dipoles, reaching a depth of nearly
30 kT, attracts cations. An ion, upon entering the channel, will proceed
towards the bottom of this well. A second ion entering the channel sees a
different profile, altered by the presence of the first ion. The well in Fig. 8.2 A
(d) is deep enough to hold two ions in a stable configuration. Through an
iterative energy minimization procedure, one can determine the equilibrium
positions of the pair of ions in the well. The potential profile seen by either
ion while the other is fixed at the equilibrium position, in the presence of
an applied field of 1.5× 107 V/m, is shown in Fig. 8.2 B. At these positions
(indicated by arrows), the z-component of the force experienced by the ions
is zero. The two-ion potential profiles exhibit relatively deep wells that may
attract a third ion. In Fig. 8.2 C we show the potential profile seen by a third
ion moving into the channel from the left. Here the potential is calculated
at a given position of the third ion after finding the equilibrium positions of
the first two ions. There is a shallow well near the entrance of the channel,
produced by the ring of mouth dipoles. Once in the well, the third ion will
be delayed until random Brownian motion allows it to escape. We note here
that the potential minimum is along the central channel axis, so that ions
are preferentially funneled along it. The repulsive force from the induced
surface charges swings into action whenever an ion strays from the central
axis, pushing it back to the axis. The corresponding electric potential profile
along the radial axis is similar in appearance to a harmonic well, except that
it rises much more sharply near the boundary (see Ref. [33]).

From these electrostatic calculations, we deduce that the channel is nor-
mally occupied by two cations. Conduction is unlikely to take place unless
these ions are resident in the pore to reduce the energy well created by the
charge moieties.
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8.3.2 Dependence of Conductance on Dipole Strengths

For the channel to conduct ions, there is a narrow range of moments various
dipole groups must possess. Using BD simulations, we have determined
how the magnitude of currents flowing across the channel varies with dipole
strengths and the effective dielectric constant in the channel lumen.

As shown in Fig. 8.3 A, the conductance increases rapidly as the moment
of each carbonyl group is increased from 0 to 7.2 × 10−30 Cm. The current
begins to decline when the moment is further increased to 14.4× 10−30 Cm.
The three curves illustrated in Fig. 8.3 A are obtained by letting the effective
dielectric constant of the pore be 80 (top curve), 70 (middle curve) and 50
(bottom curve). The charge placed on the terminals of each helix dipole and
the strength of each mouth dipole are kept constant at 0.6 × 10−19 C and
30 × 10−30 Cm, respectively. In this and subsequent figures, unless stated
otherwise, each point is the average of five simulations, each simulation pe-
riod lasting for 100 ns. The error bar accompanying a data point is one
standard error of means and is not shown if it is smaller than the size of the
data point. Again, unless noted otherwise, 13 potassium and 13 chloride ions
are placed in the left-hand reservoir (representing the intracellular space),
whose volume is adjusted so as to give the ionic concentration of 300 mM,
and the same number of ions is placed in the right-hand side reservoir (rep-
resenting the extracellular space). The applied electric field between the
two ends of the reservoirs produces a potential difference of about 150 mV,
inside positive with respect to outside. The peak current is always obtained
when the strength of the carbonyl groups is fixed at 7.2 × 10−30 Cm (2.16
Debye), irrespective of the assumed dielectric constant. In Fig. 8.3 B, the
variation of currents with the dipole moment is determined at 3 different
applied potentials, 150 mV, 200 mV and 250 mV, while keeping ε = 60
throughout. Again the current peaks at about the same dipole strength.

The results of simulations showing the variation of current with the
strengths of mouth dipoles (A) and helix dipoles (B) are illustrated in
Fig. 8.4. The dipole moment of each carbonyl group in the selectivity filter is
kept at 7.2× 10−30 Cm throughout. The current flowing across the channel
is largest when the charge on each of the four helix dipoles is 0.6× 10−19 C.
Similarly, the current is maximum when the strength of each of the mouth
dipoles is 30 × 10−30 Cm. Fig. 8.4 reveals, as does the previous figure, that
the dielectric constant of the channel has pronounced effect on the perme-
ability of the channel. With optimum pore helix and mouth dipole strengths,
ε = 60 gives the physiological conductance of approximately 40 pS, as found
experimentally [67]. The channel conductance is progressively suppressed
when the dielectric constant in the pore is lowered and no conduction takes
place, with the driving force of 150 mV, when ε ≤ 40.

Here and in all subsequent series of simulations, we assume that the
channel possesses the strengths of various dipole groups that enables the
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Figure 8.3: Changes in channel conductance with the strength of carbonyl groups. Sim-
ulations under various conditions, each lasting 100 ns, are repeated 5 times. The height
of each reservoir is adjusted to give an ionic concentration of 300 mM, and inside is made
150 mV positive with respect to outside. The current (in pA) is determined from the total
number of ions traversing the channel over the simulation period of 0.5 µs. (A) Keeping
the moments of each helix dipole and mouth dipole constant at 96.3 and 30 ×10−30 Cm,
the strength of each carbonyl group is systematically changed. The current (in pA) is
plotted against dipole strength for three values of the dielectric constant, ε = 50, 70 and
80. (B) The current is plotted against the strength of carbonyl groups for three values of
applied potential, 150 mV, 200 mV and 250 mV, while keeping ε constant at 60.
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Figure 8.4: Changes in channel conductance with the strength of mouth dipoles (A)
and helix dipoles (B). (A) The strength of each mouth dipole is changed systematically
while keeping the moments of each carbonyl group and helix dipole constant at 7.2 and
96.3 ×10−30 Cm. The current is plotted against the strength of mouth dipoles for three
different values of dielectric constant, ε = 60, 70 and 80. (B) The charge placed on each
helix dipole is changed systematically while keeping the moments of each carbonyl group
and mouth dipole constant at 7.2 and 30 ×10−30 Cm. The current (in pA) is plotted
against dipole strength for three values of the dielectric constant, ε = 50, 60 and 70.
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maximum number of ions to be translocated across the channel for a given
driving force, that is, the dipole strengths for each of 8 mouth dipoles,
16 carbonyl groups and 4 helix dipoles are, respectively, 30, 7.2 and 96.3
×10−30 Cm.

8.3.3 Effects of Dielectric Constant and Diffusion Coefficient
on Currents

From the results given in the previous section, it is clear that, for the channel
to conduct, the effective dielectric constant ε in the pore must be high. In
other words, water molecules resident in the pore must not be tightly bound
to the protein but be able to rotate relatively freely so as to reduce the
interaction energy between the ions and the charges located on the channel
wall. In Fig. 8.5, we examine further the influence of ε on the magnitude
of current flowing across the channel. The depth of the energy well created
by dipoles increases as ε is lowered. An example of the energy well created
by four mouth dipoles located near the channel entrance, when there are
two ions resident in the selectivity filter (c.f., Fig. 8.2 C), is illustrated in
Fig. 8.5 A. Here, ε is assumed to be 30 and a potential of 300 mV is applied
across the channel. An ion attempting to cross this well encounters a barrier
VB, the height of which decreases monotonically with increasing ε, as shown
in Fig. 8.5 B. Increasing the applied potential from 150 mV to 300 mV
reduces the barrier height by about 1.5 kT. A steep increase in the barrier
height as ε is lowered suggests that the channel will not conduct ions if ε in
the pore is less than 40. The inference drawn from electrostatic calculations
is in accord with the results obtained from BD simulations. The current
across the channel under the driving force of 150 mV, 200 mV, 250 mV and
300 mV is plotted against ε in Fig. 8.5 C. These four curves broadly mirror
the way the barrier height increases with ε. The current ceases to flow when
the barrier height reaches 7 kT.

The diffusion coefficient of potassium ions DK in bulk electrolyte solu-
tions is 1.96 ×10−9 m2/s. This value is reduced when an ion is diffusing
through a narrow tube [64, 17, 47, 68, 5]. The magnitude of the diffusion
coefficient of an ionic species depends, among others, on the radius of the
cylinder and the composition of the wall. A molecular dynamics simulation
of the KcsA channel [6] shows that DK in the wider segment, including the
oval chamber, in nearly the same as that in bulk solutions, whereas that in
the selectivity filter is on average 1/3 of the bulk value. The following series
of simulations are carried out to assess how much the channel conductance
is suppressed by a low DK in the narrow filter.

When ions enter the channel segment extending from z = 7.5 to z =
25 Å, their motions are determined by a DK that is lower than the bulk
value. Fig. 8.6 shows the current across the channel as a function of DK at
three different values of dielectric constants, ε = 60 (A) and ε = 50 and 70
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Figure 8.5: Effects of the effective dielectric constant on conductance. (A) A energy well
near the channel entrance created by four mouth dipoles is encountered by an ion given
that there are two resident ions in the selectivity filter. The energy minimization is carried
out with ε = 30 and an applied potential of 300 mV. An ion upon entering the well must
surmount a barrier of height VB to traverse the channel. (B) The height of the barrier
VB is plotted against the effective dielectric constant for two different values of applied
potential, 150 mV (filled circles) and 300 mV (open circles). (C) The inward currents
under the driving force of 300 mV (open circles), 250 mV (filled circles), 200 mV (open
circles) and 150 mV (filled circles) are plotted against the effective dielectric constant.
Each point is derived from a simulation period of either 1 µs (150, 200 and 250 mV) or
2 µs (300 mV).
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Figure 8.6: Effects of the diffusion coefficient on conductance. The diffusion coefficient of
potassium ions in the selectivity filter, extending from z = 7.5 to 25 Å, is progressively
lowered from the bulk value of 1.96 ×10−9 m2/s and its effect on conductance is examined.
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(B) The outward current is plotted against diffusion coefficient in the selectivity filter for
ε = 70 (upper curve) and 50 (lower curve). Each point in (A) and (B) is derived from a
simulation period of 1 µs.
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(B). The filled and open circles in (A) represent, respectively, the outward
and inward currents. The applied potential across the channel and the ionic
concentration in the reservoir are kept constant at 200 mV and 300 mM,
respectively. In contrast to bulk conductance, where current is proportional
to the diffusion coefficient, the current in the potassium channel depends
on DK in a non-linear fashion. It decreases with decreasing DK at a very
slow rate at first (until DK is reduced about 0.5 of its bulk value), and then
becomes more or less proportional to DK. When DK is reduced to 1/3 of
the bulk value, the current is only suppressed by about 30%.

8.3.4 Current-Voltage Relationships

The current-voltage relationships, shown in Fig. 8.7, are obtained with sym-
metrical solutions of 300 mM in both reservoirs. The diffusion coefficient in
the selectivity filter is assumed to be the same as that in bulk electrolytes.
Because the effective dielectric constant ε of the channel is unknown, we have
determined the current-voltage curves, assuming ε to be 60, 70 and 80. The
curves derived from these three conditions all reveal several distinct features.
First, at any given applied potential, the outward current is larger than the
inward current. Secondly, the magnitude of current across the channel at
any given driving force increases steadily with increasing dielectric constant.
The outward current at 100 mV is 6.7 ± 1.2, 11.8 ± 2.1 and 15.0 ± 1.0 pA
when ε is assumed to be 60, 70 and 80, respectively (Fig. 8.7 A, B, & C).
Because the current begins to saturate with increasing ionic concentrations
(see later), the conductance at 150 mM K+ will be slightly larger than 33, 59
and 75 pS at these three values of dielectric constants. Thirdly, the relation-
ship is approximately linear when the applied potential is less than 100 mV,
but it deviates systematically from Ohm’s law with a further increase in the
membrane potential. Given the results described in chapter 7 (see Fig. 7.8)
and the preceding section (see Fig. 8.5), it seems reasonable to assume that
this nonlinearity results from the presence of an energy barrier in the model
channel.

To provide the solid lines in Fig. 8.7 we use a modification of the Pöschl-
Teller function described in section 7.2.1:

I =
γV

1 + β/[exp(eV/VB1) + exp(−eV/VB2)]
, (8.6)

where γ is the limiting conductance at large V , β is a dimensionless param-
eter and VB1 and VB2 are the right and left barrier heights. This function
reduces to Ohm’s law at very small and very large voltages, with conduc-
tance γ/(1 + β/2) when the voltage is close to zero, and conductance γ
when the voltage is positive and much greater than VB1 or negative and
much smaller than VB2. The solid lines are intended only to help visualize
the conductance data, not to provide a physical interpretation, and for this
reason the fit parameters are not given.
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Figure 8.7: The current-voltage relationships. The current measured at various applied
potentials is obtained with symmetrical solutions of 300 mM in both reservoirs. The solid
lines fitted through data points are calculated from Eq. (8.6). The values of ε used for
(A), (B) and (C) are 60, 70 and 80, respectively.
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Figure 8.8: The current-voltage relationships. The current measured at various applied
potentials is obtained with asymmetric solutions for ε = 60 (A) and 70 (B). The con-
centration in the reservoir representing the intracellular space is 500 mM, whereas that
representing the extracellular space is 100 mM. The solid lines drawn through the data are
calculated with Eq. (8.6) multiplied by the Goldman factor, Eq. (8.7). For (C), obtained
with ε = 80, the measured concentrations in the intracellular and extracellular reservoirs
are 482.0 mM and 71.5 mM (open circles) and 385.3 mM and 176.2 mM (filled circles).
The open downward arrows indicate the reversal potential calculated from the Nernst
equation. The predicted Nernst potentials taking the activity coefficients into account are
indicated with filled downward arrows. The values of activity coefficients used for 71.5,
176.2, 386.3 and 482.0 mM are, respectively, 0.79, 0.73, 0.67 and 0.63.
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The current-voltage relationships obtained with asymmetrical ionic so-
lutions in the two reservoirs are shown in Fig. 8.8. The curves exhibited in
the figure are obtained by assuming that ε in the channel is, respectively,
60 (A) and 70 (B). The ionic concentrations inside and outside are 500 mM
and 100 mM. As expected, the asymmetry between the inward and outward
currents is accentuated. As with the symmetrical solutions, an increase
of ε from 60 to 70 causes an increase in the magnitude of currents flowing
across the channel. The zero current of the two current-voltage relationships
appears to be somewhere between −25 mV and −50 mV.

The solid lines fitted through the data points are obtained from Eq. (8.6)
multiplied by a factor of the form:[

5 − exp(−eV/kT )
1 − exp(−eV/kT )

]
. (8.7)

This factor comes from the Goldman-Hodgkin-Katz (GHK) equation which
is usually used to fit the current-voltage curves of ion channels (see chap-
ter 13 of Hille[31]). In the situation under discussion it is possible to express
the GHK equation in the form:

I = KV
1 − 5 exp(−eV/kT )
1 − exp(−eV/kT )

, (8.8)

where K is a constant and the factor of 5 arises from the outside to inside
ratio of concentrations [18]. The GHK equation is derived under assump-
tions of a constant electric field and independent ion motion, which certainly
do not apply to the model channel: as with the symmetric current-voltage
results, the solid lines are only intended to help visualize the data.

To ascertain how closely the measured reversal potentials match with
those predicted by the Nernst equation, we estimate currents flowing across
the channel with two different ionic concentrations in the reservoirs and
under various applied potentials. The concentrations of K+ in the extracel-
lular and intracellular aspects of the channel are computed from the average
number of ions in the reservoirs throughout the simulation periods. The
measured ionic concentrations in the left and right reservoirs in one series of
simulations are 71.5 and 482.0 mM and in another series of simulations are
176.2 and 385.3 mM. Figure 8.8 shows the currents flowing across the chan-
nel at various applied potentials. Because the net current for these driving
forces is small, the total simulation period of 3 µs is used to derive each data
point. For the same reason, we use ε = 80 for the effective dielectric constant
of the channel, which results in a larger current flow. The reversal potential
for each asymmetrical solutions is estimated by fitting a polynomial curve
through the data points (solid line in Fig. 8.8 C). There are small but consis-
tent discrepancies between the reversal potentials deduced from simulations
and those predicted from the Nernst equation (indicated with open down-
ward arrows). The zero currents occur at −45 mV and −17 mV when the



8.3. RESULTS 153

concentration ratios in the two reservoirs are, respectively, 6.7:1 and 2.2:1.
The predicted reversal potentials are −48.1 mV and −19.7 mV. These dis-
crepancies between the predicted and measured zero currents disappear if
we take the activity coefficients of KCl at the measured ionic concentrations
into account [73], as indicated by the filled arrows in Fig. 8.8 C. From a
number of I-V curves obtained with asymmetrical solutions, we conclude
that the zero current occurs at a potential predicted by the Nernst equation
within the errors of simulations.

8.3.5 Ions in the channel

It is of interest to note where in the channel ions dwell predominantly. To
compute the average number of ions inside the channel, we divide the channel
into 32 thin sections and compute the time averages of potassium ions in
each section. When a potential of 200 mV is applied so as to produce an
outward current, two ions on average tend to reside in the channel. The
preferred positions where ions dwell are in the selectivity filter at z = 9.4,
14.1 and 23.4 Å, as shown in Fig. 8.9 A. We note here that, although the
histogram (Fig. 8.9 A) shows three distinct peaks near the selectivity filter,
there are on average 1.5 ions in this region, as can be deduced by summing
the heights of the bars. A similar sum for the peak near the intracellular
entrance gives 0.5 ions, that is, an ion is present there 50% of the time. The
preferential positions of the ions in the channel are shifted when the direction
of the current is reversed by making inside negative with respect to outside.
Under this condition, two ions mainly linger around z = 9.4 and 17.2 Å
(Fig. 8.9 B). Thus, the preferred locations of ions in the channel depend on,
among other factors, the direction and the strength of the applied field.

To better illustrate the behavior of ions under the influence of the electric
and stochastic forces, we bisect the channel and denote the number of ions
on the left and right hand sides by [nl, nr]. The occupation probabilities
of distinct states are tabulated in Table 8.1 for five different potentials. At
the bottom of the table, we give the average number of ions resident in the
channel, which is about 2 regardless of the applied potential.

When the applied potential is 100 mV, which is relevant for the operation
of the potassium channel, the most common occupation pattern is [0, 2].
That is, no ion is present in the first half (intracellular side) of the channel,
while 2 ions are present in the second half (extracellular side). In addition
to the patterns listed in Table 8.1, there are five other distinct patterns that
are observed during the total simulation period of 0.5 µs (or 5 million time
steps), but the frequencies of their occurrences are less than 1%. About
32,000 transitions occur between these patterns when the snapshot of the
channel configuration is taken once every pico-second. The most common
transitions are between [0, 2] and [0, 1], and between [1, 2] and [1, 1], which
corresponds to the following process: driven by thermal energies, one of the
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Figure 8.9: Concentrations of potassium ions in the channel. The channel is divided into
32 sections, as indicated in the inset, and the probability of ions present in each section
over a simulation period of 0.5 µs is tabulated (bars). The ionic concentration in the
reservoirs is 300 mM. The applied electric field in (A) is 2 × 107 V/m such that inside
(left-hand side) is about 200 mV positive with respect to outside (right-hand side). The
direction of the field is reversed to obtain the distribution shown in (B).
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Table 8.1: Occupation probabilities of multi-ion states [nl, nr] and the average number of
ions in the channel 〈nl + nr〉 for different applied potentials.

[nl, nr] -200 mv -100 mV 100 mV 200 mV 300 mV

[0, 1] 3.5 3.4 12.1 15.2 17.2
[1, 1] 6.6 3.3 19.2 36.6 41.9
[0, 2] 78.9 78.2 49.2 30.3 25.3
[1, 2] 6.8 12.5 18.4 17.2 14.8
[0, 3] 3.8 2.4 - - -

Total % 99.6 99.8 98.9 99.3 99.2

〈nl + nr〉 2.07 2.11 2.06 2.02 1.98

two ions in the second half of the channel escapes and then re-enters. The
forward and backward transitions between these two sets account 64% of
the total transitions. Less frequent transitions, occurring about 20% of all
transitions, are between [0, 2] and [1, 2]. Finally, transitions between [0, 1]
and [1, 1] account for 6% of the total transitions, while the forward transition
between [1, 1] to [0, 2] accounts only for 0.3% of the total transitions.

8.3.6 Conductance-Concentration Relationships

If the transport of ions across the channel is determined by two independent
processes, one of which depends on ionic concentration in the reservoir and
one of which does not, then we expect that the current I will first increase
with an increasing ionic concentration [c] and then saturate, leading to a
current-concentration relationship of the Michaelis-Menten form:

I =
Imax

1 + Ks/[c]
, (8.9)

so that the current approaches the saturation current Imax when [c] � Ks.
The magnitude of current across the channel plotted against the concen-

trations of potassium ions in the reservoirs, shown in Fig. 8.10, has the same
shape as those observed experimentally [19, 59]. The two curves in (A) and
(B) are the outward (filled circles) and inward (open circles) currents deter-
mined by assuming ε = 60 (A) and ε = 70 (B). The applied potentials used
for (A) and (B) are, respectively, 200 mV and 150 mV. The conductance
increases rapidly with an increasing ionic concentration at first and then sat-
urates with a further increase in concentrations. The values of Imax and Ks
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Figure 8.10: The conductance-concentration curves. The outward (filled circles) and
inward (open circles) are obtained with symmetric solutions of varying concentrations in
the two reservoirs. An applied potential of 200 mV and ε = 60 are used for (A), while a
potential of 150 mV and ε = 70 are used for (B). The lines fitted through data points are
calculated with Eq. (8.9).
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used to fit the data points are: for A, 41± 1 pA and 151± 11 mM (outward
currents), 24.2±0.8 pA and 127±11 mM; for B, 36±1 pA and 169±15 mM
(outward currents) and 20.6±0.5 pA and 77±9 mM. The concentrations for
half-maximal currents Ks we derive are slightly higher than the experimen-
tally determined value for a potassium channel from sarcoplasmic reticulum
by Coronado et al. [19].

8.4 Discussion

The fixed charges in the model, as adjusted to give maximum conductance,
are somewhat smaller than expected. The helix dipoles have charges of
0.6 × 10−19 C (giving a dipole moment of 96 × 10−19 Cm over a length of
16 Å), compared to a value of 0.8 × 10−19 C (or 12 × 10−19 Cm per 1.5 Å)
calculated from the structure of an alpha helix [32]. The mouth dipoles also
have charges of 0.6 × 10−19 C, where 1.6 × 10−19 C (one elementary charge)
might be expected. However, it is possible that in a ring of negative charges
like this some of the side chains would become protonated and lose their
negative charge [3]. If only two of the side chains were charged this would
be consistent with four mouth dipole charges of 0.8× 10−19 C, although two
charges of 1.6 × 10−19 C would be a better representation. The carbonyl
dipole charges of 0.6 × 10−19 C are as expected for a carbonyl group [11],
but considering the crudeness of the filter model and the doubts about the
electrostatic calculations in this region, this must be considered fortuitous.

The adjusted dielectric constant of 60 for the water in the channel is not
in agreement with molecular dynamics studies. The dielectric constant must
be at least 60 for the model channel’s conductance to agree with experiment.
When the dielectric constant is reduced to 40 the model channel effectively
ceases to conduct, at least for realistic voltages. Molecular dynamics studies
of water in spherical cavities [74] and narrow pores [66] suggest that the
dielectric constant in confined spaces is substantially reduced compared to
the bulk value.

Given the high dielectric constant the conductance characteristics of the
model channel are reasonable, but they have not been compared in detail to
the characteristics of real KcsA channels, as the comprehensive electrophys-
iological data required to do so is not yet available. The overall conductance
of the model channel of around 33 pS (at 150 mM potassium and for ε = 60)
is in reasonable agreement with the experimental single channel conductance
of around 40 pS (at 200 mM potassium) for the most common conductance
state [67]. The model channel’s conductance saturates in a manner similar
to real potassium channels, showing the expected Michaelis-Menten form.
The partial rectification shown by the model channel for symmetric solu-
tions is interesting, as it is probably a multi-ion effect, but it is difficult to
compare with results from real channels. Most potassium channels rectify,
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but they do so by gating or ionic block, meaning that usually only one half
of the current-voltage curve is available.

The x-ray crystallography done on the KcsA channel [21] shows three
preferred ion positions: two in the selectivity filter and one in the central
cavity. As described below, the model channel seems to have stable states
in which the ions preferentially occupy particular positions depending on
the applied voltage and the number of ions in the channel. If so this is
consistent with the presence of sharply defined ion positions. The model
channel contains an average of around two ions, but this is not in itself
inconsistent with a channel with three ion positions, since the positions
need not be occupied all the time. Nor is it inconsistent with ionic flux
coupling results which suggest more than two ions in a conducting potassium
channel [31], since the model channel may be more likely to conduct when it
contains three ions, and almost certainly does not conduct when it contains
one. Averages need to be interpreted with care; the real story is in the
distribution and this is where a discrepancy shows up. In the model channel
ions are concentrated in three areas, the selectivity filter, the cytoplasmic
mouth, and the extracellular mouth, but never in the central cavity. This is
a clear difference between the model channel and experimental results.

The likely causes of this discrepancy and the requirement for a high di-
electric constant are inaccuracies in estimation of the electrostatic forces and
problems with charge positions in the model channel. It is possible that the
whole concept of modelling this channel with diffusion and electrostatics is
wrong, and binding sites and hopping really are essential to its operation.
This seems to us unlikely, however, since the model channel does show many
similarities with the real channel, and multi-ion channels in general. Also
the main problem, the lack of ion concentration in the central cavity, is in
a region expected to be controlled by electrostatics and diffusion. Possible
improvements to the electrostatics techniques are described in section 3.1.4,
and these may be needed to provide an accurate description of the channel.
Surprisingly the crude selectivity filter model works reasonably well, concen-
trating ions but allowing conductance by mutual destabilization. However,
it may be that the small dipoles in the filter (which have some ability to
move in the real channel) need to be represented in part by a locally in-
creased dielectric constant rather than fixed charges. This could lead to a
reduction of their long range effect in the central cavity without removing
their ability to concentrate ions in the selectivity filter. Another possibility
is that the arbitrarily placed counter charges in the mouth dipoles are too
close to the negative charges surrounding the mouths of the channel. This
could result in artificially sharp energy wells, leading to the barrier near the
cytoplasmic mouth which seems to cause of the need for a large dielectric
constant. A good start towards a better model channel would be to generate
the shape and charge positions directly from the molecular structure, rather
than in the rather ad-hoc way described above. This would also have the
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advantage of reducing the number of adjustable parameters.
It seems we have constructed a working model of a multi-ion channel,

albeit with an unrealistically high dielectric constant, but not a functional
replica of the KcsA channel. After optimization of dipole strengths and the
dielectric constant the model channel has a conductance comparable with
the KcsA channel and other potassium channels. The concentration profiles
(Fig. 8.9) and occupation probabilities (Table 8.1) show that the channel
is usually occupied by two ions, and almost always by at least one, and
this suggests that the channel contains at least two ions while conducting,
since a single ion traversing the channel would leave it unoccupied when it
exited. The current through the model channel saturates with increasing
concentration (Fig. 8.10), as is characteristic of multi-ion channels. The
channel also shows partial rectification with symmetrical solutions (Fig. 8.7),
and it seems likely that this is an effect of the interactions between multiple
ions within the channel.

So the model channel is multi-ion, and it shows conductance character-
istics similar to real multi-ion channels. Its operation cannot, however, be
explained in terms of hopping between binding sites as is usual for multi-ion
channels. The model channel contains no binding sites, only a broad energy
well (Fig 8.2 A), and all transport is by simulated diffusion. If an expla-
nation of its conductance is desired, a different mechanism must be found.
The existence of such a mechanism is useful because, if understood, it might
lead to an alternative theory to RRT for conductance in multi-ion channels.
Although RRT is the best available theory for summarizing experimental
conductance data from a channel, and provides intuitive explanations for
aspects of the the conductance of multi-ion channels that other theories
cannot, the physical basis for its application to channels is doubtful (see
section 2.1).

The concentration profile for an outward electric field (Fig. 8.9 A) shows
that ions spend most of their time in particular regions of the model chan-
nel. Ions are concentrated in the selectivity filter and the cytoplasmic and
extracellular mouth regions: they are rarely found in the inner pore or cen-
tral cavity. Since ions must travel through the inner pore for the channel to
conduct (which it does), the low concentration in this region suggests that
the ions move through rapidly, and that transitions are relatively infrequent
compared to the time spent in the channel mouths and selectivity filter.
The concentration of ions in particular locations in the model channel (as
evidenced by peaks in the concentration profiles) is consistent with the idea
of binding sites. However, the single ion energy profile (Fig. 8.2 A, curve d)
is smooth, showing only a broad energy well centred on the selectivity filter,
and a very shallow well near the cytoplasmic mouth. There is no sign of the
sharp localized wells that would indicate binding sites. This is not surprising
given the method used to calculate the electrostatic potential (macroscopic
electrostatics). The real channel may or may not contain ion binding sites,
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but the concentration profiles are for the model channel and so the peaks in
them cannot be explained in this way. A likely explanation is that the broad
energy well attracts more that one ion to the channel, these ions change the
energy profile experienced by each other (as they must), and that the in-
teractions between the ions and the channel create temporary energy wells
which confine the ions and cause the peaks. In other words the ions self-
organize into particular positions in the channel depending on the number
of ions present and the strength and direction of the applied field.

The multi-ion energy profiles (Figs. 8.2 and 8.5) support this interpreta-
tion. In Fig. 8.2 B energy profiles are calculated while another ion is fixed
in the selectivity filter. The energy wells are sharper then that of the single
ion profile (Fig. 8.2 A, curve d), and are consistent with two ions residing
in particular locations at either end of the selectivity filter, and producing
two separate peaks in the concentration profile. In Fig 8.2 C the energy
profile is calculated for an ion entering the channel from the cytoplasmic
end with two other ions already in the selectivity filter. These two ions have
their positions altered to minimize energy as the first ion is moved into the
channel (see section 8.2.1). The energy profile shows a well near the cyto-
plasmic mouth and a barrier centred on the inner pore. This is consistent
with the peak in the concentration profile (Fig 8.9 A) just inside the cyto-
plasmic mouth, and the low concentrations in the inner pore. The height of
the barrier in the multi-ion profile depends on the dielectric constant used
for the simulation (Fig. 8.5 B): as the dielectric constant is increased, the
inner pore and central cavity become more effective at hydrating the ion (as
simulated by macroscopic electrostatics), and the barrier is reduced. This
in turn increases the conductance of the channel (Fig. 8.5 C). Considering
a single ion at at time does not provide such a direct explanation: as the
dielectric constant increases, so does the depth of the well in the single ion
profile, but it is not clear why this should cause the conductance of the
channel to increase. The multi-ion energy profiles, based on the assumption
of multiple ions self-organizing in the model channel, provide an explana-
tion for the peaks in the concentration profiles, as well as the increase of
conductance with increasing dielectric constant.

If the ions in the model channel self-organize into stable states, then
transition between these states is probably by rapid diffusion, as indicated
by the low concentration of ions in the inner pore. This suggests an over-
all picture of relatively stable states with rapid transitions between states.
This is similar to RRT but with different physical causes. The occupation
probabilities summarized in table 8.1 are a preliminary attempt to recog-
nize possible states. Since the division between right and left halves of the
channel is in the rarely occupied inner pore, an ion in the left half is prob-
ably in the well near the cytoplasmic mouth, while ions in the right half
are probably in the selectivity filter or extracellular mouth. Unfortunately,
while the occupation probabilities give some idea of possible states, they do
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not give clear information about transitions between states. Some examples
of transition probabilities are given in the text (section 8.3.5), but most
of the transitions consist of ions briefly entering the mouth regions of the
channel and immediately leaving. The problem is that the occupation prob-
abilities do not represent identified stable states, but simply the very rough
positions of the ions: each occupation pattern may represent zero or more
stable states as well as various transient events. If there are stable states,
then the patterns containing them will dominate the probabilities. Thus the
distribution of probabilities in the table is some evidence that stable states
exist in the model channel. Transitions between stable states are relatively
rare, however, and cannot easily be picked out of the occupation probabil-
ity data. Clearly a more sophisticated method of state identification and
analysis is needed.

If ions in the model channel self-organize to form stable states this implies
that the preferred positions of ions may change depending on the number of
ions in the channel and the strength and direction of the electric field. There
is evidence of this happening in the concentration profiles (Fig. 8.9) and the
occupation probabilities (Table 8.1). The concentration profile for +200mV
(Fig. 8.9 A) shows a peak near the cytoplasmic mouth and one main peak in
the centre of the selectivity filter, with subsidiary peaks on either side in the
extracellular mouth and at the cytoplasmic end of the filter. In contrast the
concentration profile for -200 mV (Fig. 8.9 B) shows two strong peaks in the
selectivity filter, with not many ions elsewhere. This seems to correspond
to the dominant [0, 2] pattern for occupancy under these conditions, which
has about 80% probability. It is possible that this concentration profile
represents a stable state which gives rise to the prominence of the [0, 2]
pattern. The occupancy patterns for +200 mV have a more even spread of
probabilities, indicating that the concentration profile may be an amalgam
of several states. The patterns [1, 1] and [1, 2] make up over 50% of the
probability, which could explain the peak near the cytoplasmic mouth. All
four dominant patterns have ions in the right half of the channel: these ions
may be in different places and this could explain the confusion of peaks in
and near the selectivity filter.

In summary, this attempt to model the KcsA channel by Brownian dy-
namics simulation can only be regarded as a mixed success. The lack of ion
concentration in the central cavity is a major deviation from experimental
results, and the requirement for a large dielectric constant is probably wrong.
However, the model channel has many similarities to the real channel. It has
comparable conductance, and current through it saturates as in a real potas-
sium channel. It also has sharp concentrations of ions in the selectivity filter
similar to those in the KcsA channel. The values of the fixed charges, fitted
to maximize conductance, are quite reasonable. These similarities suggest
that the basic approach is sound, but that the model channel needs to be
improved and made closer to the experimental structure, and that methods
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of estimating the electrostatic forces need to be improved. Nevertheless, the
effort has established that a model based on diffusion and electrostatics can
produce a working multi-ion channel. In addition the way that the model
channel seems to conduct by states and transitions may provide insight into
conductance in multi-ion channels in general, and the reasons for the success
of RRT in channels despite its dubious physical assumptions.
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Conclusion

The major technical challenge of this project was the production of fast, flex-
ible, and accurate solutions to Poisson’s equation. The iterative method is
flexible but slow: it produces solutions for a wide variety of channel shapes,
but can not produce these solutions quickly enough to allow useful BD sim-
ulations. The analytical method is faster and more accurate, but is limited
to a toroidal channel boundary, and is still not quick enough for a BD sim-
ulation to predict conductance. The lookup table method gives access to
the flexible solutions of the iterative method with sufficient speed to allow
long BD simulations capable of predicting conductance. Although the ana-
lytical method might seem to be rendered obsolete, it is still very useful for
checking the iterative and lookup table methods. The ability to compare
solutions of Poisson’s equation arrived at by completely different methods
gives us a high level of confidence in the correct operation of our programs.

When used in Brownian dynamics simulations, these techniques for rapidly
solving Poisson’s equation produce quantitative predictions from model chan-
nels. The results from a single ion channel show that a narrow pore through
a low dielectric medium presents a large energy barrier to permeating ions.
Dipoles in the channel wall are needed to overcome this barrier, which is not
removed by the presence of counter-ions free to diffuse. The results for a
multi-ion channel show reasonable agreement with the conductance charac-
teristics of real channels. They also suggest that multiple ions form states in
the channel, with permeation occurring by transition between these states.
Although complicated and computer intensive, our theory of conductance
in ion channels is based on physical principles, and makes quantitative pre-
dictions from channel structure. In addition, the predictions made from
an experimentally based channel model are at least similar to the expected
values.

Despite this progress, there are many improvements that could be made
to the theory, and much more work that should be done. An obvious need
is for detailed comparison with experimental conductance results, to rigor-
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ously test the theory. One difficulty here is finding good conductance data
and structural data for the same channel. Now that the structure of the
KcsA channel has been determined, this channel will likely become the sub-
ject of many experimental studies, so this is one good prospect. Another
approach is structural modelling, attempting to match the experimental
characteristics of a channel by guessing the structure. This requires a good
understanding of how changes to the structure of the model affect its con-
ductance, an understanding that we do not yet have. It also tends to rely on
the accuracy of predictions from the theory, rather than verifying these pre-
dictions. Nevertheless, attempts at structural modelling may draw attention
to weaknesses in our theory and techniques, and start to produce an intuitive
understanding of the link between channel structure and conductance.

Improvements could be made to the iterative and lookup table meth-
ods, and the Brownian dynamics techniques. A new iterative algorithm
based on a three dimensional grid would be desirable, as it would be able
to accommodate changes in dielectric constant throughout the simulation
in a self-consistent way. Some difficulties would be dealing with a smoothly
curving dielectric boundary, and providing enough accuracy in the critical
neck region of the channel. The lookup table algorithms need to be revised,
to avoid the interpolation errors that can occur at the mouth of the chan-
nel, to improve the accuracy of interpolation for the 2d table, and perhaps
to reduce the size of the tables to the extent that the algorithm is efficient
on a RISC architecture machine. While the basic BD algorithm is a good
one, able to cope with timesteps of any length, the algorithms describing
the boundaries of the simulation are somewhat arbitrary. Better stochastic
boundaries would allow the electro-chemical potentials of the reservoirs to
be set, rather than estimated. Note that in Fig 8.8 the concentrations in
the reservoirs have to measured from the simulations in order to correctly
predict the reversal potential. The reflective boundaries and ion exclusion al-
gorithms (section 5.3.2) are also undesirable. This problem could be solved
by an adaptive timestep algorithm that varied the timestep from long to
short depending on the proximity of ions to each other or the boundary.
Such an algorithm would allow the reflective boundaries to be replaced by
short range forces.

However, one of the ideas produced by the current algorithms shows
great promise for future research, perhaps of more significance than mak-
ing incremental improvements the existing theory. The observation that
the model potassium channel may exhibit states and transition probabilities
raises the prospect of providing reaction rate theory with a physical basis in
channels, perhaps resulting in a simple theory of channel conductance with
better explanatory power than a complex simulation. The first step would
be to confirm the link between RRT and the potassium channel model, by
doing an RRT analysis of the model’s conductance, and comparing this to
an improved state analysis of the movement of ions in the model channel.
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Turning such a link into a useful theory would be harder, as diffusion over
a barrier is theoretically much more complicated than hopping over a bar-
rier. In kinetic hopping, energy is conserved, so the probability of crossing
depends only on the barrier’s height. Diffusion, however, is a dispersive
process, and the shape and width of the barrier affect the probability of
crossing. Nevertheless, this avenue should be pursued.
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